max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
libsortvis/algos/oddevensort.py
tknuth/sortvis
117
11184171
<reponame>tknuth/sortvis def oddevensort(lst, nloops=2): finished = False while not finished: finished = True for n in xrange(nloops): for i in xrange(n, len(lst) - 1, nloops): if lst[i] > lst[i + 1]: lst[i], lst[i + 1] = lst[i + 1], lst[i] lst.log() finished = False
test/outputs/test_commentator.py
fetus-hina/IkaLog
285
11184179
<filename>test/outputs/test_commentator.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # IkaLog # ====== # Copyright (C) 2015 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Unittests for commentator.py. # Usage: # python ./test_commentator.py # or # py.test ./test_commentator.py import unittest import os.path import sys # Append the Ikalog root dir to sys.path to import Commentator. sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..')) from ikalog.outputs.commentator import Commentator class TestIkaUtils(unittest.TestCase): def test__death_reason_label(self): # _death_reason_lable is only for Japanese at this moment. commentator = Commentator() # Custom read self.assertEqual('ごーにーガロン', commentator._death_reason_label('52gal')) # Weapons self.assertEqual('わかばシューター', commentator._death_reason_label('wakaba')) # Sub weapons self.assertEqual('チェイスボム', commentator._death_reason_label('chasebomb')) # Special weapons self.assertEqual('トルネード', commentator._death_reason_label('tornado')) # Hurtable objects self.assertEqual('プロペラから飛び散ったインク', commentator._death_reason_label('propeller')) # OOB is treated in a different function. # Unknown self.assertEqual('未知の武器', commentator._death_reason_label('530000gal')) if __name__ == '__main__': unittest.main()
datasets/kitti_raw_monodepth.py
NIRVANALAN/self-mono-sf
213
11184210
from __future__ import absolute_import, division, print_function import os.path import torch import torch.utils.data as data import numpy as np from torchvision import transforms as vision_transforms from .common import read_image_as_byte, read_calib_into_dict from .common import kitti_crop_image_list, kitti_adjust_intrinsic from .common import intrinsic_scale class KITTI_Raw(data.Dataset): def __init__(self, args, images_root=None, preprocessing_crop=False, crop_size=[370, 1224], num_examples=-1, index_file=None): self._args = args self._seq_len = 1 self._preprocessing_crop = preprocessing_crop self._crop_size = crop_size path_dir = os.path.dirname(os.path.realpath(__file__)) path_index_file = os.path.join(path_dir, index_file) if not os.path.exists(path_index_file): raise ValueError("Index File '%s' not found!", path_index_file) index_file = open(path_index_file, 'r') ## loading image ----------------------------------- if not os.path.isdir(images_root): raise ValueError("Image directory '%s' not found!") filename_list = [line.rstrip().split(' ') for line in index_file.readlines()] self._image_list = [] view1 = 'image_02/data' view2 = 'image_03/data' ext = '.jpg' for item in filename_list: date = item[0][:10] scene = item[0] idx_src = item[1] for ii in range(self._seq_len): idx_tgt = '%.10d' % (int(idx_src) + ii + 1) name_l1 = os.path.join(images_root, date, scene, view1, idx_src) + ext name_r1 = os.path.join(images_root, date, scene, view2, idx_src) + ext if os.path.isfile(name_l1) and os.path.isfile(name_r1): self._image_list.append([name_l1, name_r1]) if num_examples > 0: self._image_list = self._image_list[:num_examples] self._size = len(self._image_list) ## loading calibration matrix self.intrinsic_dict_l = {} self.intrinsic_dict_r = {} self.intrinsic_dict_l, self.intrinsic_dict_r = read_calib_into_dict(path_dir) # ---------------------------------------------------------- # Image resize only # ---------------------------------------------------------- self._resize_to_tensor = vision_transforms.Compose([ vision_transforms.ToPILImage(), vision_transforms.Resize((256, 512)), vision_transforms.transforms.ToTensor() ]) self._to_tensor = vision_transforms.Compose([ vision_transforms.transforms.ToTensor() ]) def __getitem__(self, index): index = index % self._size im_l1_filename = self._image_list[index][0] im_r1_filename = self._image_list[index][1] # read float32 images and flow im_l1_np = read_image_as_byte(im_l1_filename) im_r1_np = read_image_as_byte(im_r1_filename) # example filename basename = os.path.basename(im_l1_filename)[:6] dirname = os.path.dirname(im_l1_filename)[-51:] datename = dirname[:10] k_l1 = torch.from_numpy(self.intrinsic_dict_l[datename]).float() k_r1 = torch.from_numpy(self.intrinsic_dict_r[datename]).float() k_l1_orig = k_l1.clone() h_orig, w_orig, _ = im_l1_np.shape input_im_size = torch.from_numpy(np.array([h_orig, w_orig])).float() # resizing image if self._preprocessing_crop == False: # No Geometric Augmentation, Resizing to 256 x 512 here # resizing input images im_l1 = self._resize_to_tensor(im_l1_np) im_r1 = self._resize_to_tensor(im_r1_np) # resizing intrinsic matrix k_l1 = intrinsic_scale(k_l1, im_l1.size(1) / h_orig, im_l1.size(2) / w_orig) k_r1 = intrinsic_scale(k_r1, im_r1.size(1) / h_orig, im_r1.size(2) / w_orig) else: # For Geometric Augmentation, first croping the images to 370 x 1224 here, # then do the augmentation in augmentation.py # get starting positions crop_height = self._crop_size[0] crop_width = self._crop_size[1] x = np.random.uniform(0, w_orig - crop_width + 1) y = np.random.uniform(0, h_orig - crop_height + 1) crop_info = [int(x), int(y), int(x + crop_width), int(y + crop_height)] # cropping images and adjust intrinsic accordingly im_l1_np, im_r1_np = kitti_crop_image_list([im_l1_np, im_r1_np], crop_info) im_l1 = self._to_tensor(im_l1_np) im_r1 = self._to_tensor(im_r1_np) k_l1, k_r1 = kitti_adjust_intrinsic(k_l1, k_r1, crop_info) # For CamCOnv k_r1_flip = k_r1.clone() k_r1_flip[0, 2] = im_r1.size(2) - k_r1_flip[0, 2] example_dict = { "input_l1": im_l1, "input_r1": im_r1, "index": index, "basename": basename, "datename": datename, "input_k_l1_orig": k_l1_orig, "input_k_l1": k_l1, "input_k_r1": k_r1, "input_k_r1_flip": k_r1_flip, "input_size": input_im_size } return example_dict def __len__(self): return self._size class KITTI_Raw_KittiSplit_Train(KITTI_Raw): def __init__(self, args, root, preprocessing_crop=False, crop_size=[370, 1224], num_examples=-1): super(KITTI_Raw_KittiSplit_Train, self).__init__( args, images_root=root, preprocessing_crop=preprocessing_crop, crop_size=crop_size, num_examples=num_examples, index_file="index_txt/kitti_train.txt") class KITTI_Raw_KittiSplit_Valid(KITTI_Raw): def __init__(self, args, root, preprocessing_crop=False, crop_size=[370, 1224], num_examples=-1): super(KITTI_Raw_KittiSplit_Valid, self).__init__( args, images_root=root, preprocessing_crop=preprocessing_crop, crop_size=crop_size, num_examples=num_examples, index_file="index_txt/kitti_valid.txt")
src/olympia/scanners/migrations/0021_auto_20200122_1347.py
shashwatsingh/addons-server
843
11184216
<gh_stars>100-1000 # Generated by Django 2.2.9 on 2020-01-22 13:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('scanners', '0020_auto_20200116_1250'), ] operations = [ migrations.AlterField( model_name='scannerqueryresult', name='scanner', field=models.PositiveSmallIntegerField(choices=[(1, 'customs'), (2, 'wat'), (3, 'yara'), (4, 'ml_api')]), ), migrations.AlterField( model_name='scannerqueryrule', name='scanner', field=models.PositiveSmallIntegerField(choices=[(1, 'customs'), (2, 'wat'), (3, 'yara'), (4, 'ml_api')]), ), migrations.AlterField( model_name='scannerresult', name='scanner', field=models.PositiveSmallIntegerField(choices=[(1, 'customs'), (2, 'wat'), (3, 'yara'), (4, 'ml_api')]), ), migrations.AlterField( model_name='scannerrule', name='scanner', field=models.PositiveSmallIntegerField(choices=[(1, 'customs'), (2, 'wat'), (3, 'yara'), (4, 'ml_api')]), ), ]
impala/_thrift_api.py
wzhou-code/impyla
661
11184229
# Copyright 2015 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This package's main goal in the past was to clean up references to thrift, because # we were using thriftpy2 for Py3. This is no longer necessary since upgrading to # Thrift 0.11.0, as Thrift supports Python 3 since 0.10.0. Now there are only some # leftover utility classes and functions. # pylint: disable=wrong-import-position from __future__ import absolute_import import base64 import datetime import getpass import os import os.path from collections import namedtuple from io import BytesIO from six.moves import urllib, http_client import warnings import six import ssl import sys from impala.error import HttpError from impala.util import get_logger_and_init_null from impala.util import get_all_matching_cookies, get_cookie_expiry # Declare namedtuple for Cookie with named fields - cookie and expiry_time Cookie = namedtuple('Cookie', ['cookie', 'expiry_time']) log = get_logger_and_init_null(__name__) # pylint: disable=import-error,unused-import # import Apache Thrift code from thrift.transport.TSocket import TSocket from thrift.transport.TTransport import ( TBufferedTransport, TTransportException, TTransportBase) # import HS2 codegen objects from impala._thrift_gen.ImpalaService import ImpalaHiveServer2Service ThriftClient = ImpalaHiveServer2Service.Client # ImpalaHttpClient is copied from Impala Shell. # The implementations should be kept in sync as much as possible. class ImpalaHttpClient(TTransportBase): """Http implementation of TTransport base.""" # When sending requests larger than this size, include the 'Expect: 100-continue' header # to indicate to the server to validate the request before reading the contents. This # value was chosen to match curl's behavior. See Section 8.2.3 of RFC2616. MIN_REQUEST_SIZE_FOR_EXPECT = 1024 def __init__(self, uri_or_host, port=None, path=None, cafile=None, cert_file=None, key_file=None, ssl_context=None, http_cookie_names=None): """ImpalaHttpClient supports two different types of construction: ImpalaHttpClient(host, port, path) - deprecated ImpalaHttpClient(uri, [port=<n>, path=<s>, cafile=<filename>, cert_file=<filename>, key_file=<filename>, ssl_context=<context>, http_cookie_names=<cookienamelist>]) Only the second supports https. To properly authenticate against the server, provide the client's identity by specifying cert_file and key_file. To properly authenticate the server, specify either cafile or ssl_context with a CA defined. NOTE: if both cafile and ssl_context are defined, ssl_context will override cafile. http_cookie_names is used to specify the list of possible cookie names used for cookie-based authentication or session management. If there's only one name in the cookie name list, a str value can be specified instead of the list. If a cookie with one of these names is returned in an http response by the server or an intermediate proxy then it will be included in each subsequent request for the same connection. """ if port is not None: warnings.warn( "Please use the ImpalaHttpClient('http{s}://host:port/path') constructor", DeprecationWarning, stacklevel=2) self.host = uri_or_host self.port = port assert path self.path = path self.scheme = 'http' else: parsed = urllib.parse.urlparse(uri_or_host) self.scheme = parsed.scheme assert self.scheme in ('http', 'https') if self.scheme == 'http': self.port = parsed.port or http_client.HTTP_PORT elif self.scheme == 'https': self.port = parsed.port or http_client.HTTPS_PORT self.certfile = cert_file self.keyfile = key_file self.context = ssl.create_default_context(cafile=cafile) \ if (cafile and not ssl_context) else ssl_context self.host = parsed.hostname self.path = parsed.path if parsed.query: self.path += '?%s' % parsed.query try: proxy = urllib.request.getproxies()[self.scheme] except KeyError: proxy = None else: if urllib.request.proxy_bypass(self.host): proxy = None if proxy: parsed = urllib.parse.urlparse(proxy) self.realhost = self.host self.realport = self.port self.host = parsed.hostname self.port = parsed.port self.proxy_auth = self.basic_proxy_auth_header(parsed) else: self.realhost = self.realport = self.proxy_auth = None if not http_cookie_names: # 'http_cookie_names' was explicitly set as an empty value ([], or '') in connect(). self.__http_cookie_dict = None self.__auth_cookie_names = None else: if isinstance(http_cookie_names, six.string_types): http_cookie_names = [http_cookie_names] # Build a dictionary that maps cookie name to namedtuple. self.__http_cookie_dict = \ { cn: Cookie(cookie=None, expiry_time=None) for cn in http_cookie_names } # Store the auth cookie names in __auth_cookie_names. # Assume auth cookie names end with ".auth". self.__auth_cookie_names = \ [ cn for cn in http_cookie_names if cn.endswith(".auth") ] # Set __are_matching_cookies_found as True if matching cookies are found in response. self.__are_matching_cookies_found = False self.__wbuf = BytesIO() self.__http = None self.__http_response = None self.__timeout = None # __custom_headers is used to store HTTP headers which are generated in runtime for # new request. self.__custom_headers = None self.__get_custom_headers_func = None @staticmethod def basic_proxy_auth_header(proxy): if proxy is None or not proxy.username: return None ap = "%s:%s" % (urllib.parse.unquote(proxy.username), urllib.parse.unquote(proxy.password)) cr = base64.b64encode(ap).strip() return "Basic " + cr def using_proxy(self): return self.realhost is not None def open(self): if self.scheme == 'http': self.__http = http_client.HTTPConnection(self.host, self.port, timeout=self.__timeout) elif self.scheme == 'https': self.__http = http_client.HTTPSConnection(self.host, self.port, key_file=self.keyfile, cert_file=self.certfile, timeout=self.__timeout, context=self.context) if self.using_proxy(): self.__http.set_tunnel(self.realhost, self.realport, {"Proxy-Authorization": self.proxy_auth}) def close(self): self.__http.close() self.__http = None self.__http_response = None def isOpen(self): return self.__http is not None def is_open(self): return self.__http is not None def setTimeout(self, ms): if ms is None: self.__timeout = None else: self.__timeout = ms / 1000.0 def setCustomHeaders(self, headers): self.__custom_headers = headers # Set callback function which generate HTTP headers for a specific auth mechanism. def setGetCustomHeadersFunc(self, func): self.__get_custom_headers_func = func # Update HTTP headers based on the saved cookies and auth mechanism. def refreshCustomHeaders(self): if self.__get_custom_headers_func: cookie_header, has_auth_cookie = self.getHttpCookieHeaderForRequest() self.__custom_headers = \ self.__get_custom_headers_func(cookie_header, has_auth_cookie) # Return first value as a cookie list for Cookie header. It's a list of name-value # pairs in the form of <cookie-name>=<cookie-value>. Pairs in the list are separated by # a semicolon and a space ('; '). # Return second value as True if the cookie list contains auth cookie. def getHttpCookieHeaderForRequest(self): if (self.__http_cookie_dict is None) or not self.__are_matching_cookies_found: return None, False cookie_headers = [] has_auth_cookie = False for cn, c_tuple in self.__http_cookie_dict.items(): if c_tuple.cookie: if c_tuple.expiry_time and c_tuple.expiry_time <= datetime.datetime.now(): self.__http_cookie_dict[cn] = Cookie(cookie=None, expiry_time=None) else: cookie_header = c_tuple.cookie.output(attrs=['value'], header='').strip() cookie_headers.append(cookie_header) if not has_auth_cookie and self.__auth_cookie_names \ and cn in self.__auth_cookie_names: has_auth_cookie = True if not cookie_headers: self.__are_matching_cookies_found = False return None, False else: return '; '.join(cookie_headers), has_auth_cookie # Extract cookies from response and save those cookies for which the cookie names # are in the cookie name list specified in the connect() API. def extractHttpCookiesFromResponse(self): if self.__http_cookie_dict is not None: matching_cookies = get_all_matching_cookies( self.__http_cookie_dict.keys(), self.path, self.headers) if matching_cookies: self.__are_matching_cookies_found = True for c in matching_cookies: self.__http_cookie_dict[c.key] = Cookie(c, get_cookie_expiry(c)) # Return True if there are any saved cookies which are sent in previous request. def areHttpCookiesSaved(self): return self.__are_matching_cookies_found # Clean all saved cookies. def cleanHttpCookies(self): if (self.__http_cookie_dict is not None) and self.__are_matching_cookies_found: self.__are_matching_cookies_found = False self.__http_cookie_dict = \ { cn: Cookie(cookie=None, expiry_time=None) for cn in self.__http_cookie_dict } def read(self, sz): return self.__http_response.read(sz) def readBody(self): return self.__http_response.read() def write(self, buf): self.__wbuf.write(buf) def flush(self): # Send HTTP request and receive response. # Return True if the client should retry this method. def sendRequestRecvResp(data): if self.isOpen(): self.close() self.open() # HTTP request if self.using_proxy() and self.scheme == "http": # need full URL of real host for HTTP proxy here (HTTPS uses CONNECT tunnel) self.__http.putrequest('POST', "http://%s:%s%s" % (self.realhost, self.realport, self.path)) else: self.__http.putrequest('POST', self.path) # Write headers self.__http.putheader('Content-Type', 'application/x-thrift') data_len = len(data) self.__http.putheader('Content-Length', str(data_len)) if data_len > ImpalaHttpClient.MIN_REQUEST_SIZE_FOR_EXPECT: # Add the 'Expect' header to large requests. Note that we do not explicitly wait # for the '100 continue' response before sending the data - HTTPConnection simply # ignores these types of responses, but we'll get the right behavior anyways. self.__http.putheader("Expect", "100-continue") if self.using_proxy() and self.scheme == "http" and self.proxy_auth is not None: self.__http.putheader("Proxy-Authorization", self.proxy_auth) self.refreshCustomHeaders() if not self.__custom_headers or 'User-Agent' not in self.__custom_headers: user_agent = 'Python/ImpalaHttpClient' script = os.path.basename(sys.argv[0]) if script: user_agent = '%s (%s)' % (user_agent, urllib.parse.quote(script)) self.__http.putheader('User-Agent', user_agent) if self.__custom_headers: for key, val in six.iteritems(self.__custom_headers): self.__http.putheader(key, val) self.__http.endheaders() # Write payload self.__http.send(data) # Get reply to flush the request self.__http_response = self.__http.getresponse() self.code = self.__http_response.status self.message = self.__http_response.reason self.headers = self.__http_response.msg # A '401 Unauthorized' response might mean that we tried cookie-based # authentication with one or more expired cookies. # Delete the cookies and try again. if self.code == 401 and self.areHttpCookiesSaved(): self.cleanHttpCookies() return True else: self.extractHttpCookiesFromResponse() return False # Pull data out of buffer data = self.__wbuf.getvalue() self.__wbuf = BytesIO() retry = sendRequestRecvResp(data) if retry: log.debug('Received "401 Unauthorized" response. ' 'Delete HTTP cookies and then retry.') sendRequestRecvResp(data) if self.code >= 300: # Report any http response code that is not 1XX (informational response) or # 2XX (successful). body = self.readBody() raise HttpError(self.code, self.message, body, self.headers) def get_socket(host, port, use_ssl, ca_cert): # based on the Impala shell impl log.debug('get_socket: host=%s port=%s use_ssl=%s ca_cert=%s', host, port, use_ssl, ca_cert) if use_ssl: from thrift.transport.TSSLSocket import TSSLSocket if ca_cert is None: return TSSLSocket(host, port, validate=False) else: return TSSLSocket(host, port, validate=True, ca_certs=ca_cert) else: return TSocket(host, port) def get_http_transport(host, port, http_path, timeout=None, use_ssl=False, ca_cert=None, auth_mechanism='NOSASL', user=None, password=<PASSWORD>, kerberos_host=None, kerberos_service_name=None, http_cookie_names=None, jwt=None): # TODO: support timeout if timeout is not None: log.error('get_http_transport does not support a timeout') if use_ssl: ssl_ctx = ssl.create_default_context(cafile=ca_cert) if ca_cert: ssl_ctx.verify_mode = ssl.CERT_REQUIRED else: ssl_ctx.check_hostname = False # Mandated by the SSL lib for CERT_NONE mode. ssl_ctx.verify_mode = ssl.CERT_NONE url = 'https://%s:%s/%s' % (host, port, http_path) log.debug('get_http_transport url=%s', url) # TODO(#362): Add server authentication with thrift 0.12. transport = ImpalaHttpClient(url, ssl_context=ssl_ctx, http_cookie_names=http_cookie_names) else: url = 'http://%s:%s/%s' % (host, port, http_path) log.debug('get_http_transport url=%s', url) transport = ImpalaHttpClient(url, http_cookie_names=http_cookie_names) if auth_mechanism in ['PLAIN', 'LDAP']: # Set defaults for PLAIN SASL / LDAP connections. if user is None: user = getpass.getuser() log.debug('get_http_transport: user=%s', user) if password is None: if auth_mechanism == 'LDAP': password = '' else: # PLAIN always requires a password for HS2. password = 'password' log.debug('get_http_transport: password=%s', password) auth_mechanism = 'PLAIN' # sasl doesn't know mechanism LDAP # Set the BASIC auth header user_password = '%s:%s'.encode() % (user.encode(), password.encode()) try: auth = base64.encodebytes(user_password).decode().strip('\n') except AttributeError: auth = base64.encodestring(user_password).decode().strip('\n') def get_custom_headers(cookie_header, has_auth_cookie): custom_headers = {} if cookie_header: log.debug('add cookies to HTTP header') custom_headers['Cookie'] = cookie_header # Add the 'Authorization' header to request even if the auth cookie is # present to avoid a round trip in case the cookie is expired when server # receive the request. Since the 'auth' value is calculated once, so it # won't cause a performance issue. custom_headers['Authorization'] = "Basic " + auth return custom_headers transport.setGetCustomHeadersFunc(get_custom_headers) elif auth_mechanism == 'GSSAPI': # For GSSAPI over http we need to dynamically generate custom request headers. def get_custom_headers(cookie_header, has_auth_cookie): import kerberos custom_headers = {} if cookie_header: log.debug('add cookies to HTTP header') custom_headers['Cookie'] = cookie_header if not has_auth_cookie: _, krb_context = kerberos.authGSSClientInit("%s@%s" % (kerberos_service_name, kerberos_host)) kerberos.authGSSClientStep(krb_context, "") negotiate_details = kerberos.authGSSClientResponse(krb_context) custom_headers['Authorization'] = "Negotiate " + negotiate_details return custom_headers transport.setGetCustomHeadersFunc(get_custom_headers) elif auth_mechanism == 'JWT': # For JWT authentication, the JWT is sent on the Authorization Bearer # HTTP header. def get_custom_headers(cookie_header, has_auth_cookie): custom_headers = {} if cookie_header: log.debug('add cookies to HTTP header') custom_headers['Cookie'] = cookie_header custom_headers['Authorization'] = "Bearer " + jwt return custom_headers transport.setGetCustomHeadersFunc(get_custom_headers) elif auth_mechanism == 'NOSASL': def get_custom_headers(cookie_header, has_auth_cookie): custom_headers = {} if cookie_header: log.debug('add cookies to HTTP header') custom_headers['Cookie'] = cookie_header return custom_headers transport.setGetCustomHeadersFunc(get_custom_headers) # Without buffering Thrift would call socket.recv() each time it deserializes # something (e.g. a member in a struct). transport = TBufferedTransport(transport) return transport def get_transport(socket, host, kerberos_service_name, auth_mechanism='NOSASL', user=None, password=None): """ Creates a new Thrift Transport using the specified auth_mechanism. Supported auth_mechanisms are: - None or 'NOSASL' - returns simple buffered transport (default) - 'PLAIN' - returns a SASL transport with the PLAIN mechanism - 'GSSAPI' - returns a SASL transport with the GSSAPI mechanism """ log.debug('get_transport: socket=%s host=%s kerberos_service_name=%s ' 'auth_mechanism=%s user=%s password=<PASSWORD>', socket, host, kerberos_service_name, auth_mechanism, user) if auth_mechanism == 'NOSASL': return TBufferedTransport(socket) # Set defaults for PLAIN SASL / LDAP connections. if auth_mechanism in ['LDAP', 'PLAIN']: if user is None: user = getpass.getuser() log.debug('get_transport: user=%s', user) if password is None: if auth_mechanism == 'LDAP': password = '' else: # PLAIN always requires a password for HS2. password = 'password' log.debug('get_transport: password=%s', password) auth_mechanism = 'PLAIN' # sasl doesn't know mechanism LDAP # Initializes a sasl client from thrift_sasl import TSaslClientTransport from impala.sasl_compat import PureSASLClient def sasl_factory(): return PureSASLClient(host, username=user, password=password, service=kerberos_service_name) return TSaslClientTransport(sasl_factory, auth_mechanism, socket)
leo/external/leoserver/leoserver.py
ATikhonov2/leo-editor
1,550
11184230
#@+leo-ver=5-thin #@+node:ekr.20180216124241.1: * @file c:/leo.repo/leo-editor/leo/external/leoserver/leoserver.py #@@language python #@@tabwidth -4 #@+<< imports >> #@+node:ekr.20180216124319.1: ** << imports >> import json import webbrowser from http.server import HTTPServer, BaseHTTPRequestHandler import leo.core.leoBridge as leoBridge #@-<< imports >> #@+others #@+node:ekr.20180216124319.2: ** class LeoHTTPRequestHandler class LeoHTTPRequestHandler(BaseHTTPRequestHandler): #@+others #@+node:ekr.20180216124319.3: *3* do_GET def do_GET(self): self.send_response(200) self.end_headers() if self.path in STATIC_FILES: # g.trace('%s => %s' % (self.path, STATIC_FILES.get(self.path))) self.wfile.write(open(STATIC_FILES[self.path], 'rb').read()) else: assert self.path == '/get_tree' c = self.server.namespace['c'] nodes = [{'h':i.h, 'b':i.b} for i in c.p.self_and_siblings()] # for i in c.all_positions() response = {'nodes': nodes} self.wfile.write(json.dumps(response).encode('utf-8')) #@+node:ekr.20180216124319.4: *3* do_POST def do_POST(self): self.send_response(200) self.end_headers() content_length = int(self.headers['content-length']) data = self.rfile.read(content_length).decode('utf-8') data = json.loads(data) command = data['cmd'] if not command: return if command[0] == ':': # A statement. exec(data['cmd'][1:], self.server.namespace) response = {'answer': 'OK\n'} else: # An expression. result = eval(command, self.server.namespace) response = {'answer': repr(result)+'\n'} s = json.dumps(response).encode('utf-8') self.wfile.write(s) #@-others #@+node:ekr.20180216124319.5: ** open_bridge def open_bridge(): '''Open Leo bridge and return g.''' print('opening leoBridge...') controller = leoBridge.controller( gui='nullGui', loadPlugins=False, # True: attempt to load plugins. readSettings=False, # True: read standard settings files. silent=True, # True: don't print signon messages. verbose=False, # True: print informational messages. ) g = controller.globals() return controller, g #@-others controller, g = open_bridge() join = g.os_path_finalize_join loadDir = g.app.loadDir #@+<< define STATIC_FILES >> #@+node:ekr.20180216125137.1: ** << define STATIC_FILES >> STATIC_FILES = { # '/favicon.ico': 'leo/Icons/LeoApp.ico', '/favicon.ico': join(loadDir, '..', 'Icons', 'LeoApp.ico'), # '/index.html': 'leoserver.html', '/index.html': join(loadDir, '..', 'external', 'leoserver', 'leoserver.html'), # '/leoserver.js': 'leoserver.js', # '/leoserver.js': 'c:/test/Terry/leoserver.js', '/leoserver.js': join(loadDir,'..', 'external', 'leoserver', 'leoserver.js'), # '/leoserver.css': 'leoserver.css', # '/leoserver.css': 'c:/test/Terry/leoserver.css', '/leoserver.css': join(loadDir,'..', 'external', 'leoserver', 'leoserver.css'), } #@-<< define STATIC_FILES >> path = join(loadDir, '..', 'doc', 'LeoDocs.leo') c = controller.openLeoFile(path) server = HTTPServer(('127.0.0.1', 8370), LeoHTTPRequestHandler) server.namespace = {'c': c, 'g': g} webbrowser.open("http://127.0.0.1:8370/index.html") try: server.serve_forever() except KeyboardInterrupt: print('Keyboard interrupt. Bye') #@-leo
youtube_dl/extractor/tiktok.py
thename2468/youtube-dl-commithistory88
927
11184235
<reponame>thename2468/youtube-dl-commithistory88 # coding: utf-8 from __future__ import unicode_literals from .common import InfoExtractor from ..utils import ( compat_str, ExtractorError, int_or_none, str_or_none, try_get, url_or_none, ) class TikTokBaseIE(InfoExtractor): def _extract_aweme(self, data): video = data['video'] description = str_or_none(try_get(data, lambda x: x['desc'])) width = int_or_none(try_get(data, lambda x: video['width'])) height = int_or_none(try_get(data, lambda x: video['height'])) format_urls = set() formats = [] for format_id in ( 'play_addr_lowbr', 'play_addr', 'play_addr_h264', 'download_addr'): for format in try_get( video, lambda x: x[format_id]['url_list'], list) or []: format_url = url_or_none(format) if not format_url: continue if format_url in format_urls: continue format_urls.add(format_url) formats.append({ 'url': format_url, 'ext': 'mp4', 'height': height, 'width': width, }) self._sort_formats(formats) thumbnail = url_or_none(try_get( video, lambda x: x['cover']['url_list'][0], compat_str)) uploader = try_get(data, lambda x: x['author']['nickname'], compat_str) timestamp = int_or_none(data.get('create_time')) comment_count = int_or_none(data.get('comment_count')) or int_or_none( try_get(data, lambda x: x['statistics']['comment_count'])) repost_count = int_or_none(try_get( data, lambda x: x['statistics']['share_count'])) aweme_id = data['aweme_id'] return { 'id': aweme_id, 'title': uploader or aweme_id, 'description': description, 'thumbnail': thumbnail, 'uploader': uploader, 'timestamp': timestamp, 'comment_count': comment_count, 'repost_count': repost_count, 'formats': formats, } class TikTokIE(TikTokBaseIE): _VALID_URL = r'''(?x) https?:// (?: (?:m\.)?tiktok\.com/v| (?:www\.)?tiktok\.com/share/video ) /(?P<id>\d+) ''' _TESTS = [{ 'url': 'https://m.tiktok.com/v/6606727368545406213.html', 'md5': 'd584b572e92fcd48888051f238022420', 'info_dict': { 'id': '6606727368545406213', 'ext': 'mp4', 'title': 'Zureeal', 'description': '#bowsette#mario#cosplay#uk#lgbt#gaming#asian#bowsettecosplay', 'thumbnail': r're:^https?://.*~noop.image', 'uploader': 'Zureeal', 'timestamp': 1538248586, 'upload_date': '20180929', 'comment_count': int, 'repost_count': int, } }, { 'url': 'https://www.tiktok.com/share/video/6606727368545406213', 'only_matching': True, }] def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage( 'https://m.tiktok.com/v/%s.html' % video_id, video_id) data = self._parse_json(self._search_regex( r'\bdata\s*=\s*({.+?})\s*;', webpage, 'data'), video_id) return self._extract_aweme(data) class TikTokUserIE(TikTokBaseIE): _VALID_URL = r'''(?x) https?:// (?: (?:m\.)?tiktok\.com/h5/share/usr| (?:www\.)?tiktok\.com/share/user ) /(?P<id>\d+) ''' _TESTS = [{ 'url': 'https://m.tiktok.com/h5/share/usr/188294915489964032.html', 'info_dict': { 'id': '188294915489964032', }, 'playlist_mincount': 24, }, { 'url': 'https://www.tiktok.com/share/user/188294915489964032', 'only_matching': True, }] def _real_extract(self, url): user_id = self._match_id(url) data = self._download_json( 'https://m.tiktok.com/h5/share/usr/list/%s/' % user_id, user_id, query={'_signature': '_'}) entries = [] for aweme in data['aweme_list']: try: entry = self._extract_aweme(aweme) except ExtractorError: continue entry['extractor_key'] = TikTokIE.ie_key() entries.append(entry) return self.playlist_result(entries, user_id)
albu/src/eval.py
chritter/kaggle_carvana_segmentation
447
11184244
