max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
extension_management/01_ManageExtensions.py
IBM/api-samples
172
12788993
<reponame>IBM/api-samples<filename>extension_management/01_ManageExtensions.py<gh_stars>100-1000 #!/usr/bin/env python3 # In this sample you will see how to manage extensions using the REST API. # The sample contains uploading extension, installing extension, checking # installing task and delete extension. import json import os import sys import time import importlib sys.path.append(os.path.realpath('../modules')) client_module = importlib.import_module('RestApiClient') SampleUtilities = importlib.import_module('SampleUtilities') def upload_extension(): # Create our client client = client_module.RestApiClient(version='6.0') # Add Content-Type to request header request_header = {} request_header['Content-Type'] = 'application/zip' # setup file for posting cwd = os.path.dirname(os.path.realpath(__file__)) app_zip_file_path = os.path.join(cwd, 'ExtensionPackageTest.zip') app_zip_file = open(app_zip_file_path, 'rb') data = app_zip_file.read() response = client.call_api('config/extension_management/extensions', 'POST', headers=request_header, data=data) # If the response code is 201, that means the extension package has been # successfully uploaded and the extension id will be returned. # Otherwise -1 will be returned and the full response body is provided with # error message inside. if (response.code != 201): print('Failed to upload the extension package.') SampleUtilities.pretty_print_response(response) return -1 else: # Extract the extension id from the response body. response_body = json.loads(response.read().decode('utf-8')) extension_id = response_body['id'] print('The extension has been uploaded with id = ' + str(extension_id)) return extension_id def install_extension(extension_id): # Create our client client = client_module.RestApiClient(version='6.0') # query parameters # action_type: The desired action to take on # the Extension (INSTALL or PREVIEW) # overwrite: If true, any existing items on the importing system will be # overwritten if the extension contains the same items. # If false, existing items will be preserved, # and the corresponding items in the extension will be skipped. params = {'action_type': 'INSTALL', 'overwrite': 'true'} # construct api url with path parameter. url = 'config/extension_management/extensions/' + str(extension_id) response = client.call_api(url, 'POST', params=params) # Installing extension process is asynchronous. If 202 is returned, # that means the installing task is started and the returned status id # is used for tracking the asynchronous task status. if (response.code != 202): print("Failed to start installing task.") SampleUtilities.pretty_print_response(response) return -1 else: response_body = json.loads(response.read().decode('utf-8')) status_id = response_body['status_id'] print('The extension installing task has been started.') return status_id def check_install_status(status_id): # Create our client client = client_module.RestApiClient(version='6.0') # construct api url with path parameter. url = 'config/extension_management/extensions_task_status/'+str(status_id) response = client.call_api(url, 'GET') # if there is no error, the status of installing task will be returned. if (response.code != 200): print("Failed to check installing task status.") SampleUtilities.pretty_print_response(response) status = 'FAILED' else: response_body = json.loads(response.read().decode('utf-8')) status = response_body['status'] return status def delete_installed_extension(extension_id): # Create our client client = client_module.RestApiClient(version='6.0') # construct api url with path parameter. url = 'config/extension_management/extensions/' + str(extension_id) response = client.call_api(url, 'DELETE') if (response.code == 202): print('The extension has been deleted.') else: print('Failed to delete the extension.') def main(): # upload the extension package extension_id = upload_extension() if (extension_id != -1): # if extension package uploaded successfully, start installing # extension task status_id = install_extension(extension_id) if (status_id != -1): # if extension installing task start wit no error, keep checking # the status every 5s until the it is completed or has errors or # time out. status = 'PROCESSING' count = 60 while ((status == 'PROCESSING' or status == "QUEUED") and count > 0): status = check_install_status(status_id) print('Installing status: ' + status) count = count - 1 if ((status == 'PROCESSING' or status == "QUEUED") and count == 0): print('Installing process timed out.') sys.exit(1) time.sleep(5) if (status == 'COMPLETED'): # delete the extension once it complete installed. If you want # to keep the extension, please comment out the line below. delete_installed_extension(extension_id) else: sys.exit(1) else: sys.exit(1) if __name__ == "__main__": main()
tests/agent_tests.py
tomakehurst/saboteur
258
12789023
from saboteur.agent import SaboteurWebApp import json import unittest from test_utils import MockShell from saboteur.apicommands import FAULT_TYPES, alphabetical_keys def post_request(params): return request('POST', params) def delete_request(): return {'path': '/', 'method': 'DELETE'} def request(method, params): return {'path': '/', 'method': method, 'body': json.dumps(params)} def http_request(method, params_json): return {'path': '/', 'method': method, 'body': params_json} class TestAgent(unittest.TestCase): def setUp(self): self.shell = MockShell() self.app = SaboteurWebApp(self.shell) def test_successful_iptables_based_fault_returns_200_and_executes_correct_command(self): params = json.dumps({ 'name': 'isolate-web-server', 'type': 'NETWORK_FAILURE', 'direction': 'IN', 'to_port': 80, 'protocol': 'TCP' }) response = self.app.handle(http_request('POST', params)) self.assertEqual(response['status'], 200) self.assertEqual(self.shell.last_command, 'sudo /sbin/iptables -A INPUT -p TCP -j DROP --dport 80') def test_invalid_json_returns_400(self): params = '{ "name": }' response = self.app.handle(http_request('POST', params)) self.assertEqual(400, response['status']) self.assertEqual(json.dumps('Not valid JSON'), response['body']) def test_invalid_fault_type(self): params = json.dumps({ 'name': 'isolate-web-server', 'type': 'WORMS' }) response = self.app.handle(http_request('POST', params)) self.assertEqual(400, response['status']) self.assertEqual(json.dumps({ "errors": { "type": "must be present and one of " + str(alphabetical_keys(FAULT_TYPES)) } }), response['body']) def test_fault_with_single_invalid_field_returns_400(self): params = json.dumps({ 'name': 'isolate-web-server', 'type': 'NETWORK_FAILURE', 'to_port': 7871 }) response = self.app.handle(http_request('POST', params)) self.assertEqual(400, response['status']) self.assertEqual(json.dumps({ "errors": { "direction": "required key not provided" } }), response['body']) def test_fault_with_multiple_invalid_fields_returns_400(self): params = json.dumps({ 'name': 'isolate-web-server', 'type': 'DELAY', 'direction': 'IN', 'to_port': 7871, 'delay': 'bad', 'probability': 'worse' }) response = self.app.handle(http_request('POST', params)) self.assertEqual(400, response['status']) self.assertEqual(json.dumps({ "errors": { "delay": "expected int", "probability": "expected float" } }), response['body']) def test_reset(self): self.shell.next_result = 'eth1' response = self.app.handle(delete_request()) self.assertEqual(response['status'], 200) self.assertEqual(self.shell.commands, [ 'sudo /sbin/iptables -F', "netstat -i | tail -n+3 | cut -f1 -d ' '", 'sudo /sbin/tc qdisc del dev eth1 root']) def test_returns_500_when_shell_command_exits_with_non_zero(self): params = json.dumps({ 'name': 'whatever', 'type': 'NETWORK_FAILURE', 'direction': 'IN', 'to_port': 80, 'protocol': 'TCP' }) self.shell.next_exit_code = 1 response = self.app.handle(http_request('POST', params)) self.assertEqual(500, response['status']) if __name__ == '__main__': unittest.main()
OpenMatch/modules/encoders/positional_encoder.py
vishalbelsare/OpenMatch
403
12789038
import torch import torch.nn as nn class PositionalEncoder(nn.Module): def __init__( self, embed_dim: int, max_len: int = 512 ) -> None: super(PositionalEncoder, self).__init__() self._embed_dim = embed_dim self._max_len = max_len self._embed_matrix = torch.tensor( [[pos / pow(1.0e4, 2.0 * (i // 2) / self._embed_dim) for i in range(self._embed_dim)] for pos in range(self._max_len)] ) self._embed_matrix[:, 0::2] = torch.sin(self._embed_matrix[:, 0::2]) self._embed_matrix[:, 1::2] = torch.cos(self._embed_matrix[:, 1::2]) self._embedder = nn.Embedding(self._max_len, self._embed_dim) self._embedder.weight = nn.Parameter(self._embed_matrix, requires_grad=False) def forward(self, embed: torch.Tensor) -> torch.Tensor: token_len = embed.size()[1] if embed.is_cuda: ids = torch.cuda.LongTensor([l for l in range(token_len)]) else: ids = torch.LongTensor([l for l in range(token_len)]) embed += self._embedder(ids) return embed
lldb/test/API/tools/lldb-server/TestGdbRemoteProcessInfo.py
mkinsner/llvm
2,338
12789058
import gdbremote_testcase import lldbgdbserverutils from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestGdbRemoteProcessInfo(gdbremote_testcase.GdbRemoteTestCaseBase): mydir = TestBase.compute_mydir(__file__) def test_qProcessInfo_returns_running_process(self): self.build() procs = self.prep_debug_monitor_and_inferior() self.add_process_info_collection_packets() # Run the stream context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) # Gather process info response process_info = self.parse_process_info_response(context) self.assertIsNotNone(process_info) # Ensure the process id looks reasonable. pid_text = process_info.get("pid") self.assertIsNotNone(pid_text) pid = int(pid_text, base=16) self.assertNotEqual(0, pid) # If possible, verify that the process is running. self.assertTrue(lldbgdbserverutils.process_is_running(pid, True)) def test_attach_commandline_qProcessInfo_reports_correct_pid(self): self.build() self.set_inferior_startup_attach() procs = self.prep_debug_monitor_and_inferior() self.assertIsNotNone(procs) self.add_process_info_collection_packets() # Run the stream context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) # Gather process info response process_info = self.parse_process_info_response(context) self.assertIsNotNone(process_info) # Ensure the process id matches what we expected. pid_text = process_info.get('pid', None) self.assertIsNotNone(pid_text) reported_pid = int(pid_text, base=16) self.assertEqual(reported_pid, procs["inferior"].pid) def test_qProcessInfo_reports_valid_endian(self): self.build() procs = self.prep_debug_monitor_and_inferior() self.add_process_info_collection_packets() # Run the stream context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) # Gather process info response process_info = self.parse_process_info_response(context) self.assertIsNotNone(process_info) # Ensure the process id looks reasonable. endian = process_info.get("endian") self.assertIsNotNone(endian) self.assertIn(endian, ["little", "big", "pdp"]) def qProcessInfo_contains_keys(self, expected_key_set): procs = self.prep_debug_monitor_and_inferior() self.add_process_info_collection_packets() # Run the stream context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) # Gather process info response process_info = self.parse_process_info_response(context) self.assertIsNotNone(process_info) # Ensure the expected keys are present and non-None within the process # info. missing_key_set = set() for expected_key in expected_key_set: if expected_key not in process_info: missing_key_set.add(expected_key) self.assertEqual( missing_key_set, set(), "the listed keys are missing in the qProcessInfo result") def qProcessInfo_does_not_contain_keys(self, absent_key_set): procs = self.prep_debug_monitor_and_inferior() self.add_process_info_collection_packets() # Run the stream context = self.expect_gdbremote_sequence() self.assertIsNotNone(context) # Gather process info response process_info = self.parse_process_info_response(context) self.assertIsNotNone(process_info) # Ensure the unexpected keys are not present unexpected_key_set = set() for unexpected_key in absent_key_set: if unexpected_key in process_info: unexpected_key_set.add(unexpected_key) self.assertEqual( unexpected_key_set, set(), "the listed keys were present but unexpected in qProcessInfo result") @add_test_categories(["debugserver"]) def test_qProcessInfo_contains_cputype_cpusubtype(self): self.build() self.qProcessInfo_contains_keys(set(['cputype', 'cpusubtype'])) @add_test_categories(["llgs"]) def test_qProcessInfo_contains_triple_ppid(self): self.build() self.qProcessInfo_contains_keys(set(['triple', 'parent-pid'])) @add_test_categories(["debugserver"]) def test_qProcessInfo_does_not_contain_triple(self): self.build() # We don't expect to see triple on darwin. If we do, we'll prefer triple # to cputype/cpusubtype and skip some darwin-based ProcessGDBRemote ArchSpec setup # for the remote Host and Process. self.qProcessInfo_does_not_contain_keys(set(['triple'])) @add_test_categories(["llgs"]) def test_qProcessInfo_does_not_contain_cputype_cpusubtype(self): self.build() self.qProcessInfo_does_not_contain_keys(set(['cputype', 'cpusubtype']))
chembl_webresource_client/scripts/chembl_m2t.py
RowAnalytics/chembl_webresource_client
248
12789074
#!/usr/bin/env python from __future__ import print_function __author__ = 'mnowotka' # ---------------------------------------------------------------------------------------------------------------------- import sys import argparse from chembl_webresource_client.scripts.utils import get_serializer, chembl_id_regex, smiles_regex, convert_to_smiles from chembl_webresource_client.scripts.utils import resolve, mols_to_targets AVAILABLE_SOURCE_FORMATS = ('chembl_id', 'sdf', 'smi') # ---------------------------------------------------------------------------------------------------------------------- def get_options(): description = 'Find related targets for a set of compounds' parser = argparse.ArgumentParser(description=description, prog='chembl_m2t') parser.add_argument('-i', '--input', action='store', dest='input', help='input file, standard input by default') parser.add_argument('-o', '--output', action='store', dest='output', help='output file, standard output by default') parser.add_argument('-s', '--source-format', action='store', dest='source_format', default='csv', help='input file format. Can be one of 3: chembl_id (a comma separated list of chembl IDs), ' 'sdf: (MDL molfile), smi (file containing smiles)') parser.add_argument('-d', '--destination-format', action='store', dest='dest_format', default='uniprot', help='output file format. can be chosen from 3 options: ' '[uniprot, gene_name, chembl_id]') parser.add_argument('-H', '--Human', action='store_true', dest='human', help='human readable output: prints header and first column with original names') parser.add_argument('-O', '--organism', action='store', dest='organism', help='Filter results by organism') parser.add_argument('-p', '--parent', action='store_true', dest='parent', help='when fetching targets include also targets from parents of given molecules') parser.add_argument('-c', '--chunk-size', action='store', dest='chunk', default='1000', help='Size of chunk of data retrieved from API') return parser.parse_args() # ---------------------------------------------------------------------------------------------------------------------- def main(): options = get_options() source_format = options.source_format.lower() if source_format not in AVAILABLE_SOURCE_FORMATS: sys.stderr.write('Unsupported source format', options.source_format) return inp = sys.stdin if source_format == 'sdf': with open(options.input) if options.input else sys.stdin as in_f: options.input = None inp = convert_to_smiles(in_f) with open(options.input) if options.input else inp as in_f, \ open(options.output, 'w') if options.output else sys.stdout as out_f: serializer_cls = get_serializer(options.dest_format) if not serializer_cls: sys.stderr.write('Unsupported format', options.dest_format) return if options.human: serializer_cls.write_header(out_f) for line in in_f: if not line or line.lower().startswith('smiles'): continue chunk = line.strip().split()[0] identifiers = chunk.strip().split(',') valid_identifiers = list() for identifier in identifiers: if chembl_id_regex.match(identifier): valid_identifiers.append(identifier) elif smiles_regex.match(identifier): valid_identifiers.extend([x['molecule_chembl_id'] for x in resolve(identifier)]) targets = mols_to_targets(valid_identifiers, organism=options.organism, only_ids=(options.dest_format == 'chembl_id'), include_parents=options.parent, chunk_size=int(options.chunk)) out_f.write(serializer_cls.serialize_line(targets, human=options.human, name=','.join(valid_identifiers))) # ---------------------------------------------------------------------------------------------------------------------- if __name__ == "__main__": main() # ----------------------------------------------------------------------------------------------------------------------
tools/bin/pythonSrc/PSI-0.3b2_gp/psi/_version.py
YangHao666666/hawq
450
12789081
# The MIT License # # Copyright (C) 2007 <NAME> # # Copyright (C) 2008-2009 <NAME> # # Copyright (C) 2008-2009 Abilisoft Ltd. # # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """psi._version This is used so that this information can stay easily in sync in both psi and setup.py. """ version = '0.3b2' author = '<NAME>, <NAME>, <NAME>' copyright = """\ Copyright (C) 2007-2009 <NAME> Copyright (C) 2008, 2009 <NAME> Copyright (C) 2008, 2009 Abilisoft Ltd. Copyright (C) 2009 <NAME>""" license = 'MIT'
general/chainerrl/baselines/train_dqfd.py
marioyc/baselines
127
12789107
"""original source: https://github.com/chainer/chainerrl/pull/480 MIT License Copyright (c) Preferred Networks, Inc. """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals from __future__ import absolute_import from builtins import * from future import standard_library standard_library.install_aliases() import argparse from inspect import getsourcefile import os import sys import numpy as np import chainer import minerl # noqa: register MineRL envs as Gym envs. import gym import chainerrl from chainerrl import experiments, explorers from chainerrl.experiments.evaluator import Evaluator from dqfd import DQfD, PrioritizedDemoReplayBuffer from q_functions import CNNBranchingQFunction from env_wrappers import ( BranchedRandomizedAction, BranchedActionWrapper, MoveAxisWrapper, FrameSkip, FrameStack, ObtainPoVWrapper, PoVWithCompassAngleWrapper, FullObservationSpaceWrapper) from expert_converter import choose_top_experts, fill_buffer class ScaleGradHook(object): name = 'ScaleGrad' call_for_each_param = True timing = 'pre' def __init__(self, scale): self.scale = scale def __call__(self, rule, param): if getattr(param, 'scale_param', False): param.grad *= self.scale def main(): """Parses arguments and runs the example """ parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='MineRLTreechop-v0', choices=[ 'MineRLTreechop-v0', 'MineRLNavigate-v0', 'MineRLNavigateDense-v0', 'MineRLNavigateExtreme-v0', 'MineRLNavigateExtremeDense-v0', 'MineRLObtainIronPickaxe-v0', 'MineRLObtainIronPickaxeDense-v0', 'MineRLObtainDiamond-v0', 'MineRLObtainDiamondDense-v0', 'MineRLNavigateDenseFixed-v0' # for debug use ], help='MineRL environment identifier') parser.add_argument('--outdir', type=str, default='results', help='Directory path to save output files.' ' If it does not exist, it will be created.') parser.add_argument('--seed', type=int, default=0, help='Random seed [0, 2 ** 31)') parser.add_argument('--gpu', type=int, default=-1, help='GPU to use, set to -1 if no GPU.') parser.add_argument('--final-exploration-frames', type=int, default=10**6, help='Timesteps after which we stop ' + 'annealing exploration rate') parser.add_argument('--final-epsilon', type=float, default=0.01, help='Final value of epsilon during training.') parser.add_argument('--eval-epsilon', type=float, default=0.001, help='Exploration epsilon used during eval episodes.') parser.add_argument('--replay-start-size', type=int, default=1000, help='Minimum replay buffer size before ' + 'performing gradient updates.') parser.add_argument('--target-update-interval', type=int, default=10**4, help='Frequency (in timesteps) at which ' + 'the target network is updated.') parser.add_argument('--update-interval', type=int, default=4, help='Frequency (in timesteps) of network updates.') parser.add_argument('--eval-n-runs', type=int, default=10) parser.add_argument('--no-clip-delta', dest='clip_delta', action='store_false') parser.add_argument('--error-max', type=float, default=1.0) parser.add_argument('--num-step-return', type=int, default=10) parser.set_defaults(clip_delta=True) parser.add_argument('--logging-level', type=int, default=20, help='Logging level. 10:DEBUG, 20:INFO etc.') parser.add_argument('--logging-filename', type=str, default=None) parser.add_argument('--monitor', action='store_true', default=False, help='Monitor env. Videos and additional information are saved as output files when evaluation') # parser.add_argument('--render', action='store_true', default=False, # help='Render env states in a GUI window.') parser.add_argument('--optimizer', type=str, default='rmsprop', choices=['rmsprop', 'adam']) parser.add_argument('--lr', type=float, default=2.5e-4, help='Learning rate') parser.add_argument("--replay-buffer-size", type=int, default=10**6, help="Size of replay buffer (Excluding demonstrations)") parser.add_argument("--minibatch-size", type=int, default=32) parser.add_argument('--batch-accumulator', type=str, default="sum") parser.add_argument('--demo', action='store_true', default=False) parser.add_argument('--load', type=str, default=None) parser.add_argument("--save-demo-trajectories", action="store_true", default=False) # DQfD specific parameters for loading and pretraining. parser.add_argument('--n-experts', type=int, default=10) parser.add_argument('--expert-demo-path', type=str, default=None) parser.add_argument('--n-pretrain-steps', type=int, default=750000) parser.add_argument('--demo-supervised-margin', type=float, default=0.8) parser.add_argument('--loss-coeff-l2', type=float, default=1e-5) parser.add_argument('--loss-coeff-nstep', type=float, default=1.0) parser.add_argument('--loss-coeff-supervised', type=float, default=1.0) parser.add_argument('--bonus-priority-agent', type=float, default=0.001) parser.add_argument('--bonus-priority-demo', type=float, default=1.0) # Action branching architecture parser.add_argument('--gradient-clipping', action='store_true', default=False) parser.add_argument('--gradient-rescaling', action='store_true', default=False) # NoisyNet parameters parser.add_argument('--use-noisy-net', type=str, default=None, choices=['before-pretraining', 'after-pretraining']) parser.add_argument('--noisy-net-sigma', type=float, default=0.5) # Parameters for state/action handling parser.add_argument('--frame-stack', type=int, default=None, help='Number of frames stacked (None for disable).') parser.add_argument('--frame-skip', type=int, default=None, help='Number of frames skipped (None for disable).') parser.add_argument('--camera-atomic-actions', type=int, default=10) parser.add_argument('--max-range-of-camera', type=float, default=10.) parser.add_argument('--use-full-observation', action='store_true', default=False) args = parser.parse_args() assert args.expert_demo_path is not None,"DQfD needs collected \ expert demonstrations" import logging if args.logging_filename is not None: logging.basicConfig(filename=args.logging_filename, filemode='w', level=args.logging_level) else: logging.basicConfig(level=args.logging_level) logger = logging.getLogger(__name__) train_seed = args.seed test_seed = 2 ** 31 - 1 - args.seed chainerrl.misc.set_random_seed(args.seed, gpus=(args.gpu,)) args.outdir = experiments.prepare_output_dir(args, args.outdir) logger.info('Output files are saved in {}'.format(args.outdir)) if args.env == 'MineRLTreechop-v0': branch_sizes = [9, 16, args.camera_atomic_actions, args.camera_atomic_actions] elif args.env in ['MineRLNavigate-v0', 'MineRLNavigateDense-v0', 'MineRLNavigateExtreme-v0', 'MineRLNavigateExtremeDense-v0']: branch_sizes = [9, 16, args.camera_atomic_actions, args.camera_atomic_actions, 2] elif args.env in ['MineRLObtainIronPickaxe-v0', 'MineRLObtainIronPickaxeDense-v0', 'MineRLObtainDiamond-v0', 'MineRLObtainDiamondDense-v0']: branch_sizes = [9, 16, args.camera_atomic_actions, args.camera_atomic_actions, 32] else: raise Exception("Unknown environment") def make_env(env, test): # wrap env: observation... # NOTE: wrapping order matters! if args.use_full_observation: env = FullObservationSpaceWrapper(env) elif args.env.startswith('MineRLNavigate'): env = PoVWithCompassAngleWrapper(env) else: env = ObtainPoVWrapper(env) if test and args.monitor: env = gym.wrappers.Monitor( env, os.path.join(args.outdir, 'monitor'), mode='evaluation' if test else 'training', video_callable=lambda episode_id: True) if args.frame_skip is not None: env = FrameSkip(env, skip=args.frame_skip) # convert hwc -> chw as Chainer requires env = MoveAxisWrapper(env, source=-1, destination=0, use_tuple=args.use_full_observation) #env = ScaledFloatFrame(env) if args.frame_stack is not None: env = FrameStack(env, args.frame_stack, channel_order='chw', use_tuple=args.use_full_observation) # wrap env: action... env = BranchedActionWrapper(env, branch_sizes, args.camera_atomic_actions, args.max_range_of_camera) if test: env = BranchedRandomizedAction(env, branch_sizes, args.eval_epsilon) env_seed = test_seed if test else train_seed env.seed(int(env_seed)) return env core_env = gym.make(args.env) env = make_env(core_env, test=False) eval_env = make_env(core_env, test=True) # Q function if args.env.startswith('MineRLNavigate'): if args.use_full_observation: base_channels = 3 # RGB else: base_channels = 4 # RGB + compass elif args.env.startswith('MineRLObtain'): base_channels = 3 # RGB else: base_channels = 3 # RGB if args.frame_stack is None: n_input_channels = base_channels else: n_input_channels = base_channels * args.frame_stack q_func = CNNBranchingQFunction(branch_sizes, n_input_channels=n_input_channels, gradient_rescaling=args.gradient_rescaling, use_tuple=args.use_full_observation) def phi(x): # observation -> NN input if args.use_full_observation: pov = np.asarray(x[0], dtype=np.float32) others = np.asarray(x[1], dtype=np.float32) return (pov / 255, others) else: return np.asarray(x, dtype=np.float32) / 255 explorer = explorers.LinearDecayEpsilonGreedy( 1.0, args.final_epsilon, args.final_exploration_frames, lambda: np.array([np.random.randint(n) for n in branch_sizes])) # Draw the computational graph and save it in the output directory. if args.use_full_observation: sample_obs = tuple([x[None] for x in env.observation_space.sample()]) else: sample_obs = env.observation_space.sample()[None] chainerrl.misc.draw_computational_graph( [q_func(phi(sample_obs))], os.path.join(args.outdir, 'model')) if args.optimizer == 'rmsprop': opt = chainer.optimizers.RMSpropGraves(args.lr, alpha=0.95, momentum=0.0, eps=1e-2) elif args.optimizer == 'adam': opt = chainer.optimizers.Adam(args.lr) if args.use_noisy_net is None: opt.setup(q_func) if args.gradient_rescaling: opt.add_hook(ScaleGradHook(1 / (1 + len(q_func.branch_sizes)))) if args.gradient_clipping: opt.add_hook(chainer.optimizer_hooks.GradientClipping(10.0)) # calculate corresponding `steps` and `eval_interval` according to frameskip maximum_frames = 8640000 # = 1440 episodes if we count an episode as 6000 frames. if args.frame_skip is None: steps = maximum_frames eval_interval = 6000 * 100 # (approx.) every 100 episode (counts "1 episode = 6000 steps") else: steps = maximum_frames // args.frame_skip eval_interval = 6000 * 100 // args.frame_skip # (approx.) every 100 episode (counts "1 episode = 6000 steps") # Anneal beta from beta0 to 1 throughout training betasteps = steps / args.update_interval replay_buffer = PrioritizedDemoReplayBuffer( args.replay_buffer_size, alpha=0.4, beta0=0.6, betasteps=betasteps, error_max=args.error_max, num_steps=args.num_step_return) # Fill the demo buffer with expert transitions if not args.demo: chosen_dirs = choose_top_experts(args.expert_demo_path, args.n_experts, logger=logger) fill_buffer(args.env, chosen_dirs, replay_buffer, args.frame_skip, args.frame_stack, args.camera_atomic_actions, args.max_range_of_camera, args.use_full_observation, logger=logger) logger.info("Demo buffer loaded with {} transitions".format( len(replay_buffer))) def reward_transform(x): return np.sign(x) * np.log(1 + np.abs(x)) if args.use_noisy_net is not None and args.use_noisy_net == 'before-pretraining': chainerrl.links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma) explorer = explorers.Greedy() opt.setup(q_func) agent = DQfD(q_func, opt, replay_buffer, gamma=0.99, explorer=explorer, n_pretrain_steps=args.n_pretrain_steps, demo_supervised_margin=args.demo_supervised_margin, bonus_priority_agent=args.bonus_priority_agent, bonus_priority_demo=args.bonus_priority_demo, loss_coeff_nstep=args.loss_coeff_nstep, loss_coeff_supervised=args.loss_coeff_supervised, loss_coeff_l2=args.loss_coeff_l2, gpu=args.gpu, replay_start_size=args.replay_start_size, target_update_interval=args.target_update_interval, clip_delta=args.clip_delta, update_interval=args.update_interval, batch_accumulator=args.batch_accumulator, phi=phi, reward_transform=reward_transform, minibatch_size=args.minibatch_size) if args.use_noisy_net is not None and args.use_noisy_net == 'after-pretraining': chainerrl.links.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma) explorer = explorers.Greedy() if args.optimizer == 'rmsprop': opt = chainer.optimizers.RMSpropGraves(args.lr, alpha=0.95, momentum=0.0, eps=1e-2) elif args.optimizer == 'adam': opt = chainer.optimizers.Adam(args.lr) opt.setup(q_func) opt.add_hook( chainer.optimizer_hooks.WeightDecay(args.loss_coeff_l2)) agent.optimizer = opt agent.target_model = None agent.sync_target_network() if args.load: agent.load(args.load) if args.demo: eval_stats = experiments.eval_performance( env=eval_env, agent=agent, n_steps=None, n_episodes=args.eval_n_runs) logger.info('n_runs: {} mean: {} median: {} stdev: {}'.format( args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev'])) else: agent.pretrain() evaluator = Evaluator(agent=agent, n_steps=None, n_episodes=args.eval_n_runs, eval_interval=eval_interval, outdir=args.outdir, max_episode_len=None, env=eval_env, step_offset=0, save_best_so_far_agent=True, logger=logger) # Evaluate the agent BEFORE training begins evaluator.evaluate_and_update_max_score(t=0, episodes=0) experiments.train_agent(agent=agent, env=env, steps=steps, outdir=args.outdir, max_episode_len=None, step_offset=0, evaluator=evaluator, successful_score=None, step_hooks=[]) env.close() if __name__ == "__main__": main()
pymclevel/id_definitions_2.py
bennettdc/MCEdit-Unified
237
12789111
<gh_stars>100-1000 import os import json from logging import getLogger import collections #from pymclevel import MCEDIT_DEFS, MCEDIT_IDS #import pymclevel import re #import id_definitions log = getLogger(__name__) def get_deps(base_version, file_name): deps = [base_version] print "Base: {}".format(base_version) fp = open(os.path.join('mcver', base_version, file_name)) data = json.loads(fp.read()) fp.close() if "load" in data: deps.extend(get_deps(data["load"], file_name)) return deps def update(orig_dict, new_dict): for key, val in new_dict.iteritems(): if isinstance(val, collections.Mapping): tmp = update(orig_dict.get(key, { }), val) orig_dict[key] = tmp elif isinstance(val, list): orig_dict[key] = (orig_dict.get(key, []) + val) else: orig_dict[key] = new_dict[key] return orig_dict def aggregate(base_version, file_name): deps = get_deps(base_version, file_name) deps.reverse() print deps aggregate_data = {} for dep in deps: fp = open(os.path.join('mcver', dep, file_name)) data = json.loads(fp.read()) fp.close() update(aggregate_data, data) print aggregate_data with open("out.json", 'wb') as out: json.dump(aggregate_data, out) #print get_deps("1.12", "entities.json") aggregate("1.12", "entities.json")
Calibration/HcalAlCaRecoProducers/python/ALCARECOHcalCalIsoTrkProducerFilter_cff.py
malbouis/cmssw
852
12789133
<reponame>malbouis/cmssw import FWCore.ParameterSet.Config as cms #------------------------------------------------ #AlCaReco filtering for HCAL isotrk: #------------------------------------------------ from Calibration.HcalAlCaRecoProducers.alcaHcalIsotrkProducer_cfi import * from Calibration.HcalAlCaRecoProducers.alcaHcalIsotrkFilter_cfi import * seqALCARECOHcalCalIsoTrkProducerFilter = cms.Sequence(alcaHcalIsotrkProducer * alcaHcalIsotrkFilter)
{{cookiecutter.project_slug}}/backend/app/app/core/config.py
abnerjacobsen/full-stack
516
12789141
<filename>{{cookiecutter.project_slug}}/backend/app/app/core/config.py import os def getenv_boolean(var_name, default_value=False): result = default_value env_value = os.getenv(var_name) if env_value is not None: result = env_value.upper() in ("TRUE", "1") return result API_V1_STR = "/api/v1" SECRET_KEY = os.getenvb(b"SECRET_KEY") if not SECRET_KEY: SECRET_KEY = os.urandom(32) ACCESS_TOKEN_EXPIRE_MINUTES = 60 * 24 * 8 # 60 minutes * 24 hours * 8 days SERVER_NAME = os.getenv("SERVER_NAME") BACKEND_CORS_ORIGINS = os.getenv("BACKEND_CORS_ORIGINS") PROJECT_NAME = os.getenv("PROJECT_NAME") SENTRY_DSN = os.getenv("SENTRY_DSN") POSTGRES_SERVER = os.getenv("POSTGRES_SERVER") POSTGRES_USER = os.getenv("POSTGRES_USER") POSTGRES_PASSWORD = os.getenv("POSTGRES_PASSWORD") POSTGRES_DB = os.getenv("POSTGRES_DB") SQLALCHEMY_DATABASE_URI = ( f"postgresql://{POSTGRES_USER}:{POSTGRES_PASSWORD}@{POSTGRES_SERVER}/{POSTGRES_DB}" ) FIRST_SUPERUSER = os.getenv("FIRST_SUPERUSER") FIRST_SUPERUSER_PASSWORD = os.getenv("FIRST_SUPERUSER_PASSWORD") USERS_OPEN_REGISTRATION = getenv_boolean("USERS_OPEN_REGISTRATION")
terrascript/provider/hashicorp/googleworkspace.py
mjuenema/python-terrascript
507
12789147
# terrascript/provider/hashicorp/googleworkspace.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:17:22 UTC) import terrascript class googleworkspace(terrascript.Provider): """terraform-provider-googleworkspace""" __description__ = "terraform-provider-googleworkspace" __namespace__ = "hashicorp" __name__ = "googleworkspace" __source__ = "https://github.com/hashicorp/terraform-provider-googleworkspace" __version__ = "0.4.1" __published__ = "2021-08-16T19:18:13Z" __tier__ = "official" __all__ = ["googleworkspace"]
prompt_tuning/data/preprocessors_test.py
dumpmemory/prompt-tuning
108
12789192
<reponame>dumpmemory/prompt-tuning # Copyright 2022 Google. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for preprocessors.""" import os import textwrap import unittest.mock as mock from absl.testing import parameterized import numpy as np from prompt_tuning.data import preprocessors import seqio from seqio import test_utils import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds TEST_DATA = os.path.join( os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "test_data") INPUTS_SIZE = 10 TARGETS_SIZE = 5 TEXT_SIZE = 10 TEST_T5_FEATURES = { "inputs": seqio.Feature( vocabulary=seqio.SentencePieceVocabulary( os.path.join(TEST_DATA, "t5_vocab"), 100), add_eos=True, required=False), "targets": seqio.Feature( vocabulary=seqio.SentencePieceVocabulary( os.path.join(TEST_DATA, "t5_vocab"), 100), add_eos=True) } def create_fake_text_dataset(examples: int = 10, text_size: int = TEXT_SIZE): text = np.reshape( # Start at 2 so we skip EOS=1 which could be a problem on any tests that # actually decode the fake inputs. np.arange(2, examples * text_size + 2), (-1, text_size)).astype(np.int32) return tf.data.Dataset.from_tensor_slices({"targets": text}) class PreprocessorsTest(tf.test.TestCase): def test_remove_first_text_token(self): input_strings = ["This is my first example", "The second"] gold_strings = [" ".join(s.split()[1:]) for s in input_strings] ds = tf.data.Dataset.from_tensor_slices({"inputs": input_strings}) processed_ds = preprocessors.remove_first_text_token(ds) for res, gold in zip(processed_ds, gold_strings): self.assertEqual(res["inputs"].numpy().decode("utf-8"), gold) def test_add_sentinel_to_beginning(self): vocab_size = 100 offset = 0 field = "targets" ds = tf.data.Dataset.from_tensor_slices({ field: tf.zeros([3, 4], dtype=tf.int32), }) output_features = { field: mock.MagicMock(vocabulary=mock.MagicMock(vocab_size=vocab_size)) } processed_ds = preprocessors.add_sentinel_to_beginning( ds, output_features, field, offset) for ex in processed_ds: self.assertEqual(ex[field][0].numpy().item(), vocab_size - (offset + 1)) def test_tsv_to_qa(self): fake_data = textwrap.dedent(""" id\tcontext\tquestion\tanswer\tanswers 0\tThe capital of France is Paris\tWhat is the capital of France?\tParis\tParis|||paris 1\tAn ant can carry many times it's body weight making it v strong.\tAre ants strong?\tYes\tYes """.strip("\n")) ds = tf.data.Dataset.from_tensor_slices(fake_data.split("\n")[1:-1]) ds = preprocessors.preprocess_tsv_to_qa(ds) gold_data = [{ "id": "0", "question": "What is the capital of France ? ", "answer": "Paris", "answers": ["Paris", "paris"], "context": "The capital of France is Paris", "inputs": "question: What is the capital of France ? context: The capital of" " France is Paris", "targets": "Paris" }, { "id": "1", "question": "Are ants strong ? ", "answer": "Yes", "answers": ["Yes"], "context": "An ant can carry many times it ' s body weight making it v strong . ", "inputs": "question: Are ants strong ? context: An ant can carry many times " "it ' s body weight making it v strong . ", "targets": "Yes" }] for ex, gold in zip(ds, gold_data): self.assertEqual(ex["id"].numpy().decode("utf-8"), gold["id"]) self.assertEqual(ex["question"].numpy().decode("utf-8"), gold["question"]) self.assertEqual(ex["answer"].numpy().decode("utf-8"), gold["answer"]) self.assertEqual(ex["context"].numpy().decode("utf-8"), gold["context"]) self.assertEqual(ex["targets"].numpy().decode("utf-8"), gold["targets"]) for answer, gold_answer in zip(ex["answers"].numpy(), gold["answers"]): self.assertEqual(answer.decode("utf-8"), gold_answer) def test_preprocess_text_generation(self): example = tf.data.Dataset.from_tensor_slices({ "source_aligned": { "en": ["english input"], "es": ["spanish input"] }, "target_aligned": { "en": ["english target"], "es": ["spanish target"] } }) processed_example = preprocessors.preprocess_text_generation( example, source_key="source_aligned", target_key="target_aligned", task_name=None, prefix="summarize:", source_nested_key="en", target_nested_key="es", ) test_utils.assert_dataset(processed_example, { "inputs": "summarize: english input", "targets": "spanish target" }) class BARTTaskTest(parameterized.TestCase): @parameterized.named_parameters( dict(testcase_name="text_infilling", preprocessor=preprocessors.text_infilling), dict(testcase_name="token_deletion", preprocessor=preprocessors.token_deletion)) def test_inputs_shorter_than_targets(self, preprocessor): ds = create_fake_text_dataset() ds = preprocessor(ds, {"inputs": INPUTS_SIZE + 1, "targets": TARGETS_SIZE + 1}, TEST_T5_FEATURES, noise_density=0.5) for ex in tfds.as_numpy(ds): self.assertLess(ex["inputs"].shape[0], ex["targets"].shape[0]) @parameterized.named_parameters( dict(testcase_name="text_infilling", preprocessor=preprocessors.text_infilling), dict(testcase_name="token_deletion", preprocessor=preprocessors.token_deletion)) def test_extra_id_not_in_targets(self, preprocessor): ds = create_fake_text_dataset() ds = preprocessor(ds, {"inputs": INPUTS_SIZE + 1, "targets": TARGETS_SIZE + 1}, TEST_T5_FEATURES, noise_density=0.5) vocab = TEST_T5_FEATURES["targets"].vocabulary for ex in tfds.as_numpy(ds): targets_text = vocab.decode(ex["targets"].tolist()) self.assertNotIn("extra_id", targets_text) @parameterized.named_parameters( dict(testcase_name="text_infilling", preprocessor=preprocessors.text_infilling), dict(testcase_name="token_deletion", preprocessor=preprocessors.token_deletion)) def test_target_tokens_match_original_tokens(self, preprocessor): ds = create_fake_text_dataset() processed_ds = preprocessor( ds, {"inputs": INPUTS_SIZE + 1, "targets": TARGETS_SIZE + 1}, TEST_T5_FEATURES, noise_density=0.5) for processed_ex, ex in zip(tfds.as_numpy(processed_ds), tfds.as_numpy(ds)): np.testing.assert_array_equal(processed_ex["targets"], ex["targets"]) def test_extra_id_not_in_token_deletion_inputs(self): ds = create_fake_text_dataset() ds = preprocessors.token_deletion( ds, {"inputs": INPUTS_SIZE + 1, "targets": TARGETS_SIZE + 1}, TEST_T5_FEATURES, noise_density=0.5) vocab = TEST_T5_FEATURES["inputs"].vocabulary for ex in tfds.as_numpy(ds): inputs_text = vocab.decode(ex["inputs"].tolist()) self.assertNotIn("extra_id", inputs_text) def test_extra_id_in_text_infilling_inputs(self): ds = create_fake_text_dataset() ds = preprocessors.text_infilling( ds, {"inputs": INPUTS_SIZE + 1, "targets": TARGETS_SIZE + 1}, TEST_T5_FEATURES, noise_density=0.5) vocab = TEST_T5_FEATURES["inputs"].vocabulary for ex in tfds.as_numpy(ds): inputs_text = vocab.decode(ex["inputs"].tolist()) self.assertIn("extra_id", inputs_text) if __name__ == "__main__": tf.test.main()