import os import cv2 import numpy as np from scipy.spatial.distance import dice import torch import torch.nn.functional as F import torch.nn as nn # torch.backends.cudnn.benchmark = True import tqdm from dataset.neural_dataset import ValDataset, SequentialDataset from torch.utils.data.dataloader import DataLoader as PytorchDataLoader from utils import heatmap class flip: FLIP_NONE=0 FLIP_LR=1 FLIP_FULL=2 def flip_tensor_lr(batch): columns = batch.data.size()[-1] return batch.index_select(3, torch.LongTensor(list(reversed(range(columns)))).cuda()) def flip_tensor_ud(batch): rows = batch.data.size()[-2] return batch.index_select(2, torch.LongTensor(list(reversed(range(rows)))).cuda()) def to_numpy(batch): if isinstance(batch, tuple): batch = batch[0] return F.sigmoid(batch).data.cpu().numpy() def predict(model, batch, flips=flip.FLIP_NONE): pred1 = model(batch) if flips > flip.FLIP_NONE: pred2 = flip_tensor_lr(model(flip_tensor_lr(batch))) masks = [pred1, pred2] if flips > flip.FLIP_LR: pred3 = flip_tensor_ud(model(flip_tensor_ud(batch))) pred4 = flip_tensor_ud(flip_tensor_lr(model(flip_tensor_ud(flip_tensor_lr(batch))))) masks.extend([pred3, pred4]) new_mask = torch.mean(torch.stack(masks, 0), 0) return to_numpy(new_mask) return to_numpy(pred1) def read_model(weights_path, project, fold): model = nn.DataParallel(torch.load(os.path.join(weights_path, project, 'fold{}_best.pth'.format(fold))).module) model.eval() return model class Evaluator: def __init__(self, config, ds, folds, test=False, flips=0, num_workers=0, border=12): self.config = config self.ds = ds self.folds = folds self.test = test self.flips = flips self.num_workers = num_workers self.full_image = None self.full_mask = None self.current_mask = None self.full_pred = None self.border = border self.folder = config.folder self.prev_name = None self.on_new = False self.show_mask = config.dbg self.need_dice = False self.dice = [] if self.config.save_images: os.makedirs(os.path.join('..', 'results', self.config.folder), exist_ok=True) def visualize(self, show_light=False, show_base=True): dsize = None hmap = heatmap(self.full_pred) if self.full_image is not None and show_light: light_heat = cv2.addWeighted(self.full_image[:,:,:3], 0.6, hmap, 0.4, 0) if dsize: light_heat = cv2.resize(light_heat, (dsize, dsize)) cv2.imshow('light heat', light_heat) if self.full_mask is not None and self.show_mask: light_mask = cv2.addWeighted(self.full_image[:,:,:3], 0.6, cv2.cvtColor(self.full_mask, cv2.COLOR_GRAY2BGR), 0.4, 0) if dsize: light_mask = cv2.resize(light_mask, (dsize, dsize)) cv2.imshow('light mask', light_mask) if self.full_image is not None and show_base: if dsize: cv2.imshow('image', cv2.resize(self.full_image[:,:,:3], (dsize, dsize))) else: cv2.imshow('image', self.full_image[:,:,:3]) if dsize: hmap = cv2.resize(hmap, (dsize, dsize)) cv2.imshow('heatmap', hmap) if self.full_mask is not None and self.show_mask: if dsize: cv2.imshow('mask', cv2.resize(self.full_mask, (dsize, dsize))) else: cv2.imshow('mask', self.full_mask) if show_light or show_base: cv2.waitKey() def predict(self, skip_folds=None): for fold, (train_index, val_index) in enumerate(self.folds): prefix = ('fold' + str(fold) + "_") if self.test else "" if skip_folds is not None: if fold in skip_folds: continue self.prev_name = None ds_cls = ValDataset if not self.test else SequentialDataset val_dataset = ds_cls(self.ds, val_index, stage='test', config=self.config) val_dl = PytorchDataLoader(val_dataset, batch_size=self.config.predict_batch_size, num_workers=self.num_workers, drop_last=False) weights_path = os.path.join(self.config.models_dir, 'albu') model = read_model(weights_path, self.folder, fold) pbar = val_dl if self.config.dbg else tqdm.tqdm(val_dl, total=len(val_dl)) for data in pbar: self.show_mask = 'mask' in data and self.show_mask if 'mask' not in data: self.need_dice = False predicted = self.predict_samples(model, data) self.process_data(predicted, model, data, prefix=prefix) if not self.config.dbg and self.need_dice: pbar.set_postfix(dice="{:.5f}".format(np.mean(self.dice))) if self.config.use_crop: self.on_image_constructed(prefix=prefix) def cut_border(self, image): return image if not self.border else image[self.border:-self.border, self.border:-self.border, ...] def on_image_constructed(self, prefix=""): self.full_pred = self.cut_border(self.full_pred) if self.full_image is not None: self.full_image = self.cut_border(self.full_image) if self.full_mask is not None: self.full_mask = self.cut_border(self.full_mask) if np.any(self.full_pred>.5) or np.any(self.full_mask>=1): d = 1 - dice(self.full_pred.flatten() > .5, self.full_mask.flatten() >= 1) self.dice.append(d) if self.config.dbg: print(self.prev_name, ' dice: ', d) else: return # print(self.prev_name) if self.config.dbg: self.visualize(show_light=True) if self.config.save_images: self.save(self.prev_name, prefix=prefix) def predict_samples(self, model, data): samples = torch.autograd.Variable(data['image'].cuda(), volatile=True) predicted = predict(model, samples, flips=self.flips) return predicted def get_data(self, data): names = data['image_name'] samples = data['image'].numpy() if self.need_dice or self.show_mask: masks = data['mask'].numpy() masks = np.moveaxis(masks, 1, -1) else: masks = None if self.config.dbg: samples = np.moveaxis(samples, 1, -1) else: samples = None return names, samples, masks def save(self, name, prefix=""): raise NotImplementedError def process_data(self, predicted, model, data, prefix=""): raise NotImplementedError
netrd/dynamics/voter.py
sdmccabe/netrd
116
11184261
""" voter.py -------- Implementation of voter model dynamics on a network. author: <NAME> Submitted as part of the 2019 NetSI Collabathon. """ from netrd.dynamics import BaseDynamics import numpy as np import networkx as nx from ..utilities import unweighted class VoterModel(BaseDynamics): """Voter dynamics.""" @unweighted def simulate(self, G, L, noise=None): r"""Simulate voter-model-style dynamics on a network. Nodes are randomly assigned a state in :math:`\{-1, 1\}`; at each time step all nodes asynchronously update by choosing their new state uniformly from their neighbors. Generates an :math:`N \times L` time series. The results dictionary also stores the ground truth network as `'ground_truth'`. Parameters ---------- G (nx.Graph) the input (ground-truth) graph with `N` nodes. L (int) the length of the desired time series. noise (float, str or None) if noise is present, with this probability a node's state will be randomly redrawn from :math:`\{-1, 1\}` independent of its neighbors' states. If 'automatic', set noise to :math:`1/N`. Returns ------- TS (np.ndarray) an :math:`N \times L` array of synthetic time series data. """ N = G.number_of_nodes() if noise is None: noise = 0 elif noise == 'automatic' or noise == 'auto': noise = 1 / N elif not isinstance(noise, (int, float)): raise ValueError("noise must be a number, 'automatic', or None") transitions = nx.to_numpy_array(G) transitions = transitions / np.sum(transitions, axis=0) TS = np.zeros((N, L)) TS[:, 0] = [1 if x < 0.5 else -1 for x in np.random.rand(N)] indices = np.arange(N) for t in range(1, L): np.random.shuffle(indices) TS[:, t] = TS[:, t - 1] for i in indices: TS[i, t] = np.random.choice(TS[:, t], p=transitions[:, i]) if np.random.rand() < noise: TS[i, t] = 1 if np.random.rand() < 0.5 else -1 self.results['ground_truth'] = G self.results['TS'] = TS return TS
capstone/capdb/migrations/0028_auto_20180319_2038.py
rachelaus/capstone
134
11184276
# Generated by Django 2.0.2 on 2018-03-19 20:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('capdb', '0027_auto_20180314_2100'), ] operations = [ migrations.RemoveField( model_name='casexml', name='case_id', ), migrations.RemoveField( model_name='historicalcasexml', name='case_id', ), ]
webhooks/fail2ban/setup.py
hamptons/alerta-contrib
114
11184287
<reponame>hamptons/alerta-contrib from setuptools import setup, find_packages version = '1.0.0' setup( name="alerta-fail2ban", version=version, description='Alerta Webhook for Fail2Ban', url='https://github.com/alerta/alerta-contrib', license='MIT', author='<NAME>', author_email='<EMAIL>', packages=find_packages(), py_modules=['alerta_fail2ban'], install_requires=[], include_package_data=True, zip_safe=True, entry_points={ 'alerta.webhooks': [ 'fail2ban = alerta_fail2ban:Fail2BanWebhook' ] } )
tests/perf/adam_test1.py
ConnollyLeon/DeepSpeed
6,728
11184345
import torch from deepspeed.ops.adam import DeepSpeedCPUAdam import time device = 'cpu' model_size = 1 * 1024**3 param = torch.nn.Parameter(torch.ones(model_size, device=device)) param_fp16 = torch.nn.Parameter(torch.ones(model_size, dtype=torch.half, device='cuda:0')) optimizer = DeepSpeedCPUAdam([param]) #torch.set_num_threads(128) param.grad = torch.ones(model_size, device=device) avg = 0 for i in range(100): start = time.time() optimizer.step(fp16_param_groups=[param_fp16]) stop = time.time() avg += (stop - start) param.grad = torch.ones(model_size, device=device) * 2 print("Elapsed Time is ", avg / 100)
brew/generation/bagging.py
va26/brew
344
11184391
import numpy as np from sklearn.ensemble import BaggingClassifier from brew.base import Ensemble from brew.combination.combiner import Combiner import sklearn from .base import PoolGenerator class Bagging(PoolGenerator): def __init__(self, base_classifier=None, n_classifiers=100, combination_rule='majority_vote'): self.base_classifier = base_classifier self.n_classifiers = n_classifiers self.ensemble = None self.combiner = Combiner(rule=combination_rule) def fit(self, X, y): self.ensemble = Ensemble() for _ in range(self.n_classifiers): # bootstrap idx = np.random.choice(X.shape[0], X.shape[0], replace=True) data, target = X[idx, :], y[idx] classifier = sklearn.base.clone(self.base_classifier) classifier.fit(data, target) self.ensemble.add(classifier) return def predict(self, X): out = self.ensemble.output(X) return self.combiner.combine(out) class BaggingSK(PoolGenerator): """" This class should not be used, use brew.generation.bagging.Bagging instead. """ def __init__(self, base_classifier=None, n_classifiers=100, combination_rule='majority_vote'): self.base_classifier = base_classifier self.n_classifiers = n_classifiers # using the sklearn implementation of bagging for now self.sk_bagging = BaggingClassifier(base_estimator=base_classifier, n_estimators=n_classifiers, max_samples=1.0, max_features=1.0) self.ensemble = Ensemble() self.combiner = Combiner(rule=combination_rule) def fit(self, X, y): self.sk_bagging.fit(X, y) self.ensemble.add_classifiers(self.sk_bagging.estimators_) # self.classes_ = set(y) def predict(self, X): out = self.ensemble.output(X) return self.combiner.combine(out)
Chapter05/sift_detect.py
debojyoti007/OpenCV
105
11184400
<gh_stars>100-1000 import cv2 import numpy as np input_image = cv2.imread('images/fishing_house.jpg') gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY) # For version opencv < 3.0.0, use cv2.SIFT() sift = cv2.xfeatures2d.SIFT_create() keypoints = sift.detect(gray_image, None) cv2.drawKeypoints(input_image, keypoints, input_image, flags = cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) cv2.imshow('SIFT features', input_image) cv2.waitKey()
observations/r/co2.py
hajime9652/observations
199
11184406
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def co2(path): """Carbon Dioxide Uptake in Grass Plants The `CO2` data frame has 84 rows and 5 columns of data from an experiment on the cold tolerance of the grass species *Echinochloa crus-galli*. An object of class `c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame")` containing the following columns: Plant an ordered factor with levels `Qn1` < `Qn2` < `Qn3` < ... < `Mc1` giving a unique identifier for each plant. Type a factor with levels `Quebec` `Mississippi` giving the origin of the plant Treatment a factor with levels `nonchilled` `chilled` conc a numeric vector of ambient carbon dioxide concentrations (mL/L). uptake a numeric vector of carbon dioxide uptake rates (*umol/m^2* sec). <NAME>., <NAME>. and <NAME>. (1990) “The statistical analysis of ecophysiological response curves obtained from experiments involving repeated measures”, *Ecology*, **71**, 1389–1400. <NAME>. and <NAME>. (2000) *Mixed-effects Models in S and S-PLUS*, Springer. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `co2.csv`. Returns: Tuple of np.ndarray `x_train` with 237 rows and 2 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'co2.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/datasets/CO2.csv' maybe_download_and_extract(path, url, save_file_name='co2.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
plugin.video.yatp/site-packages/hachoir_parser/video/avchd.py
mesabib/kodi.yatp
194
11184428
""" Parser for AVCHD/Blu-ray formats Notice: This parser is based off reverse-engineering efforts. It is NOT based on official specifications, and is subject to change as more information becomes available. There's a lot of guesswork here, so if you find that something disagrees with an official specification, please change it. Notice: This parser has NOT been tested on Blu-ray disc data, only on files taken from AVCHD camcorders. Author: <NAME> Creation: December 30, 2010 References: - Wikipedia: http://en.wikipedia.org/wiki/AVCHD - European patent EP1821310: http://www.freepatentsonline.com/EP1821310.html """ """ File structure: Root (/PRIVATE/AVCHD, /AVCHD, /, etc.) AVCHDTN/: (AVCHD only) THUMB.TDT: Thumbnail Data: stored as a series of 16KiB pages, where each thumbnail starts on a page boundary THUMB.TID: Thumbnail Index (TIDX), unknown format BDMV/: INDEX.BDM|index.bdmv: Bluray Disc Metadata (INDX): Clip index file MOVIEOBJ.BDM|MovieObject.bdmv: Bluray Disc Metadata (MOBJ): Clip description file AUXDATA/: (Optional, Blu-ray only) sound.bdmv: Sound(s) associated with HDMV Interactive Graphic streams applications ?????.otf: Font(s) associated with Text subtitle applications BACKUP/: (Optional) [Copies of *.bdmv, CLIPINF/* and PLAYLIST/*] CLIPINF/: ?????.CPI/?????.clpi: Clip information (HDMV) PLAYLIST/: ?????.MPL/?????.mpls: Movie Playlist information (MPLS) STREAM/: ?????.MTS|?????.m2ts: BDAV MPEG-2 Transport Stream (video file) SSIF/: (Blu-ray 3D only) ?????.ssif: Stereoscopic Interleaved file IISVPL/: (Optional?, AVCHD only?) ?????.VPL: Virtual Playlist? (MPLS) """ from hachoir_parser import HachoirParser from hachoir_core.field import (RootSeekableFieldSet, FieldSet, RawBytes, Bytes, String, Bits, UInt8, UInt16, UInt32, PascalString8, Enum) from hachoir_core.endian import BIG_ENDIAN from hachoir_core.iso639 import ISO639_2 from hachoir_core.text_handler import textHandler, hexadecimal from datetime import datetime def fromhex(field): return int('%x'%field.value) class AVCHDTimestamp(FieldSet): static_size = 8*8 def createFields(self): yield textHandler(UInt8(self, "unknown", description="0x1E"), hexadecimal) yield textHandler(UInt8(self, "century"), hexadecimal) yield textHandler(UInt8(self, "year"), hexadecimal) yield textHandler(UInt8(self, "month"), hexadecimal) yield textHandler(UInt8(self, "day"), hexadecimal) yield textHandler(UInt8(self, "hour"), hexadecimal) yield textHandler(UInt8(self, "minute"), hexadecimal) yield textHandler(UInt8(self, "second"), hexadecimal) def createValue(self): return datetime(fromhex(self['century'])*100 + fromhex(self['year']), fromhex(self['month']), fromhex(self['day']), fromhex(self['hour']), fromhex(self['minute']), fromhex(self['second'])) class AVCHDGenericChunk(FieldSet): def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield RawBytes(self, "raw[]", self['size'].value) class AVCHDINDX_0(FieldSet): def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield RawBytes(self, "unknown[]", 22) yield UInt32(self, "count") for i in xrange(self['count'].value): yield RawBytes(self, "data[]", 12) class AVCHDIDEX_0(FieldSet): def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield RawBytes(self, "unknown[]", 40) yield AVCHDTimestamp(self, "last_modified") yield RawBytes(self, "unknown[]", self._size//8-52) class AVCHDMOBJ_Chunk(FieldSet): def createFields(self): yield UInt32(self, "unknown[]") yield UInt32(self, "index") yield UInt32(self, "unknown[]") yield textHandler(UInt32(self, "unknown_id"), hexadecimal) yield UInt32(self, "unknown[]") yield textHandler(UInt32(self, "playlist_id"), lambda field: '%05d'%field.value) yield UInt32(self, "unknown[]") class AVCHDMPLS_StreamEntry(FieldSet): ENTRYTYPE = {1:'PlayItem on disc', 2:'SubPath on disc', 3:'PlayItem in local storage', 4:'SubPath in local storage'} def createFields(self): yield UInt8(self, "size") self._size = (self['size'].value+1)*8 yield Enum(UInt8(self, "type"), self.ENTRYTYPE) if self['type'].value in (1,3): yield textHandler(UInt16(self, "pid", "PID of item in clip stream m2ts file"), hexadecimal) else: # 2,4 ''' The patent says: ref_to_SubPath_id ref_to_SubClip_entry_id ref_to_Stream_PID_of_subClip Sizes aren't given, though, so I cannot determine the format without a sample. ''' pass class AVCHDMPLS_StreamAttribs(FieldSet): STREAMTYPE = { 0x01: "V_MPEG1", 0x02: "V_MPEG2", 0x1B: "V_AVC", 0xEA: "V_VC1", 0x03: "A_MPEG1", 0x04: "A_MPEG2", 0x80: "A_LPCM", 0x81: "A_AC3", 0x84: "A_AC3_PLUS", 0xA1: "A_AC3_PLUS_SEC", 0x83: "A_TRUEHD", 0x82: "A_DTS", 0x85: "A_DTS-HD", 0xA2: "A_DTS-HD_SEC", 0x86: "A_DTS-MA", 0x90: "S_PGS", 0x91: "S_IGS", 0x92: "T_SUBTITLE", } # Enumerations taken from "ClownBD's CLIPINF Editor". Values may not be accurate. def createFields(self): yield UInt8(self, "size") self._size = (self['size'].value+1)*8 yield Enum(UInt8(self, "type"), self.STREAMTYPE) if self['type'].display.startswith('V'): # Video yield Enum(Bits(self, "resolution", 4), {1:'480i', 2:'576i', 3:'480p', 4:'1080i', 5:'720p', 6:'1080p', 7:'576p'}) yield Enum(Bits(self, "fps", 4), {1:'24/1.001', 2:'24', 3:'25', 4:'30/1.001', 6:'50', 7:'60/1.001'}) yield Enum(UInt8(self, "aspect_ratio"), {0x20:'4:3', 0x30:'16:9'}) elif self['type'].display.startswith('A'): # Audio yield Enum(Bits(self, "channel_layout", 4), {1:'Mono', 3:'Stereo', 6:'Multi', 12:'Combi'}) yield Enum(Bits(self, "sample_rate", 4), {1:'48KHz', 4:'96KHz', 5:'192KHz', 12:'48-192KHz', 14:'48-96KHz'}) yield Enum(String(self, "language", 3), ISO639_2) elif self['type'].display.startswith('T'): # Text subtitle yield UInt8(self, "unknown[]") yield Enum(String(self, "language", 3), ISO639_2) elif self['type'].display.startswith('S'): # Graphics yield Enum(String(self, "language", 3), ISO639_2) else: pass class AVCHDMPLS_Stream(FieldSet): def createFields(self): yield AVCHDMPLS_StreamEntry(self, "entry") yield AVCHDMPLS_StreamAttribs(self, "attribs") class AVCHDMPLS_PlayItem(FieldSet): def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield UInt16(self, "unknown[]") yield UInt8(self, "video_count", "Number of video stream entries") yield UInt8(self, "audio_count", "Number of video stream entries") yield UInt8(self, "subtitle_count", "Number of presentation graphics/text subtitle entries") yield UInt8(self, "ig_count", "Number of interactive graphics entries") yield RawBytes(self, "unknown[]", 8) for i in xrange(self['video_count'].value): yield AVCHDMPLS_Stream(self, "video[]") for i in xrange(self['audio_count'].value): yield AVCHDMPLS_Stream(self, "audio[]") for i in xrange(self['subtitle_count'].value): yield AVCHDMPLS_Stream(self, "subtitle[]") for i in xrange(self['ig_count'].value): yield AVCHDMPLS_Stream(self, "ig[]") class AVCHDMPLS_0_Chunk(FieldSet): def createFields(self): yield UInt16(self, "size") self._size = (self['size'].value+2)*8 yield Bytes(self, "clip_id", 5) yield Bytes(self, "clip_type", 4) yield RawBytes(self, "unknown[]", 3) yield UInt32(self, "clip_start_time[]", "clip start time (units unknown)") yield UInt32(self, "clip_end_time[]", "clip end time (units unknown)") yield RawBytes(self, "unknown[]", 10) yield AVCHDMPLS_PlayItem(self, "playitem") class AVCHDMPLS_0(FieldSet): def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield UInt32(self, "count") yield UInt16(self, "unknown[]") for i in xrange(self['count'].value): yield AVCHDMPLS_0_Chunk(self, "chunk[]") class AVCHDMPLS_PlayItemMark(FieldSet): def createFields(self): yield UInt16(self, "unknown[]") yield UInt16(self, "playitem_idx", "Index of the associated PlayItem") yield UInt32(self, "mark_time", "Marker time in clip (units unknown)") yield RawBytes(self, "unknown", 6) class AVCHDMPLS_1(FieldSet): def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield UInt16(self, "count") for i in xrange(self['count'].value): yield AVCHDMPLS_PlayItemMark(self, "chunk[]") class AVCHDPLEX_1_Chunk(FieldSet): static_size = 66*8 def createFields(self): yield RawBytes(self, "unknown[]", 10) yield AVCHDTimestamp(self, "date") yield RawBytes(self, "unknown[]", 1) yield PascalString8(self, "date") def createValue(self): return self['date'].value class AVCHDPLEX_0(FieldSet): def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield RawBytes(self, "unknown[]", 10) yield AVCHDTimestamp(self, "last_modified") yield RawBytes(self, "unknown[]", 2) yield PascalString8(self, "date") class AVCHDPLEX_1(FieldSet): def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield UInt16(self, "count") for i in xrange(self['count'].value): yield AVCHDPLEX_1_Chunk(self, "chunk[]") class AVCHDCLPI_1(FieldSet): def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield RawBytes(self, "unknown[]", 10) yield textHandler(UInt16(self, "video_pid", "PID of video data in stream file"), hexadecimal) yield AVCHDMPLS_StreamAttribs(self, "video_attribs") yield textHandler(UInt16(self, "audio_pid", "PID of audio data in stream file"), hexadecimal) yield AVCHDMPLS_StreamAttribs(self, "audio_attribs") def AVCHDIDEX(self): yield AVCHDIDEX_0(self, "chunk[]") yield AVCHDGenericChunk(self, "chunk[]") def AVCHDPLEX(self): yield AVCHDPLEX_0(self, "chunk[]") yield AVCHDPLEX_1(self, "chunk[]") yield AVCHDGenericChunk(self, "chunk[]") def AVCHDCLEX(self): yield AVCHDGenericChunk(self, "chunk[]") yield AVCHDGenericChunk(self, "chunk[]") class AVCHDChunkWithHeader(FieldSet): TYPES = {'IDEX': AVCHDIDEX, 'PLEX': AVCHDPLEX, 'CLEX': AVCHDCLEX,} def createFields(self): yield UInt32(self, "size") self._size = (self['size'].value+4)*8 yield UInt32(self, "unknown[]", "24") yield UInt32(self, "unknown[]", "1") yield UInt32(self, "unknown[]", "0x10000100") yield UInt32(self, "unknown[]", "24") yield UInt32(self, "size2") assert self['size'].value == self['size2'].value+20 yield Bytes(self, "magic", 4) yield RawBytes(self, "unknown[]", 36) for field in self.TYPES[self['magic'].value](self): yield field class AVCHDINDX(HachoirParser, RootSeekableFieldSet): endian = BIG_ENDIAN MAGIC = "INDX0" PARSER_TAGS = { "id": "bdmv_index", "category": "video", "file_ext": ("bdm","bdmv"), "magic": ((MAGIC, 0),), "min_size": 8, # INDX0?00 "description": "INDEX.BDM", } def __init__(self, stream, **args): RootSeekableFieldSet.__init__(self, None, "root", stream, None, stream.askSize(self)) HachoirParser.__init__(self, stream, **args) def validate(self): if self.stream.readBytes(0, len(self.MAGIC)) != self.MAGIC: return "Invalid magic" return True def createFields(self): yield Bytes(self, "filetype", 4, "File type (INDX)") yield Bytes(self, "fileversion", 4, "File version (0?00)") yield UInt32(self, "offset[0]") yield UInt32(self, "offset[1]") self.seekByte(self['offset[0]'].value) yield AVCHDINDX_0(self, "chunk[]") self.seekByte(self['offset[1]'].value) yield AVCHDChunkWithHeader(self, "chunk[]") class AVCHDMOBJ(HachoirParser, RootSeekableFieldSet): endian = BIG_ENDIAN MAGIC = "MOBJ0" PARSER_TAGS = { "id": "bdmv_mobj", "category": "video", "file_ext": ("bdm","bdmv"), "magic": ((MAGIC, 0),), "min_size": 8, # MOBJ0?00 "description": "MOVIEOBJ.BDM", } def __init__(self, stream, **args): RootSeekableFieldSet.__init__(self, None, "root", stream, None, stream.askSize(self)) HachoirParser.__init__(self, stream, **args) def validate(self): if self.stream.readBytes(0, len(self.MAGIC)) != self.MAGIC: return "Invalid magic" return True def createFields(self): yield Bytes(self, "filetype", 4, "File type (MOBJ)") yield Bytes(self, "fileversion", 4, "File version (0?00)") yield RawBytes(self, "unknown[]", 32) yield UInt32(self, "size") yield UInt32(self, "unknown[]") yield UInt16(self, "count") yield textHandler(UInt32(self, "unknown_id"), hexadecimal) for i in xrange(1, self['count'].value): yield AVCHDMOBJ_Chunk(self, "movie_object[]") class AVCHDMPLS(HachoirParser, RootSeekableFieldSet): endian = BIG_ENDIAN MAGIC = "MPLS0" PARSER_TAGS = { "id": "bdmv_mpls", "category": "video", "file_ext": ("mpl","mpls","vpl"), "magic": ((MAGIC, 0),), "min_size": 8, # MPLS0?00 "description": "MPLS", } def __init__(self, stream, **args): RootSeekableFieldSet.__init__(self, None, "root", stream, None, stream.askSize(self)) HachoirParser.__init__(self, stream, **args) def validate(self): if self.stream.readBytes(0, len(self.MAGIC)) != self.MAGIC: return "Invalid magic" return True def createFields(self): yield Bytes(self, "filetype", 4, "File type (MPLS)") yield Bytes(self, "fileversion", 4, "File version (0?00)") yield UInt32(self, "offset[0]") yield UInt32(self, "offset[1]") yield UInt32(self, "offset[2]") self.seekByte(self['offset[0]'].value) yield AVCHDMPLS_0(self, "chunk[]") self.seekByte(self['offset[1]'].value) yield AVCHDMPLS_1(self, "chunk[]") self.seekByte(self['offset[2]'].value) yield AVCHDChunkWithHeader(self, "chunk[]") class AVCHDCLPI(HachoirParser, RootSeekableFieldSet): endian = BIG_ENDIAN MAGIC = "HDMV0" PARSER_TAGS = { "id": "bdmv_clpi", "category": "video", "file_ext": ("cpi","clpi"), "magic": ((MAGIC, 0),), "min_size": 8, # HDMV0?00 "description": "HDMV", } def __init__(self, stream, **args): RootSeekableFieldSet.__init__(self, None, "root", stream, None, stream.askSize(self)) HachoirParser.__init__(self, stream, **args) def validate(self): if self.stream.readBytes(0, len(self.MAGIC)) != self.MAGIC: return "Invalid magic" return True def createFields(self): yield Bytes(self, "filetype", 4, "File type (HDMV)") yield Bytes(self, "fileversion", 4, "File version (0?00)") yield UInt32(self, "offset[]") yield UInt32(self, "offset[]") yield UInt32(self, "offset[]") yield UInt32(self, "offset[]") yield UInt32(self, "offset[]") self.seekByte(self['offset[0]'].value) yield AVCHDGenericChunk(self, "chunk[]") self.seekByte(self['offset[1]'].value) yield AVCHDCLPI_1(self, "chunk[]") self.seekByte(self['offset[2]'].value) yield AVCHDGenericChunk(self, "chunk[]") self.seekByte(self['offset[3]'].value) yield AVCHDGenericChunk(self, "chunk[]") self.seekByte(self['offset[4]'].value) yield AVCHDChunkWithHeader(self, "chunk[]")
apps/invitations/admin.py
goztrk/django-htk
206
11184430
<gh_stars>100-1000 # Python Standard Library Imports # Django Imports from django.contrib import admin class HtkInvitationAdmin(admin.ModelAdmin): list_display = ( 'id', 'email', 'first_name', 'last_name', 'invited_by', 'campaign', 'notes', 'user', 'status', 'created_at', 'timestamp', ) list_filter = ( 'campaign', 'invited_by', 'status', )
tests/files.py
sourya-deepsource/pdf-annotate
137
11184439
<reponame>sourya-deepsource/pdf-annotate<gh_stars>100-1000 import os.path dirname, _ = os.path.split(os.path.abspath(__file__)) SIMPLE = os.path.join(dirname, 'pdfs', 'simple.pdf') ROTATED_90 = os.path.join(dirname, 'pdfs', 'rotated_90.pdf') ROTATED_180 = os.path.join(dirname, 'pdfs', 'rotated_180.pdf') ROTATED_270 = os.path.join(dirname, 'pdfs', 'rotated_270.pdf') BINARIZED_PNG = os.path.join(dirname, 'images', 'binarized.png') GRAYSCALE_PNG = os.path.join(dirname, 'images', 'grayscale.png') RGB_PNG = os.path.join(dirname, 'images', 'rgb.png') ALPHA_PNG = os.path.join(dirname, 'images', 'rgba.png') PNG_FILES = [ BINARIZED_PNG, GRAYSCALE_PNG, RGB_PNG, ALPHA_PNG, ] GRAYSCALE_JPEG = os.path.join(dirname, 'images', 'grayscale.jpeg') RGB_JPEG = os.path.join(dirname, 'images', 'rgb.jpeg') CMYK_JPEG = os.path.join(dirname, 'images', 'cmyk.jpeg') JPEG_FILES = [ GRAYSCALE_JPEG, RGB_JPEG, CMYK_JPEG, ] RGB_GIF = os.path.join(dirname, 'images', 'rgb.gif') GRAYSCALE_GIF = os.path.join(dirname, 'images', 'grayscale.gif') GIF_FILES = [ GRAYSCALE_GIF, RGB_GIF, ]
webcompat/db/__init__.py
Rahib777-7/webcompat.com
298
11184447
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. """Database initialization.""" from hashlib import sha512 import os from uuid import uuid4 from sqlalchemy import Column from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Integer from sqlalchemy.orm import scoped_session from sqlalchemy.orm import sessionmaker from sqlalchemy import String from webcompat import app from webcompat.helpers import to_bytes session_engine = create_engine('sqlite:///' + os.path.join( app.config['DATA_PATH'], 'session.db')) session_db = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=session_engine)) site_engine = create_engine('sqlite:///' + os.path.join( app.config['DATA_PATH'], 'topsites.db')) site_db = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=site_engine)) UsersBase = declarative_base() UsersBase.query = session_db.query_property() class User(UsersBase): """Define the user DB holding the sessions.""" __tablename__ = 'users' user_id = Column(String(128), unique=True, primary_key=True) access_token = Column(String(128), unique=True) def __init__(self, access_token): """Initialize the user db parameters.""" self.access_token = access_token # We use the user_id in the session cookie to identify auth'd users. # Here we salt and hash the GitHub access token so you can't get # back to the auth token if the session cookie was ever compromised. self.user_id = sha512( to_bytes(access_token + uuid4().hex)).hexdigest()[0:128] UsersBase.metadata.create_all(bind=session_engine) SiteBase = declarative_base() SiteBase.query = site_db.query_property() class Site(SiteBase): """SQLAchemy base object for an Alexa top site.""" __tablename__ = 'topsites' url = Column(String, primary_key=True) priority = Column(Integer) country_code = Column(String) ranking = Column(Integer) def __init__(self, url, priority, country_code, ranking): self.url = url self.priority = priority self.country_code = country_code self.ranking = ranking SiteBase.metadata.create_all(bind=site_engine)
python/linkedlist/leetcode/delete_nth_node.py
googege/algo-learn
153
11184486
<reponame>googege/algo-learn<gh_stars>100-1000 # 删除链表倒数第N个节点 class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: # 先计数,再删除 def removeNthFromEnd_1(self, head: ListNode, n: int) -> ListNode: def length(node: ListNode) -> int: k = 0 while node: k, node = k + 1, node.next return k dummy = ListNode(0, head) length = length(head) cur = dummy for _ in range(1, length - n + 1): cur = cur.next cur.next = cur.next.next return dummy.next # 快慢指针,一次遍历 def removeNthFromEnd_2(self, head: ListNode, n: int) -> ListNode: dummy = ListNode(0, head) slow, fast = dummy, head for _ in range(n): fast = fast.next while fast: slow, fast = slow.next, fast.next slow.next = slow.next.next return dummy.next
app/controllers/config/account/profile.py
ctxis/crackerjack
237
11184524
from .. import bp from flask import current_app from flask_login import login_required, current_user from flask import render_template, redirect, url_for, flash, request from app.lib.base.provider import Provider @bp.route('/profile', methods=['GET']) @bp.route('/profile/<int:user_id>', methods=['GET']) @login_required def profile(user_id=None): if user_id is None: user_id = current_user.id elif user_id != current_user.id: flash('Access denied', 'error') return redirect(url_for('home.index')) provider = Provider() users = provider.users() user = users.get_by_id(user_id) return render_template( 'config/account/profile.html', user=user ) @bp.route('/profile/<int:user_id>/save', methods=['POST']) @login_required def profile_save(user_id): if user_id != current_user.id: flash('Access denied', 'error') return redirect(url_for('home.index')) provider = Provider() users = provider.users() user = users.get_by_id(current_user.id) if not user.ldap: existing_password = request.form['existing_password'].strip() new_password = request.form['new_password'].strip() confirm_password = request.form['confirm_password'].strip() if len(existing_password) == 0: flash('Please enter your existing password', 'error') return redirect(url_for('config.profile', user_id=user_id)) elif len(new_password) == 0: flash('Please enter your new password', 'error') return redirect(url_for('config.profile', user_id=user_id)) elif len(confirm_password) == 0: flash('Please confirm your new password', 'error') return redirect(url_for('config.profile', user_id=user_id)) elif new_password != confirm_password: flash('Passwords do not match', 'error') return redirect(url_for('config.profile', user_id=user_id)) elif not users.validate_user_password(user_id, existing_password): flash('Existing password is invalid', 'error') return redirect(url_for('config.profile', user_id=user_id)) elif not users.password_complexity.meets_requirements(new_password): flash( 'Password does not meet complexity requirements: ' + users.password_complexity.get_requirement_description(), 'error') return redirect(url_for('config.profile', user_id=user_id)) users.update_password(user_id, new_password) flash('Settings updated', 'success') return redirect(url_for('config.profile', user_id=user_id))
tools/SeeDot/seedot/compiler/ONNX/onnx_test_run.py
Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML
719
11184529