neural_compressor/ux/components/model/shape.py
intel/neural-compressor
172
12789198
<gh_stars>100-1000 # -*- coding: utf-8 -*- # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data shape class.""" from typing import Any, Dict, List, Optional, Union from neural_compressor.ux.utils.json_serializer import JsonSerializer class Shape(JsonSerializer): """Data shape definition.""" def __init__(self, shape: Optional[str] = "", trusted: bool = False) -> None: """Object construction.""" super().__init__() self.shape = shape self.trusted = trusted def serialize( self, serialization_type: str = "default", ) -> Union[Dict[str, Any], List[Dict[str, Any]]]: """Serialize Shape class to dict.""" result = {} for key, value in self.__dict__.items(): if key in self._skip: continue result.update({key: value}) return result
tools/build/v2/test/testing_primitives.py
mike-code/boost_1_38_0
130
12789231
#!/usr/bin/python # Copyright 2002 <NAME> # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) import BoostBuild import re def match_re(actual, expected): return re.match(expected, actual, re.DOTALL) != None t = BoostBuild.Tester(match=match_re) t.set_tree('testing-primitives') # We expect t5 and t7's output to be dumped to stdout. t.run_build_system(stdout=r'''.*failing t5.*failing t7''') t.expect_addition('t2.txt') t.expect_addition('t3.txt') t.expect_addition('t5.out') t.expect_addition('t6.out') t.expect_addition('t6.txt') t.expect_addition('t7.out') t.expect_addition('t7.txt') t.expect_addition('t8.out') t.expect_nothing_more() t.cleanup()
tests/losses/test_neuralndcg.py
almajo/allRank
473
12789249
<filename>tests/losses/test_neuralndcg.py<gh_stars>100-1000 import math from functools import partial from pytest import approx from allrank.data.dataset_loading import PADDED_Y_VALUE from tests.losses.utils import neuralNDCG_wrap, ndcg_wrap test_cases = [{"stochastic": False, "transposed": False}, {"stochastic": True, "transposed": False}, {"stochastic": False, "transposed": True}, {"stochastic": True, "transposed": True}] def test_neuralNDCG_simple(): for tc in test_cases: neuralNDCG_simple(partial(neuralNDCG_wrap, **tc)) def neuralNDCG_simple(fun): y_pred = [0.5, 0.2] y_true = [1.0, 0.0] result = fun(y_pred, y_true) expected = ndcg_wrap(y_pred, y_true) assert math.isfinite(result) assert (-1 * result == approx(expected)) def test_neuralNDCG_longer(): for tc in test_cases: neuralNDCG_longer(partial(neuralNDCG_wrap, **tc)) def neuralNDCG_longer(fun): y_pred = [0.5, 0.2, 0.1, 0.4, 1.0, -1.0, 0.63] y_true = [1.0, 2.0, 2.0, 4.0, 1.0, 4.0, 3.0] result = fun(y_pred, y_true) expected = ndcg_wrap(y_pred, y_true) assert math.isfinite(result) assert (-1 * result == approx(expected)) def test_neuralNDCG_stable_for_very_small_prediction(): for tc in test_cases: neuralNDCG_stable_for_very_small_prediction(partial(neuralNDCG_wrap, **tc)) def neuralNDCG_stable_for_very_small_prediction(fun): y_pred = [0.5, -1e30] y_true = [1.0, 0.0] result = fun(y_pred, y_true) expected = ndcg_wrap(y_pred, y_true) assert math.isfinite(result) assert (-1 * result == approx(expected)) def test_neuralNDCG_ignores_padded_value(): for tc in test_cases: neuralNDCG_ignores_padded_value(partial(neuralNDCG_wrap, **tc)) def neuralNDCG_ignores_padded_value(fun): y_pred = [0.5, 0.2, 0.1, 0.4, 1.0, -1.0, 0.63, 1., 0.5, 0.3] y_true = [1.0, 2.0, 2.0, 4.0, 1.0, 4.0, 3.0, PADDED_Y_VALUE, PADDED_Y_VALUE, PADDED_Y_VALUE] result = fun(y_pred, y_true, temperature=0.001) expected = ndcg_wrap(y_pred, y_true) assert math.isfinite(result) assert (-1 * result == approx(expected)) def test_neuralNDCG_at_3(): for tc in test_cases: neuralNDCG_at_3(partial(neuralNDCG_wrap, **tc)) def neuralNDCG_at_3(fun): y_pred = [0.5, 0.2, 0.1, 0.4, 1.0, -1.0, 0.63] y_true = [1.0, 2.0, 2.0, 4.0, 1.0, 4.0, 3.0] ats = 3 result = fun(y_pred, y_true, k=ats) expected = ndcg_wrap(y_pred, y_true, ats=[ats]) assert math.isfinite(result) assert (-1 * result == approx(expected))
PyObjCTest/test_nsbitmapimagerep.py
Khan/pyobjc-framework-Cocoa
132
12789323
<reponame>Khan/pyobjc-framework-Cocoa from PyObjCTools.TestSupport import * import objc import array import sys from objc import YES, NO from AppKit import * try: unicode except NameError: unicode = str try: long except NameError: long = int class TestNSBitmapImageRep(TestCase): def testInstantiation(self): # widthxheight RGB 24bpp image width = 256 height = 256 dataPlanes = (None, None, None, None, None) dataPlanes = None i1 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, 0, 0) self.assertTrue(i1) i2 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(None, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, 0, 0) self.assertTrue(i2) def testPixelFormat(self): width = 16 height = 16 i1 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bitmapFormat_bytesPerRow_bitsPerPixel_(None, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, NSAlphaFirstBitmapFormat, 0, 0) self.assertIsInstance(i1, NSBitmapImageRep) singlePlane = objc.allocateBuffer(width*height*4) for i in range(0, width*height): si = i * 4 singlePlane[si] = 1 singlePlane[si+1] = 2 singlePlane[si+2] = 3 singlePlane[si+3] = 4 dataPlanes = (singlePlane, None, None, None, None) # test non-planar, premade buffer i2 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bitmapFormat_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, NSAlphaFirstBitmapFormat, 0, 0) self.assertIsInstance(i2, NSBitmapImageRep) bitmapData = i2.bitmapData() self.assertEqual(len(bitmapData), width * height * 4) def testImageData(self): width = 256 height = 256 rPlane = array.array('B') rPlane.fromlist( [y%256 for y in range(0,height) for x in range(0,width)] ) if sys.version_info[0] == 3: buffer = memoryview else: from __builtin__ import buffer rPlane = buffer(rPlane) gPlane = array.array('B') gPlane.fromlist( [y%256 for y in range(0,height) for x in range(width,0,-1)] ) gPlane = buffer(gPlane) bPlane = array.array('B') bPlane.fromlist( [x%256 for y in range(0,height) for x in range(0,width)] ) bPlane = buffer(bPlane) dataPlanes = (rPlane, gPlane, bPlane, None, None) # test planar, pre-made buffer i1 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, YES, NSDeviceRGBColorSpace, 0, 0) self.assertTrue(i1) singlePlane = objc.allocateBuffer(width*height*3) for i in range(0, width*height): si = i * 3 if sys.version_info[0] == 2: singlePlane[si] = rPlane[i] singlePlane[si+1] = gPlane[i] singlePlane[si+2] = bPlane[i] else: def as_byte(v): if isinstance(v, int): return v else: return ord(v) singlePlane[si] = as_byte(rPlane[i]) singlePlane[si+1] = as_byte(gPlane[i]) singlePlane[si+2] = as_byte(bPlane[i]) dataPlanes = (singlePlane, None, None, None, None) # test non-planar, premade buffer i2 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, 0, 0) # test grey scale greyPlane = array.array('B') greyPlane.fromlist( [x%256 for x in range(0,height) for x in range(0,width)] ) greyPlanes = (greyPlane, None, None, None, None) greyImage = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(greyPlanes, width, height, 8, 1, NO, YES, NSCalibratedWhiteColorSpace, width, 8) # test planar, NSBIR allocated buffer i3 = NSBitmapImageRep.alloc().initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(None, width, height, 8, 3, NO, YES, NSDeviceRGBColorSpace, 0, 0) r,g,b,a,o = i3.getBitmapDataPlanes_() self.assertTrue(r) self.assertTrue(g) self.assertTrue(b) self.assertTrue(not a) self.assertTrue(not o) self.assertEqual(len(r), len(rPlane)) self.assertEqual(len(g), len(gPlane)) self.assertEqual(len(b), len(bPlane)) r[0:len(r)] = rPlane[0:len(rPlane)] g[0:len(g)] = gPlane[0:len(gPlane)] b[0:len(b)] = bPlane[0:len(bPlane)] bitmapData = i2.bitmapData() self.assertEqual(len(bitmapData), len(singlePlane)) try: memoryview except NameError: self.assertEqual(bitmapData, singlePlane) else: self.assertEqual(bitmapData.tobytes(), singlePlane) a = array.array('L', [255]*4) self.assertArgIsOut(NSBitmapImageRep.getPixel_atX_y_, 0) d = i2.getPixel_atX_y_(a, 1, 1) self.assertIs(a, d) class TestBadCreation(TestCase): # Redirect stderr to /dev/null for the duration of this test, # NSBitmapImageRep will write an error message to stderr. def setUp(self): import os self.duppedStderr = os.dup(2) fp = os.open('/dev/null', os.O_RDWR) os.dup2(fp, 2) os.close(fp) def tearDown(self): import os os.dup2(self.duppedStderr, 2) def test_AllocInit(self): y = NSBitmapImageRep.alloc() try: self.assertRaises(ValueError, y.init) finally: width = 256 height = 256 dataPlanes = (None, None, None, None, None) y = y.initWithBitmapDataPlanes_pixelsWide_pixelsHigh_bitsPerSample_samplesPerPixel_hasAlpha_isPlanar_colorSpaceName_bytesPerRow_bitsPerPixel_(dataPlanes, width, height, 8, 3, NO, NO, NSDeviceRGBColorSpace, 0, 0) def testConstants(self): self.assertEqual(NSTIFFCompressionNone, 1) self.assertEqual(NSTIFFCompressionCCITTFAX3, 3) self.assertEqual(NSTIFFCompressionCCITTFAX4, 4) self.assertEqual(NSTIFFCompressionLZW, 5) self.assertEqual(NSTIFFCompressionJPEG, 6) self.assertEqual(NSTIFFCompressionNEXT, 32766) self.assertEqual(NSTIFFCompressionPackBits, 32773) self.assertEqual(NSTIFFCompressionOldJPEG, 32865) self.assertEqual(NSTIFFFileType, 0) self.assertEqual(NSBMPFileType, 1) self.assertEqual(NSGIFFileType, 2) self.assertEqual(NSJPEGFileType, 3) self.assertEqual(NSPNGFileType, 4) self.assertEqual(NSJPEG2000FileType, 5) self.assertEqual(NSImageRepLoadStatusUnknownType, -1) self.assertEqual(NSImageRepLoadStatusReadingHeader, -2) self.assertEqual(NSImageRepLoadStatusWillNeedAllData, -3) self.assertEqual(NSImageRepLoadStatusInvalidData, -4) self.assertEqual(NSImageRepLoadStatusUnexpectedEOF, -5) self.assertEqual(NSImageRepLoadStatusCompleted, -6) self.assertEqual(NSAlphaFirstBitmapFormat, 1 << 0) self.assertEqual(NSAlphaNonpremultipliedBitmapFormat, 1 << 1) self.assertEqual(NSFloatingPointSamplesBitmapFormat, 1 << 2) self.assertIsInstance(NSImageCompressionMethod, unicode) self.assertIsInstance(NSImageCompressionFactor, unicode) self.assertIsInstance(NSImageDitherTransparency, unicode) self.assertIsInstance(NSImageRGBColorTable, unicode) self.assertIsInstance(NSImageInterlaced, unicode) self.assertIsInstance(NSImageColorSyncProfileData, unicode) self.assertIsInstance(NSImageFrameCount, unicode) self.assertIsInstance(NSImageCurrentFrame, unicode) self.assertIsInstance(NSImageCurrentFrameDuration, unicode) self.assertIsInstance(NSImageLoopCount, unicode) self.assertIsInstance(NSImageGamma, unicode) self.assertIsInstance(NSImageProgressive, unicode) self.assertIsInstance(NSImageEXIFData, unicode) self.assertIsInstance(NSImageFallbackBackgroundColor, unicode) def testTiffCompression(self): lst, nr = NSBitmapImageRep.getTIFFCompressionTypes_count_(None, None) self.assertIsInstance(lst, tuple) self.assertIsInstance(nr, (int, long)) self.assertEqual(len(lst), nr) self.assertNotEqual(len(lst), 0) self.assertIsInstance(lst[0], (int, long)) def testMethods(self): self.assertResultIsBOOL(NSBitmapImageRep.isPlanar) self.assertResultIsBOOL(NSBitmapImageRep.canBeCompressedUsing_) self.assertArgIsBOOL(NSBitmapImageRep.incrementalLoadFromData_complete_, 1) self.assertArgIsOut(NSBitmapImageRep.getCompression_factor_, 0) self.assertArgIsOut(NSBitmapImageRep.getCompression_factor_, 1) if __name__ == '__main__': main( )
apps/async_task/utils.py
goztrk/django-htk
206
12789356
<reponame>goztrk/django-htk # Python Standard Library Imports import base64 import json def build_async_task_result(content, content_type, filename): """Builds an Async Task result from JSON This is necessary if we want to return multiple values, as the result by default is just a plain string. """ payload = { 'content' : base64.b64encode(content), 'content_type' : content_type, 'filename' : filename, } result = json.dumps(payload) return result def extract_async_task_result_json_values(result_data): """Companion function to perform the inverse of `build_async_task_result()` """ payload = json.loads(result_data) content = base64.b64decode(payload['content']) content_type = payload['content_type'] filename = payload['filename'] return (content, content_type, filename,)
foliant/preprocessors/base.py
foliant-docs/foliant
105
12789371
import re from logging import Logger from typing import Dict import yaml OptionValue = int or float or bool or str class BasePreprocessor(): '''Base preprocessor. All preprocessors must inherit from this one.''' # pylint: disable=too-many-instance-attributes defaults = {} tags = () @staticmethod def get_options(options_string: str) -> Dict[str, OptionValue]: '''Get a dictionary of typed options from a string with XML attributes. :param options_string: String of XML attributes :returns: Dictionary with options ''' if not options_string: return {} option_pattern = re.compile( r'(?P<key>[A-Za-z_:][0-9A-Za-z_:\-\.]*)=(\'|")(?P<value>.+?)\2', flags=re.DOTALL ) return { option.group('key'): yaml.load(option.group('value'), yaml.Loader) for option in option_pattern.finditer(options_string) } def __init__(self, context: dict, logger: Logger, quiet=False, debug=False, options={}): # pylint: disable=dangerous-default-value # pylint: disable=too-many-arguments self.project_path = context['project_path'] self.config = context['config'] self.context = context self.logger = logger self.quiet = quiet self.debug = debug self.options = {**self.defaults, **options} self.working_dir = self.project_path / self.config['tmp_dir'] if self.tags: self.pattern = re.compile( rf'(?<!\<)\<(?P<tag>{"|".join(self.tags)})' + r'(\s(?P<options>[^\<\>]*))?\>' + r'(?P<body>.*?)\<\/(?P=tag)\>', flags=re.DOTALL ) def apply(self): '''Run the preprocessor against the project directory. Must be implemented by every preprocessor. ''' raise NotImplementedError
tests/common/test_op/ascend/fake_quant_with_min_max_args.py
tianjiashuo/akg
286
12789408
<reponame>tianjiashuo/akg<gh_stars>100-1000 # Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: fake_quant_with_min_max_args""" import akg from akg import tvm, topi from akg.utils.format_transform import get_shape import akg.utils as utils from akg.ops.math.ascend import Floor def nudge_min_max(min, max, num_bits, narrow_range): """ Calculate the maximum and minimum values of the quantization Args: min: scalar, input min max: input max num_bits: scalar Defaults to 8. num_bits is the bitwidth of the quantization, range [2,16] narrow_range: bool Returns: nudged_min, nudged_max, scale """ quant_max = (2**num_bits) - 1 if narrow_range is False: quant_min = 0.00 else: quant_min = 1.00 scale = (max - min) / (float(quant_max) - quant_min) zero_point_from_min = quant_min - min / scale # Calculate the maximum and minimum values of the quantization if zero_point_from_min < quant_min: nudged_zero_point = quant_min elif zero_point_from_min > quant_max: nudged_zero_point = quant_max else: nudged_zero_point = (zero_point_from_min + 0.5) // 1 nudged_min = (quant_min - nudged_zero_point) * scale nudged_max = (quant_max - nudged_zero_point) * scale return nudged_min, nudged_max, scale @utils.check_input_type(tvm.tensor.Tensor, (float, int, type(None)), (float, int, type(None)), (int, type(None)), (bool, type(None))) def fake_quant_with_min_max_args(input_data, min=-6, max=6, num_bits=8, narrow_range=False): """ Computes Fake-quantize the 'input_data' tensor, type float32 to 'output_data' tensor of same type output_data = (floor(clamped_shifted * inv_nudged_scale + 0.5f))) * scale + nudged_min scale = (max-min) / (quant_max-quant_min) Args: data_x1 (tvm.tensor.Tensor): Tensor of dtype "float32" min ([float, int]): scalar, defaults to -6 max ([float, int]): scalar, defaults to 6. [min; max] define the clamping range for the input_data data num_bits ([float, int]): Defaults to 8. num_bits is the bitwidth of the quantization,between 2 and 16 narrow_range ([bool]): True, quantized into the quantization range [1; 2^num_bits - 1] False,quantized into the quantization range [0; 2^num_bits - 1] Returns: tvm.tensor.Tensor """ shape = get_shape(input_data) utils.check_shape(shape) dtype = input_data.dtype utils.ops_dtype_check(dtype, utils.DtypeForDavinci.FLOAT32) nudged_min, nudged_max, scale = nudge_min_max(min, max, num_bits, narrow_range) zero_tensor = tvm.compute(input_data.shape, lambda *i: tvm.const(0, dtype="float32"), name="zero_tensor") nudged_max_tensor = topi.add(zero_tensor, nudged_max) nudged_min_tensor = topi.add(zero_tensor, nudged_min) inv_nudged_scale = 1.00 / scale # Transform the input between nudged_max and nudged_min clamped_vmin = topi.minimum(input_data, nudged_max_tensor) clamped = topi.maximum(clamped_vmin, nudged_min_tensor) # Calculate the quantized and dequantized results clamped_shifted = topi.subtract(clamped, nudged_min_tensor) vmul_shifted = topi.multiply(clamped_shifted, inv_nudged_scale) vadds_shifted = topi.add(vmul_shifted, 0.5) floor_vadds_shifted = Floor(vadds_shifted) floor_cast = akg.lang.ascend.cast_to(floor_vadds_shifted, dtype) res_scale = topi.multiply(floor_cast, scale) res = topi.add(res_scale, nudged_min_tensor) return res
analytics/object/language.py
dpatel257/Smart-City-Sample
126
12789412
#!/usr/bin/python3 text={ "object-detection": "object-detection", "svcq-counting": "svcq-counting", }
rollbar/contrib/django/tests.py
arthurio/pyrollbar
177
12789424
""" Unit tests """ from django.test import TestCase from django.conf import settings class BasicTests(TestCase): def test_configuration(self): """ Test that the configuration is sane. """ self.assertTrue('ROLLBAR' in dir(settings), msg='The ROLLBAR setting is not present.') self.assertTrue(settings.ROLLBAR.get('access_token'), msg='The ROLLBAR["access_token"] setting is blank.')
integration_test/test_heartbeat_checker.py
lynix94/nbase-arc
176
12789486
<gh_stars>100-1000 # # Copyright 2015 <NAME>. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import testbase import util import time import gateway_mgmt import redis_mgmt import smr_mgmt import default_cluster import config import load_generator import telnet import json import constant as c class TestHeartbeatChecker( unittest.TestCase ): cluster = config.clusters[0] leader_cm = config.clusters[0]['servers'][0] max_load_generator = 1 load_gen_thrd_list = {} key_base = 'key_thbc' @classmethod def setUpClass( cls ): return 0 @classmethod def tearDownClass( cls ): return 0 def setUp( self ): util.set_process_logfile_prefix( 'TestHeartbeatChecker_%s' % self._testMethodName ) self.conf_checker = default_cluster.initialize_starting_up_smr_before_redis( self.cluster ) self.assertIsNotNone(self.conf_checker, 'failed to initialize cluster') def tearDown( self ): testbase.defaultTearDown(self) def getseq_log(self, s): smr = smr_mgmt.SMR( s['id'] ) try: ret = smr.connect( s['ip'], s['smr_mgmt_port'] ) if ret != 0: return smr.write( 'getseq log\r\n' ) response = smr.read_until( '\r\n', 1 ) util.log('getseq log (pgs%d) = %s' % (s['id'], response[:-2])) smr.disconnect() except IOError: pass def get_expected_smr_state( self, server, expected, max_try=60 ): for i in range( 0, max_try ): state = util.get_smr_state( server, self.leader_cm ) if state == expected: break; time.sleep( 1 ) return state def state_transition( self ): server = util.get_server_by_role( self.cluster['servers'], 'slave' ) self.assertNotEquals( server, None, 'failed to get_server_by_role-slave' ) # get gateway info ip, port = util.get_rand_gateway( self.cluster ) gw = gateway_mgmt.Gateway( self.cluster['servers'][0]['id'] ) # check initial state state = self.get_expected_smr_state( server, 'N' ) role = util.get_role_of_server( server ) self.assertEquals( 'N', state, 'server%d - state:%s, role:%s, expected:N' % (server['id'], state, role) ) # shutdown ret = testbase.request_to_shutdown_smr( server ) self.assertEquals( ret, 0, 'failed to shutdown smr' ) ret = testbase.request_to_shutdown_redis( server ) self.assertEquals( ret, 0, 'failed to shutdown redis' ) time.sleep( 3 ) # check state F expected = 'F' state = self.get_expected_smr_state( server, expected ) self.assertEquals( expected , state, 'server%d - state:%s, but expected:%s' % (server['id'], state, expected) ) # set value ret = gw.connect( ip, port ) self.assertEquals( ret, 0, 'failed to connect to gateway, %s:%d' % (ip, port) ) timestamp = 0.0 for i in range( 0, 100 ): timestamp = time.time() key = 'new_key_haha' cmd = 'set %s %f\r\n' % (key, timestamp) gw.write( cmd ) res = gw.read_until( '\r\n' ) self.assertEquals( res, '+OK\r\n' ) gw.disconnect() # recovery ret = testbase.request_to_start_smr( server ) self.assertEquals( ret, 0, 'failed to start smr' ) ret = testbase.request_to_start_redis( server ) self.assertEquals( ret, 0, 'failed to start redis' ) ret = testbase.wait_until_finished_to_set_up_role( server, 10 ) self.assertEquals( ret, 0, 'failed to role change. smr_id:%d' % (server['id']) ) time.sleep( 5 ) redis = redis_mgmt.Redis( server['id'] ) ret = redis.connect( server['ip'], server['redis_port'] ) self.assertEquals( ret, 0, 'failed to connect to redis' ) # check state N expected = 'N' max_try = 20 for i in range( 0, max_try ): state = self.get_expected_smr_state( server, expected ) if state == expected: break time.sleep( 1 ) role = util.get_role_of_server( server ) self.assertEquals( expected , state, 'server%d - state:%s, role:%s, but expected:%s' % (server['id'], state, role, expected) ) def test_1_state_transition( self ): util.print_frame() self.state_transition() def get_mss( self ): # get master, slave1, and slave2 master = util.get_server_by_role( self.cluster['servers'], 'master' ) self.assertNotEquals( master, None, 'failed to get master' ) slave1 = util.get_server_by_role( self.cluster['servers'], 'slave' ) self.assertNotEquals( slave1, None, 'failed to get slave1' ) slave2 = None for server in self.cluster['servers']: id = server['id'] if id != master['id'] and id != slave1['id']: slave2 = server break self.assertNotEquals( slave2, None, 'failed to get slave2' ) return master, slave1, slave2 def test_2_consistent_after_failover( self ): util.print_frame() for i in range(3): util.log('loop %d' % i) self.consistent_after_failover() def consistent_after_failover( self ): max = 10000 wait_count = 15 key = 'caf' # get master, slave1, and slave2 master, slave1, slave2 = self.get_mss() # set value ip, port = util.get_rand_gateway( self.cluster ) gw = gateway_mgmt.Gateway( ip ) gw.connect( ip, port ) for i in range( 0, max ): cmd = 'set %s%d %d\r\n' % (key, i, i) gw.write( cmd ) res = gw.read_until( '\r\n' ) self.assertEquals( res, '+OK\r\n' ) time.sleep( 5 ) # shutdown servers = [master, slave1, slave2] for server in servers: util.log('before shutdown pgs%d' % server['id']) for s in servers: self.getseq_log(s) ret = testbase.request_to_shutdown_smr( server ) self.assertEqual( ret, 0, 'failed to shutdown smr, server:%d' % server['id'] ) ret = testbase.request_to_shutdown_redis( server ) self.assertEquals( ret, 0, 'failed to shutdown redis' ) time.sleep( 5 ) # check state F for server in servers: state = self.get_expected_smr_state( server, 'F' ) self.assertEquals( 'F', state, 'server%d - state:%s' % (server['id'], state) ) # recovery for server in servers: ret = testbase.request_to_start_smr( server ) self.assertEqual( ret, 0, 'failed to start smr, server:%d' % server['id'] ) ret = testbase.request_to_start_redis( server, False ) self.assertEqual( ret, 0, 'failed to start redis, server:%d' % server['id'] ) util.log('after restart pgs%d' % server['id']) for s in servers: self.getseq_log(s) time.sleep( 5 ) # wait for master election for i in xrange(10): ret = util.check_cluster( self.cluster['cluster_name'], self.leader_cm['ip'], self.leader_cm['cm_port'] ) if ret: break time.sleep(1) # check state for server in servers: ret = testbase.wait_until_finished_to_set_up_role( server, wait_count ) self.assertEquals( ret, 0, 'failed to role change. server:%d' % (server['id']) ) state = self.get_expected_smr_state( server, 'N' ) role = util.get_role_of_server( server ) self.assertEquals( 'N', state, 'server%d - state:%s, role:%s' % (server['id'], state, role) ) the_number_of_master = 0 the_number_of_slave = 0 for server in servers: role = util.get_role_of_server( server ) if role == c.ROLE_MASTER: the_number_of_master = the_number_of_master + 1 elif role == c.ROLE_SLAVE: the_number_of_slave = the_number_of_slave + 1 self.assertTrue( 1 == the_number_of_master and 2 == the_number_of_slave, 'failed to set roles, the number of master:%d, the number of slave:%d' % (the_number_of_master, the_number_of_slave) ) # get master, slave1, and slave2 master, slave1, slave2 = self.get_mss() # connect to a master`s redis and set data redis = redis_mgmt.Redis( master['id'] ) ret = redis.connect( master['ip'], master['redis_port'] ) self.assertEquals( ret, 0, 'failed to connect to redis, server:%d' % master['id'] ) for i in range( max, max*2 ): cmd = 'set %s%d %d\r\n' % (key, i, i) redis.write( cmd ) res = redis.read_until( '\r\n' ) self.assertEquals( res, '+OK\r\n', 'failed to get response, server:%d' % master['id'] ) redis.disconnect() # check slaves`s data slaves = [slave1, slave2] for slave in slaves: slave_redis = redis_mgmt.Redis( slave['id'] ) ret = slave_redis .connect( slave['ip'], slave['redis_port'] ) self.assertEquals( ret, 0, 'failed to connect to redis, server:%d' % slave['id'] ) for i in range( 0, max*2 ): cmd = 'get %s%d\r\n' % (key, i) slave_redis.write( cmd ) trash = slave_redis.read_until( '\r\n' ) res = slave_redis.read_until( '\r\n' ) self.assertEquals( res, '%d\r\n' % i, 'inconsistent, server:%d, expected %d but %s' % (slave['id'], i, res) ) slave_redis.disconnect() def test_3_heartbeat_target_connection_count( self ): util.print_frame() util.log( 'wait until all connections are established' ) for i in range(1, 8): time.sleep(1) util.log( '%d sec' % i ) # check pgs for server in self.cluster['servers']: before_cnt_redis = util.get_clients_count_of_redis(server['ip'], server['redis_port']) before_cnt_smr = util.get_clients_count_of_smr(server['smr_mgmt_port']) cmd = 'pgs_leave %s %d forced' % (self.cluster['cluster_name'], server['id']) ret = util.cm_command(self.leader_cm['ip'], self.leader_cm['cm_port'], cmd) jobj = json.loads(ret) self.assertEqual( jobj['state'], 'success', 'failed : cmd="%s", reply="%s"' % (cmd, ret[:-2]) ) util.log( 'succeeded : cmd="%s", reply="%s"' % (cmd, ret[:-2]) ) # check redis success = False for i in range(5): after_cnt = util.get_clients_count_of_redis(server['ip'], server['redis_port']) if after_cnt <= 2: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to redis%d(%s:%d) is %d, exptected:n<=2, before=%d' % (server['id'], server['ip'], server['redis_port'], after_cnt, before_cnt_redis) ) util.log( 'succeeded : the number of connections to redis%d(%s:%d) is %d, exptected=n<=2, before=%d' % (server['id'], server['ip'], server['redis_port'], after_cnt, before_cnt_redis) ) # check smr success = False expected = 1 for i in range(5): after_cnt = util.get_clients_count_of_smr(server['smr_mgmt_port']) if after_cnt == expected: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to smr%d(%s:%d) is %d, exptected=%d, before=%d' % (server['id'], server['ip'], server['smr_mgmt_port'], after_cnt, expected, before_cnt_smr) ) util.log( 'succeeded : the number of connections to smr%d(%s:%d) is %d, exptected=%d, before=%d' % (server['id'], server['ip'], server['smr_mgmt_port'], after_cnt, expected, before_cnt_smr) ) # Go back to initial configuration self.assertTrue(util.pgs_join(self.leader_cm['ip'], self.leader_cm['cm_port'], server['cluster_name'], server['id']), 'failed to join pgs %d' % server['id']) # check gateway for server in self.cluster['servers']: before_cnt = util.get_clients_count_of_gw(server['ip'], server['gateway_port']) cmd = 'gw_del %s %d' % (self.cluster['cluster_name'], server['id']) ret = util.cm_command(self.leader_cm['ip'], self.leader_cm['cm_port'], cmd) jobj = json.loads(ret) self.assertEqual( jobj['state'], 'success', 'failed : cmd="%s", reply="%s"' % (cmd, ret[:-2]) ) util.log( 'succeeded : cmd="%s", reply="%s"' % (cmd, ret[:-2]) ) success = False expected = 1 for i in range(5): after_cnt = util.get_clients_count_of_gw(server['ip'], server['gateway_port']) if after_cnt == expected: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to gateway%d(%s:%d) is %d, exptected=%d.' % (server['id'], server['ip'], server['gateway_port'], after_cnt, expected) ) util.log( 'succeeded : the number of connections to gateway%d(%s:%d) is %d, exptected=%d.' % (server['id'], server['ip'], server['gateway_port'], after_cnt, expected) ) # Go back to initial configuration self.assertTrue(util.gw_add(server['cluster_name'], server['id'], server['pm_name'], server['ip'], server['gateway_port'], self.leader_cm['ip'], self.leader_cm['cm_port']), 'failed to add gw %d' % server['id']) def test_4_elect_master_randomly( self ): util.print_frame() for i in range(1): self.elect_master_randomly() def elect_master_randomly( self ): # set data ip, port = util.get_rand_gateway(self.cluster) gw = gateway_mgmt.Gateway( '0' ) gw.connect( ip, port ) for i in range( 0, 1000 ): cmd = 'set %s%d %d\r\n' % (self.key_base, i, i) gw.write( cmd ) res = gw.read_until( '\r\n' ) self.assertEqual( res, '+OK\r\n', 'failed to set values to gw(%s:%d). cmd:%s, res:%s' % (ip, port, cmd[:-2], res[:-2]) ) server_ids = [] for server in self.cluster['servers']: server_ids.append( server['id'] ) for try_cnt in range( 30 ): # get master, slave1, slave2 m, s1, s2 = util.get_mss( self.cluster ) self.assertNotEqual( m, None, 'master is None.' ) self.assertNotEqual( s1, None, 'slave1 is None.' ) self.assertNotEqual( s2, None, 'slave2 is None.' ) util.log( 'master id : %d' % m['id'] ) if try_cnt != 0: if m['id'] in server_ids: server_ids.remove( m['id'] ) smr = smr_mgmt.SMR( m['id'] ) ret = smr.connect( m['ip'], m['smr_mgmt_port'] ) self.assertEqual( ret, 0, 'failed to connect to master. %s:%d' % (m['ip'], m['smr_mgmt_port']) ) cmd = 'role lconn\r\n' smr.write( cmd ) reply = smr.read_until( '\r\n' ) self.assertEqual( reply, '+OK\r\n', 'failed : cmd="%s", reply="%s"' % (cmd[:-2], reply[:-2]) ) util.log( 'succeeded : cmd="%s", reply="%s"' % (cmd[:-2], reply[:-2]) ) # wait until role-change is finished for role_change_try_cnt in range( 5 ): count_master = 0 count_slave = 0 for server in self.cluster['servers']: real_role = util.get_role_of_server( server ) real_role = util.roleNumberToChar( real_role ) if real_role == 'M': count_master = count_master + 1 elif real_role == 'S': count_slave = count_slave + 1 if count_master == 1 and count_slave == 2: break; time.sleep( 1 ) # check the number of master and slave self.assertEqual( count_master, 1, 'failed : the number of master is not 1, count_master=%d, count_slave=%d' % (count_master, count_slave) ) self.assertEqual( count_slave, 2, 'failed : the number of slave is not 2, count_master=%d, count_slave=%d' % (count_master, count_slave) ) util.log( 'succeeded : the number of master is 1 and the number of slave is 2' ) # check states of all pgs in pg for try_cnt in range( 3 ): ok = True for s in self.cluster['servers']: real_role = util.get_role_of_server( s ) real_role = util.roleNumberToChar( real_role ) smr_info = util.get_smr_info( s, self.leader_cm ) cc_role = smr_info['smr_Role'] cc_hb = smr_info['hb'] if cc_hb != 'Y': ok = False if real_role != cc_role: ok = False if ok: util.log( 'succeeded : a role of real pgs is the same with a role in cc, id=%d, real=%s, cc=%s, hb=%s' % (s['id'], real_role, cc_role, cc_hb) ) else: util.log( '\n\n**********************************************************\n\nretry: a role of real pgs is not the same with a role in cc, id=%d, real=%s, cc=%s, hb=%s' % (s['id'], real_role, cc_role, cc_hb) ) if ok == False: time.sleep( 0.5 ) else: break self.assertTrue( ok, 'failed : role check' ) if len( server_ids ) == 0: util.log( 'succeeded : all smrs have been as a master' ) return 0 self.assertEqual( 0, len( server_ids ) , 'failed : remains server ids=[%s]' % (','.join('%d' % id for id in server_ids)) ) return 0 def test_5_from_n_to_1_heartbeat_checkers( self ): util.print_frame() for i in range( 0, len( self.cluster['servers'] ) - 1 ): util.log( 'loop %d' % i ) server = self.cluster['servers'][i] self.assertEquals( 0, testbase.request_to_shutdown_cm( server ), 'failed to request_to_shutdown_cm, server:%d' % server['id'] ) time.sleep( 20 ) self.leader_cm = self.cluster['servers'][i+1] self.match_cluster_info(self.leader_cm['ip'], self.leader_cm['cm_port'], self.cluster) self.state_transition() # Go back to initial configuration self.assertTrue(util.recover_confmaster(self.cluster, [0,1], 0), 'failed to recover confmaster.') def test_6_from_3_to_6_heartbeat_checkers( self ): util.print_frame() hbc_svr_list = [] i = 5000 + len( self.cluster['servers'] ) for server in self.cluster['servers']: i = i + 1 hbc_svr = {} hbc_svr['id'] = i hbc_svr['ip'] = server['ip'] hbc_svr['zk_port'] = server['zk_port'] hbc_svr_list.append(hbc_svr) ret = testbase.setup_cm( i ) self.assertEquals( 0, ret, 'failed to copy heartbeat checker, server:%d' % hbc_svr['id'] ) ret = testbase.request_to_start_cm( i, i ) self.assertEquals( 0, ret, 'failed to request_to_start_cm, server:%d' % hbc_svr['id'] ) self.state_transition() # Go back to initial configuration for hbc_svr in hbc_svr_list: self.assertEqual(0, testbase.request_to_shutdown_cm(hbc_svr), 'failed to shutdown confmaster') def test_7_remaining_hbc_connection( self ): util.print_frame() # check pgs for server in self.cluster['servers']: before_cnt_redis = util.get_clients_count_of_redis(server['ip'], server['redis_port']) before_cnt_smr = util.get_clients_count_of_smr(server['smr_mgmt_port']) cmd = 'pgs_leave %s %d forced\r\npgs_del %s %d' % (self.cluster['cluster_name'], server['id'], self.cluster['cluster_name'], server['id']) util.cm_command(self.leader_cm['ip'], self.leader_cm['cm_port'], cmd) for server in self.cluster['servers']: # check redis success = False for i in range(5): after_cnt = util.get_clients_count_of_redis(server['ip'], server['redis_port']) if after_cnt <= 2: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to redis%d(%s:%d) is %d, exptected=n<=2, before=%d' % (server['id'], server['ip'], server['redis_port'], after_cnt, before_cnt_redis) ) util.log( 'succeeded : the number of connections to redis%d(%s:%d) is %d, exptected=n<=2, before=%d' % (server['id'], server['ip'], server['redis_port'], after_cnt, before_cnt_redis) ) # check smr success = False expected = 0 for i in range(5): after_cnt = util.get_clients_count_of_smr(server['smr_mgmt_port']) if after_cnt == expected: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to smr%d(%s:%d) is %d, exptected=%d, before=%d' % (server['id'], server['ip'], server['smr_mgmt_port'], after_cnt, expected, before_cnt_smr) ) util.log( 'succeeded : the number of connections to smr%d(%s:%d) is %d, exptected=%d, before=%d' % (server['id'], server['ip'], server['smr_mgmt_port'], after_cnt, expected, before_cnt_smr) ) # check gateway for server in self.cluster['servers']: before_cnt = util.get_clients_count_of_gw(server['ip'], server['gateway_port']) cmd = 'gw_del %s %d' % (self.cluster['cluster_name'], server['id']) util.cm_command(self.leader_cm['ip'], self.leader_cm['cm_port'], cmd) for server in self.cluster['servers']: success = False expected = 1 for i in range(5): after_cnt = util.get_clients_count_of_gw(server['ip'], server['gateway_port']) if after_cnt == expected: success = True break time.sleep(1) self.assertEquals( success, True, 'failed : the number of connections to gateway%d(%s:%d) is %d, exptected=%d.' % (server['id'], server['ip'], server['gateway_port'], after_cnt, expected) ) util.log( 'succeeded : the number of connections to gateway%d(%s:%d) is %d, exptected=%d.' % (server['id'], server['ip'], server['gateway_port'], after_cnt, expected) ) # Go back to initial configuration # Cleanup PG self.assertTrue(util.cm_success(util.cm_command( self.leader_cm['ip'], self.leader_cm['cm_port'], 'pg_del %s %d' % (self.cluster['cluster_name'], self.cluster['servers'][0]['pg_id'])))[0]) # Cleanup processes of PGS and GW for s in self.cluster['servers']: self.assertEqual(0, util.shutdown_redis(s['id'], s['redis_port']), 'failed to kill redis %d process' % s['id']) self.assertEqual(0, util.shutdown_smr(s['id'], s['ip'], s['smr_base_port']), 'failed to kill smr %d process' % s['id']) self.assertEqual(0, util.shutdown_gateway(s['id'], s['gateway_port']), 'failed to kill gw %d process' % s['id']) # Recover PG self.assertTrue( util.install_pg(self.cluster, self.cluster['servers'], self.cluster['servers'][0], start_gw=True), 'failed to recover PGS and GW in a PM') def match_cluster_info(self, cm_ip, cm_port, cluster): # Cluster cluster_info = util.cluster_info(cm_ip, cm_port, cluster['cluster_name'])['cluster_info'] self.assertEquals(cluster_info['PN_PG_Map'], '0 8192') self.assertEquals(cluster_info['Key_Space_Size'], 8192) # PG for pg_id in cluster['pg_id_list']: pg = util.pg_info(cm_ip, cm_port, cluster['cluster_name'], pg_id) self.assertIsNotNone(pg) for s in self.cluster['servers']: # GW gw_info = util.get_gw_info(cm_ip, cm_port, cluster['cluster_name'], s['id']) self.assertEquals(gw_info['port'], s['gateway_port']) self.assertEquals(gw_info['state'], 'N') self.assertEquals(gw_info['hb'], 'Y') self.assertEquals(gw_info['pm_Name'], s['pm_name']) self.assertEquals(gw_info['pm_IP'], s['ip']) # PGS pgs_info = util.get_pgs_info(cm_ip, cm_port, cluster['cluster_name'], s['id']) self.assertEquals(pgs_info['pg_ID'], s['pg_id']) self.assertEquals(pgs_info['pm_Name'], s['pm_name']) self.assertEquals(pgs_info['pm_IP'], s['ip']) self.assertEquals(pgs_info['backend_Port_Of_Redis'], s['redis_port']) self.assertEquals(pgs_info['replicator_Port_Of_SMR'], s['smr_base_port']) self.assertEquals(pgs_info['management_Port_Of_SMR'], s['smr_mgmt_port']) self.assertEquals(pgs_info['state'], 'N') self.assertEquals(pgs_info['hb'], 'Y') self.assertEquals(pgs_info['color'], 'GREEN') self.assertTrue(pgs_info['smr_Role'] == 'M' or pgs_info['smr_Role'] == 'S') self.assertEquals(pgs_info['old_master_version'], '201')