<gh_stars>100-1000 # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. import numpy as np import onnxruntime import common import os, sys import onnx from onnx import helper file_path = '../../../model/lenet/cifar-multiclass/input.onnx' model = onnx.load(file_path) sess = onnxruntime.InferenceSession(file_path) dataset_path = '../../../datasets/lenet/cifar-multiclass/test_onnx.npy' test = np.load(dataset_path) run_all = True intermediate = None correct = 0 total = 0 for i in range(test.shape[0] if run_all else 1): x = test[i,1:].reshape(-1,1) # x = test[i,1:].reshape(1,32,32,3).transpose(0,3,1,2).reshape(-1,1) output = test[i,0] # print(x.shape) # print(output) input_name = model.graph.input[0].name x = x.astype(np.float32) if (intermediate is not None): intermediate_layer_value_info = helper.ValueInfoProto() intermediate_layer_value_info.name = intermediate model.graph.output.extend([intermediate_layer_value_info]) onnx.save(model, file_path + '_1') sess = onnxruntime.InferenceSession(file_path + '_1') pred = sess.run([intermediate_layer_value_info.name], {input_name: x}) # np.save('debug/' + model_name + '/' + model_name + '_debug', pred) # with open('debug/onnx_debug.txt', 'w') as f: # f.write(common.numpy_float_array_to_float_val_str(pred)) # print("Saving the onnx runtime intermediate output for " + intermediate_layer_value_info.name) print(len(pred)) print(pred[0]) exit() pred = sess.run(None, {input_name: x}) predicted_class = pred[0][0] + 1 print(predicted_class) print(int(output)) correct += (predicted_class == int(output)) total += 1 # np.save('debug/' + model_name + '/' + model_name + '_output', pred) # with open('debug/onnx_output.txt', 'w') as f: # f.write(common.numpy_float_array_to_float_val_str(pred)) # output_dims = common.proto_val_to_dimension_tuple(model.graph.output[0]) # print("Saving the onnx runtime output of dimension " + str(output_dims)) print(str((float(correct)*100)/float(total)) + '% is the accuracy')
google_or_tools/coins3_sat.py
tias/hakank
279
11184562
# Copyright 2021 <NAME> <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Coin application in Google CP Solver. From 'Constraint Logic Programming using ECLiPSe' pages 99f and 234 ff. The solution in ECLiPSe is at page 236. ''' What is the minimum number of coins that allows one to pay _exactly_ any amount smaller than one Euro? Recall that there are six different euro cents, of denomination 1, 2, 5, 10, 20, 50 ''' This is a port of my old OR-tools CP model coins3.py This model was created by <NAME> (<EMAIL>) Also see my other OR-tools models: http://www.hakank.org/or_tools/ """ from __future__ import print_function from ortools.sat.python import cp_model as cp import math, sys from cp_sat_utils import scalar_product, SimpleSolutionPrinter def main(): model = cp.CpModel() # # data # n = 6 # number of different coins variables = [1, 2, 5, 10, 25, 50] # declare variables x = [model.NewIntVar(0, 99, "x%i" % i) for i in range(n)] num_coins = model.NewIntVar(0, 99, "num_coins") # # constraints # # number of used coins, to be minimized model.Add(num_coins == sum(x)) # Check that all changes from 1 to 99 can be made. for j in range(1, 100): tmp = [model.NewIntVar(0, 99, "b%i" % i) for i in range(n)] model.Add(j == cp.LinearExpr.ScalProd(tmp,variables)) # scalar_product(model,tmp,variables,j) [model.Add(tmp[i] <= x[i]) for i in range(n)] # objective # objective = solver.Minimize(num_coins, 1) model.Minimize(num_coins) # # solution and search # solver = cp.CpSolver() # solver.parameters.search_branching = cp.PORTFOLIO_SEARCH solver.parameters.cp_model_presolve = False solver.parameters.linearization_level = 0 solver.parameters.cp_model_probing_level = 0 # status = solver.Solve(model) solution_printer = SimpleSolutionPrinter([num_coins]) status = solver.SolveWithSolutionCallback(model, solution_printer) if status == cp.OPTIMAL: print("x: ", [solver.Value(x[i]) for i in range(n)]) print("num_coins:", solver.Value(num_coins)) print() print("NumConflicts:", solver.NumConflicts()) print("NumBranches:", solver.NumBranches()) print("WallTime:", solver.WallTime()) if __name__ == "__main__": main()
example/functions/add.py
osblinnikov/pytorch-binary
293
11184595
# functions/add.py import torch from torch.autograd import Function from _ext import my_lib class MyAddFunction(Function): def forward(self, input1, input2): output = input1.new() if not input1.is_cuda: my_lib.my_lib_add_forward(input1, input2, output) else: my_lib.my_lib_add_forward_cuda(input1, input2, output) return output def backward(self, grad_output): grad_input = grad_output.new() if not grad_output.is_cuda: my_lib.my_lib_add_backward(grad_output, grad_input) else: my_lib.my_lib_add_backward_cuda(grad_output, grad_input) return grad_input
src/python/nimbusml/feature_extraction/image/__init__.py
michaelgsharp/NimbusML
134
11184726
from .loader import Loader from .pixelextractor import PixelExtractor from .resizer import Resizer __all__ = [ 'Loader', 'PixelExtractor', 'Resizer' ]
src/test/tests/operators/multires.py
visit-dav/vis
226
11184738
# ---------------------------------------------------------------------------- # CLASSES: nightly # # Test Case: multires.py # # Programmer: <NAME> # Date: August 6, 2010 # # ---------------------------------------------------------------------------- ds = data_path("Chombo_test_data/chombo.visit") OpenDatabase(ds) AddPlot("Pseudocolor", "Scalar_1") AddOperator("MultiresControl") att = MultiresControlAttributes() att.resolution = 0 SetOperatorOptions(att) DrawPlots() Test("multires_0") att.resolution = 1 SetOperatorOptions(att) DrawPlots() Test("multires_1") DeleteAllPlots() CloseDatabase(ds) Exit()
scripts/parse_atmo_status_logs.py
simpsonw/atmosphere
197
11184778
#!/usr/bin/env python import csv from datetime import datetime def _parse_logs(filename): user_history = {} pending_instances = {} with open(filename, 'r') as the_file: csvreader = csv.reader(the_file, delimiter=',') for row in csvreader: try: ( timestamp, username, instance_id, machine_id, size_id, status_name ) = row except: print 'Could not parse row:\n%s' % row continue if status_name == 'Request Received': pending_instances[(username, machine_id, size_id)] = row else: first_row = pending_instances.pop( (username, machine_id, size_id), None ) user_instance_history = user_history.get(username, {}) instance_history = user_instance_history.get(instance_id, []) if first_row: instance_history.append(first_row) instance_history.append(row) user_instance_history[instance_id] = instance_history user_history[username] = user_instance_history print "Username,Instance ID, Machine ID, Size ID, Request Time, Launch Time, Networking Time, Deployment Time, Request-to-launch, launch-to-deploy" for username, instance_history in user_history.items(): for instance_id, history in instance_history.items(): request_time = None launch_time = None network_time = None deploy_time = None for row in history: status = row[5] if not request_time and 'Request Received' in status: request_time = get_time(row[0]) elif not launch_time and 'Launching Instance' in status: launch_time = get_time(row[0]) elif not network_time and 'Networking Complete' in status: network_time = get_time(row[0]) elif not deploy_time and 'Deploy Finished' in status: deploy_time = get_time(row[0]) if not launch_time or not request_time: total_launch_time = "N/A" else: total_launch_time = launch_time - request_time if not launch_time or not deploy_time: total_deploy_time = "N/A" else: total_deploy_time = deploy_time - launch_time print "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s"\ % (username, instance_id, row[3], row[4], request_time, launch_time, network_time, deploy_time, total_launch_time, total_deploy_time) def get_time(time_str): return datetime.strptime(time_str, '%Y-%m-%d %H:%M:%S') if __name__ == "__main__": _parse_logs("logs/atmosphere_status.log")
ts_datasets/ts_datasets/anomaly/synthetic.py
ankitakashyap05/Merlion
2,215
11184779
# # Copyright (c) 2021 salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause # import glob import os import pandas as pd from ts_datasets.anomaly.base import TSADBaseDataset class Synthetic(TSADBaseDataset): """ Wrapper to load a sythetically generated dataset. The dataset was generated using three base time series, each of which was separately injected with shocks, spikes, dips and level shifts, making a total of 15 time series (including the base time series without anomalies). Subsets can are defined by the base time series used ("horizontal", "seasonal", "upward_downward"), or the type of injected anomaly ("shock", "spike", "dip", "level"). The "anomaly" subset refers to all times series with injected anomalies (12) while "base" refers to all time series without them (3). """ base_ts_subsets = ["horizontal", "seasonal", "upward_downward"] anomaly_subsets = ["shock", "spike", "dip", "level", "trend"] valid_subsets = ["anomaly", "all", "base"] + base_ts_subsets + anomaly_subsets def __init__(self, subset="anomaly", rootdir=None): super().__init__() assert subset in self.valid_subsets, f"subset should be in {self.valid_subsets}, but got {subset}" self.subset = subset if rootdir is None: fdir = os.path.dirname(os.path.abspath(__file__)) merlion_root = os.path.abspath(os.path.join(fdir, "..", "..", "..")) rootdir = os.path.join(merlion_root, "data", "synthetic_anomaly") csvs = sorted(glob.glob(f"{rootdir}/*.csv")) if subset == "base": csvs = [csv for csv in csvs if "anom" not in os.path.basename(csv)] elif subset != "all": csvs = [csv for csv in csvs if "anom" in os.path.basename(csv)] if subset in self.base_ts_subsets + self.anomaly_subsets: csvs = [csv for csv in csvs if subset in os.path.basename(csv)] for csv in csvs: df = pd.read_csv(csv) df["timestamp"] = pd.to_datetime(df["timestamp"], unit="s") df = df.set_index("timestamp") ts = df[df.columns[0:1]] metadata = pd.DataFrame( { "anomaly": df["anomaly"].astype(bool) if df.shape[1] > 1 else [False] * len(df), "trainval": [j < len(df) * 0.5 for j in range(len(df))], }, index=df.index, ) self.time_series.append(ts) self.metadata.append(metadata)
Candidates/trainCandidates.py
shv07/microexpnet
150
11184790
''' Title :trainCandidates.py Description :This script trains Candidate nets, plots learning curves and saves corresponding Tensorflow models Author :<NAME> & <NAME> Date Created :28-04-2017 Date Modified :09-06-2019 version :1.3 python_version :2.7.11 ''' from __future__ import print_function from time import gmtime, strftime from Preprocessing import * from CandidateExpNet_v import * from CandidateExpNet_p1 import * from CandidateExpNet_p2 import * from CandidateExpNet_p12 import * import matplotlib matplotlib.use('Agg') import matplotlib.pylab as plt import matplotlib.image as mpimg import tensorflow as tf import numpy as np import cv2 import sys import os if __name__ == '__main__': # Static parameters imgXdim = 84 imgYdim = 84 nInput = imgXdim*imgYdim # Since RGB is transformed to Grayscale nClasses = 8 dropout = 0.5 batchSize = 64 #learningRate = 1e-04 stepSize = 50000 epochs = 1000 testStep = 20 displayStep = 20 ''' mode : "-v" -> CandidateExpNet_v, "-p1" -> CandidateExpNet_p1 "-p2" -> CandidateExpNet_p2 "-p12" -> CandidateExpNet_p12 valSet : Index of the chosen test batch (10 batches in total) or file path of the test labels labelPath : Absolute path of the label file outputGraphName : Name of the learning curve graph outputModelName : Name of the Tensorflow model file squeezeCoefficient : Model compression parameter ''' if len(sys.argv) != 8: print("Usage: python trainCandidates.py <mode> <valSet> <labelPath> <outputGraphName> <outputModelName> <learningRate> <squeezeCoefficient>") else: # Dynamic parameters mode = str(sys.argv[1]) if sys.argv[2].isdigit(): valSet = int(sys.argv[2]) else: valSet = str(sys.argv[2]) labelPath = str(sys.argv[3]) outputGraphName = str(sys.argv[4]) outputModelName = str(sys.argv[5]) learningRate = float(sys.argv[6]) squeezeCoefficient = int(sys.argv[7]) if mode == "-v": print("[" + get_time() + "] " + "Mode: CandidateExpNet_v Training") elif mode == "-p1": print("[" + get_time() + "] " + "Mode: CandidateExpNet_p1 Training") elif mode == "-p2": print("[" + get_time() + "] " + "Mode: CandidateExpNet_p2 Training") else: print("[" + get_time() + "] " + "Mode: CandidateExpNet_p12 Training") # Deploy images and their labels print("[" + get_time() + "] " + "Deploying images...") trainX, trainY, teacherLogits = deployImages(labelPath, None) # Produce one-hot labels print("[" + get_time() + "] " + "Producing one-hot labels...") trainY = produceOneHot(trainY, nClasses) print("[" + get_time() + "] " + "Start training for val[" + str(valSet) + "]") print("[" + get_time() + "] " + "Initializing batches...") batches = [] test_batches = [] if type(valSet) == type("str"): testX, testY, _ = deployImages(valSet, None) testY = produceOneHot(testY, nClasses) batches.extend(produceBatch(trainX, trainY, teacherLogits, batchSize)) test_batches.extend(produceBatch(testX, testY, None, batchSize)) else: # Produce 10 folds for training & validation folds = produce10foldCrossVal(trainX, trainY, teacherLogits, labelPath) for i in range(10): if i != valSet: batches.extend(produceBatch(folds[i]['x'], folds[i]['y'], folds[i]['teacherLogits'], batchSize)) else: test_batches.extend(produceBatch(folds[i]['x'], folds[i]['y'], folds[i]['teacherLogits'], batchSize)) print("[" + get_time() + "] " + "Initializing placeholders...") # tf Graph input x = tf.placeholder(tf.float32, shape=[None, nInput]) lr = tf.placeholder(tf.float32) keepProb = tf.placeholder(tf.float32) y = tf.placeholder(tf.int32, shape=[None, nClasses]) # Loss values for plotting train_loss_vals = [] train_acc_vals = [] train_iter_num = [] test_loss_vals = [] test_acc_vals = [] test_iter_num = [] fin_accuracy = 0 classifier = None # Construct model if mode == "-v": classifier = CandidateExpNet_v(x, y, lr, nClasses, imgXdim, imgYdim, batchSize, keepProb, squeezeCoefficient) elif mode == "-p1": classifier = CandidateExpNet_p1(x, y, lr, nClasses, imgXdim, imgYdim, batchSize, keepProb, squeezeCoefficient) elif mode == "-p2": classifier = CandidateExpNet_p2(x, y, lr, nClasses, imgXdim, imgYdim, batchSize, keepProb, squeezeCoefficient) else: classifier = CandidateExpNet_p12(x, y, lr, nClasses, imgXdim, imgYdim, batchSize, keepProb, squeezeCoefficient) # Deploy weights and biases for the model saver model_saver = tf.train.Saver() weights_biases_deployer = tf.train.Saver({"wc1": classifier.w["wc1"], \ "wc2": classifier.w["wc2"], \ "wfc": classifier.w["wfc"], \ "wo": classifier.w["out"], \ "bc1": classifier.b["bc1"], \ "bc2": classifier.b["bc2"], \ "bfc": classifier.b["bfc"], \ "bo": classifier.b["out"]}) with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) print("[" + get_time() + "] " + "Training is started...") step = 0 # Keep training until each max iterations while step <= epochs: total_batch = len(batches) total_test_batch = len(test_batches) for i in range(total_batch): batch_x = batches[i]['x'] batch_y = batches[i]['y'] # Run optimization op (backprop) sess.run(classifier.optimizer, feed_dict={x: batch_x, y: batch_y, lr: learningRate, keepProb: dropout}) if step % displayStep == 0: avg_cost = 0 avg_perf = 0 for i in range(total_batch): batch_x = batches[i]['x'] batch_y = batches[i]['y'] c, p = sess.run([classifier.cost, classifier.accuracy], feed_dict={x: batch_x, y: batch_y, lr: learningRate, keepProb: 1.0}) avg_cost += c avg_perf += p avg_cost /= float(total_batch) avg_perf /= float(total_batch) train_loss_vals.append(avg_cost) train_acc_vals.append(avg_perf) train_iter_num.append(step) print("[" + get_time() + "] [Iter " + str(step) + "] Training Loss: " + \ "{:.6f}".format(avg_cost) + " Training Accuracy: " + "{:.5f}".format(avg_perf)) if avg_cost < -1: break if step % testStep == 0: avg_cost = 0 fin_accuracy = 0 for i in range(total_test_batch): testX = test_batches[i]['x'] testY = test_batches[i]['y'] c, f = sess.run([classifier.cost, classifier.accuracy], feed_dict={x: testX, y: testY, lr: learningRate, keepProb: 1.0}) avg_cost += c fin_accuracy += f avg_cost /= float(total_test_batch) fin_accuracy /= float(total_test_batch) test_loss_vals.append(avg_cost) test_acc_vals.append(fin_accuracy) test_iter_num.append(step) print("[" + get_time() + "] [Iter " + str(step) + "] Testing Loss: " + \ "{:.6f}".format(avg_cost) + " Testing Accuracy: " + "{:.5f}".format(fin_accuracy)) if step % stepSize == 0: learningRate /= 10 step += 1 model_saver.save(sess, outputModelName) print("[" + get_time() + "] [Iter " + str(step) + "] Weights & Biases are saved.") # Print final accuracy independent of the mode print ("[" + get_time() + "] Test Accuracy: " + str(fin_accuracy)) print ("[" + get_time() + "] Training for val[" + str(valSet) + "] is completed.") # Starting building the learning curve graph fig, ax1 = plt.subplots() # Plotting training and test losses train_loss, = ax1.plot(train_iter_num, train_loss_vals, color='red', alpha=.5) test_loss, = ax1.plot(test_iter_num, test_loss_vals, linewidth=2, color='green') ax1.set_xlabel('Epochs', fontsize=15) ax1.set_ylabel('Loss', fontsize=15) ax1.tick_params(labelsize=15) # Plotting test accuracy ax2 = ax1.twinx() test_accuracy, = ax2.plot(test_iter_num, test_acc_vals, linewidth=2, color='blue') train_accuracy, = ax2.plot(train_iter_num, train_acc_vals, linewidth=1, color='orange') ax2.set_ylim(ymin=0, ymax=1) ax2.set_ylabel('Accuracy', fontsize=15) ax2.tick_params(labelsize=15) # Adding legend plt.legend([train_loss, test_loss, test_accuracy, train_accuracy], ['Training Loss', 'Test Loss', 'Test Accuracy', 'Training Accuracy'], bbox_to_anchor=(1, 0.8)) plt.title('Learning Curve', fontsize=18) # Saving learning curve plt.savefig(outputGraphName)
rastervision/data/raster_transformer/raster_transformer.py
carderne/raster-vision
1,577
11184865
<gh_stars>1000+ from abc import (ABC, abstractmethod) class RasterTransformer(ABC): """Transforms raw chips to be input to a neural network.""" @abstractmethod def transform(self, chip, channel_order=None): """Transform a chip of a raster source. Args: chip: ndarray of shape [height, width, channels] This is assumed to already have the channel_order applied to it if channel_order is set. In other words, channels should be equal to len(channel_order). channel_order: list of indices of channels that were extracted from the raw imagery. Returns: [height, width, channels] numpy array """ pass
transformations/factive_verb_transformation/transformation.py
JerryX1110/NL-Augmenter
583
11184866
<filename>transformations/factive_verb_transformation/transformation.py from interfaces.SentenceOperation import SentenceOperation from tasks.TaskTypes import TaskType import random from typing import List import spacy from initialize import spacy_nlp def extract_names_and_titles(): """ Extract names, titles, profession and relation of males and females """ SINGULAR_GENDER_PAIRS = { "manager": "manageress", "nephew": "niece", "prince": "princess", "baron": "baroness", "wizard": "witch", "father": "mother", "sons-in-law": "daughters-in-law", "boyfriend": "girlfriend", "dad": "mom", "shepherd": "shepherdess", "beau": "belle", "hunter": "huntress", "step-son": "step-daughter", "policeman": "policewoman", "brother": "sister", "grandfather": "grandmother", "priest": "priestess", "landlord": "landlady", "husband": "wife", "poet": "poetess", "masseur": "masseuse", "usher": "usherette", "hero": "heroine", "stepson": "stepdaughter", "postman": "postwoman", "god": "goddess", "grandpa": "grandma", "murderer": "murderess", "manservant": "maidservant", "host": "hostess", "masseurs": "masseuses", "boy": "girl", "male": "female", "son-in-law": "daughter-in-law", "waiter": "waitress", "bachelor": "spinster", "millionaire": "millionairess", "steward": "stewardess", "congressman": "congresswoman", "emperor": "empress", "duke": "duchess", "sire": "dam", "son": "daughter", "widower": "widow", "proprietor": "proprietress", "monk": "nun", "heir": "heiress", "gentleman": "lady", "lord": "lady", "uncle": "aunt", "he": "she", "king": "queen", "governor": "matron", "fiance": "fiancee", "step-father": "step-mother", "mr": "mrs", "stepfather": "stepmother", "daddy": "mummy", "father-in-law": "mother-in-law", "abbot": "abbess", "sir": "madam", "actor": "actress", "mr.": "mrs.", "chairman": "chairwoman", "sorcerer": "sorceress", "postmaster": "postmistress", "lad": "lass", "headmaster": "headmistress", "papa": "mama", "milkman": "milkmaid", "man": "woman", "grandson": "granddaughter", "groom": "bride", "businessman": "businesswoman", "his": "her", "he": "she", } male_name_file = open("gender.male.names", "r") male_names = [] for line in male_name_file: male_names.append(line.strip()) female_name_file = open("gender.female.names", "r") female_names = [] for line in female_name_file: female_names.append(line.strip()) male_names.extend(SINGULAR_GENDER_PAIRS.keys()) # adding male title, profession and relation female_names.extend(SINGULAR_GENDER_PAIRS.values()) # adding female title, profession and relation return male_names, female_names def is_candidate_word(word): """ check a word is correct candidate word for identifying pronoun """ discarded_words = ["a", "an", "the"] # can enhance this list if len(word)<=2 or word.lower() in discarded_words: return False return True def extract_nsubj_phrase(parse): """ extract phrase from nsubj subtree """ nsubj_phrase = [] for token in parse: if token.dep_ == "nsubj" and token.head.dep_ == "ROOT": nsubj_phrase.append(token.text) if token.head.dep_ == "nsubj" or token.head.head.dep_ == "nsubj": nsubj_phrase.append(token.text) return " ".join(nsubj_phrase) def map_pronoun(word, male_names, female_names): """ map word with male and females names, profession, title etc. """ pronoun = "" if word in male_names or word.lower() in male_names: pronoun = "he" elif word in female_names or word.lower() in female_names: pronoun = "she" return pronoun def fetch_corresponding_pronoun(nsubj_phrase, male_names, female_names): """ Fetch pronoun of nsubj phrase """ if nsubj_phrase.lower() in ["i", "you", "we", "he", "she", "they"]: return nsubj_phrase.lower() if len(nsubj_phrase.split(" ")) > 1: for ph in nsubj_phrase.split(" "): # if nsubj phrase contains multiple words. if is_candidate_word(ph): pronoun = map_pronoun(ph, male_names, female_names) if(pronoun != ""): return pronoun return "they" # default pronoun else: return map_pronoun(nsubj_phrase) def get_transformation(sentence, nlp, factive_verbs, non_factive_verbs, initial_verbs, male_names, female_names, seed): """ transform a input sentence by adding factive verb """ parse = nlp(sentence) nsubj_phrase = extract_nsubj_phrase(parse) pronoun = fetch_corresponding_pronoun(nsubj_phrase, male_names, female_names) random.seed(0) verb = random.choice(factive_verbs + non_factive_verbs) # pick random verb #initial_verb = random.choice(initial_verbs) # TODO: sentence = sentence.replace(nsubj_phrase, pronoun) return f"{nsubj_phrase} {verb} that, {sentence}"#, f"{nsubj} didn't {verb} that, {sentence}" class FactiveVerbTransformation(SentenceOperation): tasks = [ TaskType.TEXT_CLASSIFICATION, TaskType.TEXT_TO_TEXT_GENERATION, TaskType.SENTIMENT_ANALYSIS, ] languages = ["en"] heavy = False def __init__(self, seed=1, max_outputs=1): super().__init__(seed, max_outputs=max_outputs) self.nlp = spacy_nlp if spacy_nlp else spacy.load("en_core_web_sm") self.initial_verbs = ["", "have to", "has to", "need to"] # TODO: use this in next push after discussion #TODO: we can add third person variation like (after discussion) # "Peter published a research paper. => John revealed that, Peter published a research paper." self.male_names, self.female_names = extract_names_and_titles() self.factive_verbs = ["accept", "accepts", "accepted", "establish", "establishes", "established", "note", "notes", "noted", "reveal", "reveals", "revealed", "acknowledge","acknowledges", "acknowledged", "explain", "explains", "explained", "observe", "observes", "observed", "see", "saw", "seen", "know", "knows", "knew", "prove", "proves", "proved", "show", "shows", "showed", "demonstrate", "demonstrates","demonstrated", "learn", "learns", "learnt", "recognise", "recognises", "recognised", "inform", "informs", "informed", "understand", "understands", "understood" "confirm", "confirms", "confirmed"] # more verbs can be added self.non_factive_verbs = ["argue", "argues", "argued", "doubt", "doubts", "doubted", "hypothesise", "hypothesises", "hypothesised", "recommend", "recommends", "recommended", "assume", "assumes", "assumed", "estimate", "estimates", "estimated", "imply", "implies", "implied", "suggest", "suggests", "suggested", "believe", "believes", "believed", "expect", "expects", "expected", "predict", "predicts", "predicted", "suspect", "suspects", "suspected", "claim", "claims", "claimed", "foresee", "foresaw", "foreseen", "presume", "presumes", "presumed", "think", "thinks", "thought"] def generate(self, sentence: str) -> List[str]: transformed_sentences = [] for _ in range(self.max_outputs): transformed_sentence = get_transformation(sentence, self.nlp, self.factive_verbs, self.non_factive_verbs, self.initial_verbs, self.male_names, self.female_names, self.seed) transformed_sentences.append(transformed_sentence) return transformed_sentences # if __name__ == "__main__": # import json # from TestRunner import convert_to_snake_case # # tf = FactiveVerbTransformation() # test_cases=[] # input_sent = ["He killed a street dog yesterday.", # "An actress made her debut in hollywood.", # "<NAME> was enjoying the summer in Baker street.", # "The lady doctor made a huge mistake during the operation.", # "Mr. <NAME> won the Quidditch championship.", # "A small group of researchers found a new variant of Coivd-19."] # # for i, sentence in enumerate(input_sent): # # transformed_sentence = tf.generate(sentence) # # test_cases.append({ # # "class": tf.name(), # # "inputs": {"sentence": sentence}, # # "outputs": [],} # # ) # # for trans_sentence in transformed_sentence: # # test_cases[i]["outputs"].append({"sentence":trans_sentence}) # # json_file = {"type":convert_to_snake_case("factive_verb_transformation"), # # "test_cases": test_cases} # # print(json.dumps(json_file)) # for ip in input_sent: # print(ip) # trans_sent = tf.generate(ip) # print(trans_sent)
eosfactory/core/utils.py
tuan-tl/eosfactory
255
11184910
<reponame>tuan-tl/eosfactory import time import os import shutil import threading import subprocess import eosfactory.core.errors as errors def wslMapLinuxWindows(path, back_slash=True): if not path or path.find("/mnt/") != 0: return path path = path[5].upper() + ":" + path[6:] if back_slash: path = path.replace("/", r"\\") return path def wslMapWindowsLinux(path): if path.find(":") == -1: return path path = path.replace("\\", "/") drive = path[0] return path.replace(drive + ":/", "/mnt/" + drive.lower() + "/") def heredoc(message): from textwrap import dedent message = dedent(message).strip() message.replace("<br>", "\n") return message def spawn(command_line, error_message='', shell=False, raise_exception=True): stdout = None stderr = None try: p = subprocess.run( command_line, shell=shell, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = p.stdout.decode("ISO-8859-1").strip() stderr = p.stderr.decode("ISO-8859-1").strip() except Exception as e: stderr = str(e) if raise_exception: if stderr: raise errors.Error(''' {} command line: ============= {} error message: ============== {} '''.format(error_message, " ".join(command_line), stderr), translate=False) return stdout else: return (stdout, stderr) UBUNTU = "Ubuntu" DARWIN = "Darwin" OTHER_OS = None def os_version(): version = spawn(["uname", "-v"]) if "Microsoft" in version or "ubuntu" in version: return UBUNTU if "Darwin" in version: return DARWIN return OTHER_OS def is_windows_ubuntu(): return "Microsoft" in spawn(["uname", "-v"]) def which(file_path): return spawn("which {}".format(file_path), shell=True) def long_process(command_line, build_dir=None, is_verbose=True, prompt=None, shell=False): stop = False PERIOD = 2 def thread_function(): if prompt: print("{}: ".format(prompt), end="", flush=True) while True: print(".", end="", flush=True) time.sleep(PERIOD) if stop: break cwd = None if build_dir: cwd = os.path.join(build_dir, "cwd") if os.path.exists(cwd): try: shutil.rmtree(cwd) except Exception as e: raise errors.Error(''' Cannot remove the directory {}. error message: ============== {} '''.format(cwd, str(e))) os.mkdir(cwd) threading.Thread(target=thread_function).start() try: p = subprocess.run( command_line, cwd=cwd, shell=shell, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except Exception as e: stop = True time.sleep(PERIOD) print(str(e)) exit() stop = True time.sleep(PERIOD) print() stdout = p.stdout.decode("ISO-8859-1") stderr = p.stderr.decode("ISO-8859-1") returncode = p.returncode if is_verbose: print(stdout) if cwd: shutil.rmtree(cwd) if returncode: raise errors.Error(''' command line: ============= {} error message: ============== {} '''.format(" ".join(command_line), stderr)) return p def locate(start_dir, partial_path): cl = ["find", start_dir, "-wholename", '"*{}"'.format(partial_path)] p = long_process(" ".join(cl), None, False, "locating '{}'".format(partial_path), True) stdout = p.stdout.decode("ISO-8859-1") if stdout: return stdout.strip() return "" def project_zip(): # from zipfile_infolist import print_info import zipfile zip_file = '/mnt/c/Workspaces/EOS/contracts/examples/project_zip.zip' with zipfile.ZipFile(zip_file, mode='w') as zf: print('adding README.txt') zf.write('/mnt/c/Workspaces/EOS/contracts/examples/fund/build/fund.abi') # print('creating archive') # zf = zipfile.ZipFile(zip_file, mode='w') # try: # for f in "/mnt/c/Workspaces/EOS/contracts/examples/fund/build": # print("adding {}".format(f)) # zf.write(f) # finally: # print('closing') # zf.close() # print(print_info(zip_file)) # zip_file = "/mnt/c/Workspaces/EOS/contracts/examples/project_zip.zip" # zip_object = zipfile.ZipFile(zip_file, 'w') # for f in "/mnt/c/Workspaces/EOS/contracts/examples/fund": # zip_object.write(f)
Twitter_Scraper_without_API/display_hashtags.py
avinashkranjan/PraticalPythonProjects
930
11184927
<reponame>avinashkranjan/PraticalPythonProjects<filename>Twitter_Scraper_without_API/display_hashtags.py import sqlite3 import os def sql_connection(): """ Establishes a connection to the SQL file database :return connection object: """ path = os.path.abspath('./Twitter_Scraper_without_API/TwitterDatabase.db') con = sqlite3.connect(path) return con def sql_fetcher(con): """ Fetches all the tweets with the given hashtag from our database :param con: :return: """ hashtag = input("\nEnter hashtag to search: #") hashtag = '#' + hashtag count = 0 cur = con.cursor() cur.execute('SELECT * FROM tweets') # SQL search query rows = cur.fetchall() for r in rows: if hashtag in r: count += 1 print(f'USERNAME: {r[1]}\nTWEET CONTENT: {r[2]}\nURL: {r[3]}\n') if count: print(f'{count} tweets fetched from database') else: print('No tweets available for this hashtag') con = sql_connection() while 1: sql_fetcher(con) ans = input('Press (y) to continue or any other key to exit: ').lower() if ans == 'y': continue else: print('Exiting..') break
contrib/tools/python/src/Lib/plat-mac/lib-scriptpackages/Terminal/Terminal_Suite.py
HeyLey/catboost
6,989
11184932