pyxtal/miscellaneous/bugs/bug.py
ubikpt/PyXtal
127
12789507
from pyxtal import pyxtal from ase.io import read from ase.spacegroup.symmetrize import prep_symmetry from spglib import get_symmetry_dataset #ans1 = get_symmetry_dataset(s, symprec=1e-2) #print(ans1) s = pyxtal() s.from_seed('bug.vasp', tol=1e-2) print(s) #s1=s.subgroup(eps=0.1, group_type='t+k', max_cell=4) #for a in s1: # print(a) #s1=s.subgroup(eps=0.1, group_type='k', max_cell=4) #for a in s1: # print(a) #permutation = {"C":"Si", "Si":"C"} #for i in range(100): # struc = s.subgroup_once(0.01, None, permutation, max_cell=1) # print(struc.group.number, struc.formula) for i in range(100): struc = s.subgroup_once(0.2, None, None, 't+k', max_cell=2) print(struc.group.number, struc.formula) #for i in range(1000): # struc = s.subgroup_with_substitution(permutation, once=True, max_cell=4) # print(struc)
server/zmq_server_pirate.py
merlinran/acorn-precision-farming-rover
143
12789533
<gh_stars>100-1000 """ ********************************************************************* This file is part of: The Acorn Project https://wwww.twistedfields.com/research ********************************************************************* Copyright (c) 2019-2021 <NAME>, Twisted Fields LLC Copyright (c) 2021 The Acorn Project contributors (cf. AUTHORS.md). Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ********************************************************************* """ # Modified from example file # Paranoid Pirate Worker by <NAME> <dln(at)eintr(dot)org> from random import randint import time import zmq import redis import zmq_server # keep the two imported to keep pickle working # TODO: avoid this by moving the class defs to a separate module. from master_process import Robot, RobotCommand REDIS_PORT = 6379 HEARTBEAT_LIVENESS = 3 HEARTBEAT_INTERVAL = 1 INTERVAL_INIT = 1 INTERVAL_MAX = 32 # Paranoid Pirate Protocol constants PPP_READY = b"\x01" # Signals worker is ready PPP_HEARTBEAT = b"\x02" # Signals worker heartbeat def worker_socket(context, poller): """Helper function that returns a new configured socket connected to the Paranoid Pirate queue""" worker = context.socket(zmq.DEALER) # DEALER identity = b"%04X-%04X" % (randint(0, 0x10000), randint(0, 0x10000)) worker.setsockopt(zmq.IDENTITY, identity) poller.register(worker, zmq.POLLIN) worker.connect("tcp://localhost:5569") worker.send(PPP_READY) return worker def main(): r = redis.Redis(host='localhost', port=REDIS_PORT) context = zmq.Context(1) poller = zmq.Poller() liveness = HEARTBEAT_LIVENESS interval = INTERVAL_INIT heartbeat_at = time.time() + HEARTBEAT_INTERVAL worker = worker_socket(context, poller) cycles = 0 while True: socks = dict(poller.poll(HEARTBEAT_INTERVAL * 1000)) # Handle worker activity on backend if socks.get(worker) == zmq.POLLIN: # Get message # - 3-part envelope + content -> request # - 1-part HEARTBEAT -> heartbeat frames = worker.recv_multipart() if not frames: break # Interrupted if len(frames) >= 5: cycles += 1 print("I: Normal reply") # print(len(frames)) # print(frames) ident, zero_frame, idx, command, key, msg = frames return_command, reply = zmq_server.handle_command(r, command, key, msg) worker.send_multipart([ident, zero_frame, idx, return_command, reply]) # worker.send_multipart(frames) liveness = HEARTBEAT_LIVENESS elif len(frames) == 1 and frames[0] == PPP_HEARTBEAT: print("I: Queue heartbeat") liveness = HEARTBEAT_LIVENESS else: print("E: Invalid message: %s" % frames) interval = INTERVAL_INIT else: liveness -= 1 if liveness == 0: print("W: Heartbeat failure, can't reach queue") print("W: Reconnecting in %0.2fs..." % interval) time.sleep(interval) if interval < INTERVAL_MAX: interval *= 2 poller.unregister(worker) worker.setsockopt(zmq.LINGER, 0) worker.close() worker = worker_socket(context, poller) liveness = HEARTBEAT_LIVENESS if time.time() > heartbeat_at: heartbeat_at = time.time() + HEARTBEAT_INTERVAL print("I: Worker heartbeat") worker.send(PPP_HEARTBEAT) if __name__ == "__main__": main()
fastmri_recon/evaluate/scripts/dealiasing_eval.py
samiulshuvo/fastmri-reproducible-benchmark
105
12789560
<gh_stars>100-1000 import os from tqdm import tqdm from fastmri_recon.config import * from fastmri_recon.data.datasets.fastmri_pyfunc import train_masked_kspace_dataset_from_indexable as singlecoil_dataset from fastmri_recon.evaluate.metrics.np_metrics import METRIC_FUNCS, Metrics from fastmri_recon.models.subclassed_models.denoisers.proposed_params import build_model_from_specs from fastmri_recon.models.subclassed_models.multiscale_complex import MultiscaleComplex def evaluate_xpdnet_dealiasing( model_fun, model_kwargs, run_id, n_scales=0, n_epochs=200, contrast='CORPD_FBK', af=4, n_samples=None, cuda_visible_devices='0123', ): val_path = f'{FASTMRI_DATA_DIR}singlecoil_val/' os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(cuda_visible_devices) val_set = singlecoil_dataset( val_path, AF=af, contrast=contrast, inner_slices=None, rand=False, scale_factor=1e6, ) if n_samples is not None: val_set = val_set.take(n_samples) else: val_set = val_set.take(199) model = MultiscaleComplex( model_fun=model_fun, model_kwargs=model_kwargs, res=False, n_scales=n_scales, fastmri_format=True, ) model(next(iter(val_set))[0]) model.load_weights(f'{CHECKPOINTS_DIR}checkpoints/{run_id}-{n_epochs:02d}.hdf5') m = Metrics(METRIC_FUNCS) for x, y_true in tqdm(val_set.as_numpy_iterator(), total=199 if n_samples is None else n_samples): y_pred = model.predict(x, batch_size=1) m.push(y_true[..., 0], y_pred[..., 0]) return ['PSNR', 'SSIM'], list(m.means().values())
recipes/opencolorio/all/conanfile.py
rockandsalt/conan-center-index
562
12789567
from conans import ConanFile, CMake, tools import os required_conan_version = ">=1.33.0" class OpenColorIOConan(ConanFile): name = "opencolorio" description = "A color management framework for visual effects and animation." license = "BSD-3-Clause" homepage = "https://opencolorio.org/" url = "https://github.com/conan-io/conan-center-index" settings = "os", "compiler", "build_type", "arch" options = { "shared": [True, False], "fPIC": [True, False], "use_sse": [True, False] } default_options = { "shared": False, "fPIC": True, "use_sse": True } generators = "cmake", "cmake_find_package" exports_sources = ["CMakeLists.txt", "patches/*"] topics = ("colors", "visual", "effects", "animation") _cmake = None @property def _source_subfolder(self): return "source_subfolder" @property def _build_subfolder(self): return "build_subfolder" def config_options(self): if self.settings.os == "Windows": del self.options.fPIC if self.settings.arch not in ["x86", "x86_64"]: del self.options.use_sse def configure(self): if self.options.shared: del self.options.fPIC def validate(self): if self.settings.compiler.get_safe("cppstd"): tools.check_min_cppstd(self, 11) def requirements(self): # TODO: add GLUT (needed for ociodisplay tool) self.requires("lcms/2.12") self.requires("yaml-cpp/0.7.0") if tools.Version(self.version) < "2.1.0": self.requires("tinyxml/2.6.2") if tools.Version(self.version) >= "2.1.0": self.requires("pystring/1.1.3") self.requires("expat/2.4.1") self.requires("openexr/2.5.7") def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) if tools.Version(self.version) >= "2.1.0": self._cmake.definitions["OCIO_BUILD_PYTHON"] = False else: self._cmake.definitions["OCIO_BUILD_SHARED"] = self.options.shared self._cmake.definitions["OCIO_BUILD_STATIC"] = not self.options.shared self._cmake.definitions["OCIO_BUILD_PYGLUE"] = False self._cmake.definitions["USE_EXTERNAL_YAML"] = True self._cmake.definitions["USE_EXTERNAL_TINYXML"] = True self._cmake.definitions["USE_EXTERNAL_LCMS"] = True self._cmake.definitions["OCIO_USE_SSE"] = self.options.get_safe("use_sse", False) # openexr 2.x provides Half library self._cmake.definitions["OCIO_USE_OPENEXR_HALF"] = True self._cmake.definitions["OCIO_BUILD_APPS"] = True self._cmake.definitions["OCIO_BUILD_DOCS"] = False self._cmake.definitions["OCIO_BUILD_TESTS"] = False self._cmake.definitions["OCIO_BUILD_GPU_TESTS"] = False self._cmake.definitions["OCIO_USE_BOOST_PTR"] = False # avoid downloading dependencies self._cmake.definitions["OCIO_INSTALL_EXT_PACKAGE"] = "NONE" if self.settings.compiler == "Visual Studio" and not self.options.shared: # define any value because ifndef is used self._cmake.definitions["OpenColorIO_SKIP_IMPORTS"] = True self._cmake.configure(build_folder=self._build_subfolder) return self._cmake def _patch_sources(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) for module in ("expat", "lcms2", "pystring", "yaml-cpp", "Imath"): tools.remove_files_by_mask(os.path.join(self._source_subfolder, "share", "cmake", "modules"), "Find"+module+".cmake") def build(self): self._patch_sources() cm = self._configure_cmake() cm.build() def package(self): cm = self._configure_cmake() cm.install() if not self.options.shared: self.copy("*", src=os.path.join(self.package_folder, "lib", "static"), dst="lib") tools.rmdir(os.path.join(self.package_folder, "lib", "static")) tools.rmdir(os.path.join(self.package_folder, "cmake")) tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) tools.rmdir(os.path.join(self.package_folder, "lib", "cmake")) tools.rmdir(os.path.join(self.package_folder, "share")) # nop for 2.x tools.remove_files_by_mask(self.package_folder, "OpenColorIOConfig*.cmake") tools.remove_files_by_mask(os.path.join(self.package_folder, "bin"), "*.pdb") self.copy("LICENSE", src=self._source_subfolder, dst="licenses") def package_info(self): self.cpp_info.names["cmake_find_package"] = "OpenColorIO" self.cpp_info.names["cmake_find_package_multi"] = "OpenColorIO" self.cpp_info.names["pkg_config"] = "OpenColorIO" self.cpp_info.libs = tools.collect_libs(self) if tools.Version(self.version) < "2.1.0": if not self.options.shared: self.cpp_info.defines.append("OpenColorIO_STATIC") if self.settings.os == "Macos": self.cpp_info.frameworks.extend(["Foundation", "IOKit", "ColorSync", "CoreGraphics"]) if self.settings.compiler == "Visual Studio" and not self.options.shared: self.cpp_info.defines.append("OpenColorIO_SKIP_IMPORTS") bin_path = os.path.join(self.package_folder, "bin") self.output.info("Appending PATH env var with: {}".format(bin_path)) self.env_info.PATH.append(bin_path)
python/pythonstartup.py
andrewpsp/dotfiles
249
12789575
def _init(): import atexit import os import sys try: import readline except Exception: readline = None import types import time import uuid import json import pprint import hashlib import subprocess import datetime try: import __builtin__ except ImportError: import builtins as __builtin__ PY2 = sys.version_info[0] == 2 __import__('rlcompleter') histdir = os.path.expanduser('~/.pyhist') try: os.makedirs(histdir) except OSError: pass if PY2: text_type = unicode else: text_type = str def _b(x): if not isinstance(x, bytes): x = x.encode('utf-8') return x histfile = os.path.join(histdir, hashlib.sha1( os.path.normpath(_b(os.path.abspath(sys.prefix)))).hexdigest()) if readline is not None: try: readline.read_history_file(histfile) except IOError: pass if 'libedit' in readline.__doc__: readline.parse_and_bind("bind '\t' rl_complete") else: readline.parse_and_bind("tab: complete") atexit.register(readline.write_history_file, histfile) def _magic_uuid(val=None): if val is None: return uuid.uuid4() elif isinstance(val, uuid.UUID): return val elif len(val) == 16: return uuid.UUID(bytes=val) return uuid.UUID(val) def _dump_json(x, as_string=False, indent=2, cp=False): s = '\n'.join(x.rstrip() for x in json.dumps(x, indent=indent).rstrip().splitlines()) if cp: _copy(s) if as_string: return s print(s) def _cat(path): with open(path, 'rb') as f: return f.read() def _tcat(path): return _cat(path).decode('utf-8') def _paste(): return subprocess.Popen(['pbpaste'], stdout=subprocess.PIPE).communicate()[0] def _tpaste(): return _paste().decode('utf-8') def _jpaste(): return json.loads(_paste()) def _copy(val): if isinstance(val, text_type): val = val.encode('utf-8') return subprocess.Popen(['pbcopy'], stdin=subprocess.PIPE).communicate(val) def _jcopy(val, indent=None): _copy(_dump_json(val, indent=indent, as_string=True)) helpers = types.ModuleType('helpers') helpers.histfile = histfile helpers.pp = pprint.pprint helpers.uuid = _magic_uuid helpers.UUID = uuid.UUID helpers.uuid3 = uuid.uuid3 helpers.uuid4 = uuid.uuid4 helpers.uuid5 = uuid.uuid5 helpers.dt = datetime.datetime helpers.datetime = datetime.datetime helpers.td = datetime.timedelta helpers.timedelta = datetime.timedelta helpers.time = time.time helpers.j = _dump_json helpers.cat = _cat helpers.tcat = _tcat helpers.cp = _copy helpers.jcp = _jcopy helpers.copy = _copy helpers.jcopy = _jcopy helpers.paste = _paste helpers.tpaste = _tpaste helpers.jpaste = _jpaste __builtin__.h = helpers __builtin__.true = True __builtin__.false = False __builtin__.null = None _init() del _init
mixly_arduino/sample/mixpy/海龟画图/py/海龟画图04盛开的向日葵_01太阳公公.py
wecake/Mixly_Arduino
118
12789617
import turtle tina= turtle.Turtle() tina.pencolor("#ffcc33") tina.fillcolor("#ffcc33") tina.pensize(5) tina.begin_fill() tina.circle (80,360) tina.end_fill() tina.penup() tina.goto(-40,100) tina.pendown() tina.pencolor("#000000") tina.setheading(30) tina.circle ((-30),60) tina.penup() tina.goto(20,100) tina.pendown() tina.setheading(30) tina.circle ((-30),60) tina.penup() tina.goto(-20,60) tina.pendown() tina.setheading(-30) tina.circle (50,60) tina.penup() tina.goto(-30,-30) tina.pendown() tina.pencolor("#ffcc33") tina.setheading(60) for i in range(0, 12, 1): tina.circle ((-35),120) tina.left(150) tina.hideturtle()
checkov/arm/registry.py
pmalkki/checkov
4,013
12789647
<reponame>pmalkki/checkov from checkov.arm.base_registry import Registry arm_resource_registry = Registry() arm_parameter_registry = Registry()
Python/other/sudoku_backtracking.py
zhcet19/NeoAlgo-1
897
12789672
<filename>Python/other/sudoku_backtracking.py def solve(board, i=0, j=0): i,j = nextCell(board, i, j) if i == -1: return True for e in range(1,10): if isValid(board,i,j,e): board[i][j] = e if solve(board, i, j): return True board[i][j] = 0 return False def print_board(board): for i in range(len(board)): if i % 3 ==0 and i != 0: print("------------------------") for j in range(len(board[0])): if j % 3 ==0 and j !=0: print("|",end="") if j == 8: print(board[i][j]) else: print(str(board[i][j]) + " " , end="") def nextCell(board, i, j): for x in range(i,9): for y in range(j,9): if board[x][y] == 0: return x,y for x in range(0,9): for y in range(0,9): if board[x][y] == 0: return x,y return -1,-1 def isValid(board,x,y,n): for i in range(9): if board[x][i] == n or board[i][y] == n: return False new_x = x//3 * 3 new_y = y//3 * 3 for i in range(3): for j in range(3): if board[new_x + i][new_y + j] == n: return False return True if __name__ == "__main__": print("Enter the numbers row by row, and put 0 for empty space:") board = [[int(input()) for x in range (9)] for y in range(9)] solve(board) print_board(board) """ Let's say we have this board: Empty space is replaced with 0. [[5, 3, 0, 0, 7, 0, 0, 0, 0], [6, 0, 0, 1, 9, 5, 0, 0, 0], [0, 9, 8, 0, 0, 0, 0, 6, 0], [8, 0, 0, 0, 6, 0, 0, 0, 3], [4, 0, 0, 8, 0, 3, 0, 0, 1], [7, 0, 0, 0, 2, 0, 0, 0, 6], [0, 6, 0, 0, 0, 0, 2, 8, 0], [0, 0, 0, 4, 1, 9, 0, 0, 5], [0, 0, 0, 0, 8, 0, 0, 7, 9]] # When the program asks for input we give like this : 5, 3, 0, 0, 7, 0, 0, 0, 0,6, 0, 0, 1, 9, 5, 0, 0, 0,0, 9, 8, 0, 0, 0, 0, 6, 0, 8, 0, 0, 0, 6, 0, 0, 0, 3,4, 0, 0, 8, 0, 3, 0, 0, 1, 7, 0, 0, 0, 2, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 2, 8, 0,0, 0, 0, 4, 1, 9, 0, 0, 5, 0, 0, 0, 0, 8, 0, 0, 7, 9 #output will look like this: 5 3 4 |6 7 8 |9 1 2 6 7 2 |1 9 5 |3 4 8 1 9 8 |3 4 2 |5 6 7 ------------------------ 8 5 9 |7 6 1 |4 2 3 4 2 6 |8 5 3 |7 9 1 7 1 3 |9 2 4 |8 5 6 ------------------------ 9 6 1 |5 3 7 |2 8 4 2 8 7 |4 1 9 |6 3 5 3 4 5 |2 8 6 |1 7 9 """
tools/SDKTool/src/ui/tree/ai_tree/action_dqn_data.py
Passer-D/GameAISDK
1,210
12789707
<filename>tools/SDKTool/src/ui/tree/ai_tree/action_dqn_data.py # -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making GameAISDK available. This source code file is licensed under the GNU General Public License Version 3. For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package. Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. """ import logging from collections import OrderedDict from ....common.define import DQN_ACTION_TYPES, CONTACTS, AI_ACTION_TYPES from ....config_manager.ai.ai_manager import AIManager, AIAlgorithmType from .action_data import ActionData from ...utils import get_value logger = logging.getLogger("sdktool") class DqnActionData(ActionData): @staticmethod def get_game_action_inner(): return AIManager().get_game_action(AIAlgorithmType.DQN) @staticmethod def get_ai_action_inner(): return AIManager().get_ai_action(AIAlgorithmType.DQN) def game_action_extend_param(self): param = OrderedDict() out_params = OrderedDict() out_params['path'] = '' out_params['region'] = OrderedDict() out_params['region']['x'] = 0 out_params['region']['y'] = 0 out_params['region']['w'] = 0 out_params['region']['h'] = 0 param['actionRegion'] = out_params param['durationMS'] = 0 return param def get_type_param(self): out_params = OrderedDict() out_params['path'] = '' out_params['region'] = OrderedDict() out_params['region']['x'] = 0 out_params['region']['y'] = 0 out_params['region']['w'] = 0 out_params['region']['h'] = 0 return out_params def get_game_action_type_param(self): return DQN_ACTION_TYPES def init_swipe_params(self, params=None): if params is None: params = OrderedDict() swipe_param = OrderedDict() swipe_param['startX'] = get_value(params, 'startX', 0) swipe_param['startY'] = get_value(params, 'startY', 0) swipe_param['endX'] = get_value(params, 'endX', 0) swipe_param['endY'] = get_value(params, 'endY', 0) return swipe_param def new_game_action(self, action_name, game_action): action_value = OrderedDict() action_value['id'] = game_action.alloc_id() action_value['name'] = action_name action_value['contact'] = CONTACTS[0] action_value['sceneTask'] = -1 action_value['type'] = AI_ACTION_TYPES[0] return action_value
problems/bubble-sort/bubble-sort.py
vidyadeepa/the-coding-interview
1,571
12789711
<reponame>vidyadeepa/the-coding-interview def bubblesort(l): """ Runtime: O(n^2) """ last = len(l)-1 for i in range(last): for j in range(i+1, last): if l[i] > l[j]: l[i], l[j] = l[j], l[i] return l print bubblesort([8,2,4,7,9,0,1,4,5,7,8,9]) print bubblesort([]) print bubblesort([1]) print bubblesort([1,3])
become_yukarin/dataset/utility.py
nameless-writer/become-yukarin
562
12789731
<gh_stars>100-1000 import math import fastdtw import numpy _logdb_const = 10.0 / numpy.log(10.0) * numpy.sqrt(2.0) # should work on torch and numpy arrays def _sqrt(x): isnumpy = isinstance(x, numpy.ndarray) isscalar = numpy.isscalar(x) return numpy.sqrt(x) if isnumpy else math.sqrt(x) if isscalar else x.sqrt() def _exp(x): isnumpy = isinstance(x, numpy.ndarray) isscalar = numpy.isscalar(x) return numpy.exp(x) if isnumpy else math.exp(x) if isscalar else x.exp() def _sum(x): if isinstance(x, list) or isinstance(x, numpy.ndarray): return numpy.sum(x) return float(x.sum()) def melcd(X, Y, lengths=None): """Mel-cepstrum distortion (MCD). The function computes MCD for time-aligned mel-cepstrum sequences. Args: X (ndarray): Input mel-cepstrum, shape can be either of (``D``,), (``T x D``) or (``B x T x D``). Both Numpy and torch arrays are supported. Y (ndarray): Target mel-cepstrum, shape can be either of (``D``,), (``T x D``) or (``B x T x D``). Both Numpy and torch arrays are supported. lengths (list): Lengths of padded inputs. This should only be specified if you give mini-batch inputs. Returns: float: Mean mel-cepstrum distortion in dB. .. note:: The function doesn't check if inputs are actually mel-cepstrum. """ # summing against feature axis, and then take mean against time axis # Eq. (1a) # https://www.cs.cmu.edu/~awb/papers/sltu2008/kominek_black.sltu_2008.pdf if lengths is None: z = X - Y r = _sqrt((z * z).sum(-1)) if not numpy.isscalar(r): r = r.mean() return _logdb_const * r # Case for 1-dim features. if len(X.shape) == 2: # Add feature axis X, Y = X[:, :, None], Y[:, :, None] s = 0.0 T = _sum(lengths) for x, y, length in zip(X, Y, lengths): x, y = x[:length], y[:length] z = x - y s += _sqrt((z * z).sum(-1)).sum() return _logdb_const * s / T class DTWAligner(object): """ from https://github.com/r9y9/nnmnkwii/blob/4cade86b5c35b4e35615a2a8162ddc638018af0e/nnmnkwii/preprocessing/alignment.py#L14 """ def __init__(self, x, y, dist=lambda x, y: numpy.linalg.norm(x - y), radius=1) -> None: assert x.ndim == 2 and y.ndim == 2 _, path = fastdtw.fastdtw(x, y, radius=radius, dist=dist) path = numpy.array(path) self.normed_path_x = path[:, 0] / len(x) self.normed_path_y = path[:, 1] / len(y) def align_x(self, x): path = self._interp_path(self.normed_path_x, len(x)) return x[path] def align_y(self, y): path = self._interp_path(self.normed_path_y, len(y)) return y[path] def align(self, x, y): return self.align_x(x), self.align_y(y) @staticmethod def align_and_transform(x, y, *args, **kwargs): aligner = DTWAligner(*args, x=x, y=y, **kwargs) return aligner.align(x, y) @staticmethod def _interp_path(normed_path: numpy.ndarray, target_length: int): path = numpy.floor(normed_path * target_length).astype(numpy.int) return path class MelCepstrumAligner(DTWAligner): def __init__(self, x, y, *args, **kwargs) -> None: x = self._calc_aligner_feature(x) y = self._calc_aligner_feature(y) kwargs.update(dist=melcd) super().__init__(x, y, *args, **kwargs) @classmethod def _calc_delta(cls, x): x = numpy.zeros_like(x, x.dtype) x[:-1] = x[1:] - x[:-1] x[-1] = 0 return x @classmethod def _calc_aligner_feature(cls, x): d = cls._calc_delta(x) feature = numpy.concatenate((x, d), axis=1)[:, 1:] return feature
snapx/setup.py
ruth-ann/snap-python
242
12789772
from setuptools import setup, find_packages if __name__ == "__main__": setup( name="snapx", author="<EMAIL>", version="0.0.1", packages=find_packages(), description="""SnapX: An experimental SNAP API with NetworkX-like interface""" )
23_yolov3-nano/01_float32/03_weight_quantization.py
khanfarhan10/PINTO_model_zoo
1,529
12789793
### tf-nightly-2.2.0.dev20200418 import tensorflow as tf # Weight Quantization - Input/Output=float32 converter = tf.lite.TFLiteConverter.from_saved_model('./saved_model') converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE] converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS,tf.lite.OpsSet.SELECT_TF_OPS] tflite_quant_model = converter.convert() with open('yolov3_nano_voc_416_weight_quant.tflite', 'wb') as w: w.write(tflite_quant_model) print("Weight Quantization complete! - yolov3_nano_voc_416_weight_quant.tflite")
tests/simple/test_simple.py
iklasky/timemachines
253
12789798
<gh_stars>100-1000 from timemachines.skaters.simple.movingaverage import precision_ema_ensemble, aggressive_ema_ensemble SIMPLE_TO_TEST = [ precision_ema_ensemble, aggressive_ema_ensemble ] from timemachines.inclusion.sklearninclusion import using_sklearn if using_sklearn: from timemachines.skatertools.evaluation.evaluators import hospital_mean_square_error_with_sporadic_fit, \ hospital_exog_mean_square_error_with_sporadic_fit def test_ensemble_errors(): for f in SIMPLE_TO_TEST: err = hospital_mean_square_error_with_sporadic_fit(f=f, k=5, n=150, fit_frequency=1) if __name__=='__main__': assert using_sklearn test_ensemble_errors()
devops/__init__.py
crazypenguin/devops
300
12789900
<gh_stars>100-1000 from __future__ import absolute_import, unicode_literals from .celery import app as celery_app # from .job import scheduler # 第一个获取到文件锁的进程执行任务后,如果在运行中途进程关闭重新启动了一个新的,则依然会多次执行 __all__ = ['celery_app'] # __all__ = ['celery_app', 'scheduler'] # import pymysql # pymysql.install_as_MySQLdb()
webservices/common/models/costs.py
18F/openFEC
246
12790045
from sqlalchemy.dialects.postgresql import TSVECTOR from .base import db class CommunicationCost(db.Model): __tablename__ = 'ofec_communication_cost_mv' sub_id = db.Column(db.Integer, primary_key=True) original_sub_id = db.Column('orig_sub_id', db.Integer, index=True) candidate_id = db.Column('cand_id', db.String, index=True) committee_id = db.Column('cmte_id', db.String, index=True) committee_name = db.Column(db.String) pdf_url = db.Column(db.String) candidate_name = db.Column('s_o_cand_nm', db.String) candidate_last_name = db.Column('s_o_cand_l_nm', db.String) candidate_middle_name = db.Column('s_o_cand_m_nm', db.String) candidate_first_name = db.Column('s_o_cand_f_nm', db.String) candidate_office_state = db.Column('s_o_cand_office_st', db.String, index=True) state_full = db.Column('s_o_cand_office_st_desc', db.String) candidate_office_district = db.Column('s_o_cand_office_district', db.String, index=True) candidate_office = db.Column('s_o_cand_office', db.String, index=True) candidate_office_full =db.Column('s_o_cand_office_desc', db.String) transaction_date = db.Column('communication_dt', db.Date, index=True) transaction_amount = db.Column('communication_cost', db.Numeric(30, 2), index=True) transaction_type = db.Column('transaction_tp', db.String) communication_type = db.Column('communication_tp', db.String, index=True) communication_type_full = db.Column('communication_tp_desc', db.String) communication_class = db.Column('communication_class', db.String, index=True) purpose = db.Column('communication_class_desc', db.String, index=True) support_oppose_indicator = db.Column('s_o_ind', db.String, index=True) #new columns added from ware house transition action_code = db.Column('action_cd', db.String) action_code_full = db.Column('action_cd_desc', db.String) primary_general_indicator = db.Column('s_o_rpt_pgi', db.String) primary_general_indicator_description = db.Column('s_o_rpt_pgi_desc', db.String) report_type = db.Column('rpt_tp', db.String) report_year = db.Column('rpt_yr', db.Integer) cycle = db.Column('election_cycle', db.Integer, index=True) form_type_code = db.Column('filing_form', db.String, index=True) schedule_type = db.Column(db.String, index=True) schedule_type_full = db.Column('schedule_type_desc', db.String) tran_id = db.Column(db.String) file_number = db.Column('file_num', db.Integer) image_number = db.Column('image_num', db.String, index=True) class Electioneering(db.Model): __tablename__ = 'ofec_electioneering_mv' idx = db.Column(db.Integer, primary_key=True) committee_id = db.Column('cmte_id', db.String, index=True) committee_name = db.Column('cmte_nm', db.String) candidate_id = db.Column('cand_id', db.String, index=True) candidate_name = db.Column('cand_name', db.String) candidate_office = db.Column('cand_office', db.String, index=True) candidate_district = db.Column('cand_office_district', db.String, index=True) candidate_state = db.Column('cand_office_st', db.String, index=True) beginning_image_number = db.Column('f9_begin_image_num', db.String, index=True) sb_image_num = db.Column(db.String, index=True) sub_id = db.Column(db.Integer, doc="The identifier for each electioneering record") link_id = db.Column(db.Integer) sb_link_id = db.Column(db.String) number_of_candidates = db.Column(db.Numeric) calculated_candidate_share = db.Column('calculated_cand_share', db.Numeric(30, 2), doc="If an electioneering cost targets several candidates, the total cost is divided by the number of candidates. If it only mentions one candidate the full cost of the communication is listed.") communication_date = db.Column('comm_dt', db.Date, doc='It is the airing, broadcast, cablecast or other dissemination of the communication') public_distribution_date = db.Column('pub_distrib_dt', db.Date, doc='The pubic distribution date is the date that triggers disclosure of the electioneering communication (date reported on page 1 of Form 9)') disbursement_date = db.Column('disb_dt', db.Date, index=True, doc='Disbursement date includes actual disbursements and execution of contracts creating an obligation to make disbursements (SB date of disbursement)') disbursement_amount = db.Column('reported_disb_amt', db.Numeric(30, 2), index=True) purpose_description = db.Column('disb_desc', db.String) report_year = db.Column('rpt_yr', db.Integer, index=True) file_number = db.Column('file_num', db.Integer) amendment_indicator = db.Column('amndt_ind', db.String) receipt_date = db.Column('receipt_dt', db.Date) election_type_raw = db.Column('election_tp', db.String) pdf_url = db.Column(db.String) purpose_description_text = db.Column(TSVECTOR) @property def election_type(self): return self.election_type_raw[:1]
atlas/foundations_rest_api/src/foundations_rest_api/filters/null_filter.py
DeepLearnI/atlas
296
12790072
<reponame>DeepLearnI/atlas from foundations_rest_api.filters.api_filter_mixin import APIFilterMixin class NullFilter(APIFilterMixin): def __call__(self, result, params): if result and isinstance(result, list): new_params = {key: value for key, value in params.items() if key.endswith('_isnull')} if new_params: self._filter(result, new_params) return result def _filter(self, result, params): for key, param_value in params.items(): column_name = key.split('_isnull', 1)[0] value = self._parse_value(param_value) if value is not None: self._filter_column(result, column_name, value) def _parse_value(self, param_value): from foundations_rest_api.filters.parsers import BoolParser parser = BoolParser() return parser.parse(param_value) def _filter_column(self, result, column_name, value): # Explicit is better than implicit [Zen of Python, 1] # This is because "value" can also be None and in that case filtering is discarded if value is True: self._filter_by_null_values(result, column_name) elif value is False: self._filter_by_not_null_values(result, column_name) def _is_none(self, value): return value is None or self._is_nan(value) def _is_nan(self, value): import math return isinstance(value, float) and math.isnan(value) def _filter_by_null_values(self, result, column_name): def column_value_is_null(item): value, item_parser = self._get_item_property_value_and_parser(item, column_name, parse=False) return item_parser is not None and self._is_none(value) return self._in_place_filter(column_value_is_null, result) def _filter_by_not_null_values(self, result, column_name): def column_value_is_not_null(item): value, item_parser = self._get_item_property_value_and_parser(item, column_name, parse=False) return item_parser is not None and not self._is_none(value) return self._in_place_filter(column_value_is_not_null, result)
devserver/modules/profile.py
leture/django-devserver
467
12790098
from devserver.modules import DevServerModule from devserver.utils.time import ms_from_timedelta from devserver.settings import DEVSERVER_AUTO_PROFILE from datetime import datetime import functools import gc class ProfileSummaryModule(DevServerModule): """ Outputs a summary of cache events once a response is ready. """ logger_name = 'profile' def process_init(self, request): self.start = datetime.now() def process_complete(self, request): duration = datetime.now() - self.start self.logger.info('Total time to render was %.2fs', ms_from_timedelta(duration) / 1000) class LeftOversModule(DevServerModule): """ Outputs a summary of events the garbage collector couldn't handle. """ # TODO: Not even sure this is correct, but the its a general idea logger_name = 'profile' def process_init(self, request): gc.enable() gc.set_debug(gc.DEBUG_SAVEALL) def process_complete(self, request): gc.collect() self.logger.info('%s objects left in garbage', len(gc.garbage)) from django.template.defaultfilters import filesizeformat try: from guppy import hpy except ImportError: import warnings class MemoryUseModule(DevServerModule): def __new__(cls, *args, **kwargs): warnings.warn('MemoryUseModule requires guppy to be installed.') return super(MemoryUseModule, cls).__new__(cls) else: class MemoryUseModule(DevServerModule): """ Outputs a summary of memory usage of the course of a request. """ logger_name = 'profile' def __init__(self, request): super(MemoryUseModule, self).__init__(request) self.hpy = hpy() self.oldh = self.hpy.heap() self.logger.info('heap size is %s', filesizeformat(self.oldh.size)) def process_complete(self, request): newh = self.hpy.heap() alloch = newh - self.oldh dealloch = self.oldh - newh self.oldh = newh self.logger.info('%s allocated, %s deallocated, heap size is %s', *map(filesizeformat, [alloch.size, dealloch.size, newh.size])) try: from line_profiler import LineProfiler except ImportError: import warnings class LineProfilerModule(DevServerModule): def __new__(cls, *args, **kwargs): warnings.warn('LineProfilerModule requires line_profiler to be installed.') return super(LineProfilerModule, cls).__new__(cls) class devserver_profile(object): def __init__(self, follow=[]): pass def __call__(self, func): return func else: class LineProfilerModule(DevServerModule): """ Outputs a Line by Line profile of any @devserver_profile'd functions that were run """ logger_name = 'profile' def process_view(self, request, view_func, view_args, view_kwargs): request.devserver_profiler = LineProfiler() request.devserver_profiler_run = False if (DEVSERVER_AUTO_PROFILE): _unwrap_closure_and_profile(request.devserver_profiler, view_func) request.devserver_profiler.enable_by_count() def process_complete(self, request): if hasattr(request, 'devserver_profiler_run') and (DEVSERVER_AUTO_PROFILE or request.devserver_profiler_run): from cStringIO import StringIO out = StringIO() if (DEVSERVER_AUTO_PROFILE): request.devserver_profiler.disable_by_count() request.devserver_profiler.print_stats(stream=out) self.logger.info(out.getvalue()) def _unwrap_closure_and_profile(profiler, func): if not hasattr(func, 'func_code'): return profiler.add_function(func) if func.func_closure: for cell in func.func_closure: if hasattr(cell.cell_contents, 'func_code'): _unwrap_closure_and_profile(profiler, cell.cell_contents) class devserver_profile(object): def __init__(self, follow=[]): self.follow = follow def __call__(self, func): def profiled_func(*args, **kwargs): request = args[0] if hasattr(request, 'request'): # We're decorating a Django class-based-view and the first argument is actually self: request = args[1] try: request.devserver_profiler.add_function(func) request.devserver_profiler_run = True for f in self.follow: request.devserver_profiler.add_function(f) request.devserver_profiler.enable_by_count() return func(*args, **kwargs) finally: request.devserver_profiler.disable_by_count() return functools.wraps(func)(profiled_func)
code/config.py
SimonSuster/rc-cnn-dailymail
325
12790106