<filename>contrib/tools/python/src/Lib/plat-mac/lib-scriptpackages/Terminal/Terminal_Suite.py """Suite Terminal Suite: Terms and Events for controlling the Terminal application Level 1, version 1 Generated from /Applications/Utilities/Terminal.app AETE/AEUT resource version 1/0, language 0, script 0 """ import aetools import MacOS _code = 'trmx' class Terminal_Suite_Events: def GetURL(self, _object, _attributes={}, **_arguments): """GetURL: Opens a telnet: URL Required argument: the object for the command Keyword argument _attributes: AppleEvent attribute dictionary """ _code = 'GURL' _subcode = 'GURL' if _arguments: raise TypeError, 'No optional args expected' _arguments['----'] = _object _reply, _arguments, _attributes = self.send(_code, _subcode, _arguments, _attributes) if _arguments.get('errn', 0): raise aetools.Error, aetools.decodeerror(_arguments) # XXXX Optionally decode result if _arguments.has_key('----'): return _arguments['----'] _argmap_do_script = { 'in_' : 'kfil', 'with_command' : 'cmnd', } def do_script(self, _object, _attributes={}, **_arguments): """do script: Run a UNIX shell script or command Required argument: the object for the command Keyword argument in_: the window in which to execute the command Keyword argument with_command: data to be passed to the Terminal application as the command line, deprecated, use direct parameter Keyword argument _attributes: AppleEvent attribute dictionary Returns: the reply for the command """ _code = 'core' _subcode = 'dosc' aetools.keysubst(_arguments, self._argmap_do_script) _arguments['----'] = _object _reply, _arguments, _attributes = self.send(_code, _subcode, _arguments, _attributes) if _arguments.get('errn', 0): raise aetools.Error, aetools.decodeerror(_arguments) # XXXX Optionally decode result if _arguments.has_key('----'): return _arguments['----'] class application(aetools.ComponentItem): """application - The Terminal program """ want = 'capp' class _Prop__3c_Inheritance_3e_(aetools.NProperty): """<Inheritance> - All of the properties of the superclass. """ which = 'c@#^' want = 'capp' _3c_Inheritance_3e_ = _Prop__3c_Inheritance_3e_() class _Prop_properties(aetools.NProperty): """properties - every property of the Terminal program """ which = 'pALL' want = '****' properties = _Prop_properties() # element 'cwin' as ['name', 'indx', 'rele', 'rang', 'test', 'ID '] # element 'docu' as ['name', 'indx', 'rele', 'rang', 'test'] applications = application class window(aetools.ComponentItem): """window - A Terminal window """ want = 'cwin' class _Prop_background_color(aetools.NProperty): """background color - the background color for the window """ which = 'pbcl' want = '****' class _Prop_bold_text_color(aetools.NProperty): """bold text color - the bold text color for the window """ which = 'pbtc' want = '****' class _Prop_bounds(aetools.NProperty): """bounds - the boundary rectangle for the window, relative to the upper left corner of the screen """ which = 'pbnd' want = '****' class _Prop_busy(aetools.NProperty): """busy - Is the window busy running a process? """ which = 'busy' want = 'bool' class _Prop_contents(aetools.NProperty): """contents - the currently visible contents of the window """ which = 'pcnt' want = 'utxt' class _Prop_cursor_color(aetools.NProperty): """cursor color - the cursor color for the window """ which = 'pcuc' want = '****' class _Prop_custom_title(aetools.NProperty): """custom title - the custom title for the window """ which = 'titl' want = 'utxt' class _Prop_frame(aetools.NProperty): """frame - the origin and size of the window """ which = 'pfra' want = '****' class _Prop_frontmost(aetools.NProperty): """frontmost - Is the window in front of the other Terminal windows? """ which = 'pisf' want = 'bool' class _Prop_history(aetools.NProperty): """history - the contents of the entire scrolling buffer of the window """ which = 'hist' want = 'utxt' class _Prop_normal_text_color(aetools.NProperty): """normal text color - the normal text color for the window """ which = 'ptxc' want = '****' class _Prop_number_of_columns(aetools.NProperty): """number of columns - the number of columns in the window """ which = 'ccol' want = 'long' class _Prop_number_of_rows(aetools.NProperty): """number of rows - the number of rows in the window """ which = 'crow' want = 'long' class _Prop_origin(aetools.NProperty): """origin - the lower left coordinates of the window, relative to the lower left corner of the screen """ which = 'pori' want = '****' class _Prop_position(aetools.NProperty): """position - the upper left coordinates of the window, relative to the upper left corner of the screen """ which = 'ppos' want = '****' class _Prop_processes(aetools.NProperty): """processes - a list of the currently running processes """ which = 'prcs' want = 'utxt' class _Prop_size(aetools.NProperty): """size - the width and height of the window """ which = 'psiz' want = '****' class _Prop_title_displays_custom_title(aetools.NProperty): """title displays custom title - Does the title for the window contain a custom title? """ which = 'tdct' want = 'bool' class _Prop_title_displays_device_name(aetools.NProperty): """title displays device name - Does the title for the window contain the device name? """ which = 'tddn' want = 'bool' class _Prop_title_displays_file_name(aetools.NProperty): """title displays file name - Does the title for the window contain the file name? """ which = 'tdfn' want = 'bool' class _Prop_title_displays_shell_path(aetools.NProperty): """title displays shell path - Does the title for the window contain the shell path? """ which = 'tdsp' want = 'bool' class _Prop_title_displays_window_size(aetools.NProperty): """title displays window size - Does the title for the window contain the window size? """ which = 'tdws' want = 'bool' windows = window application._superclassnames = [] import Standard_Suite application._privpropdict = { '_3c_Inheritance_3e_' : _Prop__3c_Inheritance_3e_, 'properties' : _Prop_properties, } application._privelemdict = { 'document' : Standard_Suite.document, 'window' : window, } window._superclassnames = [] window._privpropdict = { '_3c_Inheritance_3e_' : _Prop__3c_Inheritance_3e_, 'background_color' : _Prop_background_color, 'bold_text_color' : _Prop_bold_text_color, 'bounds' : _Prop_bounds, 'busy' : _Prop_busy, 'contents' : _Prop_contents, 'cursor_color' : _Prop_cursor_color, 'custom_title' : _Prop_custom_title, 'frame' : _Prop_frame, 'frontmost' : _Prop_frontmost, 'history' : _Prop_history, 'normal_text_color' : _Prop_normal_text_color, 'number_of_columns' : _Prop_number_of_columns, 'number_of_rows' : _Prop_number_of_rows, 'origin' : _Prop_origin, 'position' : _Prop_position, 'processes' : _Prop_processes, 'properties' : _Prop_properties, 'size' : _Prop_size, 'title_displays_custom_title' : _Prop_title_displays_custom_title, 'title_displays_device_name' : _Prop_title_displays_device_name, 'title_displays_file_name' : _Prop_title_displays_file_name, 'title_displays_shell_path' : _Prop_title_displays_shell_path, 'title_displays_window_size' : _Prop_title_displays_window_size, } window._privelemdict = { } # # Indices of types declared in this module # _classdeclarations = { 'capp' : application, 'cwin' : window, } _propdeclarations = { 'busy' : _Prop_busy, 'c@#^' : _Prop__3c_Inheritance_3e_, 'ccol' : _Prop_number_of_columns, 'crow' : _Prop_number_of_rows, 'hist' : _Prop_history, 'pALL' : _Prop_properties, 'pbcl' : _Prop_background_color, 'pbnd' : _Prop_bounds, 'pbtc' : _Prop_bold_text_color, 'pcnt' : _Prop_contents, 'pcuc' : _Prop_cursor_color, 'pfra' : _Prop_frame, 'pisf' : _Prop_frontmost, 'pori' : _Prop_origin, 'ppos' : _Prop_position, 'prcs' : _Prop_processes, 'psiz' : _Prop_size, 'ptxc' : _Prop_normal_text_color, 'tdct' : _Prop_title_displays_custom_title, 'tddn' : _Prop_title_displays_device_name, 'tdfn' : _Prop_title_displays_file_name, 'tdsp' : _Prop_title_displays_shell_path, 'tdws' : _Prop_title_displays_window_size, 'titl' : _Prop_custom_title, } _compdeclarations = { } _enumdeclarations = { }
appengine/gallery_api/submit.py
bharati-software/blockly-games-Kannada
1,184
11184946
<reponame>bharati-software/blockly-games-Kannada """Blockly Games: Gallery Copyright 2018 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """Submit to gallery with App Engine. """ __author__ = "<EMAIL> (<NAME>)" import cgi import storage from gallery_api import * print("Content-Type: text/plain\n") forms = cgi.FieldStorage() xml = forms["xml"].value uuid = storage.xmlToKey(xml) print("XML saved as %s." % uuid) app = forms["app"].value thumb = forms["thumb"].value title = forms["title"].value art = Art(uuid=uuid, app=app, thumb=thumb, title=title, public=False) art.put() print("Submitted to %s as %s." % (app, uuid))
alipay/aop/api/domain/CarRentalVehicleInfo.py
antopen/alipay-sdk-python-all
213
11184959
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class CarRentalVehicleInfo(object): def __init__(self): self._car_no = None self._vehicle_capacity = None self._vehicle_color = None self._vehicle_models = None self._vehicle_number = None self._vehicle_operation_type = None self._vehicle_seats = None self._vehicle_type = None @property def car_no(self): return self._car_no @car_no.setter def car_no(self, value): self._car_no = value @property def vehicle_capacity(self): return self._vehicle_capacity @vehicle_capacity.setter def vehicle_capacity(self, value): self._vehicle_capacity = value @property def vehicle_color(self): return self._vehicle_color @vehicle_color.setter def vehicle_color(self, value): self._vehicle_color = value @property def vehicle_models(self): return self._vehicle_models @vehicle_models.setter def vehicle_models(self, value): self._vehicle_models = value @property def vehicle_number(self): return self._vehicle_number @vehicle_number.setter def vehicle_number(self, value): self._vehicle_number = value @property def vehicle_operation_type(self): return self._vehicle_operation_type @vehicle_operation_type.setter def vehicle_operation_type(self, value): self._vehicle_operation_type = value @property def vehicle_seats(self): return self._vehicle_seats @vehicle_seats.setter def vehicle_seats(self, value): self._vehicle_seats = value @property def vehicle_type(self): return self._vehicle_type @vehicle_type.setter def vehicle_type(self, value): self._vehicle_type = value def to_alipay_dict(self): params = dict() if self.car_no: if hasattr(self.car_no, 'to_alipay_dict'): params['car_no'] = self.car_no.to_alipay_dict() else: params['car_no'] = self.car_no if self.vehicle_capacity: if hasattr(self.vehicle_capacity, 'to_alipay_dict'): params['vehicle_capacity'] = self.vehicle_capacity.to_alipay_dict() else: params['vehicle_capacity'] = self.vehicle_capacity if self.vehicle_color: if hasattr(self.vehicle_color, 'to_alipay_dict'): params['vehicle_color'] = self.vehicle_color.to_alipay_dict() else: params['vehicle_color'] = self.vehicle_color if self.vehicle_models: if hasattr(self.vehicle_models, 'to_alipay_dict'): params['vehicle_models'] = self.vehicle_models.to_alipay_dict() else: params['vehicle_models'] = self.vehicle_models if self.vehicle_number: if hasattr(self.vehicle_number, 'to_alipay_dict'): params['vehicle_number'] = self.vehicle_number.to_alipay_dict() else: params['vehicle_number'] = self.vehicle_number if self.vehicle_operation_type: if hasattr(self.vehicle_operation_type, 'to_alipay_dict'): params['vehicle_operation_type'] = self.vehicle_operation_type.to_alipay_dict() else: params['vehicle_operation_type'] = self.vehicle_operation_type if self.vehicle_seats: if hasattr(self.vehicle_seats, 'to_alipay_dict'): params['vehicle_seats'] = self.vehicle_seats.to_alipay_dict() else: params['vehicle_seats'] = self.vehicle_seats if self.vehicle_type: if hasattr(self.vehicle_type, 'to_alipay_dict'): params['vehicle_type'] = self.vehicle_type.to_alipay_dict() else: params['vehicle_type'] = self.vehicle_type return params @staticmethod def from_alipay_dict(d): if not d: return None o = CarRentalVehicleInfo() if 'car_no' in d: o.car_no = d['car_no'] if 'vehicle_capacity' in d: o.vehicle_capacity = d['vehicle_capacity'] if 'vehicle_color' in d: o.vehicle_color = d['vehicle_color'] if 'vehicle_models' in d: o.vehicle_models = d['vehicle_models'] if 'vehicle_number' in d: o.vehicle_number = d['vehicle_number'] if 'vehicle_operation_type' in d: o.vehicle_operation_type = d['vehicle_operation_type'] if 'vehicle_seats' in d: o.vehicle_seats = d['vehicle_seats'] if 'vehicle_type' in d: o.vehicle_type = d['vehicle_type'] return o
fastweb/test/interactive.py
BSlience/fastweb
123
11184977
import code import readline import atexit import os class HistoryConsole(code.InteractiveConsole): def __init__(self, locals=None, filename="<console>", histfile=os.path.expanduser("~/.console-history")): code.InteractiveConsole.__init__(self, locals, filename) self.init_history(histfile) def init_history(self, histfile): readline.parse_and_bind("tab: complete") if hasattr(readline, "read_history_file"): try: readline.read_history_file(histfile) except IOError: pass atexit.register(self.save_history, histfile) def save_history(self, histfile): readline.set_history_length(1000) readline.write_history_file(histfile) if __name__ == '__main__': while True: c = HistoryConsole().raw_input() print(c)
commands/type_lookup.py
ikust/omnisharp-sublime
424
11184995
import os import sublime import sublime_plugin from ..lib import helpers from ..lib import omnisharp class OmniSharpTypeLookup(sublime_plugin.TextCommand): outputpanel = None def run(self, edit): sublime.active_window().run_command("hide_panel",{"panel": "output.variable_get"}) self.outputpanel = self.view.window().create_output_panel("variable_get") self.outputpanel.run_command('erase_view') params = {} params["includedocumentation"] = True omnisharp.get_response(self.view, '/typelookup', self._handle_typelookup, params) def is_enabled(self): return helpers.is_csharp(sublime.active_window().active_view()) def _handle_typelookup(self, data): sublime.status_message('' if data["Type"] is None else data["Type"]) if data["Documentation"] is not None: self.outputpanel.run_command('append', {'characters': "Type : " + '' if data["Type"] is None else data["Type"] + "\n" + "Documentation : " + '' if data["Documentation"] is None else data["Documentation"]}) self.view.window().run_command("show_panel", {"panel": "output.variable_get"})
tools/generate-smtp.py
drewm27/misp-warninglists
277
11185043
<reponame>drewm27/misp-warninglists<filename>tools/generate-smtp.py #!/usr/bin/env python3 import multiprocessing.dummy from generator import get_version, write_to_file, Dns, consolidate_networks, create_resolver # Source: https://github.com/mailcheck/mailcheck/wiki/List-of-Popular-Domains domains = [ # Default domains included "aol.com", "att.net", "comcast.net", "facebook.com", "gmail.com", "gmx.com", "googlemail.com", "google.com", "hotmail.com", "hotmail.co.uk", "mac.com", "me.com", "mail.com", "msn.com", "live.com", "sbcglobal.net", "verizon.net", "yahoo.com", "yahoo.co.uk", # Other global domains "email.com", "fastmail.fm", "games.com", "gmx.net", "hush.com", "hushmail.com", "icloud.com", "iname.com", "inbox.com", "lavabit.com", "love.com", "outlook.com", "pobox.com", "protonmail.ch", "protonmail.com", "tutanota.de", "tutanota.com", "tutamail.com", "tuta.io", "keemail.me", "rocketmail.com", "safe-mail.net", "wow.com", "ygm.com", "ymail.com", "zoho.com", "yandex.com", # United States ISP domains "bellsouth.net", "charter.net", "cox.net", "earthlink.net", "juno.com", # British ISP domains "btinternet.com", "virginmedia.com", "blueyonder.co.uk", "live.co.uk", "ntlworld.com", "orange.net", "sky.com", "talktalk.co.uk", "tiscali.co.uk", "virgin.net", "bt.com", # Domains used in Asia "sina.com", "sina.cn", "qq.com", "naver.com", "hanmail.net", "daum.net", "nate.com", "yahoo.co.jp", "yahoo.co.kr", "yahoo.co.id", "yahoo.co.in", "yahoo.com.sg", "yahoo.com.ph", "163.com", "yeah.net", "126.com", "21cn.com", "aliyun.com", "foxmail.com", # French ISP domains "hotmail.fr", "live.fr", "laposte.net", "yahoo.fr", "wanadoo.fr", "orange.fr", "gmx.fr", "sfr.fr", "neuf.fr", "free.fr", # German ISP domains "gmx.de", "hotmail.de", "live.de", "online.de", "t-online.de", "web.de", "yahoo.de", # Italian ISP domains "libero.it", "virgilio.it", "hotmail.it", "aol.it", "tiscali.it", "alice.it", "live.it", "yahoo.it", "email.it", "tin.it", "poste.it", "teletu.it", # Russian ISP domains "bk.ru", "inbox.ru", "list.ru", "mail.ru", "rambler.ru", "yandex.by", "yandex.com", "yandex.kz", "yandex.ru", "yandex.ua", "ya.ru", # Belgian ISP domains "hotmail.be", "live.be", "skynet.be", "voo.be", "tvcablenet.be", "telenet.be", # Argentinian ISP domains "hotmail.com.ar", "live.com.ar", "yahoo.com.ar", "fibertel.com.ar", "speedy.com.ar", "arnet.com.ar", # Domains used in Mexico "yahoo.com.mx", "live.com.mx", "hotmail.es", "hotmail.com.mx", "prodigy.net.mx", # Domains used in Canada "yahoo.ca", "hotmail.ca", "bell.net", "shaw.ca", "sympatico.ca", "rogers.com", # Domains used in Brazil "yahoo.com.br", "hotmail.com.br", "outlook.com.br", "uol.com.br", "bol.com.br", "terra.com.br", "ig.com.br", "r7.com", "zipmail.com.br", "globo.com", "globomail.com", "oi.com.br", # Custom extension # Domains used in Czechia "seznam.cz", "atlas.cz", "centrum.cz", ] if __name__ == '__main__': dns = Dns(create_resolver()) spf_ranges = [] p = multiprocessing.dummy.Pool(40) for domain_ranges in p.map(lambda d: dns.get_ip_ranges_from_spf(d), domains): spf_ranges.extend(domain_ranges) warninglist = { 'name': "List of known SMTP sending IP ranges", 'version': get_version(), 'description': "List of IP ranges for known SMTP servers.", 'matching_attributes': ["ip-src", "ip-dst", "domain|ip"], 'type': 'cidr', 'list': consolidate_networks(spf_ranges), } write_to_file(warninglist, "smtp-sending-ips") mx_ips = [] for domain_ranges in p.map(lambda d: dns.get_mx_ips_for_domain(d), domains): mx_ips.extend(domain_ranges) warninglist = { 'name': "List of known SMTP receiving IP addresses", 'version': get_version(), 'description': "List of IP addresses for known SMTP servers.", 'matching_attributes': ["ip-src", "ip-dst", "domain|ip"], 'type': 'cidr', 'list': map(str, mx_ips), } write_to_file(warninglist, "smtp-receiving-ips")
macaw/core/interaction_handler/user_requests_db.py
SouvickG/macaw
146
11185057
""" The conversation (or interaction) database implemented using MongoDB. Authors: <NAME> (<EMAIL>) """ from pymongo import MongoClient from macaw import util from macaw.core.interaction_handler.msg import Message class InteractionDB: def __init__(self, host, port, dbname): self.client = MongoClient(host, port) self.db = self.client[dbname] self.col = self.db['macaw_msgs'] def insert_one(self, msg): if msg.user_id is None or msg.text is None or msg.timestamp is None or msg.user_interface is None: raise Exception('Each message should include a user_interface, user_id, text, and timestamp.') self.col.insert_one(msg.__dict__) def get_all(self): print('Using get_all is only recommended for development purposes. It is not efficient!') return self.dict_list_to_msg_list(self.col.find({})) def get_conv_history(self, user_id, max_time, max_count): if max_time is None: res = self.col.find({'user_id': user_id}).sort([('timestamp', -1)]) else: res = self.col.find({'user_id': user_id, 'timestamp': {'$gt': util.current_time_in_milliseconds() - max_time}}).sort([('timestamp', -1)]) if max_count is not None: res = res.limit(max_count) return self.dict_list_to_msg_list(res) def close(self): self.client.close() @staticmethod def dict_list_to_msg_list(msg_dict_list): return [Message.from_dict(msg_dict) for msg_dict in msg_dict_list]
spectacles/types.py
felipefrancisco/spectacles
150
11185098
from typing import Dict, Any from typing_extensions import Literal QueryMode = Literal["batch", "hybrid", "single"] JsonDict = Dict[str, Any]
docs/code/buffer_single_side.py
Jeremiah-England/Shapely
2,382
11185155
from matplotlib import pyplot from shapely.geometry import LineString from descartes import PolygonPatch from figures import SIZE, BLUE, GRAY, set_limits, plot_line line = LineString([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)]) fig = pyplot.figure(1, figsize=SIZE, dpi=90) # 1 ax = fig.add_subplot(121) plot_line(ax, line) left_hand_side = line.buffer(0.5, single_sided=True) patch1 = PolygonPatch(left_hand_side, fc=BLUE, ec=BLUE, alpha=0.5, zorder=2) ax.add_patch(patch1) ax.set_title('a) left hand buffer') set_limits(ax, -1, 4, -1, 3) #2 ax = fig.add_subplot(122) plot_line(ax, line) right_hand_side = line.buffer(-0.3, single_sided=True) patch2 = PolygonPatch(right_hand_side, fc=GRAY, ec=GRAY, alpha=0.5, zorder=1) ax.add_patch(patch2) ax.set_title('b) right hand buffer') set_limits(ax, -1, 4, -1, 3) pyplot.show()
utils/imdb_data_util.py
dujiaxin/graph_star
112
11185219
import numpy as np import os import torch import random from bert_serving.client import BertClient random.seed(31415926) def build_imdb_npy(imdb_path): for file_path in [os.path.join(imdb_path, "train"), os.path.join(imdb_path, "test")]: txt_list = [] y = [] for label in ["pos", "neg"]: train_path = os.path.join(file_path, label) for fname in os.listdir(train_path): f = open(os.path.join(train_path, fname)) txt = "" for l in f.readlines(): txt += (l + " ") txt_list.append(txt) if label == "pos": y.append(1) else: y.append(0) y = np.array(y) bc = BertClient() res = bc.encode(txt_list) np.save(os.path.join(file_path, "bert_large_encode_res.npy"), res) np.save(os.path.join(file_path, "y.npy"), y) # res = np.load(os.path.join(file_path, "all_bert_fine_tuning_encode_res.npy")) # y = np.load(os.path.join(file_path, "all_y.npy")) topic_dic = dict() lines = [] f = open(os.path.join(file_path, "urls_pos.txt")) lines.extend([x[26:35] for x in f.readlines()]) f = open(os.path.join(file_path, "urls_neg.txt")) lines.extend([x[26:35] for x in f.readlines()]) s_edge = [] s_bug_edge = [] s_be = [] s_y = [] t_idx = 0 for idx, id in enumerate(lines): if id not in topic_dic: topic_dic[id] = len(topic_dic) s_edge.append([]) s_bug_edge.append([]) s_be.append([res[idx]]) s_y.append([y[idx]]) # t_idx += 1 else: t_idx = topic_dic[id] new_idx = len(s_be[t_idx]) for i in range(len(s_be[t_idx])): s_edge[t_idx].append([i, new_idx]) s_edge[t_idx].append([new_idx, i]) s_bug_edge[t_idx].append([0, new_idx]) s_bug_edge[t_idx].append([new_idx, 0]) s_be[t_idx].append(res[idx]) s_y[t_idx].append(y[idx]) np.save(os.path.join(file_path, "split_bert_large_encode_res.npy"), s_be) np.save(os.path.join(file_path, "split_edge.npy"), s_edge) np.save(os.path.join(file_path, "split_bug_edge.npy"), s_bug_edge) np.save(os.path.join(file_path, "split_y.npy"), s_y) def load_data(filepath): bert_encode_res = np.load(os.path.join(filepath, "split_bert_large_encode_res.npy"),allow_pickle=True) # 25000,768 y = np.load(os.path.join(filepath, "split_y.npy"),allow_pickle=True) # 25000 edge = np.load(os.path.join(filepath, "split_edge.npy"),allow_pickle=True) # 2,edge_num*2 bug_edge = np.load(os.path.join(filepath, "split_bug_edge.npy"),allow_pickle=True) # 2,edge_num*2 datas = [] for x, y, e, eb in zip(bert_encode_res, y, edge, bug_edge): x = np.array([_.tolist() for _ in x], dtype=np.float) y = np.array(y, dtype=np.long) if len(e) == 0: e = np.empty((0, 2), dtype=np.long).transpose() eb = np.empty((0, 2), dtype=np.long).transpose() else: e = np.array(e).transpose() eb = np.array(eb).transpose() datas.append((x, y, e, eb)) random.shuffle(datas) max_node_num = 2000 def empty(): x = np.empty((0, 1024), dtype=np.float) y = np.empty(0, dtype=np.long) e = np.empty((0, 2), dtype=np.long).transpose() eb = np.empty((0, 2), dtype=np.long).transpose() return x, y, e, eb new_res = [] n_x, n_y, n_e, n_eb = empty() for x, y, e, eb in datas: if len(n_x) + len(x) > max_node_num: new_res.append((n_x, n_y, n_e, n_eb)) n_x, n_y, n_e, n_eb = empty() if len(e) > 0: e = e + len(n_x) eb = eb + len(n_x) n_e = np.concatenate((n_e, e), axis=1) n_eb = np.concatenate((n_eb, eb), axis=1) n_x = np.concatenate((n_x, x), axis=0) n_y = np.concatenate((n_y, y), axis=0) if len(n_x) > 0: new_res.append((n_x, n_y, n_e, n_eb)) # print(new_res) xx = [] yy = [] ee = [] eebb = [] for x, y, e, eb in new_res: xx.append(x) yy.append(y) ee.append(e.transpose()) eebb.append(eb.transpose()) np.save(os.path.join(filepath, "split_2k_bert_large_encode_res.npy"), xx) np.save(os.path.join(filepath, "split_2k_edge.npy"), ee) np.save(os.path.join(filepath, "split_2k_bug_edge.npy"), eebb) np.save(os.path.join(filepath, "split_2k_y.npy"), yy) imdb_path = "/mnt/nas1/NLP/public_dataset/TC/imdb/aclImdb" build_imdb_npy(imdb_path) load_data(os.path.join(imdb_path,"train")) load_data(os.path.join(imdb_path,"test"))
hpccm/building_blocks/kokkos.py
robertmaynard/hpc-container-maker
340
11185228
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=invalid-name, too-few-public-methods # pylint: disable=too-many-instance-attributes """Kokkos building block""" from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from distutils.version import StrictVersion import hpccm.config import hpccm.templates.downloader import hpccm.templates.envvars from hpccm.building_blocks.base import bb_base from hpccm.building_blocks.generic_cmake import generic_cmake from hpccm.building_blocks.packages import packages from hpccm.common import linux_distro from hpccm.primitives.comment import comment class kokkos(bb_base, hpccm.templates.downloader, hpccm.templates.envvars): """The `kokkos` building block downloads and installs the [Kokkos](https://github.com/kokkos/kokkos) component. The [CMake](#cmake) building block should be installed prior to this building block. # Parameters annotate: Boolean flag to specify whether to include annotations (labels). The default is False. arch: List of target architectures to build. If set adds `-DKokkos_ARCH_<value>=ON` to the list of CMake options. The default value is `VOLTA70`, i.e., sm_70. If a CUDA aware build is not selected, then a non-default value should be used. branch: The git branch to clone. Only recognized if the `repository` parameter is specified. The default is empty, i.e., use the default branch for the repository. check: Boolean flag to specify whether the build should be checked. If True, adds `-DKokkos_ENABLE_TESTS=ON` to the list of CMake options. The default is False. cmake_opts: List of options to pass to `cmake`. The default is `-DCMAKE_BUILD_TYPE=RELEASE`. commit: The git commit to clone. Only recognized if the `repository` parameter is specified. The default is empty, i.e., use the latest commit on the default branch for the repository. cuda: Flag to control whether a CUDA aware build is performed. If True, adds `-DKokkos_ENABLE_CUDA=ON` and `-DCMAKE_CXX_COMPILER=$(pwd)/../bin/nvcc_wrapper` to the list of CMake options. The default value is True. environment: Boolean flag to specify whether the environment (`LD_LIBRARY_PATH` and `PATH`) should be modified to include Kokkos. The default is True. hwloc: Flag to control whether a hwloc aware build is performed. If True, adds `-DKokkos_ENABLE_HWLOC=ON` to the list of CMake options. The default value is True. ospackages: List of OS packages to install prior to building. For Ubuntu, the default values are `gzip`, `libhwloc-dev`, `make`, `tar`, and `wget`. For RHEL-based Linux distributions the default values are `gzip`, `hwloc-devel`, `make`, `tar`, and `wget`. prefix: The top level installation location. The default value is `/usr/local/kokkos`. repository: The location of the git repository that should be used to build OpenMPI. If True, then use the default `https://github.com/kokkos/kokkos.git` repository. The default is empty, i.e., use the release package specified by `version`. url: The location of the tarball that should be used to build Kokkos. The default is empty, i.e., use the release package specified by `version`. version: The version of Kokkos source to download. The default value is `3.2.00`. # Examples ```python kokkos(prefix='/opt/kokkos/3.1.01', version='3.1.01') ``` """ def __init__(self, **kwargs): """Initialize building block""" super(kokkos, self).__init__(**kwargs) self.__arch = kwargs.pop('arch', ['VOLTA70']) self.__baseurl = kwargs.pop('baseurl', 'https://github.com/kokkos/kokkos/archive') self.__check = kwargs.pop('check', False) self.__cmake_opts = kwargs.pop('cmake_opts', ['-DCMAKE_BUILD_TYPE=RELEASE']) self.__cuda = kwargs.pop('cuda', True) self.__default_repository = 'https://github.com/kokkos/kokkos.git' self.__hwloc = kwargs.pop('hwloc', True) self.__ospackages = kwargs.pop('ospackages', []) self.__powertools = False # enable the CentOS PowerTools repo self.__prefix = kwargs.pop('prefix', '/usr/local/kokkos') self.__version = kwargs.pop('version', '3.2.00') if self.repository: self.__directory = '' else: self.__directory = kwargs.pop('directory', 'kokkos-{}'.format(self.__version)) # Set the CMake options self.__cmake() # Set the Linux distribution specific parameters self.__distro() # Set the download specific parameters self.__download() kwargs['repository'] = self.repository kwargs['url'] = self.url # Setup the environment variables self.environment_variables['PATH'] = '{}/bin:$PATH'.format( self.__prefix) # Setup build configuration self.__bb = generic_cmake( annotations={'version': self.__version}, base_annotation=self.__class__.__name__, cmake_opts=self.__cmake_opts, comment=False, devel_environment=self.environment_variables, directory=self.__directory, prefix=self.__prefix, runtime_environment=self.environment_variables, **kwargs) # Container instructions self += comment('Kokkos version {}'.format(self.__version)) self += packages(ospackages=self.__ospackages, powertools=self.__powertools) self += self.__bb def __cmake(self): """Set CMake options based on user input""" # Set options if self.__arch: for arch in self.__arch: self.__cmake_opts.append('-DKokkos_ARCH_{}=ON'.format( arch.upper())) if self.__check: self.__cmake_opts.append('-DKokkos_ENABLE_TESTS=ON') if self.__cuda: self.__cmake_opts.append('-DKokkos_ENABLE_CUDA=ON') self.__cmake_opts.append( '-DCMAKE_CXX_COMPILER=$(pwd)/../bin/nvcc_wrapper') if self.__hwloc: self.__cmake_opts.append('-DKokkos_ENABLE_HWLOC=ON') def __distro(self): """Based on the Linux distribution, set values accordingly. A user specified value overrides any defaults.""" if hpccm.config.g_linux_distro == linux_distro.UBUNTU: if not self.__ospackages: self.__ospackages = ['libhwloc-dev', 'make'] elif hpccm.config.g_linux_distro == linux_distro.CENTOS: if not self.__ospackages: self.__ospackages = ['hwloc-devel', 'make'] if hpccm.config.g_linux_version >= StrictVersion('8.0'): # hwloc-devel is in the CentOS powertools repository self.__powertools = True else: # pragma: no cover raise RuntimeError('Unknown Linux distribution') if self.repository: self.__ospackages.extend(['ca-certificates', 'git']) else: self.__ospackages.extend(['gzip', 'tar', 'wget']) def __download(self): """Set download source based on user parameters""" # Use the default repository if set to True if self.repository is True: self.repository = self.__default_repository if not self.repository and not self.url: self.url='{0}/{1}.tar.gz'.format(self.__baseurl, self.__version) def runtime(self, _from='0'): """Generate the set of instructions to install the runtime specific components from a build in a previous stage. # Examples ```python k = kokkos(...) Stage0 += k Stage1 += k.runtime() ``` """ self.rt += comment('Kokkos') self.rt += self.__bb.runtime(_from=_from) return str(self.rt)
python/fetch.py
npmmirror/notes
1,384
11185237
#!/usr/bin/env python # encoding: utf-8 import os from contextlib import closing from urllib.parse import urlparse import requests # 转自https://www.zhihu.com/question/41132103/answer/93438156 def wget(url, file_name): with closing(requests.get(url, stream=True)) as response: chunk_size = 1024 # 单次请求最大值 content_size = int(response.headers['content-length']) # 内容体总大小 progress = ProgressBar(file_name, total=content_size, unit="KB", chunk_size=chunk_size, run_status="正在下载", fin_status="下载完成") with open(file_name, "wb") as file: for data in response.iter_content(chunk_size=chunk_size): file.write(data) progress.refresh(count=len(data)) class ProgressBar(object): def __init__(self, title, count=0.0, run_status=None, fin_status=None, total=100.0, unit='', sep='/', chunk_size=1.0): super(ProgressBar, self).__init__() self.info = "【%s】%s %.2f %s %s %.2f %s" self.title = title self.total = total self.count = count self.chunk_size = chunk_size self.status = run_status or "" self.fin_status = fin_status or " " * len(self.status) self.unit = unit self.seq = sep def __get_info(self): # 【名称】状态 进度 单位 分割线 总数 单位 _info = self.info % (self.title, self.status, self.count / self.chunk_size, self.unit, self.seq, self.total / self.chunk_size, self.unit) return _info def refresh(self, count=1, status=None): self.count += count # if status is not None: self.status = status or self.status end_str = "\r" if self.count >= self.total: end_str = '\n' self.status = status or self.fin_status print(self.__get_info(), end=end_str) if __name__ == "__main__": print("请输入要下载文件的 url: ") url = input() print("请输入要保存的文件名: ") f = input() wget(url,f)
benchmark/scripts/benchmark_resnet.py
kalyc/keras-apache-mxnet
300
11185250
<filename>benchmark/scripts/benchmark_resnet.py '''Trains a ResNet on the ImageNet/CIFAR10 dataset. Credit: Script modified from examples/cifar10_resnet.py Reference: ResNet v1 [a] Deep Residual Learning for Image Recognition https://arxiv.org/pdf/1512.03385.pdf ResNet v2 [b] Identity Mappings in Deep Residual Networks https://arxiv.org/pdf/1603.05027.pdf ''' from __future__ import print_function import argparse import logging import math import os import random import time import numpy as np from logging_metrics import LoggingMetrics from models.resnet import get_resnet_model from models.timehistory import TimeHistory import keras from keras import backend as K from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau from keras.datasets import cifar10 from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img from keras.utils import multi_gpu_model parser = argparse.ArgumentParser() parser.add_argument('--dataset', help='Dataset for training: cifar10 or imagenet') parser.add_argument('--version', help='Provide resnet version: 1 or 2') parser.add_argument('--layers', help='Provide number of layers: 20, 56 or 110') parser.add_argument('--gpus', help='Number of GPUs to use') parser.add_argument('--train_mode', help='Required for imagenet: train_on_batch or fit_generator') parser.add_argument('--data_path', help='Required for imagenet: path_to_imagenet_data') parser.add_argument('--epoch', default=200, type=int, help='Number of epoch') args = parser.parse_args() # Check args if args.dataset not in ['cifar10', 'imagenet']: raise ValueError('Only support cifar10 or imagenet data set') if args.version not in ['1', '2']: raise ValueError('Provide resnet version: 1 or 2') if args.layers not in ['20', '56', '110']: raise ValueError('Provide number of layers: 20, 56 or 110') if args.dataset == 'imagenet': if not args.train_mode or not args.data_path: raise ValueError('Need to provide training mode(train_on_batch or fit_generator) ' 'and data path to imagenet dataset') if args.train_mode not in ['train_on_batch', 'fit_generator']: raise ValueError('Only support train_on_batch or fit_generator training mode') if args.gpus is None or args.gpus < 1: num_gpus = 0 else: num_gpus = int(args.gpus) # Training parameters batch_size = 32 * num_gpus if num_gpus > 0 else 32 epochs = int(args.epoch) num_classes = 1000 if args.dataset == 'imagenet' else 10 data_format = K._image_data_format # Subtracting pixel mean improves accuracy subtract_pixel_mean = True # prepare logging # file name: backend_data_format_dataset_model_batch_size_gpus.log log_file = K.backend() + '_' + K.image_data_format() + '_' + args.dataset + '_resnet_v' + args.version + '_' + args.layers + '_batch_size' + str(batch_size) + '_' + str(num_gpus) + 'gpus' # nopep8 logFormatter = logging.Formatter('%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s') rootLogger = logging.getLogger() fileHandler = logging.FileHandler('{0}/{1}.log'.format('./', log_file)) fileHandler.setFormatter(logFormatter) rootLogger.addHandler(fileHandler) consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(logFormatter) rootLogger.addHandler(consoleHandler) rootLogger.setLevel(logging.INFO) rootLogger.info('saving log file to {0}/{1}.log'.format('./', log_file)) rootLogger.info('using image format: %s' % data_format) # Prepare Training Data # CIFAR10 data set if args.dataset == 'cifar10': # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Input image dimensions. input_shape = x_train.shape[1:] # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean rootLogger.info('x_train shape: %s' % str(x_train.shape)) rootLogger.info('%d train_samples' % x_train.shape[0]) rootLogger.info('%d test samples' % x_test.shape[0]) rootLogger.info('y_train shape: %s' % str(y_train.shape)) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) # ImageNet Dataset if args.dataset == 'imagenet': input_shape = (256, 256, 3) if data_format == 'channels_last' else (3, 256, 256) if args.train_mode == 'fit_generator': train_datagen = ImageDataGenerator( rescale=1. / 255) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( args.data_path, target_size=(256, 256), batch_size=batch_size) else: # Load the imagenet data. train_images = [] train_labels = [] label_counter = 0 for subdir, dirs, files in os.walk(args.data_path): for folder in dirs: for folder_subdir, folder_dirs, folder_files in \ os.walk(os.path.join(subdir, folder)): for file in folder_files: train_images.append(os.path.join(folder_subdir, file)) train_labels.append(label_counter) label_counter = label_counter + 1 # shuffle data perm = list(range(len(train_images))) random.shuffle(perm) train_images = [train_images[index] for index in perm] train_labels = [train_labels[index] for index in perm] nice_n = math.floor(len(train_images) / batch_size) * batch_size # process batch data for imagenet def get_batch(): index = 1 global current_index B = np.zeros(shape=(batch_size, input_shape[0], input_shape[1], input_shape[2])) L = np.zeros(shape=(batch_size)) while index < batch_size: try: img = load_img(train_images[current_index].rstrip(), target_size=(256, 256, 3)) B[index] = img_to_array(img) B[index] /= 255 L[index] = train_labels[current_index] index = index + 1 current_index = current_index + 1 except: rootLogger.info('Ignore image {}'.format(train_images[current_index])) current_index = current_index + 1 return B, keras.utils.to_categorical(L, num_classes) # Prepare Model # Model parameter # ---------------------------------------------------------------------------- # | | 200-epoch | Orig Paper| 200-epoch | Orig Paper| sec/epoch # Model | n | ResNet v1 | ResNet v1 | ResNet v2 | ResNet v2 | GTX1080Ti # |v1(v2)| %Accuracy | %Accuracy | %Accuracy | %Accuracy | v1 (v2) # ---------------------------------------------------------------------------- # ResNet20 | 3 (2)| 92.16 | 91.25 | ----- | ----- | 35 (---) # ResNet32 | 5(NA)| 92.46 | 92.49 | NA | NA | 50 ( NA) # ResNet44 | 7(NA)| 92.50 | 92.83 | NA | NA | 70 ( NA) # ResNet56 | 9 (6)| 92.71 | 93.03 | 93.01 | NA | 90 (100) # ResNet110 |18(12)| 92.65 | 93.39+-.16| 93.15 | 93.63 | 165(180) # ResNet164 |27(18)| ----- | 94.07 | ----- | 94.54 | ---(---) # ResNet1001| (111)| ----- | 92.39 | ----- | 95.08+-.14| ---(---) # --------------------------------------------------------------------------- # Model version # Orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2 (ResNet v2) version = int(args.version) # Computed depth from supplied model parameter n depth = int(args.layers) # Model name, depth and version model_type = 'ResNet%dv%d' % (depth, version) def lr_schedule(epoch): '''Learning Rate Schedule Learning rate is scheduled to be reduced after 80, 120, 160, 180 epochs. Called automatically every epoch as part of callbacks during training. # Arguments epoch (int): The number of epochs # Returns lr (float32): learning rate ''' lr = 1e-3 if epoch > 180: lr *= 0.5e-3 elif epoch > 160: lr *= 1e-3 elif epoch > 120: lr *= 1e-2 elif epoch > 80: lr *= 1e-1 return lr # get the model base on configs model = get_resnet_model(version=version, input_shape=input_shape, depth=depth, num_classes=num_classes) # use multi gpu model for multi gpus if num_gpus > 1: if K.backend() == 'mxnet': # MXNet merge weights on GPU by default model = multi_gpu_model(model, gpus=num_gpus) else: # merge weights on GPU model = multi_gpu_model(model, gpus=num_gpus, cpu_merge=False) # compile the model model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=lr_schedule(0)), metrics=['accuracy']) model.summary() rootLogger.info('Training using: ' + model_type) # Prepare model saving directory. save_dir = os.path.join(os.getcwd(), 'saved_models') model_name = 'imagenet_%s_model.{epoch:03d}.h5' % model_type if not os.path.isdir(save_dir): os.makedirs(save_dir) filepath = os.path.join(save_dir, model_name) # Prepare callbacks for model saving and for learning rate adjustment. checkpoint = ModelCheckpoint(filepath=filepath, monitor='val_acc', verbose=1, save_best_only=True) lr_scheduler = LearningRateScheduler(lr_schedule) lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6) time_callback = TimeHistory() callbacks = [checkpoint, lr_reducer, lr_scheduler, time_callback] # Run training, without data augmentation. if args.dataset == 'imagenet': rootLogger.info('Not using data augmentation.') if args.train_mode == 'train_on_batch': for i in range(0, epochs): current_index = 0 total_time = 0 rootLogger.info('starting epoch {}/{}'.format(i, epochs)) while current_index + batch_size < len(train_images): b, l = get_batch() # only record training time start_time = time.time() loss, accuracy = model.train_on_batch(b, l) end_time = time.time() total_time += 1000 * (end_time - start_time) batch_time = 1000 * (end_time - start_time) speed = batch_size * 1000.0 / batch_time if batch_time != 0 else 0 rootLogger.info('batch {}/{} loss: {} accuracy: {} ' 'time: {}ms speed: {}'.format(int(current_index / batch_size), int(nice_n / batch_size), loss, accuracy, batch_time, speed)) rootLogger.info('finish epoch {}/{} total epoch time: {}ms'.format(i, epochs, total_time)) else: model.fit_generator(train_generator, epochs=epochs) else: history_callback = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True, verbose=0, callbacks=[lr_reducer, lr_scheduler, time_callback]) logg = LoggingMetrics(history_callback, time_callback) logg.save_metrics_to_log(rootLogger) # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) rootLogger.info('Test loss: %.4f' % scores[0]) rootLogger.info('Test accuracy: %.4f' % scores[1])
okta/models/log_security_context.py
corylevine/okta-sdk-python
145
11185261
# flake8: noqa """ Copyright 2020 - Present Okta, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # AUTO-GENERATED! DO NOT EDIT FILE DIRECTLY # SEE CONTRIBUTOR DOCUMENTATION from okta.okta_object import OktaObject class LogSecurityContext( OktaObject ): """ A class for LogSecurityContext objects. """ def __init__(self, config=None): super().__init__(config) if config: self.as_number = config["asNumber"]\ if "asNumber" in config else None self.as_org = config["asOrg"]\ if "asOrg" in config else None self.domain = config["domain"]\ if "domain" in config else None self.is_proxy = config["isProxy"]\ if "isProxy" in config else None self.isp = config["isp"]\ if "isp" in config else None else: self.as_number = None self.as_org = None self.domain = None self.is_proxy = None self.isp = None def request_format(self): parent_req_format = super().request_format() current_obj_format = { "asNumber": self.as_number, "asOrg": self.as_org, "domain": self.domain, "isProxy": self.is_proxy, "isp": self.isp } parent_req_format.update(current_obj_format) return parent_req_format
ebcli/controllers/setenv.py
senstb/aws-elastic-beanstalk-cli
110
11185270
<gh_stars>100-1000 # Copyright 2014 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from ebcli.core.abstractcontroller import AbstractBaseController from ebcli.resources.strings import strings, flag_text from ebcli.core import fileoperations, io from ebcli.lib import elasticbeanstalk from ebcli.operations import envvarops class SetEnvController(AbstractBaseController): class Meta: label = 'setenv' description = strings['setenv.info'] usage = 'eb setenv [VAR_NAME=KEY ...] [-e environment] [options ...]' arguments = [ ( ['varKey'], dict( action='store', nargs='+', default=[], help=flag_text['setenv.vars'] ) ), ( ['-e', '--environment'], dict( dest='environment_name', help=flag_text['setenv.env'] ) ), ( ['--timeout'], dict( type=int, help=flag_text['general.timeout'] ) ), ] epilog = strings['setenv.epilog'] def do_command(self): app_name = self.get_app_name() env_name = self.get_env_name() var_list = self.app.pargs.varKey timeout = self.app.pargs.timeout envvarops.setenv(app_name, env_name, var_list, timeout)
sdk/python/tests/compiler/testdata/many_results_with_warnings.py
shrivs3/kfp-tekton
102
11185276
<reponame>shrivs3/kfp-tekton<gh_stars>100-1000 # Copyright 2021 kubeflow.org # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import kfp.dsl as dsl import kfp.components as comp from typing import NamedTuple import json def print4results() -> NamedTuple('taskOutput', [('param1', str), ('param2', str), ('param3', str), ('superlongnamesuperlongnamesuperlongnamesuperlongnamesuperlongnamesuperlongnamesuperlongname', str)]): """Print 4 long results""" a = 'a' * 2500 b = 'b' * 700 c = 'c' * 500 d = 'd' * 900 from collections import namedtuple task_output = namedtuple('taskOutput', ['param1', 'param2', 'param3', 'superlongnamesuperlongnamesuperlongnamesuperlongnamesuperlongnamesuperlongnamesuperlongname']) return task_output(a, b, c, d) print_op = comp.func_to_container_op(print4results) @dsl.pipeline( name='many-results-pipeline', description='A pipeline that produce many results.' ) def many_results_pipeline( ): output_estimation_json = {'param1': 2500, 'param23': 700, 'param3': 500, 'superlongnamesuperlongnamesuperlongnamesuperlongnamesuperlongnamesuperlongnamesuperlongname': 900} print_task = print_op().add_pod_annotation('tekton-result-sizes', json.dumps(output_estimation_json)) if __name__ == '__main__': from kfp_tekton.compiler import TektonCompiler TektonCompiler().compile(many_results_pipeline, __file__.replace('.py', '.yaml'))
Python/QuantLib/__init__.py
yrtf/QuantLib-SWIG
231
11185291
# -*- coding: iso-8859-1 -*- """ Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl This file is part of QuantLib, a free-software/open-source library for financial quantitative analysts and developers - http://quantlib.org/ QuantLib is free software: you can redistribute it and/or modify it under the terms of the QuantLib license. You should have received a copy of the license along with this program; if not, please email <<EMAIL>>. The license is also available online at <http://quantlib.org/license.shtml>. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the license for more details. """ import sys if sys.version_info.major >= 3: from .QuantLib import * from .QuantLib import _QuantLib else: from QuantLib import * from QuantLib import _QuantLib del sys __author__ = 'The QuantLib Group' __email__ = '<EMAIL>' if hasattr(_QuantLib,'__version__'): __version__ = _QuantLib.__version__ elif hasattr(_QuantLib.cvar,'__version__'): __version__ = _QuantLib.cvar.__version__ else: print('Could not find __version__ attribute') if hasattr(_QuantLib,'__hexversion__'): __hexversion__ = _QuantLib.__hexversion__ elif hasattr(_QuantLib.cvar,'__hexversion__'): __hexversion__ = _QuantLib.cvar.__hexversion__ else: print('Could not find __hexversion__ attribute')
deep_qa/layers/__init__.py
richarajpal/deep_qa
459
11185310
<reponame>richarajpal/deep_qa<gh_stars>100-1000 # Individual layers. from .additive import Additive from .bigru_index_selector import BiGRUIndexSelector from .complex_concat import ComplexConcat from .highway import Highway from .l1_normalize import L1Normalize from .masked_layer import MaskedLayer from .noisy_or import BetweenZeroAndOne, NoisyOr from .option_attention_sum import OptionAttentionSum from .overlap import Overlap from .vector_matrix_merge import VectorMatrixMerge from .vector_matrix_split import VectorMatrixSplit
tests/test_utils.py
MZehren/msaf
372
11185321
# Run me as follows: # cd tests/ # nosetests -v -s test_utils.py import copy import librosa import numpy as np import os # Msaf imports import msaf # Global vars audio_file = os.path.join("fixtures", "chirp.mp3") sr = msaf.config.sample_rate audio, fs = librosa.load(audio_file, sr=sr) y_harmonic, y_percussive = librosa.effects.hpss(audio) def test_synchronize_labels(): old_bound_idxs = [0, 82, 150, 268, 342, 353, 463, 535, 616, 771, 833, 920, 979, 1005] new_bound_idxs = [0, 229, 337, 854, 929, 994, 1004] labels = [4, 6, 2, 0, 0, 2, 5, 3, 0, 5, 1, 5, 1] N = 1005 new_labels = msaf.utils.synchronize_labels(new_bound_idxs, old_bound_idxs, labels, N) assert len(new_labels) == len(new_bound_idxs) - 1 def test_get_num_frames(): dur = 320.2 anal = {"sample_rate": 22050, "hop_size": 512} n_frames = msaf.utils.get_num_frames(dur, anal) assert n_frames == int(dur * anal["sample_rate"] / anal["hop_size"]) def test_get_time_frames(): dur = 1 anal = {"sample_rate": 22050, "hop_size": 512} n_frames = msaf.utils.get_time_frames(dur, anal) assert n_frames.shape[0] == 43 assert n_frames[0] == 0.0 assert n_frames[-1] == 1.0 def test_align_end_hierarchies(): def _test_equal_hier(hier_orig, hier_new): for layer_orig, layer_new in zip(hier_orig, hier_new): assert layer_orig == layer_new hier1 = [[0, 10, 20, 30], [0, 30]] hier2 = [[0, 5, 40, 50], [0, 50]] hier1_orig = copy.deepcopy(hier1) hier2_orig = copy.deepcopy(hier2) msaf.utils.align_end_hierarchies(hier1, hier2) yield (_test_equal_hier, hier1_orig, hier1) yield (_test_equal_hier, hier2_orig, hier2) def test_lognormalize(): # Just check that we're not overwriting data X = np.random.random((300, 10)) Y = msaf.utils.lognormalize(X) assert not np.array_equal(X, Y) def test_min_max_normalize(): # Just check that we're not overwriting data X = np.random.random((300, 10)) Y = msaf.utils.min_max_normalize(X) assert not np.array_equal(X, Y)
Dynamic Programming/877. Stone Game.py
beckswu/Leetcode
138
11185333
<gh_stars>100-1000 class Solution: def stoneGame(self, piles: List[int]) -> bool: n = len(piles) dp = [[0] * n for i in range(n)] for i in range(n): dp[i][i] = piles[i] for d in range(1, n): for i in range(n - d): dp[i][i + d] = max(piles[i] - dp[i + 1][i + d], piles[i + d] - dp[i][i + d - 1]) return dp[0][-1] > 0 # O(n) space class Solution: def stoneGame(self, piles: List[int]) -> bool: n = len(piles) dp = piles[:] for d in range(1, n): for i in range(n - d): dp[i] = max(piles[i] - dp[i + 1], piles[i + d] - dp[i]) return dp[0] > 0 class Solution: def stoneGame(self, piles: List[int]) -> bool: cache = {} piles = tuple(piles) def firstscore(i,j): if i>=j: return 0 if j==i+1 and j < len(piles): return piles[i] if (i,j) in cache: return cache[i,j] res = max(piles[i]+min(firstscore(i+2,j), firstscore(i+1,j-1)) , piles[j-1] + min(firstscore(i+1,j-1), firstscore(i,j-2))) cache[i,j] = res return res Alex = firstscore(0,len(piles)) Lee = sum(piles) - Alex return Alex > Lee
packages/pyright-internal/src/tests/samples/assert1.py
sasano8/pyright
4,391
11185366
# This sample tests the ability to detect errant assert calls # that are always true - the "reportAssertAlwaysTrue" option. from typing import Any, Tuple # This should generate a warning. assert (1 != 2, "Error message") def foo(a: Tuple[int, ...]): assert a b = () assert b c = (2, 3) # This should generate a warning. assert c
idaes/tests/test_docs.py
eslickj/idaes-pse
112
11185387
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# """ Test doc build. This does *not* try to build the docs. Instead it looks for the log of the build and looks for errors in it. """ # stdlib import logging import os from subprocess import Popen # third-party import pytest _log = logging.getLogger(__name__) @pytest.fixture def docs_path(): """Find the docs. We have to assume that the docs are somewhere relative to either this file or the user's current working directory. Start with the working directory. Returns: str: Doc path or None if not found. """ cwd = os.path.realpath(os.getcwd()) # look for "./docs" path = os.path.join(cwd, "docs") if os.path.exists(path): return path # look for (last) "docs/" in full current working dir cwd_comp = cwd.split(os.path.sep) comp_cnt = len(cwd_comp) try: idx = list(reversed(cwd_comp)).index("docs") return os.path.sep.join(cwd_comp[: comp_cnt - idx]) except ValueError: pass # look for docs relative to this file try: path = os.path.join(os.path.dirname(__file__), "..", "..", "docs") # look for {this file}/../../docs if os.path.exists(path): return path # look for "docs/" in file's full path file_comp = path.split(os.path.sep) comp_cnt = len(file_comp) try: idx = list(reversed(file_comp)).index("docs") return os.path.sep.join(file_comp[: comp_cnt - idx]) except ValueError: pass except NameError: pass # __file__ not defined(?) ERRLOG = "sphinx-errors.txt" @pytest.mark.unit def test_sphinx_build_log(docs_path): """ Check the sphinx log for errors or warnings. """ _log.info('docs path = "{}"'.format(docs_path)) if docs_path is None: _log.warning('Could not find "docs" directory') return log_path = os.path.join(docs_path, ERRLOG) if not os.path.exists(log_path): _log.warning( 'Could not find "{}" in docs directory: {}'.format(ERRLOG, log_path) ) return if os.stat(log_path).st_size == 0: # file is empty - good return # Dump contents to stdout err_count = 0 with open(log_path) as log: for line in log: err_count += 1 print(line, end='') assert False, f"{err_count} Errors and/or Warnings found in {log_path}" def _have_sphinx(): """Test if a working 'sphinx-build' command exists. """ have_sphinx = True try: Popen(["sphinx-build", "--version"]).wait() except: have_sphinx = False return have_sphinx @pytest.mark.component def test_doctests(docs_path): if _have_sphinx(): build_path = os.path.join(docs_path, "build") command = ["sphinx-build", "-M", "doctest", docs_path, build_path] proc = Popen(command) proc.wait(600) assert proc.returncode == 0
Day2/Python/String_and_pallindrome.py
Grace0Hud/dailycodebase
249
11185389
""" * @author Shashank * @date 21/12/2018 """ a=input("Enter the input string:") d=a.replace(" ","") c=list(d) c.reverse() e="".join(c) if d==e: print("String is pallindrome") else: print("Not a pallindrome")
tests/columns/test_choices.py
0scarB/piccolo
750
11185492
from tests.base import DBTestCase from tests.example_apps.music.tables import Shirt class TestChoices(DBTestCase): def _insert_shirts(self): Shirt.insert( Shirt(size=Shirt.Size.small), Shirt(size=Shirt.Size.medium), Shirt(size=Shirt.Size.large), ).run_sync() def test_save(self): """ Make sure saving works, when setting a value as an Enum. """ shirt = Shirt(size=Shirt.Size.large) shirt.save().run_sync() def test_default(self): """ Make sure the default works correctly, when the default is an Enum. """ Shirt().save().run_sync() shirt = Shirt.objects().first().run_sync() self.assertEqual(shirt.size, "l") def test_update(self): """ Make sure rows can be updated using Enums. """ self._insert_shirts() Shirt.update({Shirt.size: Shirt.Size.large}).where( Shirt.size == Shirt.Size.small ).run_sync() shirts = ( Shirt.select(Shirt.size) .output(as_list=True) .order_by(Shirt._meta.primary_key) .run_sync() ) self.assertEqual(shirts, ["l", "m", "l"]) def test_select_where(self): """ Make sure Enums can be used in the where clause of select queries. """ self._insert_shirts() shirts = ( Shirt.select(Shirt.size) .where(Shirt.size == Shirt.Size.small) .run_sync() ) self.assertEqual(shirts, [{"size": "s"}]) def test_objects_where(self): """ Make sure Enums can be used in the where clause of objects queries. """ self._insert_shirts() shirts = ( Shirt.objects().where(Shirt.size == Shirt.Size.small).run_sync() ) self.assertEqual(len(shirts), 1) self.assertEqual(shirts[0].size, "s")
mobility_scraper/__init__.py
ActiveConclusion/COVID19_mobility
239
11185495
<gh_stars>100-1000 from .paths_and_URLs import * from .download_files import * from .utils import * from .mobility_processing import ( google_mobility, apple_mobility, waze_mobility, tomtom_mobility, merge_reports, )
tensorflow_model_analysis/evaluators/analysis_table_evaluator.py
jaymessina3/model-analysis
1,118
11185499
# Lint as: python3 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Public API for creating analysis table.""" from __future__ import absolute_import from __future__ import division # Standard __future__ imports from __future__ import print_function from typing import Any, Dict, Iterable, Optional, Text, Union import apache_beam as beam from tensorflow_model_analysis import constants from tensorflow_model_analysis import types from tensorflow_model_analysis.evaluators import evaluator from tensorflow_model_analysis.extractors import extractor def AnalysisTableEvaluator( # pylint: disable=invalid-name key: Text = constants.ANALYSIS_KEY, run_after: Text = extractor.LAST_EXTRACTOR_STAGE_NAME, include: Optional[Union[Iterable[Text], Dict[Text, Any]]] = None, exclude: Optional[Union[Iterable[Text], Dict[Text, Any]]] = None) -> evaluator.Evaluator: """Creates an Evaluator for returning Extracts data for analysis. If both include and exclude are None then tfma.INPUT_KEY extracts will be excluded by default. Args: key: Name to use for key in Evaluation output. run_after: Extractor to run after (None means before any extractors). include: List or map of keys to include in output. Keys starting with '_' are automatically filtered out at write time. If a map of keys is passed then the keys and sub-keys that exist in the map will be included in the output. An empty dict behaves as a wildcard matching all keys or the value itself. Since matching on feature values is not currently supported, an empty dict must be used to represent the leaf nodes. For example: {'key1': {'key1-subkey': {}}, 'key2': {}}. exclude: List or map of keys to exclude from output. If a map of keys is passed then the keys and sub-keys that exist in the map will be excluded from the output. An empty dict behaves as a wildcard matching all keys or the value itself. Since matching on feature values is not currently supported, an empty dict must be used to represent the leaf nodes. For example: {'key1': {'key1-subkey': {}}, 'key2': {}}. Returns: Evaluator for collecting analysis data. The output is stored under the key 'analysis'. Raises: ValueError: If both include and exclude are used. """ # pylint: disable=no-value-for-parameter return evaluator.Evaluator( stage_name='EvaluateExtracts', run_after=run_after, ptransform=EvaluateExtracts(key=key, include=include, exclude=exclude)) # pylint: enable=no-value-for-parameter @beam.ptransform_fn @beam.typehints.with_input_types(types.Extracts) @beam.typehints.with_output_types(Any) def EvaluateExtracts( # pylint: disable=invalid-name extracts: beam.pvalue.PCollection, key: Text = constants.ANALYSIS_KEY, include: Optional[Union[Iterable[Text], Dict[Text, Any]]] = None, exclude: Optional[Union[Iterable[Text], Dict[Text, Any]]] = None) -> evaluator.Evaluation: """Creates Evaluation output for extracts. If both include and exclude are None then tfma.INPUT_KEY extracts will be excluded by default. Args: extracts: PCollection of Extracts. key: Name to use for key in Evaluation output. include: List or map of keys to include in output. Keys starting with '_' are automatically filtered out at write time. If a map of keys is passed then the keys and sub-keys that exist in the map will be included in the output. An empty dict behaves as a wildcard matching all keys or the value itself. Since matching on feature values is not currently supported, an empty dict must be used to represent the leaf nodes. For example: {'key1': {'key1-subkey': {}}, 'key2': {}}. exclude: List or map of keys to exclude from output. If a map of keys is passed then the keys and sub-keys that exist in the map will be excluded from the output. An empty dict behaves as a wildcard matching all keys or the value itself. Since matching on feature values is not currently supported, an empty dict must be used to represent the leaf nodes. For example: {'key1': {'key1-subkey': {}}, 'key2': {}}. Returns: Evaluation containing PCollection of Extracts. """ if include is None and exclude is None: exclude = [constants.INPUT_KEY] filtered = extracts if include or exclude: filtered = extracts | extractor.Filter(include=include, exclude=exclude) return {key: filtered}
scripts/python/qliblabels.py
JosephSilvermanArt/qLib
572
11185500
<filename>scripts/python/qliblabels.py """ @file qliblabels.py @author xy @since 2014-08-09 @brief qLib, node tagging/labeling functions (semantics). """ import hou import re import traceback import datetime import sys labels = { # a completed partial-result 'waypoint': { 'cats': ('sop', 'dop', ), 'color': (1.0, 0.6, 0.6), 'prefix': 'WP_', 'prefix.sop': 'GEO_', 'prefix.dop': 'DOP_', }, # fetch-like op (ObjectMerge, etc.) 'fetch': { 'cats': ('sop', ), 'color': (0.8, 1.0, 0.8), 'prefix': 'IN_', }, # export-like op (an output point for another fetch) 'export': { 'cats': ('sop', ), 'color': (0.0, 0.3, 0.0), 'prefix': 'OUT_', }, # RENDER op 'render': { 'cats': ('sop', ), 'color': (0.4, 0.2, 0.6), 'name': 'RENDER', }, # DISPLAY op 'display': { 'cats': ('sop', ), 'color': (0.0, 0.4, 1.0), 'name': 'DISPLAY', }, 'out': { 'cats': ('sop', ), 'color': (0.9, 0.9, 0.9), 'name': 'OUT', }, # ---- # default op settings (do not delete this) 'default': { 'color': (0.8, 0.8, 0.8), }, } def msg(m): msg = "[%s qliblabels.py] %s" % ( datetime.datetime.now().strftime("%y%m%d %H:%M.%S"), str(m), ) sys.stderr.write(msg+"\n") #print msg def warn(m): msg('WARNING: %s' % m) def err(m): msg('ERROR: %s' % m) def dbg(m): msg('[debug] %s' % m) dbg('LOADED') # module-wide constants # # name/label for tags parameter n_tags = '__tags' l_tags = 'tags (semantics)' # tag list separator tags_s = ' ' def has_tags_parm(node): '''.''' #assert type(node) is hou.Node r = node.parm(n_tags) is not None return r def add_tags_parm(node): '''.''' #assert type(node) is hou.Node if not has_tags_parm(node): pass # add tags parm #hou_parm_template_group = hou.ParmTemplateGroup() hou_parm_template_group = node.parmTemplateGroup() # Code for parameter template hou_parm_template = hou.StringParmTemplate(n_tags, l_tags, 1, default_value=([""]), naming_scheme=hou.parmNamingScheme.Base1, string_type=hou.stringParmType.Regular, menu_items=([]), menu_labels=([]), icon_names=([]), item_generator_script="", item_generator_script_language=hou.scriptLanguage.Python, menu_type=hou.menuType.Normal) hou_parm_template_group.append(hou_parm_template) node.setParmTemplateGroup(hou_parm_template_group) else: dbg('%s already has tags parm' % node.path()) return node.parm(n_tags) def rem_tags_parm(node): '''.''' # assert if has_tags_parm(node): g = node.parmTemplateGroup() t = g.find(n_tags) if t: g.remove(t) node.setParmTemplateGroup(g) else: dbg('%s -- no tags parm found' % node.path()) else: dbg('%s has no tags parm' % node.path()) def tags_parm(node): '''.''' return add_tags_parm(node) def get_tag_list(node): '''.''' r = [] if has_tags_parm(node): p = tags_parm(node) r = p.evalAsString().lower() # strip of spaces (in case separator is not a space) r = [n.strip() for n in r.split(tags_s)] return r def set_tag_list(node, taglist): '''.''' assert type(taglist) is list, 'expecting a list of strings' l = [n.strip() for n in taglist if n.strip() != ''] dbg(' -- tags: %s' % str(l)) l = tags_s.join(l) dbg(' -- writing tags: "%s"' % l) if len(l) > 0: p = tags_parm(node) p.set(l) else: dbg('(removing parm)') rem_tags_parm(node) def get_label_table(): '''.''' return labels def find_all_prefixes(labels): '''.''' r = set() for L in labels: E = labels[L] cats = E['cats'] if 'cats' in E else [] if 'prefix' in E: r.add(E['prefix']) for c in cats: p = 'prefix.%s' % c if p in E: r.add(E[p]) r = list(r) return r def get_label_data(label): L = get_label_table() r = L[label] if label in L else {} return r def apply_color(node): '''.''' pass # TODO: finish this def apply_naming(node): '''.''' """ TODO: make sure to - remove _all_ known prefixes as well, when necessary - rename to a default name if previous tagging had an explicit naming scheme """ pass c = node.type().category().name().lower() # 'sop', etc. def process_op(node, tags, tags_prev=[]): '''.''' # TODO: set color, prefix/name, etc. had_prev_tags = len(tags_prev) > 0 if len(tags): pass # TODO: apply new color, replace prefix, etc. else: pass # TODO: reset op to its defaults def uimsg(msg, sev=hou.severityType.Message): '''.''' hou.ui.setStatusMessage('[qLib | semantics] %s' % str(msg), severity=sev) def uiwarn(msg): uimsg(msg, sev=hou.severityType.Warning) def shelfToolClicked(kwargs): '''.''' dbg('shelfToolClicked(): %s' % str(kwargs)) assert type(kwargs) is dict, 'expecting a dict for kwargs' try: label = kwargs['toolname'].lower() label = re.search('[a-z]*$', label).group(0) nodes = hou.selectedNodes() add_mode = kwargs['shiftclick'] is True clear_mode = kwargs['altclick'] is True if label: uimsg("%s node(s) to '%s'" % ('added label to' if add_mode else 'labeled', label, )) for n in nodes: dbg(" -- %s" % n.path()) tags_prev = get_tag_list(n) tags = tags_prev if add_mode else [] if label not in tags: tags.append(label) if clear_mode: tags = [] set_tag_list(n, tags) process_op(n, tags, tags_prev) else: uiwarn("couldn't determine label from shelf tool '%s'" % kwargs['toolname']) except: err('shelfToolClicked() failed') traceback.print_exc() #dbg('%s' % str( traceback.format_exc() ) ) pass
env/Lib/site-packages/OpenGL/GLES1/EXT/discard_framebuffer.py
5gconnectedbike/Navio2
210
11185571
'''OpenGL extension EXT.discard_framebuffer This module customises the behaviour of the OpenGL.raw.GLES1.EXT.discard_framebuffer to provide a more Python-friendly API Overview (from the spec) This extension provides a new command, DiscardFramebufferEXT, which causes the contents of the named framebuffer attachable images to become undefined. The contents of the specified buffers are undefined until a subsequent operation modifies the content, and only the modified region is guaranteed to hold valid content. Effective usage of this command may provide an implementation with new optimization opportunities. Some OpenGL ES implementations cache framebuffer images in a small pool of fast memory. Before rendering, these implementations must load the existing contents of one or more of the logical buffers (color, depth, stencil, etc.) into this memory. After rendering, some or all of these buffers are likewise stored back to external memory so their contents can be used again in the future. In many applications, some or all of the logical buffers are cleared at the start of rendering. If so, the effort to load or store those buffers is wasted. Even without this extension, if a frame of rendering begins with a full- screen Clear, an OpenGL ES implementation may optimize away the loading of framebuffer contents prior to rendering the frame. With this extension, an application can use DiscardFramebufferEXT to signal that framebuffer contents will no longer be needed. In this case an OpenGL ES implementation may also optimize away the storing back of framebuffer contents after rendering the frame. The official definition of this extension is available here: http://www.opengl.org/registry/specs/EXT/discard_framebuffer.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.GLES1 import _types, _glgets from OpenGL.raw.GLES1.EXT.discard_framebuffer import * from OpenGL.raw.GLES1.EXT.discard_framebuffer import _EXTENSION_NAME def glInitDiscardFramebufferEXT(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) # INPUT glDiscardFramebufferEXT.attachments size not checked against numAttachments glDiscardFramebufferEXT=wrapper.wrapper(glDiscardFramebufferEXT).setInputArraySize( 'attachments', None ) ### END AUTOGENERATED SECTION