import theano import argparse _floatX = theano.config.floatX def str2bool(v): return v.lower() in ('yes', 'true', 't', '1', 'y') def get_args(): parser = argparse.ArgumentParser() parser.register('type', 'bool', str2bool) # Basics parser.add_argument('--debug', type='bool', default=False, help='whether it is debug mode') parser.add_argument('--test_only', type='bool', default=False, help='test_only: no need to run training process') parser.add_argument('--random_seed', type=int, default=1013, help='Random seed') # Data file parser.add_argument('--train_file', type=str, default=None, help='Training file') parser.add_argument('--dev_file', type=str, default=None, help='Development file') parser.add_argument('--pre_trained', type=str, default=None, help='Pre-trained model.') parser.add_argument('--model_file', type=str, default='model.pkl.gz', help='Model file to save') parser.add_argument('--log_file', type=str, default=None, help='Log file') parser.add_argument('--embedding_file', type=str, default=None, help='Word embedding file') parser.add_argument('--max_dev', type=int, default=None, help='Maximum number of dev examples to evaluate on') parser.add_argument('--relabeling', type='bool', default=True, help='Whether to relabel the entities when loading the data') # Model details parser.add_argument('--embedding_size', type=int, default=None, help='Default embedding size if embedding_file is not given') parser.add_argument('--hidden_size', type=int, default=128, help='Hidden size of RNN units') parser.add_argument('--bidir', type='bool', default=True, help='bidir: whether to use a bidirectional RNN') parser.add_argument('--num_layers', type=int, default=1, help='Number of RNN layers') parser.add_argument('--rnn_type', type=str, default='gru', help='RNN type: lstm or gru (default)') parser.add_argument('--att_func', type=str, default='bilinear', help='Attention function: bilinear (default) or mlp or avg or last or dot') # Optimization details parser.add_argument('--batch_size', type=int, default=32, help='Batch size') parser.add_argument('--num_epoches', type=int, default=100, help='Number of epoches') parser.add_argument('--eval_iter', type=int, default=100, help='Evaluation on dev set after K updates') parser.add_argument('--dropout_rate', type=float, default=0.2, help='Dropout rate') parser.add_argument('--optimizer', type=str, default='sgd', help='Optimizer: sgd (default) or adam or rmsprop') parser.add_argument('--learning_rate', '-lr', type=float, default=0.1, help='Learning rate for SGD') parser.add_argument('--grad_clipping', type=float, default=10.0, help='Gradient clipping') return parser.parse_args()
html_parsing/get_price_game/from_gama-gama.py
DazEB2/SimplePyScripts
117
12790122
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # Основа взята из http://stackoverflow.com/a/37755811/5909792 def get_html(url): from PyQt5.QtCore import QUrl from PyQt5.QtWidgets import QApplication from PyQt5.QtWebEngineWidgets import QWebEnginePage class ExtractorHtml: def __init__(self, url): _app = QApplication([]) self._page = QWebEnginePage() self._page.loadFinished.connect(self._load_finished_handler) self.html = None # Небольшой костыль для получения содержимого страницы сайта http://gama-gama.ru # Загрузка страницы проходит 2 раза: сначада кусок хитрого javascript кода, потом страница # сайта с содержимым self._counter_finished = 0 self._page.load(QUrl(url)) # Ожидание загрузки страницы и получения его содержимого # Этот цикл асинхронный код делает синхронным while self.html is None: _app.processEvents() _app.quit() # Чтобы избежать падений скрипта self._page = None def _callable(self, data): self.html = data def _load_finished_handler(self, _): self._counter_finished += 1 if self._counter_finished == 2: self._page.toHtml(self._callable) return ExtractorHtml(url).html text = 'mad' url = 'http://gama-gama.ru/search/?searchField=' + text html = get_html(url) from bs4 import BeautifulSoup root = BeautifulSoup(html, 'lxml') for game in root.select('.catalog-content > a'): name = game['title'].strip() name = name.replace('Купить ', '') price = None price_holder = game.select_one('.catalog_price_holder') price_1 = price_holder.select_one('.price_1') if price_1: price = price_1.text.strip() else: # Содержит описание цены со скидкой. Вытаскиваем цену со скидкой price_2 = price_holder.select_one('.price_2') if price_2: price = price_2.select_one('.price_group > .promo_price').text # Удаление пустых символов пробелом import re price = re.sub(r'\s+', ' ', price) price = price.strip() print(name, price)
shap/plots/_utils.py
willianfco/shap
16,097
12790129
from .. import Explanation from ..utils import OpChain from . import colors import numpy as np def convert_color(color): try: color = pl.get_cmap(color) except: pass if color == "shap_red": color = colors.red_rgb elif color == "shap_blue": color = colors.blue_rgb return color def convert_ordering(ordering, shap_values): if issubclass(type(ordering), OpChain): ordering = ordering.apply(Explanation(shap_values)) if issubclass(type(ordering), Explanation): if "argsort" in [op["name"] for op in ordering.op_history]: ordering = ordering.values else: ordering = ordering.argsort.flip.values return ordering def get_sort_order(dist, clust_order, cluster_threshold, feature_order): """ Returns a sorted order of the values where we respect the clustering order when dist[i,j] < cluster_threshold """ #feature_imp = np.abs(values) # if partition_tree is not None: # new_tree = fill_internal_max_values(partition_tree, shap_values) # clust_order = sort_inds(new_tree, np.abs(shap_values)) clust_inds = np.argsort(clust_order) feature_order = feature_order.copy()#order.apply(Explanation(shap_values)) # print("feature_order", feature_order) for i in range(len(feature_order)-1): ind1 = feature_order[i] next_ind = feature_order[i+1] next_ind_pos = i + 1 for j in range(i+1,len(feature_order)): ind2 = feature_order[j] #if feature_imp[ind] > # if ind1 == 2: # print(ind1, ind2, dist[ind1,ind2]) if dist[ind1,ind2] <= cluster_threshold: # if ind1 == 2: # print(clust_inds) # print(ind1, ind2, next_ind, dist[ind1,ind2], clust_inds[ind2], clust_inds[next_ind]) if dist[ind1,next_ind] > cluster_threshold or clust_inds[ind2] < clust_inds[next_ind]: next_ind = ind2 next_ind_pos = j # print("next_ind", next_ind) # print("next_ind_pos", next_ind_pos) # insert the next_ind next for j in range(next_ind_pos, i+1, -1): #print("j", j) feature_order[j] = feature_order[j-1] feature_order[i+1] = next_ind #print(feature_order) return feature_order def merge_nodes(values, partition_tree): """ This merges the two clustered leaf nodes with the smallest total value. """ M = partition_tree.shape[0] + 1 ptind = 0 min_val = np.inf for i in range(partition_tree.shape[0]): ind1 = int(partition_tree[i,0]) ind2 = int(partition_tree[i,1]) if ind1 < M and ind2 < M: val = np.abs(values[ind1]) + np.abs(values[ind2]) if val < min_val: min_val = val ptind = i #print("ptind", ptind, min_val) ind1 = int(partition_tree[ptind,0]) ind2 = int(partition_tree[ptind,1]) if ind1 > ind2: tmp = ind1 ind1 = ind2 ind2 = tmp partition_tree_new = partition_tree.copy() for i in range(partition_tree_new.shape[0]): i0 = int(partition_tree_new[i,0]) i1 = int(partition_tree_new[i,1]) if i0 == ind2: partition_tree_new[i,0] = ind1 elif i0 > ind2: partition_tree_new[i,0] -= 1 if i0 == ptind + M: partition_tree_new[i,0] = ind1 elif i0 > ptind + M: partition_tree_new[i,0] -= 1 if i1 == ind2: partition_tree_new[i,1] = ind1 elif i1 > ind2: partition_tree_new[i,1] -= 1 if i1 == ptind + M: partition_tree_new[i,1] = ind1 elif i1 > ptind + M: partition_tree_new[i,1] -= 1 partition_tree_new = np.delete(partition_tree_new, ptind, axis=0) # update the counts to be correct fill_counts(partition_tree_new) return partition_tree_new, ind1, ind2 def dendrogram_coords(leaf_positions, partition_tree): """ Returns the x and y coords of the lines of a dendrogram where the leaf order is given. Note that scipy can compute these coords as well, but it does not allow you to easily specify a specific leaf order, hence this reimplementation. """ xout = [] yout = [] _dendrogram_coords_rec(partition_tree.shape[0]-1, leaf_positions, partition_tree, xout, yout) return np.array(xout), np.array(yout) def _dendrogram_coords_rec(pos, leaf_positions, partition_tree, xout, yout): M = partition_tree.shape[0] + 1 if pos < 0: return leaf_positions[pos + M], 0 left = int(partition_tree[pos, 0]) - M right = int(partition_tree[pos, 1]) - M x_left, y_left = _dendrogram_coords_rec(left, leaf_positions, partition_tree, xout, yout) x_right, y_right = _dendrogram_coords_rec(right, leaf_positions, partition_tree, xout, yout) y_curr = partition_tree[pos, 2] xout.append([x_left, x_left, x_right, x_right]) yout.append([y_left, y_curr, y_curr, y_right]) return (x_left + x_right) / 2, y_curr def fill_internal_max_values(partition_tree, leaf_values): """ This fills the forth column of the partition tree matrix with the max leaf value in that cluster. """ M = partition_tree.shape[0] + 1 new_tree = partition_tree.copy() for i in range(new_tree.shape[0]): val = 0 if new_tree[i,0] < M: ind = int(new_tree[i,0]) val = max(val, np.abs(leaf_values[ind])) else: ind = int(new_tree[i,0])-M val = max(val, np.abs(new_tree[ind,3])) # / partition_tree[ind,2]) if new_tree[i,1] < M: ind = int(new_tree[i,1]) val = max(val, np.abs(leaf_values[ind])) else: ind = int(new_tree[i,1])-M val = max(val, np.abs(new_tree[ind,3])) # / partition_tree[ind,2]) new_tree[i,3] = val return new_tree def fill_counts(partition_tree): """ This updates the """ M = partition_tree.shape[0] + 1 for i in range(partition_tree.shape[0]): val = 0 if partition_tree[i,0] < M: ind = int(partition_tree[i,0]) val += 1 else: ind = int(partition_tree[i,0])-M val += partition_tree[ind,3] if partition_tree[i,1] < M: ind = int(partition_tree[i,1]) val += 1 else: ind = int(partition_tree[i,1])-M val += partition_tree[ind,3] partition_tree[i,3] = val def sort_inds(partition_tree, leaf_values, pos=None, inds=None): if inds is None: inds = [] if pos is None: partition_tree = fill_internal_max_values(partition_tree, leaf_values) pos = partition_tree.shape[0]-1 M = partition_tree.shape[0] + 1 if pos < 0: inds.append(pos + M) return left = int(partition_tree[pos, 0]) - M right = int(partition_tree[pos, 1]) - M left_val = partition_tree[left,3] if left >= 0 else leaf_values[left + M] right_val = partition_tree[right,3] if right >= 0 else leaf_values[right + M] if left_val < right_val: tmp = right right = left left = tmp sort_inds(partition_tree, leaf_values, left, inds) sort_inds(partition_tree, leaf_values, right, inds) return inds
src/third_party/swiftshader/third_party/subzero/pydir/run-pnacl-sz.py
rhencke/engine
2,151
12790141
#!/usr/bin/env python2 import argparse import itertools import os import re import subprocess import sys import tempfile from utils import FindBaseNaCl, GetObjdumpCmd, shellcmd def TargetAssemblerFlags(target, sandboxed): # TODO(reed kotler). Need to find out exactly we need to # add here for Mips32. flags = { 'x8632': ['-triple=%s' % ('i686-nacl' if sandboxed else 'i686')], 'x8664': ['-triple=%s' % ( 'x86_64-nacl' if sandboxed else 'x86_64')], 'arm32': ['-triple=%s' % ( 'armv7a-nacl' if sandboxed else 'armv7a'), '-mcpu=cortex-a9', '-mattr=+neon'], 'mips32': ['-triple=%s' % ( 'mipsel-nacl' if sandboxed else 'mipsel'), '-mcpu=mips32'] } return flags[target] def TargetDisassemblerFlags(target): flags = { 'x8632': ['-Mintel'], 'x8664': ['-Mintel'], 'arm32': [], 'mips32':[] } return flags[target] def main(): """Run the pnacl-sz compiler on an llvm file. Takes an llvm input file, freezes it into a pexe file, converts it to a Subzero program, and finally compiles it. """ argparser = argparse.ArgumentParser( description=' ' + main.__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) argparser.add_argument('--input', '-i', required=True, help='LLVM source file to compile') argparser.add_argument('--output', '-o', required=False, help='Output file to write') argparser.add_argument('--insts', required=False, action='store_true', help='Stop after translating to ' + 'Subzero instructions') argparser.add_argument('--no-local-syms', required=False, action='store_true', help="Don't keep local symbols in the pexe file") argparser.add_argument('--llvm', required=False, action='store_true', help='Parse pexe into llvm IR first, then ' + 'convert to Subzero') argparser.add_argument('--llvm-source', required=False, action='store_true', help='Parse source directly into llvm IR ' + '(without generating a pexe), then ' + 'convert to Subzero') argparser.add_argument( '--pnacl-sz', required=False, default='./pnacl-sz', metavar='PNACL-SZ', help="Subzero translator 'pnacl-sz'") argparser.add_argument('--pnacl-bin-path', required=False, default=( '{root}/toolchain/linux_x86/pnacl_newlib_raw/bin' ).format(root=FindBaseNaCl()), metavar='PNACL_BIN_PATH', help='Path to LLVM & Binutils executables ' + '(e.g. for building PEXE files)') argparser.add_argument('--assemble', required=False, action='store_true', help='Assemble the output') argparser.add_argument('--disassemble', required=False, action='store_true', help='Disassemble the assembled output') argparser.add_argument('--dis-flags', required=False, action='append', default=[], help='Add a disassembler flag') argparser.add_argument('--filetype', default='iasm', dest='filetype', choices=['obj', 'asm', 'iasm'], help='Output file type. Default %(default)s') argparser.add_argument('--forceasm', required=False, action='store_true', help='Force --filetype=asm') argparser.add_argument('--target', default='x8632', dest='target', choices=['x8632','x8664','arm32','mips32'], help='Target architecture. Default %(default)s') argparser.add_argument('--echo-cmd', required=False, action='store_true', help='Trace command that generates ICE instructions') argparser.add_argument('--tbc', required=False, action='store_true', help='Input is textual bitcode (not .ll)') argparser.add_argument('--expect-fail', required=False, action='store_true', help='Negate success of run by using LLVM not') argparser.add_argument('--allow-pnacl-reader-error-recovery', action='store_true', help='Continue parsing after first error') argparser.add_argument('--args', '-a', nargs=argparse.REMAINDER, default=[], help='Remaining arguments are passed to pnacl-sz') argparser.add_argument('--sandbox', required=False, action='store_true', help='Sandboxes the generated code') args = argparser.parse_args() pnacl_bin_path = args.pnacl_bin_path llfile = args.input if args.llvm and args.llvm_source: raise RuntimeError("Can't specify both '--llvm' and '--llvm-source'") if args.llvm_source and args.no_local_syms: raise RuntimeError("Can't specify both '--llvm-source' and " + "'--no-local-syms'") if args.llvm_source and args.tbc: raise RuntimeError("Can't specify both '--tbc' and '--llvm-source'") if args.llvm and args.tbc: raise RuntimeError("Can't specify both '--tbc' and '--llvm'") if args.forceasm: if args.expect_fail: args.forceasm = False elif args.filetype == 'asm': pass elif args.filetype == 'iasm': # TODO(sehr) implement forceasm for iasm. pass elif args.filetype == 'obj': args.filetype = 'asm' args.assemble = True cmd = [] if args.tbc: cmd = [os.path.join(pnacl_bin_path, 'pnacl-bcfuzz'), llfile, '-bitcode-as-text', '-output', '-', '|'] elif not args.llvm_source: cmd = [os.path.join(pnacl_bin_path, 'llvm-as'), llfile, '-o', '-', '|', os.path.join(pnacl_bin_path, 'pnacl-freeze')] if not args.no_local_syms: cmd += ['--allow-local-symbol-tables'] cmd += ['|'] if args.expect_fail: cmd += [os.path.join(pnacl_bin_path, 'not')] cmd += [args.pnacl_sz] cmd += ['--target', args.target] if args.sandbox: cmd += ['-sandbox'] if args.insts: # If the tests are based on '-verbose inst' output, force # single-threaded translation because dump output does not get # reassembled into order. cmd += ['-verbose', 'inst,global_init', '-notranslate', '-threads=0'] elif args.allow_pnacl_reader_error_recovery: cmd += ['-allow-pnacl-reader-error-recovery', '-threads=0'] if not args.llvm_source: cmd += ['--bitcode-format=pnacl'] if not args.no_local_syms: cmd += ['--allow-local-symbol-tables'] if args.llvm or args.llvm_source: cmd += ['--build-on-read=0'] else: cmd += ['--build-on-read=1'] cmd += ['--filetype=' + args.filetype] cmd += ['--emit-revision=0'] script_name = os.path.basename(sys.argv[0]) for _, arg in enumerate(args.args): # Redirecting the output file needs to be done through the script # because forceasm may introduce a new temporary file between pnacl-sz # and llvm-mc. Similar issues could occur when setting filetype, target, # or sandbox through --args. Filter and report an error. if re.search('^-?-(o|output|filetype|target|sandbox)(=.+)?$', arg): preferred_option = '--output' if re.search('^-?-o(=.+)?$', arg) else arg print 'Option should be set using:' print ' %s ... %s ... --args' % (script_name, preferred_option) print 'rather than:' print ' %s ... --args %s ...' % (script_name, arg) exit(1) asm_temp = None output_file_name = None keep_output_file = False if args.output: output_file_name = args.output keep_output_file = True cmd += args.args if args.llvm_source: cmd += [llfile] if args.assemble or args.disassemble: if not output_file_name: # On windows we may need to close the file first before it can be # re-opened by the other tools, so don't do delete-on-close, # and instead manually delete. asm_temp = tempfile.NamedTemporaryFile(delete=False) asm_temp.close() output_file_name = asm_temp.name if args.assemble and args.filetype != 'obj': cmd += (['|', os.path.join(pnacl_bin_path, 'llvm-mc')] + TargetAssemblerFlags(args.target, args.sandbox) + ['-filetype=obj', '-o', output_file_name]) elif output_file_name: cmd += ['-o', output_file_name] if args.disassemble: # Show wide instruction encodings, diassemble, show relocs and # dissasemble zeros. cmd += (['&&', os.path.join(pnacl_bin_path, GetObjdumpCmd(args.target))] + args.dis_flags + ['-w', '-d', '-r', '-z'] + TargetDisassemblerFlags(args.target) + [output_file_name]) stdout_result = shellcmd(cmd, echo=args.echo_cmd) if not args.echo_cmd: sys.stdout.write(stdout_result) if asm_temp and not keep_output_file: os.remove(output_file_name) if __name__ == '__main__': main()
examples/dataflow-python-examples/streaming-examples/slowlychanging-sideinput/sideinput_refresh/dofns.py
ruchirjain86/professional-services
2,116
12790156
# Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import List import apache_beam as beam from apache_beam.io.filesystems import FileSystems from sideinput_refresh import util @beam.typehints.with_input_types(bytes) @beam.typehints.with_output_types(beam.pvalue.TaggedOutput) class SplitToMultiple(beam.DoFn): """Generates a base path for each side input type combining root path received via file notification subscription and side input type. PCollection recieved will contain only single element representing base path and will be fired once every x hours matching the side input refresh frequency Attributes: sideinput_types: List of Side input types file_prefix: file_prefix matching required files. Default is * indicating all files """ def __init__(self, sideinput_types: List[str], file_prefix: str = "*"): self.sideinput_types = sideinput_types self.file_prefix = file_prefix def process(self, element, timestamp=beam.DoFn.TimestampParam, window=beam.DoFn.WindowParam, pane_info=beam.DoFn.PaneInfoParam): # Logging to audit triggering of side input refresh process. Statement will be logged only whenever the pubsub notification # triggers side input refresh process (i.e normally once in every x hours) if isinstance(window, beam.transforms.window.GlobalWindow): logging.info( f"(Re)loading side input data from basepath {element.decode()} for global window: {timestamp} - {window}" ) else: logging.info( f"(Re)loading side input data from basepath {element.decode()} for window: {util.get_formatted_time(window.start)} - {util.get_formatted_time(window.end)}" ) for sideinput_type in self.sideinput_types: yield beam.pvalue.TaggedOutput( sideinput_type, FileSystems.join(element.decode(), sideinput_type, self.file_prefix))