tests/monitor_temp_file.py
ebourg/isign
666
11185596
"""" isign creates big temporary files, using the standard tempfile library. If they are not cleaned up, they can fill up the disk. This has already happened in production. :( This library monkey-patches tempfile to use our own temporary directory, so it's easy to test that we aren't leaving any temp files behind. """ import os import shutil import tempfile class MonitorTempFile(object): TEMP_DIR = None @classmethod def mkdtemp(cls, *args, **kwargs): """ ensure temp directories are subdirs of TEMP_DIR """ kwargs['dir'] = MonitorTempFile.TEMP_DIR return tempfile._original_mkdtemp(*args, **kwargs) @classmethod def mkstemp(cls, *args, **kwargs): """ ensure temp files are within TEMP_DIR """ kwargs['dir'] = MonitorTempFile.TEMP_DIR return tempfile._original_mkstemp(*args, **kwargs) @classmethod def NamedTemporaryFile(cls, *args, **kwargs): """ ensure named temp files are within TEMP_DIR """ kwargs['dir'] = MonitorTempFile.TEMP_DIR return tempfile._original_NamedTemporaryFile(*args, **kwargs) @classmethod def start(cls): """ swap a few methods in tempfile with our versions that limit them to a particular directory """ if hasattr(tempfile, '_is_patched') and tempfile._is_patched: raise Exception("need tempfile to be in unpatched state!") cls.TEMP_DIR = tempfile.mkdtemp(prefix='isign-test-run-') tempfile._original_mkdtemp = tempfile.mkdtemp tempfile.mkdtemp = MonitorTempFile.mkdtemp tempfile._original_mkstemp = tempfile.mkstemp tempfile.mkstemp = MonitorTempFile.mkstemp tempfile._original_NamedTemporaryFile = tempfile.NamedTemporaryFile tempfile.NamedTemporaryFile = MonitorTempFile.NamedTemporaryFile tempfile._is_patched = True @classmethod def stop(cls): """ restore a few methods in tempfile. opposite of _tempfile_patch """ tempfile.mkdtemp = tempfile._original_mkdtemp tempfile.mkstemp = tempfile._original_mkstemp tempfile.NamedTemporaryFile = tempfile._original_NamedTemporaryFile tempfile._is_patched = False shutil.rmtree(cls.TEMP_DIR) cls.TEMP_DIR = None @classmethod def get_temp_files(cls): return os.listdir(cls.TEMP_DIR) @classmethod def has_no_temp_files(cls): """ check if this test has created any temp files which aren't cleaned up """ if cls.TEMP_DIR is None: raise Exception("temp dir is None. Maybe call patch() first?") return len(cls.get_temp_files()) == 0
qtl/leafcutter/src/cluster_prepare_fastqtl.py
cjops/gtex-pipeline
247
11185598
<filename>qtl/leafcutter/src/cluster_prepare_fastqtl.py from __future__ import print_function import pandas as pd import numpy as np import argparse import subprocess import os import gzip import contextlib from datetime import datetime import tempfile import shutil import glob from sklearn.decomposition import PCA @contextlib.contextmanager def cd(cd_path): saved_path = os.getcwd() os.chdir(cd_path) yield os.chdir(saved_path) def gtf_to_bed(annotation_gtf, feature='gene'): """ Parse genes from GTF, create placeholder DataFrame for BED output """ chrom = [] start = [] end = [] gene_id = [] with open(annotation_gtf, 'r') as gtf: for row in gtf: row = row.strip().split('\t') if row[0][0]=='#' or row[2]!=feature: continue # skip header chrom.append(row[0]) # TSS: gene start (0-based coordinates for BED) if row[6]=='+': start.append(np.int64(row[3])-1) end.append(np.int64(row[3])) elif row[6]=='-': start.append(np.int64(row[4])-1) # last base of gene end.append(np.int64(row[4])) else: raise ValueError('Strand not specified.') gene_id.append(row[8].split(';',1)[0].split(' ')[1].replace('"','')) bed_df = pd.DataFrame( data={'chr':chrom, 'start':start, 'end':end, 'gene_id':gene_id}, columns=['chr', 'start', 'end', 'gene_id'], index=gene_id) return bed_df def write_bed(bed_df, output_name): """Write DataFrame to BED""" bgzip = subprocess.Popen('bgzip -c > '+output_name, stdin=subprocess.PIPE, shell=True) bed_df.to_csv(bgzip.stdin, sep='\t', index=False) stdout, stderr = bgzip.communicate() subprocess.check_call('tabix -f '+output_name, shell=True) if __name__=='__main__': parser = argparse.ArgumentParser(description='Run leafcutter clustering, prepare for FastQTL') parser.add_argument('junc_files_list', help='File with paths to ${sample_id}.junc files') parser.add_argument('exons', help='Exon definitions file, with columns: chr, start, end, strand, gene_id, gene_name') parser.add_argument('genes_gtf', help='Collapsed gene annotation in GTF format') parser.add_argument('prefix', help='Prefix for output files (sample set ID)') parser.add_argument('--min_clu_reads', default='50', type=str, help='Minimum number of reads supporting each cluster') parser.add_argument('--min_clu_ratio', default='0.001', type=str, help='Minimum fraction of reads in a cluster that support a junction') parser.add_argument('--max_intron_len', default='500000', type=str, help='Maximum intron length') parser.add_argument('--num_pcs', default=10, type=int, help='Number of principal components to calculate') parser.add_argument('--leafcutter_dir', default='/opt/leafcutter', help="leafcutter directory, containing 'clustering' directory") parser.add_argument('-o', '--output_dir', default='.', help='Output directory') args = parser.parse_args() print('['+datetime.now().strftime("%b %d %H:%M:%S")+'] leafcutter clustering') if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) with cd(args.output_dir): print(' * decompressing and renaming junc files') with open(args.junc_files_list) as f: junc_files = f.read().strip().split('\n') junc_dir = os.path.join(args.output_dir, 'junc_files') if not os.path.exists(junc_dir): os.mkdir(junc_dir) sample_ids = [] for f in junc_files: sample_id = os.path.split(f)[1].split('.')[0] sample_ids.append(sample_id) # shutil.move(f, os.path.join(junc_dir, sample_id+'.junc.gz')) shutil.copy2(f, os.path.join(junc_dir, sample_id+'.junc.gz')) subprocess.check_call('gunzip -f '+os.path.join(junc_dir, '*.junc.gz'), shell=True) junc_files = sorted([os.path.join(junc_dir, i+'.junc') for i in sample_ids]) print(' * running leafcutter clustering') # generates ${prefix}_perind_numers.counts.gz and ${prefix}_perind.counts.gz with tempfile.NamedTemporaryFile(dir=args.output_dir) as tmp: with open(tmp.name, 'w') as f: f.write('\n'.join(junc_files)+'\n') subprocess.check_call( 'python '+os.path.join(args.leafcutter_dir, 'clustering', 'leafcutter_cluster.py' \ +' --juncfiles '+tmp.name \ +' --outprefix '+args.prefix \ +' --minclureads '+args.min_clu_reads \ +' --mincluratio '+args.min_clu_ratio \ +' --maxintronlen '+args.max_intron_len), shell=True) print(' * compressing outputs') subprocess.check_call('gzip {}_pooled'.format(args.prefix), shell=True) subprocess.check_call('gzip {}_refined'.format(args.prefix), shell=True) print(' * mapping clusters to genes') subprocess.check_call( 'Rscript' \ +' '+os.path.abspath(os.path.join(os.path.dirname(__file__), 'map_clusters_to_genes.R')) \ +' '+os.path.join(args.output_dir, args.prefix+'_perind.counts.gz') \ +' '+args.exons \ +' '+args.prefix + '.leafcutter.clusters_to_genes.txt', shell=True) print(' * filtering counts') counts_df = pd.read_csv(os.path.join(args.output_dir, args.prefix+'_perind.counts.gz'), sep='\s+').set_index('chrom') calculate_frac = lambda x: float(x[0])/float(x[1]) if x[1]>0 else 0 frac_df = counts_df.applymap(lambda x: calculate_frac([int(i) for i in x.split('/')])) pct_zero = (frac_df==0).sum(axis=1) / frac_df.shape[1] # for zero counts, frac is zero n_unique = frac_df.apply(lambda x: len(x.unique()), axis=1) zscore_df = ((frac_df.T-frac_df.mean(1)) / frac_df.std(1)).T # filter out introns with low counts or low complexity n = np.floor(frac_df.shape[1]*0.1) if n<10: n = 10 mask = (pct_zero <= 0.5) & (n_unique >= n) # additional filter for low complexity ns = zscore_df.shape[1] mask2 = ((zscore_df.abs()<0.25).sum(1)>=ns-3) & ((zscore_df.abs()>6).sum(1)<=3) if np.any(mask & mask2): print(' ** dropping {} introns with low variation'.format(np.sum(mask & mask2))) mask = mask & ~mask2 filtered_counts_df = counts_df.loc[mask] cluster_ids = np.unique(counts_df.index.map(lambda x: x.split(':')[-1])) filtered_cluster_ids = np.unique(filtered_counts_df.index.map(lambda x: x.split(':')[-1])) print(' ** dropping {} introns with counts in fewer than 50% of samples\n' ' {}/{} introns remain ({}/{} clusters)'.format( counts_df.shape[0]-filtered_counts_df.shape[0], filtered_counts_df.shape[0], counts_df.shape[0], len(filtered_cluster_ids), len(cluster_ids) )) filtered_counts_file = os.path.join(args.output_dir, args.prefix+'_perind.counts.filtered.gz') with gzip.open(filtered_counts_file, 'wt') as f: filtered_counts_df.to_csv(f, sep=' ') print(' * preparing phenotype table') subprocess.check_call( 'python '+os.path.join(args.leafcutter_dir, 'scripts', 'prepare_phenotype_table.py') \ +' '+filtered_counts_file \ +' -p '+str(args.num_pcs), shell=True) print(' * concatenating BED files') bed_files = sorted(glob.glob(os.path.join(args.output_dir, '*_perind.counts.filtered.gz.qqnorm_*'))) bed_df = [] for f in bed_files: bed_df.append(pd.read_csv(f, sep='\t', dtype=str)) bed_df = pd.concat(bed_df, axis=0) print(' ** sorting') # leafcutter doesn't produce output for chrX --> numeric sort for c in ['#Chr', 'start', 'end']: bed_df[c] = bed_df[c].astype(int) bed_df = bed_df.sort_values(['#Chr', 'start', 'end']) print(' ** writing BED') bed_file = os.path.join(args.output_dir, args.prefix+'.perind.counts.filtered.qqnorm.bed.gz') bgzip = subprocess.Popen('bgzip -c > '+bed_file, stdin=subprocess.PIPE, shell=True, universal_newlines=True) stdout, stderr = bgzip.communicate(bed_df.to_csv(sep='\t', index=False)) print(' ** indexing') subprocess.check_call('tabix '+bed_file, shell=True) print(' * converting cluster coordinates to gene coordinates') tss_df = gtf_to_bed(args.genes_gtf) cluster2gene_dict = pd.read_csv(os.path.join(args.output_dir, args.prefix + '.leafcutter.clusters_to_genes.txt'), sep='\t', index_col=0, squeeze=True).to_dict() # add 'chr' prefix bed_df['#Chr'] = 'chr'+bed_df['#Chr'].astype(str) bed_df['ID'] = 'chr'+bed_df['ID'] print(' ** assigning introns to gene mapping(s)') n = 0 gene_bed_df = [] group_s = {} for _,r in bed_df.iterrows(): s = r['ID'].split(':') cluster_id = s[0]+':'+s[-1] if cluster_id in cluster2gene_dict: gene_ids = cluster2gene_dict[cluster_id].split(',') for g in gene_ids: gi = r['ID']+':'+g gene_bed_df.append(tss_df.loc[g, ['chr', 'start', 'end']].tolist() + [gi] + r.iloc[4:].tolist()) group_s[gi] = g else: n += 1 if n>0: print(' ** discarded {} introns without gene mapping'.format(n)) print(' * writing FastQTL inputs') gene_bed_df = pd.DataFrame(gene_bed_df, columns=bed_df.columns) gene_bed_df = gene_bed_df.groupby('#Chr', sort=False, group_keys=False).apply(lambda x: x.sort_values('start')) # change sample IDs to participant IDs gene_bed_df.rename(columns={i:'-'.join(i.split('-')[:2]) for i in gene_bed_df.columns[4:]}, inplace=True) write_bed(gene_bed_df, os.path.join(args.output_dir, args.prefix+'.leafcutter.bed.gz')) pd.Series(group_s).sort_values().to_csv(os.path.join(args.output_dir, args.prefix+'.leafcutter.phenotype_groups.txt'), sep='\t') print(' * calculating PCs') pca = PCA(n_components=args.num_pcs) pca.fit(bed_df[bed_df.columns[4:]]) pc_df = pd.DataFrame(pca.components_, index=['PC{}'.format(i) for i in range(1,11)], columns=['-'.join(i.split('-')[:2]) for i in bed_df.columns[4:]]) pc_df.index.name = 'ID' pc_df.to_csv(args.prefix+'.leafcutter.PCs.txt', sep='\t') print('['+datetime.now().strftime("%b %d %H:%M:%S")+'] done')
nlpaug/model/spectrogram/time_warping.py
techthiyanes/nlpaug
3,121
11185599
# import numpy as np # # from nlpaug.model import Spectrogram # # # class TimeWarping(Spectrogram): # def __init__(self, time_warp): # super(TimeWarping, self).__init__() # # self.time_warp = time_warp # # # TODO # def mask(self, mel_spectrogram): # """ # From: https://arxiv.org/pdf/1904.08779.pdf, # Time warping is applied via the function # sparse image warp of tensorflow. Given # a log mel spectrogram with t time steps, we view it # as an image where the time axis is horizontal and the # frequency axis is vertical. A random point along the # horizontal line passing through the center of the image # within the time steps (W, t - W) is to be warped # either to the left or right by a distance w chosen from a # uniform distribution from 0 to the time warp parameter # W along that line. # :return: # """ # # time_range = mel_spectrogram.shape[1] # self.w = np.random.randint(self.time_warp) # # center_point = np.random.randint(self.time_warp, time_range-self.time_warp) # distance = np.random.randint(-self.w, self.w) # # # self.w0 = np.random.randint(time_range - self.t) # # # # augmented_mel_spectrogram = mel_spectrogram.copy() # # augmented_mel_spectrogram[:, self.time_warp:self.time_range-self.time_warp] = 0 # # return augmented_mel_spectrogram # return mel_spectrogram
benchmarks/benchmarks/cluster_hierarchy_disjoint_set.py
Ennosigaeon/scipy
9,095
11185600
import numpy as np try: from scipy.cluster.hierarchy import DisjointSet except ImportError: pass from .common import Benchmark class Bench(Benchmark): params = [[100, 1000, 10000]] param_names = ['n'] def setup(self, n): # Create random edges rng = np.random.RandomState(seed=0) self.edges = rng.randint(0, 10 * n, (n, 2)) self.nodes = np.unique(self.edges) self.disjoint_set = DisjointSet(self.nodes) self.pre_merged = DisjointSet(self.nodes) for a, b in self.edges: self.pre_merged.merge(a, b) self.pre_merged_found = DisjointSet(self.nodes) for a, b in self.edges: self.pre_merged_found.merge(a, b) for x in self.nodes: self.pre_merged_found[x] def time_merge(self, n): dis = self.disjoint_set for a, b in self.edges: dis.merge(a, b) def time_merge_already_merged(self, n): dis = self.pre_merged for a, b in self.edges: dis.merge(a, b) def time_find(self, n): dis = self.pre_merged return [dis[i] for i in self.nodes] def time_find_already_found(self, n): dis = self.pre_merged_found return [dis[i] for i in self.nodes] def time_contains(self, n): assert self.nodes[0] in self.pre_merged assert self.nodes[n // 2] in self.pre_merged assert self.nodes[-1] in self.pre_merged def time_absence(self, n): # Test for absence assert None not in self.pre_merged assert "dummy" not in self.pre_merged assert (1, 2, 3) not in self.pre_merged
tests/test_cursor.py
AlekseyMolchanov/aioodbc
251
11185602
<reponame>AlekseyMolchanov/aioodbc<gh_stars>100-1000 import pyodbc import pytest @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_cursor_with(conn, table): ret = [] # regular cursor usage cur = await conn.cursor() await cur.execute('SELECT * FROM t1;') assert not cur.closed assert not cur.echo # cursor should be closed async with cur: assert not cur.echo async for i in cur: ret.append(i) expected = [tuple(r) for r in ret] assert [(1, '123.45'), (2, 'foo')] == expected assert cur.closed @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_cursor_lightweight(conn, table): cur = await conn.cursor() ex_cursor = await cur.execute('SELECT * FROM t1;') assert ex_cursor is cur assert not cur.closed async with cur: pass assert cur.closed @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_cursor_await(conn, table): async with conn.cursor() as cur: await cur.execute('SELECT * FROM t1;') assert not cur.closed assert cur.closed @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_cursor(conn): cur = await conn.cursor() assert cur.connection is conn assert cur._loop, conn.loop assert cur.arraysize == 1 assert cur.rowcount == -1 r = await cur.setinputsizes() assert r is None await cur.setoutputsize() assert r is None await cur.close() @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_execute_on_closed_cursor(conn): cur = await conn.cursor() await cur.close() with pytest.raises(pyodbc.OperationalError): await cur.execute('SELECT 1;') @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_close(conn): cur = await conn.cursor() assert not cur.closed await cur.close() await cur.close() assert cur.closed @pytest.mark.parametrize('db', ['sqlite']) @pytest.mark.asyncio async def test_description(conn): cur = await conn.cursor() assert cur.description is None await cur.execute('SELECT 1;') expected = (('1', float, None, 54, 54, 0, True), ) assert cur.description == expected await cur.close() @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_description_with_real_table(conn, table): cur = await conn.cursor() await cur.execute("SELECT * FROM t1;") expected = (('n', int, None, 10, 10, 0, True), ('v', str, None, 10, 10, 0, True)) assert cur.description == expected await cur.close() @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_rowcount_with_table(conn, table): cur = await conn.cursor() await cur.execute("SELECT * FROM t1;") await cur.fetchall() # sqlite does not provide working rowcount attribute # http://stackoverflow.com/questions/4911404/in-pythons-sqlite3- # module-why-cant-cursor-rowcount-tell-me-the-number-of-ro # TODO: figure out for proper test assert cur.rowcount in (0, 2) await cur.close() @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_arraysize(conn): cur = await conn.cursor() assert 1 == cur.arraysize cur.arraysize = 10 assert 10 == cur.arraysize await cur.close() @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_fetchall(conn, table): cur = await conn.cursor() await cur.execute("SELECT * FROM t1;") resp = await cur.fetchall() expected = [(1, '123.45'), (2, 'foo')] for row, exp in zip(resp, expected): assert exp == tuple(row) await cur.close() @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_fetchmany(conn, table): cur = await conn.cursor() await cur.execute("SELECT * FROM t1;") resp = await cur.fetchmany(1) expected = [(1, '123.45')] for row, exp in zip(resp, expected): assert exp == tuple(row) await cur.close() @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_fetchone(conn, table): cur = await conn.cursor() await cur.execute("SELECT * FROM t1;") resp = await cur.fetchone() expected = (1, '123.45') assert expected == tuple(resp) await cur.close() @pytest.mark.parametrize('db', ['sqlite']) @pytest.mark.asyncio async def test_tables(conn, table): cur = await conn.cursor() await cur.tables() resp = await cur.fetchall() expectd = (None, None, 't1', 'TABLE', None) assert len(resp) == 1, resp assert expectd == tuple(resp[0]), resp @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_cursor_rollback(conn, table): cur = await conn.cursor() await cur.execute("INSERT INTO t1 VALUES (3, '123.45');") await cur.execute("SELECT v FROM t1 WHERE n=3;") (value, ) = await cur.fetchone() assert value == '123.45' await cur.rollback() await cur.execute("SELECT v FROM t1 WHERE n=3;") value = await cur.fetchone() assert value is None @pytest.mark.parametrize('db', ['sqlite']) @pytest.mark.asyncio async def test_columns(conn, table): cur = await conn.cursor() await cur.columns() resp = await cur.fetchall() expectd = [('', '', 't1', 'n', 4, 'INT', 9, 10, 10, 0, 1, None, 'NULL', 4, None, 16384, 1, 'YES'), ('', '', 't1', 'v', 12, 'VARCHAR(10)', 10, 10, 10, 0, 1, None, 'NULL', 12, None, 16384, 2, 'YES')] columns = [tuple(r) for r in resp] assert expectd == columns @pytest.mark.parametrize('db', pytest.db_list) @pytest.mark.asyncio async def test_executemany(conn): cur = await conn.cursor() await cur.execute("CREATE TABLE t1(a int, b VARCHAR(10))") # TODO: figure out why it is possible to insert only strings... but not int params = [(str(i), str(i)) for i in range(1, 6)] await cur.executemany("INSERT INTO t1(a, b) VALUES (?, ?)", params) await cur.execute("SELECT COUNT(*) FROM t1") count = await cur.fetchone() assert count[0] == len(params) await cur.execute("SELECT a, b FROM t1 ORDER BY a") rows = await cur.fetchall() assert count[0] == len(rows) for param, row in zip(params, rows): assert int(param[0]) == row[0] assert param[1] == row[1] await cur.execute("DROP TABLE t1;") @pytest.mark.parametrize('db', ['sqlite']) @pytest.mark.asyncio async def test_procedures_empty(conn, table): cur = await conn.cursor() await cur.procedures() resp = await cur.fetchall() assert resp == [] @pytest.mark.parametrize('db', ['sqlite']) @pytest.mark.asyncio async def test_procedureColumns_empty(conn, table): cur = await conn.cursor() await cur.procedureColumns() resp = await cur.fetchall() assert resp == [] @pytest.mark.parametrize('db', ['sqlite']) @pytest.mark.asyncio async def test_primaryKeys_empty(conn, table): cur = await conn.cursor() await cur.primaryKeys('t1', 't1', 't1') resp = await cur.fetchall() assert resp == [] @pytest.mark.parametrize('db', ['sqlite']) @pytest.mark.asyncio async def test_foreignKeys_empty(conn, table): cur = await conn.cursor() await cur.foreignKeys('t1') resp = await cur.fetchall() assert resp == [] @pytest.mark.asyncio async def test_getTypeInfo_empty(conn, table): cur = await conn.cursor() await cur.getTypeInfo(pyodbc.SQL_CHAR) resp = await cur.fetchall() expected = [('char', 1, 255, "'", "'", 'length', 1, 0, 3, None, 0, 0, 'char', None, None, 1, 0, None, None)] type_info = [tuple(r) for r in resp] assert type_info == expected
examples/import_yara_ruleset.py
Dmenifee23-star/vt-py
208
11185649
<reponame>Dmenifee23-star/vt-py #!/usr/local/bin/python # Copyright © 2020 The vt-py authors. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Import YARA rulesets to a VirusTotal account. This script imports either a ruleset in a file or all ruleset files in a given directory. These imported YARA rules can be used in VT Hunting. Read more: https://www.virustotal.com/gui/hunting-overview https://developers.virustotal.com/v3.0/reference#livehunt https://support.virustotal.com/hc/en-us/articles/360000363717-VT-Hunting """ import argparse import asyncio import os import vt import sys async def get_rules_files(queue, path): """Finds which rules will be uploaded to VirusTotal.""" if os.path.isfile(path): await queue.put(path) return with os.scandir(path) as it: for entry in it: if not entry.name.startswith('.') and entry.is_file(): await queue.put(entry.path) async def upload_rules(queue, apikey, enable): """Uploads selected files to VirusTotal.""" async with vt.Client(apikey) as client: while not queue.empty(): file_path = await queue.get() with open(file_path) as f: ruleset = vt.Object( obj_type='hunting_ruleset', obj_attributes={ 'name': os.path.basename(file_path), 'enabled': enable, 'rules': f.read()}) try: await client.post_object_async( path='/intelligence/hunting_rulesets', obj=ruleset) print(f'File {file_path} uploaded.') except vt.error.APIError as e: print(f'Error uploading {file_path}: {e}') queue.task_done() def main(): parser = argparse.ArgumentParser( description='Import YARA rules to a VirusTotal account.') parser.add_argument('--apikey', required=True, help='your VirusTotal API key') parser.add_argument('--path', required=True, help='path to the file/directory to upload.') parser.add_argument('--enable', action='store_true', help='Whether to enable the YARA rules or not.') parser.add_argument('--workers', type=int, required=False, default=4, help='number of concurrent workers') args = parser.parse_args() if not os.path.exists(args.path): print(f'ERROR: file {args.path} not found.') sys.exit(1) loop = asyncio.get_event_loop() queue = asyncio.Queue(loop=loop) loop.create_task(get_rules_files(queue, args.path)) _worker_tasks = [] for i in range(args.workers): _worker_tasks.append( loop.create_task(upload_rules(queue, args.apikey, args.enable))) # Wait until all worker tasks has completed. loop.run_until_complete(asyncio.gather(*_worker_tasks)) loop.close() if __name__ == '__main__': main()
vilya/libs/auth/check_auth.py
mubashshirjamal/code
1,582
11185685
# -*- coding: utf-8 -*- from datetime import datetime from vilya.models.api_key import ApiKey from vilya.models.api_token import ApiToken from vilya.libs.auth.oauth import OAuthError from vilya.libs.auth import errors as err from vilya.libs.auth import AuthCode def check_auth(request): auth_header = request.environ.get('HTTP_AUTHORIZATION') # 无 Token 直接返回 if not auth_header: return # Token 格式是否正确 if not auth_header.startswith('Bearer '): # raise OAuthError(*err.auth_access_token_is_missing) # 考虑到需要兼容 qaci 使用 Basic auth 的场景,先不 raise auth = AuthCode(auth_header) if auth.confirm(): request.user = auth.user return oauth_token = auth_header[7:] token = ApiToken.get_by_token(oauth_token) # ApiToken 是否存在 if not token: raise OAuthError(*err.auth_invalid_access_token) # ApiKey 是否存在 if not token.key: raise OAuthError(*err.auth_invalid_apikey) # ApiKey 是否可用 if token.key.status == ApiKey.STATUS_BLOCKED: raise OAuthError(*err.auth_apikey_blocked) # ApiToken 是否过期 if datetime.now() > token.expire_time: raise OAuthError(*err.auth_access_token_has_expired) request.user = token.user request.client_id = token.client_id
backup/drivers/mysql_base.py
a4913994/openstack_trove
244
11185743
<gh_stars>100-1000 # Copyright 2020 Catalyst Cloud # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import shutil from oslo_concurrency import processutils from oslo_config import cfg from oslo_log import log as logging from backup.drivers import base CONF = cfg.CONF LOG = logging.getLogger(__name__) class MySQLBaseRunner(base.BaseRunner): def __init__(self, *args, **kwargs): self.datadir = kwargs.pop('db_datadir', '/var/lib/mysql/data') super(MySQLBaseRunner, self).__init__(*args, **kwargs) @property def user_and_pass(self): return ('--user=%(user)s --password=%(password)s --host=%(host)s' % {'user': CONF.db_user, 'password': CONF.db_password, 'host': CONF.db_host}) @property def filename(self): return '%s.xbstream' % self.base_filename def check_process(self): """Check the backup output for 'completed OK!'.""" LOG.debug('Checking backup process output.') with open(self.backup_log, 'r') as backup_log: output = backup_log.read() if not output: LOG.error("Backup log file %s empty.", self.backup_log) return False last_line = output.splitlines()[-1].strip() if not re.search('completed OK!', last_line): LOG.error(f"Backup did not complete successfully, last line:\n" f"{last_line}") return False return True def get_metadata(self): LOG.debug('Getting metadata for backup %s', self.base_filename) meta = {} lsn = re.compile(r"The latest check point \(for incremental\): " r"'(\d+)'") with open(self.backup_log, 'r') as backup_log: output = backup_log.read() match = lsn.search(output) if match: meta = {'lsn': match.group(1)} LOG.info("Updated metadata for backup %s: %s", self.base_filename, meta) return meta def incremental_restore_cmd(self, incremental_dir): """Return a command for a restore with a incremental location.""" args = {'restore_location': incremental_dir} return (self.decrypt_cmd + self.unzip_cmd + self.restore_cmd % args) def incremental_prepare_cmd(self, incremental_dir): if incremental_dir is not None: incremental_arg = '--incremental-dir=%s' % incremental_dir else: incremental_arg = '' args = { 'restore_location': self.restore_location, 'incremental_args': incremental_arg, } return self.incremental_prep % args def incremental_prepare(self, incremental_dir): prepare_cmd = self.incremental_prepare_cmd(incremental_dir) LOG.info("Running restore prepare command: %s.", prepare_cmd) processutils.execute(prepare_cmd, shell=True) def incremental_restore(self, location, checksum): """Recursively apply backups from all parents. If we are the parent then we restore to the restore_location and we apply the logs to the restore_location only. Otherwise if we are an incremental we restore to a subfolder to prevent stomping on the full restore data. Then we run apply log with the '--incremental-dir' flag :param location: The source backup location. :param checksum: Checksum of the source backup for validation. """ metadata = self.storage.load_metadata(location, checksum) incremental_dir = None if 'parent_location' in metadata: LOG.info("Restoring parent: %(parent_location)s, " "checksum: %(parent_checksum)s.", metadata) parent_location = metadata['parent_location'] parent_checksum = metadata['parent_checksum'] # Restore parents recursively so backup are applied sequentially self.incremental_restore(parent_location, parent_checksum) # for *this* backup set the incremental_dir # just use the checksum for the incremental path as it is # sufficiently unique /var/lib/mysql/<checksum> incremental_dir = os.path.join('/var/lib/mysql', checksum) os.makedirs(incremental_dir) command = self.incremental_restore_cmd(incremental_dir) else: # The parent (full backup) use the same command from InnobackupEx # super class and do not set an incremental_dir. LOG.info("Restoring back to full backup.") command = self.restore_command self.restore_content_length += self.unpack(location, checksum, command) self.incremental_prepare(incremental_dir) # Delete after restoring this part of backup if incremental_dir: shutil.rmtree(incremental_dir)
greenbot/exc.py
EMorf/greenbot
145
11185762
class FailedCommand(Exception): pass class UserNotFound(Exception): pass class InvalidLogin(Exception): pass class InvalidPointAmount(Exception): pass class TimeoutException(Exception): pass
pyekaboo/mkpyekaboo.py
SafeBreach-Labs/pyekaboo
154
11185770
#!/usr/bin/env python # # Copyright (c) 2017, SafeBreach # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # 2. Redistributions in binary form must reproduce the # above copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # 3. Neither the name of the copyright holder # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS # AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sys import argparse import pyekaboo import inspect #################### # Global Variables # #################### __version__ = "1.0" __author__ = "<NAME>" __copyright__ = "Copyright 2017, SafeBreach" START_OF_CODE = "### DO NOT REMOVE THIS LINE! ###" START_OF_CODE_LEN = 32 ########### # Classes # ########### # http://stackoverflow.com/questions/3853722/python-argparse-how-to-insert-newline-in-the-help-text class SmartFormatter(argparse.HelpFormatter): def _split_lines(self, text, width): if text.startswith('ML|'): return text[3:].splitlines() # this is the RawTextHelpFormatter._split_lines return argparse.HelpFormatter._split_lines(self, text, width) ############# # Functions # ############# def main(args): parser = argparse.ArgumentParser(prog='mkpyekaboo', description='Python Hooking Library and Tool', formatter_class=SmartFormatter) parser.add_argument('pymodule', metavar='PYTHON_MODULE_NAME', type=str, help='Python module to be hooked (e.g. string, os, etc.)') parser.add_argument('-v', '--verbose', action='store_true', help='verbose output') parser.add_argument('-l', '--hook-level', type=int, default=0, metavar='HOOK_LEVEL', help='ML|Level 0: Empty Pyekaboo Boilerplate (Default)\nLevel 1: Hook all Python Classes in PYTHON_MODULE_NAME\nLevel 2: Hook all Python Functions in PYTHON_MODULE_NAME\nLevel 3: Hook all Python Classes & Functions in PYTHON_MODULE_NAME\nLevel 4: Hook all Python Classes in PYTHON_MODULE_NAME and Enable Trace\nLevel 5: Hook all Python Functions in PYTHON_MODULE_NAME and Enable Trace\nLevel 6: Hook all Python Classes & Functions in PYTHON_MODULE_NAME and Enable Trace') args = parser.parse_args(args=args[1:]) mod = None tot_hooked_classes = 0 tot_hooked_fcns = 0 with open(args.pymodule + '.py', 'w') as outfile: if args.verbose: print "Output Filename: %s" % outfile buf = open(pyekaboo.__file__.replace('pyc', 'py'), 'r').read() outfile.write(buf[buf.find(START_OF_CODE)+START_OF_CODE_LEN:].strip()) outfile.write('\n\n###############\n# Entry Point #\n###############\n\n') if args.verbose: print "Wrote Pykeaboo Library (%d bytes)" % len(buf) # Hook all Classes (and maybe Enable Trace?) if args.hook_level == 1 or args.hook_level == 3 or args.hook_level == 4 or args.hook_level == 6: if args.verbose: print "Hooking Classes (hook_level == %d)" % args.hook_level mod = pyekaboo._load_and_register_as(args.pymodule, [args.pymodule], sys.path[::-1]) if args.verbose: print "Imported %s as %s ..." % (args.pymodule, mod) for cls_name in dir(mod): if args.verbose: print "Is %s a Class ... " % (cls_name), cls_obj = getattr(mod, cls_name) # TODO: Need a better way to handle cases where class is not really a class (i.e. socket.MethodType) if inspect.isclass(cls_obj) is True and repr(cls_obj).find("class") != -1: # class _fileobject(): # __metaclass__ = _InstallClsHook # __trace__ = True? outfile.write('class ' + cls_name + '():\n') outfile.write(' __metaclass__ = _InstallClsHook\n') if args.hook_level == 4 or args.hook_level == 6: outfile.write(' __trace__ = True\n') outfile.write('\n') tot_hooked_classes = tot_hooked_classes + 1 if args.verbose: print "Yes! (%s)" % cls_obj else: if args.verbose: print "No" print "[*] Hooked %d Classes!" % tot_hooked_classes # Hook all Functions (and maybe Enable Trace?) if args.hook_level == 2 or args.hook_level == 3 or args.hook_level == 5 or args.hook_level == 6: mod = pyekaboo._load_and_register_as(args.pymodule, [args.pymodule], sys.path[::-1]) if args.verbose: print "Imported %s as %s ..." % (args.pymodule, mod) for fcn_name in dir(mod): if args.verbose: print "Is %s a Function ... " % (fcn_name), fcn_obj = getattr(mod, fcn_name) if inspect.isfunction(fcn_obj) is True or inspect.isroutine(fcn_obj) is True: dbg_flag = "False" if args.hook_level == 5 or args.hook_level == 6: dbg_flag = "True" # gethostbyname = _InstallFcnHook(gethostbyname, debug=True) outfile.write('\n%s=_InstallFcnHook(%s, debug=%s)\n' % (fcn_name, fcn_name, dbg_flag)) tot_hooked_fcns = tot_hooked_fcns + 1 if args.verbose: print "Yes! (%s)" % fcn_obj else: if args.verbose: print "No" print "[*] Hooked %d Functions!" % tot_hooked_fcns if __name__ == "__main__": sys.exit(main(sys.argv))
python/ql/test/query-tests/Security/CWE-327/InsecureProtocol.py
timoles/codeql
4,036
11185794
<filename>python/ql/test/query-tests/Security/CWE-327/InsecureProtocol.py import ssl from OpenSSL import SSL from ssl import SSLContext # insecure versions specified ssl.wrap_socket(ssl_version=ssl.PROTOCOL_SSLv2) ssl.wrap_socket(ssl_version=ssl.PROTOCOL_SSLv3) ssl.wrap_socket(ssl_version=ssl.PROTOCOL_TLSv1) SSLContext(protocol=ssl.PROTOCOL_SSLv2) SSLContext(protocol=ssl.PROTOCOL_SSLv3) SSLContext(protocol=ssl.PROTOCOL_TLSv1) SSL.Context(SSL.SSLv2_METHOD) SSL.Context(SSL.SSLv3_METHOD) SSL.Context(SSL.TLSv1_METHOD) METHOD = SSL.SSLv2_METHOD SSL.Context(METHOD) # importing the protocol constant directly from ssl import PROTOCOL_SSLv2 ssl.wrap_socket(ssl_version=PROTOCOL_SSLv2) SSLContext(protocol=PROTOCOL_SSLv2) # secure versions specified ssl.wrap_socket(ssl_version=ssl.PROTOCOL_TLSv1_2) SSLContext(protocol=ssl.PROTOCOL_TLSv1_2) SSL.Context(SSL.TLSv1_2_METHOD) # insecure versions allowed by specified range SSLContext(protocol=ssl.PROTOCOL_SSLv23) SSLContext(protocol=ssl.PROTOCOL_TLS) SSLContext(protocol=ssl.PROTOCOL_TLS_CLIENT) SSLContext(protocol=ssl.PROTOCOL_TLS_SERVER) SSL.Context(SSL.SSLv23_METHOD)
modules/method.py
Mattmess/Test
638
11185800
import asyncio from modules.printer import clout async def test_method(session, url): try: response = await session.get(url, allow_redirects=True) if response.status != 404: await clout(response.url) else: pass except asyncio.exceptions.TimeoutError: #print(f'{Y}[!] Timeout :{C} {url}{W}') return except Exception as exc: #print(f'{Y}[!] Exception [test_method] [{url}] :{W} {exc}') return
pkg_pytorch/blendtorch/btt/utils.py
kongdai123/pytorch-blender
381
11185827
<filename>pkg_pytorch/blendtorch/btt/utils.py<gh_stars>100-1000 import socket def get_primary_ip(): '''Returns the primary IP address of this machine (the one with). See https://stackoverflow.com/a/28950776 Returns the IP address with the default route attached or `127.0.0.1`. ''' s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: # doesn't even have to be reachable s.connect(('10.255.255.255', 1)) IP = s.getsockname()[0] except Exception: IP = '127.0.0.1' finally: s.close() return IP
vit/color_mappings.py
kinifwyne/vit
179
11185831
import re BRIGHT_REGEX = re.compile('.*bright.*') def task_256_to_urwid_256(): manual_map = { 'red': 'dark red', 'green': 'dark green', 'blue': 'dark blue', 'cyan': 'dark cyan', 'magenta': 'dark magenta', 'gray': 'light gray', 'yellow': 'brown', 'color0': 'black', 'color1': 'dark red', 'color2': 'dark green', 'color3': 'brown', 'color4': 'dark blue', 'color5': 'dark magenta', 'color6': 'dark cyan', 'color7': 'light gray', 'color8': 'dark gray', 'color9': 'light red', 'color10': 'light green', 'color11': 'yellow', 'color12': 'light blue', 'color13': 'light magenta', 'color14': 'light cyan', 'color15': 'white', } manual_map.update(task_color_gray_to_g()) manual_map.update(task_color_to_h()) manual_map.update(task_rgb_to_h()) return manual_map def task_bright_to_color(color_string): color_map = { 'bright black': 'color8', 'bright red': 'color9', 'bright green': 'color10', 'bright yellow': 'color11', 'bright blue': 'color12', 'bright magenta': 'color13', 'bright cyan': 'color14', 'bright white': 'color15', } if BRIGHT_REGEX.match(color_string): for bright_color in color_map: color_string = color_string.replace(bright_color, color_map[bright_color]) return color_string def task_color_gray_to_g(): color_map = {} for i in range(0, 24): gray_key = 'gray%d' % i color_key = 'color%d' % (i + 232) # NOTE: This is an approximation of the conversion, close enough! value = 'g%d' % (i * 4) color_map[gray_key] = value color_map[color_key] = value return color_map def task_color_to_h(): color_map = {} for i in range(16, 232): key = 'color%d' % i value = 'h%d' % i color_map[key] = value return color_map def task_rgb_to_h(): index_to_hex = [ '0', '6', '8', 'a', 'd', 'f', ] color_map = {} count = 0 for r in range(0, 6): for g in range(0, 6): for b in range(0, 6): key = '<KEY>' % (r, g, b) value = '#%s%s%s' % (index_to_hex[r], index_to_hex[g], index_to_hex[b]) color_map[key] = value count += 1 return color_map
runtime/python/Lib/site-packages/pyvisa/compat/__init__.py
hwaipy/InteractionFreeNode
154
11185882
# -*- coding: utf-8 -*- """ pyvisa.compat ~~~~~~~~~~~~~ Compatibility layer. :copyright: 2014 by PyVISA Authors, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import (division, unicode_literals, print_function, absolute_import) import sys PYTHON3 = sys.version >= '3' if PYTHON3: string_types = str def u(x): return x integer_types = (int, ) input = input int_to_bytes = int.to_bytes int_from_bytes = int.from_bytes else: string_types = basestring import codecs def u(x): return codecs.unicode_escape_decode(x)[0] integer_types = (int, long) input = raw_input # The 2 following function implementation extracted from the python-future # project import collections def int_to_bytes(integer, length, byteorder, signed=False): """ Return an array of bytes representing an integer. The integer is represented using length bytes. An OverflowError is raised if the integer is not representable with the given number of bytes. The byteorder argument determines the byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. The signed keyword-only argument determines whether two's complement is used to represent the integer. If signed is False and a negative integer is given, an OverflowError is raised. """ if length < 0: raise ValueError("length argument must be non-negative") if length == 0 and integer == 0: return bytes() if signed and integer < 0: bits = length * 8 num = (2**bits) + integer if num <= 0: raise OverflowError("int too smal to convert") else: if integer < 0: raise OverflowError("can't convert negative int to unsigned") num = integer if byteorder not in ('little', 'big'): raise ValueError("byteorder must be either 'little' or 'big'") h = b'%x' % num s = bytes((b'0'*(len(h) % 2) + h).zfill(length*2).decode('hex')) if signed: high_set = s[0] & 0x80 if integer > 0 and high_set: raise OverflowError("int too big to convert") if integer < 0 and not high_set: raise OverflowError("int too small to convert") if len(s) > length: raise OverflowError("int too big to convert") return s if byteorder == 'big' else s[::-1] def int_from_bytes(mybytes, byteorder='big', signed=False): """ Return the integer represented by the given array of bytes. The mybytes argument must either support the buffer protocol or be an iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the buffer protocol. The byteorder argument determines the byte order used to represent the integer. If byteorder is 'big', the most significant byte is at the beginning of the byte array. If byteorder is 'little', the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder' as the byte order value. The signed keyword-only argument indicates whether two's complement is used to represent the integer. """ if byteorder not in ('little', 'big'): raise ValueError("byteorder must be either 'little' or 'big'") if isinstance(mybytes, unicode): raise TypeError("cannot convert unicode objects to bytes") # mybytes can also be passed as a sequence of integers on Py3. # Test for this: elif isinstance(mybytes, collections.Iterable): mybytes = bytes(mybytes) b = mybytes if byteorder == 'big' else mybytes[::-1] if len(b) == 0: b = b'\x00' # The encode() method has been disabled by newbytes, but Py2's # str has it: num = int(b.encode('hex'), 16) if signed and (b[0] & 0x80): num = num - (2 ** (len(b)*8)) return num try: from collections import OrderedDict except ImportError: from .ordereddict import OrderedDict try: from logging import NullHandler except ImportError: from .nullhandler import NullHandler def with_metaclass(meta, *bases): """Create a base class with a metaclass.""" # This requires a bit of explanation: the basic idea is to make a dummy # metaclass for one level of class instantiation that replaces itself with # the actual metaclass. class metaclass(meta): def __new__(cls, name, this_bases, d): return meta(name, bases, d) return type.__new__(metaclass, str('temporary_class'), (), {})
tests/test_gammatone_filters.py
glhr/gammatone
176
11185889
#!/usr/bin/env python3 # Copyright 2014 <NAME>, <EMAIL> # # This file is part of the gammatone toolkit, and is licensed under the 3-clause # BSD license: https://github.com/detly/gammatone/blob/master/COPYING import nose import numpy as np import scipy.io from pkg_resources import resource_stream import gammatone.filters REF_DATA_FILENAME = 'data/test_erb_filter_data.mat' INPUT_KEY = 'erb_filter_inputs' RESULT_KEY = 'erb_filter_results' INPUT_COLS = ('fs', 'cfs') RESULT_COLS = ('fcoefs',) def load_reference_data(): """ Load test data generated from the reference code """ # Load test data with resource_stream(__name__, REF_DATA_FILENAME) as test_data: data = scipy.io.loadmat(test_data, squeeze_me=False) zipped_data = zip(data[INPUT_KEY], data[RESULT_KEY]) for inputs, refs in zipped_data: input_dict = dict(zip(INPUT_COLS, map(np.squeeze, inputs))) ref_dict = dict(zip(RESULT_COLS, map(np.squeeze, refs))) yield (input_dict, ref_dict) def test_make_ERB_filters_known_values(): for inputs, refs in load_reference_data(): args = ( inputs['fs'], inputs['cfs'], ) expected = (refs['fcoefs'],) yield MakeERBFiltersTester(args, expected) class MakeERBFiltersTester: def __init__(self, args, expected): self.fs = args[0] self.cfs = args[1] self.expected = expected[0] self.description = ( "Gammatone filters for {:f}, {:.1f} ... {:.1f}".format( float(self.fs), float(self.cfs[0]), float(self.cfs[-1]) )) def __call__(self): result = gammatone.filters.make_erb_filters(self.fs, self.cfs) assert np.allclose(result, self.expected, rtol=1e-6, atol=1e-12) if __name__ == '__main__': nose.main()
migrations/versions/501983249c94_set_on_delete_cascad.py
vault-the/changes
443
11185891
"""Set ON DELETE CASCADE on Patch.* Revision ID: 501983249c94 Revises: 403b3fb41569 Create Date: 2013-12-23 16:12:13.610366 """ # revision identifiers, used by Alembic. revision = '501983249c94' down_revision = '403b3fb41569' from alembic import op def upgrade(): op.drop_constraint('patch_change_id_fkey', 'patch') op.create_foreign_key('patch_change_id_fkey', 'patch', 'change', ['change_id'], ['id'], ondelete='CASCADE') op.drop_constraint('patch_project_id_fkey', 'patch') op.create_foreign_key('patch_project_id_fkey', 'patch', 'project', ['project_id'], ['id'], ondelete='CASCADE') op.drop_constraint('patch_repository_id_fkey', 'patch') op.create_foreign_key('patch_repository_id_fkey', 'patch', 'repository', ['repository_id'], ['id'], ondelete='CASCADE') def downgrade(): pass
app/manifest_worker.py
tappi287/openvr_fsr_app
146
11185895
import concurrent.futures import logging import os from pathlib import Path from typing import Optional, List from .globals import OPEN_VR_DLL, EXE_NAME from .openvr_mod import get_available_mods class ManifestWorker: """ Multi threaded search in steam apps for openvr_api.dll """ max_workers = min(48, int(max(4, os.cpu_count()))) # Number of maximum concurrent workers chunk_size = 16 # Number of Manifests per worker @classmethod def update_steam_apps(cls, steam_apps: dict) -> dict: app_id_list = list(steam_apps.keys()) # -- Split server addresses into chunks for workers manifest_ls_chunks = list() while app_id_list: # -- Create a list of chunk size number of AppIds id_chunk_ls = list() for i in range(min(cls.chunk_size, len(app_id_list))): id_chunk_ls.append(app_id_list.pop()) # -- Append a list of manifests to search thru in this chunk manifest_ls_chunks.append( [steam_apps.get(app_id) for app_id in id_chunk_ls] ) logging.debug('Using %s worker threads to search for OpenVr Api Dll in %s SteamApps in %s chunks.', cls.max_workers, len(steam_apps.keys()), len(manifest_ls_chunks)) with concurrent.futures.ThreadPoolExecutor(max_workers=cls.max_workers) as executor: future_info = { executor.submit(cls.worker, manifest_ls): manifest_ls for manifest_ls in manifest_ls_chunks } for future in concurrent.futures.as_completed(future_info): manifest_chunk = future_info[future] try: manifest_ls = future.result() except Exception as exc: if len(manifest_chunk): logging.error('Chunk %s generated an exception: %s', manifest_chunk[0].get('name'), exc) else: logging.error('Worker generated an exception: %s', exc) else: if not manifest_ls: continue # -- Update SteamApp entries for manifest in manifest_ls: steam_apps[manifest.get('appid')] = manifest return steam_apps @staticmethod def worker(manifest_ls): for manifest in manifest_ls: manifest['openVrDllPaths'] = list() manifest['openVrDllPathsSelected'] = list() manifest['openVr'] = False # -- Test for valid path try: if not manifest['path'] or not Path(manifest['path']).exists(): logging.error('Skipping app with invalid paths: %s', manifest.get('name', 'Unknown')) continue except Exception as e: logging.error('Error reading path for: %s %s', manifest.get('name', 'Unknown'), e) continue # -- LookUp OpenVr Api location(s) try: open_vr_dll_path_ls = ManifestWorker.find_open_vr_dll(Path(manifest['path'])) except Exception as e: logging.error('Error locating OpenVR dll for: %s %s', manifest.get('name', 'Unknown'), e) continue # -- LookUp Executable location(s) try: executable_path_ls = ManifestWorker.find_executables(Path(manifest['path'])) except Exception as e: logging.error('Error locating Executables for: %s %s', manifest.get('name', 'Unknown'), e) continue if open_vr_dll_path_ls: # -- Add OpenVr path info manifest['openVrDllPaths'] = [p.as_posix() for p in open_vr_dll_path_ls] manifest['openVrDllPathsSelected'] = [p.as_posix() for p in open_vr_dll_path_ls] manifest['openVr'] = True # -- Add executables path info manifest['executablePaths'] = [p.as_posix() for p in executable_path_ls] manifest['executablePathsSelected'] = [p.as_posix() for p in executable_path_ls] for mod in get_available_mods(manifest): mod.update_from_disk() return manifest_ls @staticmethod def find_open_vr_dll(base_path: Path) -> List[Optional[Path]]: open_vr_dll_ls: List[Optional[Path]] = list() for file in base_path.glob(f'**/{OPEN_VR_DLL}'): open_vr_dll_ls.append(file) return open_vr_dll_ls @staticmethod def find_executables(base_path: Path) -> List[Optional[Path]]: executable_ls: List[Optional[Path]] = list() for file in base_path.glob(f'**/{EXE_NAME}'): executable_ls.append(file) return executable_ls
Trakttv.bundle/Contents/Libraries/Shared/oem_framework/models/core/base/mapping.py
disrupted/Trakttv.bundle
1,346
11185925
from oem_framework.models.core.base.model import Model from oem_framework.models.core.mixins.names import NamesMixin class BaseMapping(Model, NamesMixin): __slots__ = ['collection'] def __init__(self, collection): self.collection = collection def to_dict(self, key=None, flatten=True): raise NotImplementedError
happytransformer/wp/__init__.py
TheCuriousNerd/happy-transformer
277
11185935
from .trainer import WPTrainer from .default_args import ARGS_WP_TRAIN, ARGS_WP_EVAl, ARGS_WP_TEST name = "happytransformer.mwp"
timemachines/skaters/rvr/rvrsarimax.py
iklasky/timemachines
253
11185944
from timemachines.skaters.rvr.rvrinclusion import using_river from timemachines.skatertools.utilities.conventions import Y_TYPE, A_TYPE, R_TYPE, E_TYPE, T_TYPE, wrap if using_river: from river import linear_model, optim, preprocessing, time_series from timemachines.skatertools.components.parade import parade from timemachines.skatertools.utilities.nonemath import nonecast, nonecenter def rvr_sarimax_factory(y :Y_TYPE, s, k:int, a:A_TYPE =None, t:T_TYPE =None, e:E_TYPE =None, r:R_TYPE=None, p:int=0, d:int=0, q:int=0, m=1, sp:int=0, sq:int=0, intercept_init=110, optim_sgd=0.01, intercept_lr=0.3 ): y = wrap(y) a = wrap(a) if not s.get('k'): s['k']=k s['n'] = len(y) s['p']={} # parade s['model']=None else: assert len(y) == s['n'] assert k == s['k'] if y is None: return None, s, None else: model = s.get('model') if model is None: model = time_series.SNARIMAX(p=p, d=d, q=q, m=m, sp=sp, sq=sq, regressor=( preprocessing.StandardScaler() | linear_model.LinearRegression( intercept_init=intercept_init, optimizer=optim.SGD(optim_sgd), intercept_lr=intercept_lr ) )) x = model.forecast(horizon=1) _we_ignore_bias, x_std, s['p'] = parade(p=s['p'], x=x, y=y[0]) x_std_fallback = nonecast(x_std, fill_value=1.0) model = model.learn_one(x=None,y=y[0]) s['model'] = model return x, x_std_fallback, s
recipes/Python/162224_Check_HTTP_Content_Type/recipe-162224.py
tdiprima/code
2,023
11186001
import urllib from types import * def iscontenttype(URLorFile,contentType='text'): """ Return true or false (1 or 0) based on HTTP Content-Type. Accepts either a url (string) or a "urllib.urlopen" file. Defaults to 'text' type. Only looks at start of content-type, so you can be as vague or precise as you want. For example, 'image' will match 'image/gif' or 'image/jpg'. """ result = 1 try: if type(URLorFile) == StringType: file=urllib.urlopen(URLorFile) else: file = URLorFile testType=file.info().getheader("Content-Type") if testType and testType.find(contentType) == 0: result=1 else: result=0 if type(URLorFile) == StringType: file.close() return result except: return 0
peering/migrations/0031_auto_20190227_2210.py
schiederme/peering-manager
173
11186010
<filename>peering/migrations/0031_auto_20190227_2210.py # Generated by Django 2.1.7 on 2019-02-27 21:10 from django.db import migrations class Migration(migrations.Migration): dependencies = [("peering", "0030_directpeeringsession_router")] operations = [ migrations.AlterModelOptions( name="directpeeringsession", options={"ordering": ["autonomous_system", "ip_address"]}, ), migrations.AlterModelOptions( name="internetexchangepeeringsession", options={"ordering": ["autonomous_system", "ip_address"]}, ), ]
aliyun-python-sdk-hcs-mgw/aliyunsdkhcs_mgw/request/v20171024/CreateRemoteRequest.py
yndu13/aliyun-openapi-python-sdk
1,001
11186019
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class CreateRemoteRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'hcs-mgw', '2017-10-24', 'CreateRemote') self.set_method('POST') def get_RemoteName(self): return self.get_query_params().get('RemoteName') def set_RemoteName(self,RemoteName): self.add_query_param('RemoteName',RemoteName) def get_MountPoint(self): return self.get_query_params().get('MountPoint') def set_MountPoint(self,MountPoint): self.add_query_param('MountPoint',MountPoint) def get_Path(self): return self.get_query_params().get('Path') def set_Path(self,Path): self.add_query_param('Path',Path) def get_Password(self): return self.get_query_params().get('Password') def set_Password(self,Password): self.add_query_param('Password',Password) def get_RemoteHost(self): return self.get_query_params().get('RemoteHost') def set_RemoteHost(self,RemoteHost): self.add_query_param('RemoteHost',RemoteHost) def get_VpcId(self): return self.get_query_params().get('VpcId') def set_VpcId(self,VpcId): self.add_query_param('VpcId',VpcId) def get_MountType(self): return self.get_query_params().get('MountType') def set_MountType(self,MountType): self.add_query_param('MountType',MountType) def get_RemoteType(self): return self.get_query_params().get('RemoteType') def set_RemoteType(self,RemoteType): self.add_query_param('RemoteType',RemoteType) def get_UserName(self): return self.get_query_params().get('UserName') def set_UserName(self,UserName): self.add_query_param('UserName',UserName)
aleph/logic/diagrams.py
tolgatasci/aleph
1,213
11186028
import logging from uuid import uuid4 from flask import render_template from tempfile import NamedTemporaryFile from pantomime.types import HTML from aleph import settings from aleph.core import archive from aleph.index.entities import entities_by_ids log = logging.getLogger(__name__) FIELDS = ["id", "schema", "properties"] def publish_diagram(entityset): embed = render_diagram(entityset) with NamedTemporaryFile("w") as fh: fh.write(embed) fh.flush() publish_id = uuid4().hex embed_path = f"embeds/{entityset.id}/{publish_id}.html" url = archive.publish_file(fh.name, embed_path, mime_type=HTML) return {"embed": embed, "url": url} def render_diagram(entityset): """Generate an HTML snippet from a diagram object.""" entity_ids = entityset.entities entities = [] for entity in entities_by_ids(entity_ids, cached=True): for field in list(entity.keys()): if field not in FIELDS: entity.pop(field) entities.append(entity) # TODO: add viewport return render_template( "diagram.html", data={ "entities": entities, "layout": entityset.layout, "viewport": {"center": {"x": 0, "y": 0}}, }, entityset=entityset, settings=settings, )
python/ql/test/library-tests/frameworks/pycurl/test.py
RoryPreddyGithubEnterprise/codeql
643
11186108
<gh_stars>100-1000 import pycurl c = pycurl.Curl() c.setopt(pycurl.URL, "url") # $ clientRequestUrlPart="url"
recipes/Python/578988_Money_Game/recipe-578988.py
tdiprima/code
2,023
11186109
<filename>recipes/Python/578988_Money_Game/recipe-578988.py """A simple money counting game for kids.""" import random import sys class Money: def __init__(self): pass @staticmethod def display_intro(): """Display the introduction at the start of program execution.""" print('*' * 75) print('This is a simple money countinggame to help kids learn ' 'to count money.') print('The program helps kids learn various change amounts in US ' 'currency.') print('*' * 75) def start(self): """Randomly display an amount of change and ask how many of each coin type are needed to equal the amount displayed. """ self.display_intro() currency_amt = random.randint(1, 99) print('\nHow much change is needed to equal .{0} cents?\n' .format(str(currency_amt))) your_total_amt = get_input_values(currency_amt) if sum(your_total_amt) == 0: print('Thank you for playing.') sys.exit(0) else: if your_total_amt[0] > 1 or your_total_amt[0] == 0: quarter_spelling = 'quarters' else: quarter_spelling = 'quarter' if your_total_amt[1] > 1 or your_total_amt[1] == 0: dime_spelling = 'dimes' else: dime_spelling = 'dime' if your_total_amt[2] > 1 or your_total_amt[2] == 0: nickel_spelling = 'nickels' else: nickel_spelling = 'nickel' if your_total_amt[3] > 1 or your_total_amt[3] == 0: penny_spelling = 'pennies' else: penny_spelling = 'penny' print('\nCorrect! You entered {0:d} {1}, {2:d} {3},' ' {4:d} {5} and {6:d} {7}.'.format(your_total_amt[0], quarter_spelling, your_total_amt[1], dime_spelling, your_total_amt[2], nickel_spelling, your_total_amt[3], penny_spelling)) print('Which equals .{0} cents. Nice job!' .format(str(currency_amt))) response = input('\nWould you like to try again? ') if response.lower() != 'y': print('Thanks for playing.') sys.exit(0) self.start() def get_input_values(currency_amt): """Main logic of the program that tallies the value of each entered coin. Validation on the values entered is also performed. """ quarter = 25 dime = 10 nickel = 5 penny = 1 total_amt = 0 total_quarters = 0 total_dimes = 0 total_nickels = 0 total_pennies = 0 print('Enter change in the form of (25 = quarter, 10 = dime,' ' 5 = nickel, 1 = penny)') coin_value = input('Enter coin amount: ') while len(coin_value) > 0: try: coin_amt = int(coin_value) if not coin_amt not in (quarter, dime, nickel, penny): if coin_amt < currency_amt or coin_amt < total_amt: if (coin_amt + total_amt) <= currency_amt: if (coin_amt + total_amt) != currency_amt: if coin_amt == 25: total_quarters += 1 total_amt += quarter elif coin_amt == 10: total_dimes += 1 total_amt += dime elif coin_amt == 5: total_nickels += 1 total_amt += nickel elif coin_amt == 1: total_pennies += 1 total_amt += penny else: print('This is not a valid amount!\n') print('Enter change in the form of (25 = quarter,' ' 10 = dime, 5 = nickel, 1 = penny)') coin_value = input('\nEnter coin amount: ') else: if coin_amt == 25: total_quarters += 1 elif coin_amt == 10: total_dimes += 1 elif coin_amt == 5: total_nickels += 1 elif coin_amt == 1: total_pennies += 1 break else: print('You have entered more than I currently have' ' totalled up!') print('\nI currently have a total of .{0} and need to get to .{1}' .format(str(total_amt), str(currency_amt))) print('Enter change in the form of (25 = quarter,' ' 10 = dime, 5 = nickel, 1 = penny)') coin_value = input('\nEnter coin amount: ') else: if (coin_amt + total_amt) > currency_amt: print('You entered more than what I need') print('Enter change in the form of (25 = quarter,' ' 10 = dime, 5 = nickel, 1 = penny)') coin_value = input('\nEnter coin amount: ') if (coin_amt + total_amt) != currency_amt: print('\nEnter change in the form of (25 = quarter,' ' 10 = dime, 5 = nickel, 1 = penny)') coin_value = input('\nEnter coin amount: ') else: if coin_amt == 25: total_quarters += 1 elif coin_amt == 10: total_dimes += 1 elif coin_amt == 5: total_nickels += 1 elif coin_amt == 1: total_pennies += 1 break else: print('This is not a valid amount!\n') print('\nEnter change in the form of (25 = quarter,' ' 10 = dime, 5 = nickel, 1 = penny)') coin_value = input('\nEnter coin amount: ') except ValueError: print('This is not a valid amount!') coin_value = input('\nEnter coin amount: ') currency_totals = (total_quarters, total_dimes, total_nickels, total_pennies) return currency_totals if __name__ == '__main__': money_game = Money() money_game.start()
benchmarks/tpch-pyarrow-p.py
ritchie46/connector-x
565
11186139
""" Usage: tpch-pyarrow-p.py <num> Options: -h --help Show this screen. --version Show version. """ import io import itertools import os from multiprocessing import Pool from typing import Any, List import numpy as np import pyarrow as pa from contexttimer import Timer from docopt import docopt from pyarrow import csv from sqlalchemy import create_engine def get_sqls(table: str, count: int) -> List[str]: sqls = [] split = np.linspace(0, 60000000, num=count + 1, endpoint=True, dtype=int) for i in range(len(split) - 1): sqls.append( f"""SELECT l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity::float8, l_extendedprice::float8, l_discount::float8, l_tax::float8, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment FROM {table} WHERE l_orderkey > {split[i]} and l_orderkey <= {split[i+1]}""" ) return sqls def func(id: int, conn: str, query: str) -> Any: engine = create_engine(conn) conn = engine.connect() cur = conn.connection.cursor() store = io.BytesIO() with Timer() as timer: cur.copy_expert(f"COPY ({query}) TO STDOUT WITH CSV HEADER;", store) print(f"[Copy {id}] {timer.elapsed:.2f}s") store.seek(0) with Timer() as timer: df = csv.read_csv(store, read_options=csv.ReadOptions(use_threads=False)) print(f"[Read CSV {id}] {timer.elapsed:.2f}s") return df if __name__ == "__main__": args = docopt(__doc__, version="1.0") conn = os.environ["POSTGRES_URL"] table = os.environ["POSTGRES_TABLE"] queries = get_sqls(table, int(args["<num>"])) print(f"number of threads: {len(queries)}\nsqls: {queries}") with Timer() as timer, Pool(len(queries)) as pool: dfs = pool.starmap( func, zip(range(len(queries)), itertools.repeat(conn), queries) ) print(f"[All Jobs] {timer.elapsed:.2f}s") with Timer() as timer: df = pa.concat_tables(dfs) print(f"[Concat] {timer.elapsed:.2f}s") with Timer() as timer: df = df.to_pandas() print(f"[To Pandas] {timer.elapsed:.2f}s") print(df.head())
icevision/models/mmdet/lightning/__init__.py
ai-fast-track/mantisshrimp
580
11186177
from icevision.models.mmdet.lightning.model_adapter import *
examples/getting_started/plot_nested_pipelines.py
vincent-antaki/Neuraxle
519
11186209
""" Create Nested Pipelines in Neuraxle ================================================ You can create pipelines within pipelines using the composition design pattern. This demonstrates how to create pipelines within pipelines, and how to access the steps and their attributes in the nested pipelines. For more info, see the `thread here <https://stackoverflow.com/questions/28822756/getting-model-attributes-from-scikit-learn-pipeline/58359509#58359509>`__. .. Copyright 2019, Neuraxio Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. .. Thanks to Umaneo Technologies Inc. for their contributions to this Machine Learning project, visit https://www.umaneo.com/ for more information on Umaneo Technologies Inc. """ import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from neuraxle.base import Identity from neuraxle.pipeline import Pipeline def main(): np.random.seed(42) X = np.random.randint(5, size=(100, 5)) # Create and fit the pipeline: pipeline = Pipeline([ StandardScaler(), Identity(), Pipeline([ Identity(), Identity(), # Note: an Identity step is a step that does nothing. Identity(), # We use it here for demonstration purposes. Pipeline([ Identity(), PCA(n_components=2) ]) ]) ]) pipeline, X_t = pipeline.fit_transform(X) # Get the components: pca_components = pipeline["Pipeline"]["Pipeline"][-1].get_wrapped_sklearn_predictor().components_ assert pca_components.shape == (2, 5) # Discussion: # https://stackoverflow.com/questions/28822756/getting-model-attributes-from-scikit-learn-pipeline/58359509#58359509 if __name__ == "__main__": main()
tests/api/product_tests.py
prdonahue/overholt
1,152
11186230
# -*- coding: utf-8 -*- """ tests.api.product_tests ~~~~~~~~~~~~~~~~~~~~~~~ api product tests module """ from ..factories import CategoryFactory, ProductFactory from . import OverholtApiTestCase class ProductApiTestCase(OverholtApiTestCase): def _create_fixtures(self): super(ProductApiTestCase, self)._create_fixtures() self.category = CategoryFactory() self.product = ProductFactory(categories=[self.category]) def test_get_products(self): r = self.jget('/products') self.assertOkJson(r) def test_get_product(self): r = self.jget('/products/%s' % self.product.id) self.assertOkJson(r) def test_create_product(self): r = self.jpost('/products', data={ 'name': 'New Product', 'categories': [self.category.id] }) self.assertOkJson(r) def test_create_invalid_product(self): r = self.jpost('/products', data={ 'categories': [self.category.id] }) self.assertBadJson(r) def test_update_product(self): r = self.jput('/products/%s' % self.product.id, data={ 'name': 'New Product' }) self.assertOkJson(r) def test_delete_product(self): r = self.jdelete('/products/%s' % self.product.id) self.assertStatusCode(r, 204)
bench/convert.py
security-geeks/paratext
1,145
11186350
<reponame>security-geeks/paratext #!/usr/bin/env python import pandas import pickle import feather import h5py import numpy as np import scipy.io as sio import os import sys def convert_feather(df, output_filename): feather.write_dataframe(df, output_filename) def convert_hdf5(df, output_filename): X = df.values f = h5py.File(output_filename, "w") ds=f.create_dataset("mydataset", X.shape, dtype=X.dtype) ds[...] = X def convert_npy(df, output_filename): X = df.values np.save(output_filename, X) def convert_pkl(df, output_filename): fid = open(output_filename, "wb") pickle.dump(df, fid) fid.close() def convert_mat(df, output_filename): dd = {key: df[key].values.flatten() for key in df.keys()} sio.savemat(output_filename, dd) input_filename = sys.argv[1] output_filenames = sys.argv[2:] if not input_filename.endswith(".csv"): print "input must be a CSV file (by extension)" sys.exit(1) df = paratext.load_csv_to_pandas(input_filename, allow_quoted_newlines=True) for output_filename in output_filenames: _, extension = os.path.splitext(output_filename) if extension == ".hdf5": convert_hdf5(df, output_filename) elif extension == ".feather": convert_feather(df, output_filename) elif extension == ".pkl": convert_pkl(df, output_filename) elif extension == ".npy": convert_npy(df, output_filename) elif extension == ".mat": convert_mat(df, output_filename) else: print "skipping '%s'; invalid output format '%s'" % (output_filename, extension)
lib/stripe_lib/enums.py
goztrk/django-htk
206
11186416
<reponame>goztrk/django-htk # Python Standard Library Imports from enum import Enum class StripeProductType(Enum): good = 1 service = 2 class StripePlanInterval(Enum): day = 1 week = 2 month = 3 year = 4
lldb/packages/Python/lldbsuite/test/functionalities/data-formatter/varscript_formatting/helperfunc.py
medismailben/llvm-project
2,338
11186424
import lldb def f(value, d): return "pointer type" if value.GetType().GetTemplateArgumentType( 0).IsPointerType() else "non-pointer type"
jupyterlab_git/tests/test_single_file_log.py
bsande6/jupyterlab-git
1,097
11186452
<reponame>bsande6/jupyterlab-git from pathlib import Path from unittest.mock import patch import pytest from jupyterlab_git.git import Git from .testutils import maybe_future @pytest.mark.asyncio async def test_single_file_log(): with patch("jupyterlab_git.git.execute") as mock_execute: # Given process_output = [ "8852729159bef63d7197f8aa26355b387283cb58", "Lazy Senior Developer", "2 hours ago", "Something", "0 1 folder/test.txt\x00\x00e6d4eed300811e886cadffb16eeed19588eb5eec", "Lazy Senior Developer", "18 hours ago", "move test.txt to folder/test.txt", "0 0 \x00test.txt\x00folder/test.txt\x00\x00263f762e0aad329c3c01bbd9a28f66403e6cfa5f", "Lazy Senior Developer", "18 hours ago", "append more to test.txt", "1 0 test.txt\x00\x00d19001d71bb928ec9ed6ae3fe1bfc474e1b771d0", "Lazy Senior Developer", "18 hours ago", "add test.txt to root", "1 0 test.txt\x00", ] mock_execute.return_value = maybe_future((0, "\n".join(process_output), "")) expected_response = { "code": 0, "commits": [ { "commit": "<KEY>", "author": "Lazy Senior Developer", "date": "2 hours ago", "commit_msg": "Something", "pre_commit": "e6d4eed300811e886cadffb16eeed19588eb5eec", "is_binary": False, "file_path": "folder/test.txt", }, { "commit": "e6d4eed300811e886cadffb16eeed19588eb5eec", "author": "Lazy Senior Developer", "date": "18 hours ago", "commit_msg": "move test.txt to folder/test.txt", "pre_commit": "<KEY>", "is_binary": False, "file_path": "folder/test.txt", "previous_file_path": "test.txt", }, { "commit": "<KEY>", "author": "Lazy Senior Developer", "date": "18 hours ago", "commit_msg": "append more to test.txt", "pre_commit": "d19001d71bb928ec9ed6ae3fe1bfc474e1b771d0", "is_binary": False, "file_path": "test.txt", }, { "commit": "d19001d71bb928ec9ed6ae3fe1bfc474e1b771d0", "author": "Lazy Senior Developer", "date": "18 hours ago", "commit_msg": "add test.txt to root", "pre_commit": "", "is_binary": False, "file_path": "test.txt", }, ], } # When actual_response = await Git().log( path=str(Path("/bin/test_curr_path")), history_count=25, follow_path="folder/test.txt", ) # Then mock_execute.assert_called_once_with( [ "git", "log", "--pretty=format:%H%n%an%n%ar%n%s", "-25", "-z", "--numstat", "--follow", "--", "folder/test.txt", ], cwd=str(Path("/bin") / "test_curr_path"), ) assert expected_response == actual_response
plyer/platforms/android/devicename.py
lcs-d3v/plyer
1,184
11186455
<gh_stars>1000+ ''' Module of Android API for plyer.devicename. ''' from jnius import autoclass from plyer.facades import DeviceName Build = autoclass('android.os.Build') class AndroidDeviceName(DeviceName): ''' Implementation of Android devicename API. ''' def _get_device_name(self): """ Method to get the device name aka model in an android environment. Changed the implementation from 'android.provider.Settings.Global' to 'android.os.Build' because 'android.provider.Settings.Global' was introduced in API 17 whereas 'android.os.Build' is present since API 1 Thereby making this method more backward compatible. """ return Build.MODEL def instance(): ''' Instance for facade proxy. ''' return AndroidDeviceName()
osr2mp4/VideoProcess/Setup.py
ADoesGit/osr2mp4-core
103
11186465
<filename>osr2mp4/VideoProcess/Setup.py import numpy as np from PIL import Image from recordclass import recordclass FrameInfo = recordclass("FrameInfo", "cur_time index_hitobj info_index osr_index index_fp obj_endtime x_end y_end, break_index") CursorEvent = recordclass("CursorEvent", "event old_x old_y") def get_buffer(img, settings): np_img = np.frombuffer(img, dtype=np.uint8) np_img = np_img.reshape((settings.height, settings.width, 4)) pbuffer = Image.frombuffer("RGBA", (settings.width, settings.height), np_img, 'raw', "RGBA", 0, 1) pbuffer.readonly = False return np_img, pbuffer
generalization/utils/client_data_utils_test.py
garyxcheng/federated
330
11186505
<filename>generalization/utils/client_data_utils_test.py # Copyright 2021, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for client_data_utils.""" import collections import math from absl.testing import parameterized import tensorflow as tf import tensorflow_federated as tff from generalization.utils import client_data_utils _unpack_fn = lambda fds: [list(ds) for ds in fds] _unpack_ds_to_list = lambda ds: [t.numpy() for t in ds] def _create_test_client_data(num_clients=10, samples_per_client=10): return tff.simulation.datasets.TestClientData({ str(i): [i + j for j in range(samples_per_client) ] for i in range(num_clients) }) def _build_fake_elem(x): return collections.OrderedDict([('a', 1 + x), ('b', 3 + x), ('c', 5.0 + x)]) class TestConvertToTensorSlices(tf.test.TestCase): """Test for convert_to_tensor_slices.""" def test_convert_list_of_elems_to_tensor_slices(self): list_of_elems = [_build_fake_elem(x) for x in range(5)] tensor_slices = client_data_utils.convert_list_of_elems_to_tensor_slices( list_of_elems) self.assertEqual(type(tensor_slices), collections.OrderedDict) self.assertEqual(list(tensor_slices.keys()), ['a', 'b', 'c']) self.assertAllEqual(tensor_slices['a'], tf.constant(range(1, 6))) self.assertAllEqual(tensor_slices['b'], tf.constant(range(3, 8))) self.assertAllEqual(tensor_slices['c'], tf.constant(range(5, 10), dtype=float)) def test_convert_dataset_to_tensor_slices_reconstructs_client_data(self): cd = tff.simulation.datasets.TestClientData({ str(i): collections.OrderedDict(a=[i + j for j in range(5)]) for i in range(6) }) tensor_slices_dict = dict() for client_id in cd.client_ids: local_ds = cd.create_tf_dataset_for_client(client_id) tensor_slices_dict[ client_id] = client_data_utils.convert_list_of_elems_to_tensor_slices( list(local_ds)) reconstruct_cd = tff.simulation.datasets.TestClientData(tensor_slices_dict) self.assertCountEqual(reconstruct_cd.client_ids, cd.client_ids) self.assertEqual(reconstruct_cd.element_type_structure, cd.element_type_structure) for client_id in cd.client_ids: reconstruct_ds = reconstruct_cd.create_tf_dataset_for_client(client_id) reconstruct_ds_list = [elem['a'].numpy() for elem in reconstruct_ds] ds = cd.create_tf_dataset_for_client(client_id) ds_list = [elem['a'].numpy() for elem in ds] self.assertEqual(reconstruct_ds_list, ds_list) class TestSubsampleListByProportion(tf.test.TestCase, parameterized.TestCase): """Test for subsample_list_by_proportion.""" @parameterized.product( input_len=[5, 9], proportion=[0.0, 0.5, 1.0], seed=[0, 1, None]) def test_correct_length(self, input_len, proportion, seed): input_list = list(range(input_len)) result_list = client_data_utils.subsample_list_by_proportion( input_list, proportion, seed=seed) self.assertLen(result_list, round(input_len * proportion)) @parameterized.product( input_len=[5, 9], proportion=[0.0, 0.5, 1.0], ) def test_use_seed(self, input_len, proportion): input_list = list(range(input_len)) result_list_1 = client_data_utils.subsample_list_by_proportion( input_list, proportion, seed=1) result_list_2 = client_data_utils.subsample_list_by_proportion( input_list, proportion, seed=1) self.assertEqual(result_list_1, result_list_2) class InterleaveCreateTFDatasetFromAllClients(tf.test.TestCase, parameterized.TestCase): """Test for `interleave_create_tf_dataset_from_all_clients`.""" @parameterized.named_parameters(('seed=None', None), ('seed=1', 1)) def test_interleave_create_tf_dataset_from_all_clients(self, seed): client_data = _create_test_client_data(5, 4) tf_dataset = client_data_utils.interleave_create_tf_dataset_from_all_clients( cd=client_data, seed=seed) self.assertIsInstance(tf_dataset, tf.data.Dataset) expected_dataset = client_data.create_tf_dataset_from_all_clients() self.assertCountEqual([t.numpy() for t in tf_dataset], [t.numpy() for t in expected_dataset]) def test_interleave_create_tf_dataset_from_all_clients_uses_random_seed(self): client_data = _create_test_client_data(5, 4) tf_dataset1 = client_data_utils.interleave_create_tf_dataset_from_all_clients( client_data, seed=1) tf_dataset2 = client_data_utils.interleave_create_tf_dataset_from_all_clients( client_data, seed=1) tf_dataset3 = client_data_utils.interleave_create_tf_dataset_from_all_clients( client_data, seed=2) # We take only the 'x' elements to do exact comparisons. dataset1_elements = [t.numpy() for t in tf_dataset1] dataset2_elements = [t.numpy() for t in tf_dataset2] dataset3_elements = [t.numpy() for t in tf_dataset3] self.assertAllEqual(dataset1_elements, dataset2_elements) self.assertNotAllEqual(dataset1_elements, dataset3_elements) self.assertCountEqual(dataset1_elements, dataset3_elements) class HorizontalSplitClientDataTest(tf.test.TestCase, parameterized.TestCase): """Test for client_data_utils.horizontal_split_client_data.""" @parameterized.named_parameters( (f'first_second_ratio={ratio}, num_elems_per_client={elems}', ratio, elems) for ratio, elems in ((1, 2), (3, 2), (3, 6), (4, 10))) def test_dataset_has_correct_length(self, ratio, num_elems_per_client): num_clients = 3 cd = _create_test_client_data(num_clients, num_elems_per_client) first_cd, second_cd = client_data_utils.horizontal_split_client_data( cd, first_second_ratio_for_each_client=ratio, shuffle_before_split=True) self.assertListEqual(cd.client_ids, first_cd.client_ids) self.assertListEqual(cd.client_ids, second_cd.client_ids) second_cd_expected_elems_per_client = math.ceil(num_elems_per_client / (ratio + 1)) first_cd_expected_elems_per_client = num_elems_per_client - second_cd_expected_elems_per_client for client_id in cd.client_ids: self.assertLen( list(first_cd.create_tf_dataset_for_client(client_id)), first_cd_expected_elems_per_client) self.assertLen( list(second_cd.create_tf_dataset_for_client(client_id)), second_cd_expected_elems_per_client) @parameterized.named_parameters( (f'first_second_ratio={ratio}', ratio) for ratio in range(1, 4)) def test_remove_single_elem_input_clients(self, ratio): cd = tff.simulation.datasets.TestClientData({ '1': [1.0], '2': [1.0, 2.0], '3': [1.0, 2.0, 3.0] }) first_cd, second_cd = client_data_utils.horizontal_split_client_data( cd, first_second_ratio_for_each_client=ratio, remove_single_elem_input_clients=True) self.assertCountEqual(first_cd.client_ids, ['2', '3']) self.assertCountEqual(second_cd.client_ids, ['2', '3']) @parameterized.named_parameters( ('unshuffled', False, None, None), ('unshuffled_with_redundant_seed', False, 1, 2), ('shuffle_with_same_seed', True, 1, 1)) def test_split_is_the_same_when_intended(self, shuffle_before_split, shuffle_seed1, shuffle_seed2): num_clients = 3 num_elems_per_client = 10 ratio = 3 cd = _create_test_client_data(num_clients, num_elems_per_client) first_cd1, second_cd1 = client_data_utils.horizontal_split_client_data( cd, first_second_ratio_for_each_client=ratio, shuffle_before_split=shuffle_before_split, shuffle_seed=shuffle_seed1) first_cd2, second_cd2 = client_data_utils.horizontal_split_client_data( cd, first_second_ratio_for_each_client=ratio, shuffle_before_split=shuffle_before_split, shuffle_seed=shuffle_seed2) for client_id in cd.client_ids: self.assertListEqual( list(first_cd1.create_tf_dataset_for_client(client_id)), list(first_cd2.create_tf_dataset_for_client(client_id))) self.assertListEqual( list(second_cd1.create_tf_dataset_for_client(client_id)), list(second_cd2.create_tf_dataset_for_client(client_id))) @parameterized.named_parameters(('unshuffled', False, None), ('unshuffled_with_redundant_seed', False, 1), ('shuffle_with_none_seed', True, None), ('shuffle_with_int_seed', True, 1)) def test_not_reshuffled_when_repeated(self, shuffle_before_split, shuffle_seed): num_clients = 3 num_elems_per_client = 10 ratio = 3 cd = _create_test_client_data(num_clients, num_elems_per_client) first_cd, second_cd = client_data_utils.horizontal_split_client_data( cd, first_second_ratio_for_each_client=ratio, shuffle_before_split=shuffle_before_split, shuffle_seed=shuffle_seed) first_cd = first_cd.preprocess(lambda ds: ds.repeat(2)) second_cd = second_cd.preprocess(lambda ds: ds.repeat(2)) for client_id in cd.client_ids: for preproc_cd in (first_cd, second_cd): ds = preproc_cd.create_tf_dataset_for_client(client_id) list_of_ds = list(ds) self.assertListEqual(list_of_ds[:len(list_of_ds) // 2], list_of_ds[len(list_of_ds) // 2:]) class HorizontalConcatClientDataTest(tf.test.TestCase, parameterized.TestCase): """Test for client_data_utils.horizontal_concat_client_data.""" def test_horizontal_concat(self): cd1 = _create_test_client_data(5, 3) cd2 = _create_test_client_data(5, 4) result_cd = client_data_utils.horizontal_concat_client_data(cd1, cd2) self.assertCountEqual(result_cd.client_ids, cd1.client_ids) for client_id in result_cd.client_ids: expected_data = list(cd1.create_tf_dataset_for_client(client_id)) + list( cd2.create_tf_dataset_for_client(client_id)) self.assertLen( list(result_cd.create_tf_dataset_for_client(client_id)), len(expected_data)) @parameterized.named_parameters( (f'first_second_ratio={ratio}, num_elems_per_client={elems}', ratio, elems) for ratio, elems in ((1, 2), (3, 2), (3, 6), (4, 10))) def test_split_and_concat_are_reversible_up_to_local_order( self, ratio, elems): original_cd = _create_test_client_data(5, elems) cd1, cd2 = client_data_utils.horizontal_split_client_data( original_cd, first_second_ratio_for_each_client=ratio) concat_cd = client_data_utils.horizontal_concat_client_data(cd1, cd2) self.assertCountEqual(concat_cd.client_ids, original_cd.client_ids) for cid in concat_cd.client_ids: concat_ds = concat_cd.create_tf_dataset_for_client(cid) original_ds = original_cd.create_tf_dataset_for_client(cid) self.assertCountEqual([t.numpy() for t in concat_ds], [t.numpy() for t in original_ds]) def test_raises_value_error_if_client_ids_are_different(self): cd1 = _create_test_client_data(5, 3) cd2 = _create_test_client_data(4, 3) with self.assertRaises(ValueError): client_data_utils.horizontal_concat_client_data(cd1, cd2) class VerticalSubsetClientData(tf.test.TestCase, parameterized.TestCase): """Test for client_data_utils.vertical_subset_client_data.""" def test_vertical_subset(self): cd = _create_test_client_data(5, 3) subset_client_ids = ['0', '1', '2', '3'] subset_cd = client_data_utils.vertical_subset_client_data( cd, subset_client_ids) self.assertCountEqual(subset_cd.client_ids, subset_client_ids) expected_subset_cd = _create_test_client_data(4, 3) for cid in subset_client_ids: result_ds = subset_cd.dataset_computation(cid) expected_ds = expected_subset_cd.create_tf_dataset_for_client(cid) self.assertCountEqual([t.numpy() for t in result_ds], [t.numpy() for t in expected_ds]) def test_raises_value_error_if_client_ids_are_not_subset(self): cd = _create_test_client_data(5, 3) subset_client_ids = ['1', '6'] with self.assertRaises(ValueError): client_data_utils.vertical_subset_client_data(cd, subset_client_ids) class ThreeWaySplitFromHorizontalSplitTest(tf.test.TestCase, parameterized.TestCase): """Test for client_data_utils.construct_three_way_split_from_predefined_horizontal_split.""" @parameterized.product( include_unpart_train_for_val=[True, False], max_elements_per_client=[None, 2]) def test_load_partitioned_tff_original_emnist_client_data( self, include_unpart_train_for_val, max_elements_per_client): unpart_clients_proportion = 0.5 part_clients_subsampling_rate = 0.5 num_clients = 5 num_train_elems_per_client = 7 num_val_elems_per_client = 3 train_cd_orig = _create_test_client_data(num_clients, num_train_elems_per_client) val_cd_orig = _create_test_client_data(num_clients, num_val_elems_per_client) (part_train_cd, part_val_cd, unpart_cd ) = client_data_utils.construct_three_way_split_from_predefined_horizontal_split( train_cd_orig, val_cd_orig, unpart_clients_proportion=unpart_clients_proportion, part_clients_subsampling_rate=part_clients_subsampling_rate, include_unpart_train_for_val=include_unpart_train_for_val, max_elements_per_client=max_elements_per_client) # Assert the returned client_datas have the correct number of clients. all_client_ids = train_cd_orig.client_ids total_clients = len(all_client_ids) expected_unpart_clients = round(total_clients * unpart_clients_proportion) expected_part_clients = round((total_clients - expected_unpart_clients) * part_clients_subsampling_rate) self.assertLen(part_train_cd.client_ids, expected_part_clients) self.assertLen(part_val_cd.client_ids, expected_part_clients) self.assertLen(unpart_cd.client_ids, expected_unpart_clients) # Assert the correctness of client_ids. self.assertCountEqual(part_train_cd.client_ids, part_val_cd.client_ids) # Assert detailed equivalence. test_part_client_id = part_train_cd.client_ids[0] part_train_cd_ds = part_train_cd.create_tf_dataset_for_client( test_part_client_id) expected_len = len( list(train_cd_orig.create_tf_dataset_for_client(test_part_client_id))) if max_elements_per_client is not None: expected_len = min(max_elements_per_client, expected_len) self.assertLen(list(part_train_cd_ds), expected_len) part_val_cd_ds = part_val_cd.create_tf_dataset_for_client( test_part_client_id) expected_len = len( list(val_cd_orig.create_tf_dataset_for_client(test_part_client_id))) if max_elements_per_client is not None: expected_len = min(max_elements_per_client, expected_len) self.assertLen(list(part_val_cd_ds), expected_len) test_unpart_client_id = unpart_cd.client_ids[0] unpart_cd_ds = unpart_cd.create_tf_dataset_for_client(test_unpart_client_id) expected_ds = val_cd_orig.create_tf_dataset_for_client( test_unpart_client_id) if include_unpart_train_for_val: expected_ds = expected_ds.concatenate( train_cd_orig.create_tf_dataset_for_client(test_unpart_client_id)) expected_len = len(list(expected_ds)) if max_elements_per_client is not None: expected_len = min(max_elements_per_client, expected_len) self.assertLen(list(unpart_cd_ds), expected_len) class CanonicalThreeWayPartitionTest(tf.test.TestCase, parameterized.TestCase): """Test for client_data_utils.canonical_three_way_partition_client_data.""" @parameterized.product( part_clients_subsampling_rate=[0.5, 1.0], include_unpart_train_for_val=[True, False], max_elements_per_client=[None, 2]) def test_dataset_has_correct_length(self, part_clients_subsampling_rate, include_unpart_train_for_val, max_elements_per_client): num_clients = 5 num_elems_per_client = 7 unpart_clients_proportion = 0.2 train_val_ratio_intra_client = 4 cd = _create_test_client_data(num_clients, num_elems_per_client) (part_train_cd, part_val_cd, unpart_cd) = client_data_utils.canonical_three_way_partition_client_data( cd, unpart_clients_proportion=unpart_clients_proportion, train_val_ratio_intra_client=train_val_ratio_intra_client, part_clients_subsampling_rate=part_clients_subsampling_rate, include_unpart_train_for_val=include_unpart_train_for_val, max_elements_per_client=max_elements_per_client, ) expected_num_unpart_clients = round(num_clients * unpart_clients_proportion) expected_num_part_clients = round( (num_clients - expected_num_unpart_clients) * part_clients_subsampling_rate) self.assertLen(part_train_cd.client_ids, expected_num_part_clients) self.assertLen(part_val_cd.client_ids, expected_num_part_clients) self.assertLen(unpart_cd.client_ids, expected_num_unpart_clients) self.assertCountEqual(part_train_cd.client_ids, part_val_cd.client_ids) self.assertEmpty(set(part_train_cd.client_ids) & set(unpart_cd.client_ids)) self.assertTrue( set(part_train_cd.client_ids + unpart_cd.client_ids).issubset( cd.client_ids)) # Fine-grained check: expected_val_per_client = (num_elems_per_client + train_val_ratio_intra_client) // ( train_val_ratio_intra_client + 1) expected_train_per_client = num_elems_per_client - expected_val_per_client if max_elements_per_client is not None: expected_train_per_client = min(expected_train_per_client, max_elements_per_client) expected_val_per_client = min(expected_val_per_client, max_elements_per_client) for client_id in part_train_cd.client_ids: part_train_ds = part_train_cd.create_tf_dataset_for_client(client_id) part_val_ds = part_val_cd.create_tf_dataset_for_client(client_id) part_train_ds_list = list(part_train_ds) part_val_ds_list = list(part_val_ds) self.assertLen(part_train_ds_list, expected_train_per_client) self.assertLen(part_val_ds_list, expected_val_per_client) if include_unpart_train_for_val: expected_unpart_len = num_elems_per_client else: expected_unpart_len = expected_val_per_client if max_elements_per_client is not None: expected_unpart_len = min(max_elements_per_client, expected_unpart_len) for client_id in unpart_cd.client_ids: unpart_ds = unpart_cd.create_tf_dataset_for_client(client_id) unpart_ds_list = list(unpart_ds) self.assertLen(unpart_ds_list, expected_unpart_len) @parameterized.product( part_clients_subsampling_rate=[0.5, 1.0], include_unpart_train_for_val=[True, False], max_elements_per_client=[None, 2]) def test_three_way_partition_use_seed(self, part_clients_subsampling_rate, include_unpart_train_for_val, max_elements_per_client): num_clients = 6 num_elems_per_client = 7 unpart_clients_proportion = 0.2 train_val_ratio_intra_client = 4 cd = _create_test_client_data(num_clients, num_elems_per_client) (part_train_cd, part_val_cd, unpart_cd) = client_data_utils.canonical_three_way_partition_client_data( cd, unpart_clients_proportion=unpart_clients_proportion, train_val_ratio_intra_client=train_val_ratio_intra_client, part_clients_subsampling_rate=part_clients_subsampling_rate, include_unpart_train_for_val=include_unpart_train_for_val, max_elements_per_client=max_elements_per_client, seed=1) part_train_cd_same, part_val_cd_same, unpart_cd_same = client_data_utils.canonical_three_way_partition_client_data( cd, unpart_clients_proportion=unpart_clients_proportion, train_val_ratio_intra_client=train_val_ratio_intra_client, part_clients_subsampling_rate=part_clients_subsampling_rate, include_unpart_train_for_val=include_unpart_train_for_val, max_elements_per_client=max_elements_per_client, seed=1) for cd1, cd2 in zip([part_train_cd, part_val_cd, unpart_cd], [part_train_cd_same, part_val_cd_same, unpart_cd_same]): self.assertCountEqual(cd1.client_ids, cd2.client_ids) for client_id in cd1.client_ids: ds1 = cd1.create_tf_dataset_for_client(client_id) ds2 = cd2.create_tf_dataset_for_client(client_id) self.assertCountEqual(_unpack_ds_to_list(ds1), _unpack_ds_to_list(ds2)) class ConstructClientDataFromMappingTest(tf.test.TestCase): """Test for `construct_client_data_from_mapping`.""" def test_mapping_with_various_lengths(self): test_mapping = {str(i): tf.data.Dataset.range(i) for i in range(1, 8, 3)} cd = client_data_utils.construct_client_data_from_mapping(test_mapping) self.assertCountEqual(cd.client_ids, [str(i) for i in range(1, 8, 3)]) for cid in cd.client_ids: local_ds = cd.dataset_computation(cid) self.assertLen(list(local_ds), int(cid)) self.assertEqual([t.numpy() for t in local_ds], list(range(int(cid)))) global_ds = cd.create_tf_dataset_from_all_clients() self.assertLen(list(global_ds), 1 + 4 + 7) self.assertCountEqual([t.numpy() for t in global_ds], list(range(1)) + list(range(4)) + list(range(7))) def test_dataset_with_nested_structure(self): test_data = collections.OrderedDict( label=([tf.constant(0, dtype=tf.int32)]), pixels=([tf.zeros((28, 28), dtype=tf.float32)]), ) ds = tf.data.Dataset.from_tensor_slices(test_data) test_mapping = {'1': ds, '2': ds} cd = client_data_utils.construct_client_data_from_mapping(test_mapping) self.assertCountEqual(cd.client_ids, ('1', '2')) for cid in cd.client_ids: local_ds = cd.dataset_computation(cid) self.assertLen(list(local_ds), 1) local_data = next(iter(local_ds)) self.assertEqual(local_ds.element_spec, ds.element_spec) self.assertCountEqual(list(local_data.keys()), list(test_data.keys())) self.assertAllEqual(local_data['label'], test_data['label'][0]) self.assertAllEqual(local_data['pixels'], test_data['pixels'][0]) def test_dataset_with_very_large_cardinality(self): """Test the dataset will not be eagerly computed unexpectedly.""" test_mapping = { 'short': tf.data.Dataset.range(10), 'long': tf.data.Dataset.range(9999999999999999) } cd = client_data_utils.construct_client_data_from_mapping(test_mapping) self.assertCountEqual(cd.client_ids, ('short', 'long')) short_ds = cd.create_tf_dataset_for_client('short') self.assertEqual([t.numpy() for t in short_ds], list(range(10))) long_ds = cd.create_tf_dataset_for_client('long') long_ds_take_10 = long_ds.take(10) self.assertEqual([t.numpy() for t in long_ds_take_10], list(range(10))) class CacheClientDataTest(tf.test.TestCase): """Tests for cache_client_data.""" def test_cached_cd_has_same_elements(self): cd = _create_test_client_data(5, 5) cached_cd = client_data_utils.cache_client_data(cd) self.assertCountEqual(cached_cd.client_ids, cd.client_ids) for cid in cached_cd.client_ids: cached_cd_ds = cached_cd.create_tf_dataset_for_client(cid) expected_cd_ds = cd.create_tf_dataset_for_client(cid) self.assertCountEqual( _unpack_ds_to_list(cached_cd_ds), _unpack_ds_to_list(expected_cd_ds)) class FederatedDatasetSamplerTest(tf.test.TestCase, parameterized.TestCase): """Tests for iterator class FederatedDatasetSampler.""" @parameterized.product(resample=[True, False]) def test_len_with_specified_num_sample_clients(self, resample): """Test sampler returns the correct length.""" cd = _create_test_client_data(10, 10) num_sample_clients = 5 it = client_data_utils.FederatedDatasetSampler( cd, num_sample_clients, resample=resample) self.assertLen(next(it), num_sample_clients) @parameterized.product(resample=[True, False]) def test_len_with_unspecified_num_sample_clients(self, resample): """Test sampler returns the correct length when num_sample_clients is not specified.""" cd = _create_test_client_data(10, 10) it = client_data_utils.FederatedDatasetSampler( cd, num_sample_clients=None, resample=resample) self.assertLen(next(it), 10) @parameterized.product(use_cache=[True, False]) def test_sample_emits_the_same_datasets_if_no_resample(self, use_cache): """Test sampler emits the same dataset if resample is False.""" cd = _create_test_client_data(10, 10) it = client_data_utils.FederatedDatasetSampler( cd, 5, resample=False, seed=1, use_cache=use_cache) self.assertListEqual(_unpack_fn(next(it)), _unpack_fn(next(it))) @parameterized.product(use_cache=[True, False]) def test_sample_emits_different_datasets_if_resample(self, use_cache): """Test sampler emits a different dataset if resample is True.""" cd = _create_test_client_data(100, 2) # This should not be flaky given the seed. it = client_data_utils.FederatedDatasetSampler( cd, 50, resample=True, seed=1, use_cache=use_cache) self.assertNotEqual(_unpack_fn(next(it)), _unpack_fn(next(it))) @parameterized.product(resample=[True, False], use_cache=[True, False]) def test_two_samplers_with_the_same_int_seed_emit_the_same_datasets( self, resample, use_cache): """Test two samplers emit the same datasets if the seeds are the same integer.""" cd = _create_test_client_data(10, 10) it1 = client_data_utils.FederatedDatasetSampler( cd, 5, resample=resample, seed=1, use_cache=use_cache) it2 = client_data_utils.FederatedDatasetSampler( cd, 5, resample=resample, seed=1, use_cache=use_cache) for _ in range(3): self.assertListEqual(_unpack_fn(next(it1)), _unpack_fn(next(it2))) @parameterized.product(resample=[True, False], use_cache=[True, False]) def test_two_samplers_with_none_seed_emit_different_datasets( self, resample, use_cache): """Test two samplers emit different datasets if seed is the None.""" cd = _create_test_client_data(100, 2) it1 = client_data_utils.FederatedDatasetSampler( cd, 50, resample=resample, seed=None, use_cache=use_cache) it2 = client_data_utils.FederatedDatasetSampler( cd, 50, resample=resample, seed=None, use_cache=use_cache) for _ in range(3): # This test may be flaky. With <1e-29 probability this test my fail. self.assertNotEqual(_unpack_fn(next(it1)), _unpack_fn(next(it2))) @parameterized.product(resample=[True, False], use_cache=[True, False]) def test_two_samplers_with_different_seeds_emit_different_datasets( self, resample, use_cache): """Test two samplers emit different datasets if seeds are different.""" cd = _create_test_client_data(100, 2) it1 = client_data_utils.FederatedDatasetSampler( cd, 50, resample=resample, seed=0, use_cache=use_cache) it2 = client_data_utils.FederatedDatasetSampler( cd, 50, resample=resample, seed=1, use_cache=use_cache) for _ in range(3): self.assertNotEqual(_unpack_fn(next(it1)), _unpack_fn(next(it2))) if __name__ == '__main__': tf.test.main()
scripts/run_parsers.py
joye1503/cocrawler
166
11186521
<reponame>joye1503/cocrawler ''' Runs all of the available parsers over a tree of html Accumulate cpu time Compare counts of urls and embeds ''' import sys import os import logging import functools from bs4 import BeautifulSoup import cocrawler.stats as stats import cocrawler.parse as parse def parse_all(name, string): all_links = [] # warmup head, body = parse.split_head_body(string) links, embeds = parse.find_html_links_re(string) # embeds is empty here by design links, embeds = parse.find_body_links_re(body) head_soup = BeautifulSoup(head, 'lxml') body_soup = BeautifulSoup(body, 'lxml') links, embeds = parse.find_head_links_soup(head_soup) links, embeds = parse.find_body_links_soup(body_soup) # measurement with stats.record_burn('split_head_body', url=name): head, body = parse.split_head_body(string) with stats.record_burn('find_html_links_re', url=name): links, embeds = parse.find_html_links_re(string) # embeds is empty here by design all_links.append(links.union(embeds)) with stats.record_burn('head_soup', url=name): head_soup = BeautifulSoup(head, 'lxml') with stats.record_burn('find_head_links_soup', url=name): head_links, head_embeds = parse.find_head_links_soup(head_soup) body = '<html>' + body # because a closing tag at the start of body screws up lxml with stats.record_burn('find_body_links_re', url=name): links, embeds = parse.find_body_links_re(body) all_links.append(links.union(embeds).union(head_links).union(head_embeds)) with stats.record_burn('body_soup', url=name): body_soup = BeautifulSoup(body, 'lxml') with stats.record_burn('find_body_links_soup', url=name): links, embeds = parse.find_body_links_soup(body_soup) all_links.append(links.union(embeds).union(head_links).union(head_embeds)) # evaluation biggest = functools.reduce(max, [len(x) for x in all_links]) for i, v in enumerate(all_links): if len(v) == biggest: biggest_index = i biggest_links = v names = 'find_html_links_re', 'find_body_links_re', 'find_body_links_soup' for i, v in enumerate(all_links): if len(v) != biggest: print('{} had different link counts of {} and {}'.format(name, biggest, len(v))) extra1 = v.difference(biggest_links) extra2 = biggest_links.difference(v) if extra1: print(' extra in {}: {!r}'.format(names[i], extra1)) else: print(' count was {} for {}'.format(len(v), names[i])) if extra2: print(' extra in {}: {!r}'.format(names[biggest_index], extra2)) else: print(' count was {} for {}'.format(len(biggest_links), names[biggest_index])) LOGGER = logging.getLogger(__name__) levels = [logging.ERROR, logging.WARN, logging.INFO, logging.DEBUG] logging.basicConfig(level=levels[3]) for d in sys.argv[1:]: if os.path.isfile(d): with open(d, 'r', errors='ignore') as fi: parse_all(d, fi.read()) continue for root, _, files in os.walk(d): for f in files: if f.endswith('.html') or f.endswith('.htm'): expanded = os.path.join(root, f) with open(expanded, 'r', errors='ignore') as fi: parse_all(expanded, fi.read()) stats.report()