backend/apps/mails/views.py
KuanWeiLee/froggy-service
174
12790157
<gh_stars>100-1000 from django.shortcuts import redirect from django.urls import reverse from rest_framework.viewsets import ModelViewSet from rest_framework.decorators import action from rest_framework.permissions import IsAdminUser from .models import SendGridMail from .serializers import SendGridMailSerializer class MailViewSet(ModelViewSet): queryset = SendGridMail.objects.all() serializer_class = SendGridMailSerializer permission_classes = [IsAdminUser] http_method_names = ['get', 'post', 'retrieve'] @action(methods=['GET'], detail=True) def resend(self, request, pk=None): mail = SendGridMail.objects.get(id=pk) mail.send() return redirect(reverse("admin:cases_case_change", args=(mail.case.id,)))
contrib/cookiecutter/ckan_extension/{{cookiecutter.project}}/ckanext/{{cookiecutter.project_shortname}}/logic/schema.py
gg2/ckan
2,805
12790222
<reponame>gg2/ckan import ckan.plugins.toolkit as tk def {{cookiecutter.project_shortname}}_get_sum(): not_empty = tk.get_validator("not_empty") convert_int = tk.get_validator("convert_int") return { "left": [not_empty, convert_int], "right": [not_empty, convert_int] }
lpot/utils/logger.py
intelkevinputnam/lpot-docs
172
12790244
<reponame>intelkevinputnam/lpot-docs #!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging class Logger(object): __instance = None def __new__(cls): if Logger.__instance is None: Logger.__instance = object.__new__(cls) Logger.__instance._log() return Logger.__instance def _log(self): LOGLEVEL = os.environ.get('LOGLEVEL', 'INFO').upper() self._logger = logging.getLogger() self._logger.handlers.clear() self._logger.setLevel(LOGLEVEL) formatter = logging.Formatter( '%(asctime)s [%(levelname)s] %(message)s', "%Y-%m-%d %H:%M:%S") streamHandler = logging.StreamHandler() streamHandler.setFormatter(formatter) self._logger.addHandler(streamHandler) self._logger.propagate = False def get_logger(self): return self._logger def _pretty_dict(value, indent=0): prefix = '\n' + ' ' * (indent + 4) if isinstance(value, dict): items = [ prefix + repr(key) + ': ' + _pretty_dict(value[key], indent + 4) for key in value ] return '{%s}' % (','.join(items) + '\n' + ' ' * indent) elif isinstance(value, list): items = [ prefix + _pretty_dict(item, indent + 4) for item in value ] return '[%s]' % (','.join(items) + '\n' + ' ' * indent) elif isinstance(value, tuple): items = [ prefix + _pretty_dict(item, indent + 4) for item in value ] return '(%s)' % (','.join(items) + '\n' + ' ' * indent) else: return repr(value) level = Logger().get_logger().level DEBUG = logging.DEBUG def log(level, msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().log(level, line, *args, **kwargs) else: Logger().get_logger().log(level, msg, *args, **kwargs) def debug(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().debug(line, *args, **kwargs) else: Logger().get_logger().debug(msg, *args, **kwargs) def error(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().error(line, *args, **kwargs) else: Logger().get_logger().error(msg, *args, **kwargs) def fatal(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().fatal(line, *args, **kwargs) else: Logger().get_logger().fatal(msg, *args, **kwargs) def info(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().info(line, *args, **kwargs) else: Logger().get_logger().info(msg, *args, **kwargs) def warn(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().warning(line, *args, **kwargs) else: Logger().get_logger().warning(msg, *args, **kwargs) def warning(msg, *args, **kwargs): if isinstance(msg, dict): for _, line in enumerate(_pretty_dict(msg).split('\n')): Logger().get_logger().warning(line, *args, **kwargs) else: Logger().get_logger().warning(msg, *args, **kwargs)
gimp-plugins/PD-Denoising-pytorch/utils.py
sunlin7/GIMP-ML
1,077
12790254
<reponame>sunlin7/GIMP-ML import math import torch import torch.nn as nn import numpy as np # from skimage.measure.simple_metrics import compare_psnr from torch.autograd import Variable import cv2 import scipy.ndimage import scipy.io as sio # import matplotlib as mpl # mpl.use('Agg') # import matplotlib.pyplot as plt def weights_init_kaiming(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('Linear') != -1: nn.init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('BatchNorm') != -1: # nn.init.uniform(m.weight.data, 1.0, 0.02) m.weight.data.normal_(mean=0, std=math.sqrt(2./9./64.)).clamp_(-0.025,0.025) nn.init.constant(m.bias.data, 0.0) # def batch_PSNR(img, imclean, data_range): # Img = img.data.cpu().numpy().astype(np.float32) # Iclean = imclean.data.cpu().numpy().astype(np.float32) # PSNR = 0 # for i in range(Img.shape[0]): # PSNR += compare_psnr(Iclean[i,:,:,:], Img[i,:,:,:], data_range=data_range) # return (PSNR/Img.shape[0]) def data_augmentation(image, mode): out = np.transpose(image, (1,2,0)) if mode == 0: # original out = out elif mode == 1: # flip up and down out = np.flipud(out) elif mode == 2: # rotate counterwise 90 degree out = np.rot90(out) elif mode == 3: # rotate 90 degree and flip up and down out = np.rot90(out) out = np.flipud(out) elif mode == 4: # rotate 180 degree out = np.rot90(out, k=2) elif mode == 5: # rotate 180 degree and flip out = np.rot90(out, k=2) out = np.flipud(out) elif mode == 6: # rotate 270 degree out = np.rot90(out, k=3) elif mode == 7: # rotate 270 degree and flip out = np.rot90(out, k=3) out = np.flipud(out) return np.transpose(out, (2,0,1)) def visual_va2np(Out, mode=1, ps=0, pss=1, scal=1, rescale=0, w=10, h=10, c=3, refill=0, refill_img=0, refill_ind=[0, 0]): if mode == 0 or mode == 1 or mode==3: out_numpy = Out.data.squeeze(0).cpu().numpy() elif mode == 2: out_numpy = Out.data.squeeze(1).cpu().numpy() if out_numpy.shape[0] == 1: out_numpy = np.tile(out_numpy, (3, 1, 1)) if mode == 0 or mode == 1: out_numpy = (np.transpose(out_numpy, (1, 2, 0))) * 255.0 * scal else: out_numpy = (np.transpose(out_numpy, (1, 2, 0))) if ps == 1: out_numpy = reverse_pixelshuffle(out_numpy, pss, refill, refill_img, refill_ind) if rescale == 1: out_numpy = cv2.resize(out_numpy, (h, w)) #print(out_numpy.shape) return out_numpy def temp_ps_4comb(Out, In): pass def np2ts(x, mode=0): #now assume the input only has one channel which is ignored w, h, c= x.shape x_ts = x.transpose(2, 0, 1) x_ts = torch.from_numpy(x_ts).type(torch.FloatTensor) if mode == 0 or mode == 1: x_ts = x_ts.unsqueeze(0) elif mode == 2: x_ts = x_ts.unsqueeze(1) return x_ts def np2ts_4d(x): x_ts = x.transpose(0, 3, 1, 2) x_ts = torch.from_numpy(x_ts).type(torch.FloatTensor) return x_ts def get_salient_noise_in_maps(lm, thre = 0., chn=3): ''' Description: To find out the most frequent estimated noise level in the images ---------- [Input] a multi-channel tensor of noise map [Output] A list of noise level value ''' lm_numpy = lm.data.cpu().numpy() lm_numpy = (np.transpose(lm_numpy, (0, 2, 3, 1))) nl_list = np.zeros((lm_numpy.shape[0], chn,1)) for n in range(lm_numpy.shape[0]): for c in range(chn): selected_lm = np.reshape(lm_numpy[n,:,:,c], (lm_numpy.shape[1]*lm_numpy.shape[2], 1)) selected_lm = selected_lm[selected_lm>thre] if selected_lm.shape[0] == 0: nl_list[n, c] = 0 else: hist = np.histogram(selected_lm, density=True) nl_ind = np.argmax(hist[0]) #print(nl_ind) #print(hist[0]) #print(hist[1]) nl = ( hist[1][nl_ind] + hist[1][nl_ind+1] ) / 2. nl_list[n, c] = nl return nl_list def get_cdf_noise_in_maps(lm, thre=0.8, chn=3): ''' Description: To find out the most frequent estimated noise level in the images ---------- [Input] a multi-channel tensor of noise map [Output] A list of noise level value ''' lm_numpy = lm.data.cpu().numpy() lm_numpy = (np.transpose(lm_numpy, (0, 2, 3, 1))) nl_list = np.zeros((lm_numpy.shape[0], chn,1)) for n in range(lm_numpy.shape[0]): for c in range(chn): selected_lm = np.reshape(lm_numpy[n,:,:,c], (lm_numpy.shape[1]*lm_numpy.shape[2], 1)) H, x = np.histogram(selected_lm, normed=True) dx = x[1]-x[0] F = np.cumsum(H)*dx F_ind = np.where(F>0.9)[0][0] nl_list[n, c] = x[F_ind] print(nl_list[n,c]) return nl_list def get_pdf_in_maps(lm, mark, chn=1): ''' Description: get the noise estimation cdf of each channel ---------- [Input] a multi-channel tensor of noise map and channel dimension chn: the channel number for gaussian [Output] CDF function of each sample and each channel ''' lm_numpy = lm.data.cpu().numpy() lm_numpy = (np.transpose(lm_numpy, (0, 2, 3, 1))) pdf_list = np.zeros((lm_numpy.shape[0], chn, 10)) for n in range(lm_numpy.shape[0]): for c in range(chn): selected_lm = np.reshape(lm_numpy[n,:,:,c], (lm_numpy.shape[1]*lm_numpy.shape[2], 1)) H, x = np.histogram(selected_lm, range=(0.,1.), bins=10, normed=True) dx = x[1]-x[0] F = H * dx pdf_list[n, c, :] = F #sio.savemat(mark + str(c) + '.mat',{'F':F}) # plt.bar(range(10), F) #plt.savefig(mark + str(c) + '.png') # plt.close() return pdf_list def get_pdf_matching_score(F1, F2): ''' Description: Given two sets of CDF, get the overall matching score for each channel ----------- [Input] F1, F2 [Output] score for each channel ''' return np.mean((F1-F2)**2) def decide_scale_factor(noisy_image, estimation_model, color=1, thre = 0, plot_flag = 1, stopping = 4, mark=''): ''' Description: Given a noisy image and the noise estimation model, keep multiscaling the image\\ using pixel-shuffle methods, and estimate the pdf and cdf of AWGN channel Compare the changes of the density function and decide the optimal scaling factor ------------ [Input] noisy_image, estimation_model, plot_flag, stopping [Output] plot the middle vector score_seq: the matching score sequence between the two subsequent pdf opt_scale: the optimal scaling factor ''' if color == 1: c = 3 elif color == 0: c = 1 score_seq = [] Pre_CDF = None flag = 0 for pss in range(1, stopping+1): #scaling factor from 1 to the limit noisy_image = pixelshuffle(noisy_image, pss) INoisy = np2ts(noisy_image, color) INoisy = Variable(INoisy.cuda(), volatile=True) EMap = torch.clamp(estimation_model(INoisy), 0., 1.) EPDF = get_pdf_in_maps(EMap, mark + str(pss), c)[0] if flag != 0: score = get_pdf_matching_score(EPDF, Pre_PDF) #TODO: How to match these two print(score) score_seq.append(score) if score <= thre: print('optimal scale is %d:' % (pss-1)) return (pss-1, score_seq) Pre_PDF = EPDF flag = 1 return (stopping, score_seq) def get_max_noise_in_maps(lm, chn=3): ''' Description: To find out the maximum level of noise level in the images ---------- [Input] a multi-channel tensor of noise map [Output] A list of noise level value ''' lm_numpy = lm.data.cpu().numpy() lm_numpy = (np.transpose(lm_numpy, (0, 2, 3, 1))) nl_list = np.zeros((lm_numpy.shape[0], chn, 1)) for n in range(lm_numpy.shape[0]): for c in range(chn): nl = np.amax(lm_numpy[n, :, :, c]) nl_list[n, c] = nl return nl_list def get_smooth_maps(lm, dilk = 50, gsd = 10): ''' Description: To return the refined maps after dilation and gaussian blur [Input] a multi-channel tensor of noise map [Output] a multi-channel tensor of refined noise map ''' kernel = np.ones((dilk, dilk)) lm_numpy = lm.data.squeeze(0).cpu().numpy() lm_numpy = (np.transpose(lm_numpy, (1, 2, 0))) ref_lm_numpy = lm_numpy.copy() #a refined map for c in range(lm_numpy.shape[2]): nmap = lm_numpy[:, :, c] nmap_dilation = cv2.dilate(nmap, kernel, iterations=1) ref_lm_numpy[:, :, c] = nmap_dilation #ref_lm_numpy[:, :, c] = scipy.ndimage.filters.gaussian_filter(nmap_dilation, gsd) RF_tensor = np2ts(ref_lm_numpy) RF_tensor = Variable(RF_tensor.cuda(),volatile=True) def zeroing_out_maps(lm, keep=0): ''' Only Keep one channel and zero out other channels [Input] a multi-channel tensor of noise map [Output] a multi-channel tensor of noise map after zeroing out items ''' lm_numpy = lm.data.squeeze(0).cpu().numpy() lm_numpy = (np.transpose(lm_numpy, (1, 2, 0))) ref_lm_numpy = lm_numpy.copy() #a refined map for c in range(lm_numpy.shape[2]): if np.isin(c,keep)==0: ref_lm_numpy[:, :, c] = 0. print(ref_lm_numpy) RF_tensor = np2ts(ref_lm_numpy) RF_tensor = Variable(RF_tensor.cuda(),volatile=True) return RF_tensor def level_refine(NM_tensor, ref_mode, chn=3,cFlag=False): ''' Description: To refine the estimated noise level maps [Input] the noise map tensor, and a refinement mode Mode: [0] Get the most salient (the most frequent estimated noise level) [1] Get the maximum value of noise level [2] Gaussian smooth the noise level map to make the regional estimation more smooth [3] Get the average maximum value of the noise level [5] Get the CDF thresholded value [Output] a refined map tensor with four channels ''' #RF_tensor = NM_tensor.clone() #get a clone version of NM tensor without changing the original one if ref_mode == 0 or ref_mode == 1 or ref_mode == 4 or ref_mode==5: #if we use a single value for the map if ref_mode == 0 or ref_mode == 4: nl_list = get_salient_noise_in_maps(NM_tensor, 0., chn) if ref_mode == 4: #half the estimation nl_list = nl_list - nl_list print(nl_list) elif ref_mode == 1: nl_list = get_max_noise_in_maps(NM_tensor, chn) elif ref_mode == 5: nl_list = get_cdf_noise_in_maps(NM_tensor, 0.999, chn) noise_map = np.zeros((NM_tensor.shape[0], chn, NM_tensor.size()[2], NM_tensor.size()[3])) #initialize the noise map before concatenating for n in range(NM_tensor.shape[0]): noise_map[n,:,:,:] = np.reshape(np.tile(nl_list[n], NM_tensor.size()[2] * NM_tensor.size()[3]), (chn, NM_tensor.size()[2], NM_tensor.size()[3])) RF_tensor = torch.from_numpy(noise_map).type(torch.FloatTensor) if torch.cuda.is_available() and not cFlag: RF_tensor = Variable(RF_tensor.cuda(),volatile=True) else: RF_tensor = Variable(RF_tensor,volatile=True) elif ref_mode == 2: RF_tensor = get_smooth_maps(NM_tensor, 10, 5) elif ref_mode == 3: lb = get_salient_noise_in_maps(NM_tensor) up = get_max_noise_in_maps(NM_tensor) nl_list = ( lb + up ) * 0.5 noise_map = np.zeros((1, chn, NM_tensor.size()[2], NM_tensor.size()[3])) #initialize the noise map before concatenating noise_map[0, :, :, :] = np.reshape(np.tile(nl_list, NM_tensor.size()[2] * NM_tensor.size()[3]), (chn, NM_tensor.size()[2], NM_tensor.size()[3])) RF_tensor = torch.from_numpy(noise_map).type(torch.FloatTensor) RF_tensor = Variable(RF_tensor.cuda(),volatile=True) return (RF_tensor, nl_list) def normalize(a, len_v, min_v, max_v): ''' normalize the sequence of factors ''' norm_a = np.reshape(a, (len_v,1)) norm_a = (norm_a - float(min_v)) / float(max_v - min_v) return norm_a def generate_training_noisy_image(current_image, s_or_m, limit_set, c, val=0): noise_level_list = np.zeros((c, 1)) if s_or_m == 0: #single noise type if val == 0: for chn in range(c): noise_level_list[chn] = np.random.uniform(limit_set[0][0], limit_set[0][1]) elif val == 1: for chn in range(c): noise_level_list[chn] = 35 noisy_img = generate_noisy(current_image, 0, noise_level_list /255.) return (noisy_img, noise_level_list) def generate_ground_truth_noise_map(noise_map, n, noise_level_list, limit_set, c, pn, pw, ph): for chn in range(c): noise_level_list[chn] = normalize(noise_level_list[chn], 1, limit_set[0][0], limit_set[0][1]) #normalize the level value noise_map[n, :, :, :] = np.reshape(np.tile(noise_level_list, pw * ph), (c, pw, ph)) #total number of channels return noise_map #Add noise to the original images def generate_noisy(image, noise_type, noise_level_list=0, sigma_s=20, sigma_c=40): ''' Description: To generate noisy images of different types ---------- [Input] image : ndarray of float type: [0,1] just one image, current support gray or color image input (w,h,c) noise_type: 0,1,2,3 noise_level_list: pre-defined noise level for each channel, without normalization: only information of 3 channels [0]'AWGN' Multi-channel Gaussian-distributed additive noise [1]'RVIN' Replaces random pixels with 0 or 1. noise_level: ratio of the occupation of the changed pixels [2]'Gaussian-Poisson' GP noise approximator, the combinatin of signal-dependent and signal independent noise [Output] A noisy image ''' w, h, c = image.shape #Some unused noise type: Poisson and Uniform #if noise_type == *: #vals = len(np.unique(image)) #vals = 2 ** np.ceil(np.log2(vals)) #noisy = np.random.poisson(image * vals) / float(vals) #if noise_type == *: #uni = np.random.uniform(-factor,factor,(w, h, c)) #uni = uni.reshape(w, h, c) #noisy = image + uni noisy = image.copy() if noise_type == 0: #MC-AWGN model gauss = np.zeros((w, h, c)) for chn in range(c): gauss[:,:,chn] = np.random.normal(0, noise_level_list[chn], (w, h)) noisy = image + gauss elif noise_type == 1: #MC-RVIN model for chn in range(c): #process each channel separately prob_map = np.random.uniform(0.0, 1.0, (w, h)) noise_map = np.random.uniform(0.0, 1.0, (w, h)) noisy_chn = noisy[: , :, chn] noisy_chn[ prob_map < noise_level_list[chn] ] = noise_map[ prob_map < noise_level_list[chn] ] elif noise_type == 2: #sigma_s = np.random.uniform(0.0, 0.16, (3,)) #sigma_c = np.random.uniform(0.0, 0.06, (3,)) sigma_c = [sigma_c]*3 sigma_s = [sigma_s]*3 sigma_s = np.reshape(sigma_s, (1, 1, c)) #reshape the sigma factor to [1,1,c] to multiply with the image noise_s_map = np.multiply(sigma_s, image) #according to x or temp_x?? (according to clean image or irradience) #print(noise_s_map) # different from the official code, here we use the original clean image x to compute the variance noise_s = np.random.randn(w, h, c) * noise_s_map #use the new variance to shift the normal distribution noisy = image + noise_s #add signal_independent noise to L noise_c = np.zeros((w, h, c)) for chn in range(3): noise_c [:, :, chn] = np.random.normal(0, sigma_c[chn], (w, h)) noisy = noisy + noise_c return noisy #generate AWGN-RVIN noise together def generate_comp_noisy(image, noise_level_list): ''' Description: To generate mixed AWGN and RVIN noise together ---------- [Input] image: a float image between [0,1] noise_level_list: AWGN and RVIN noise level [Output] A noisy image ''' w, h, c = image.shape noisy = image.copy() for chn in range(c): mix_thre = noise_level_list[c+chn] #get the mix ratio of AWGN and RVIN gau_std = noise_level_list[chn] #get the gaussian std prob_map = np.random.uniform( 0, 1, (w, h) ) #the prob map noise_map = np.random.uniform( 0, 1, (w, h) ) #the noisy map noisy_chn = noisy[: ,: ,chn] noisy_chn[prob_map < mix_thre ] = noise_map[prob_map < mix_thre ] gauss = np.random.normal(0, gau_std, (w, h)) noisy_chn[prob_map >= mix_thre ] = noisy_chn[prob_map >= mix_thre ] + gauss[prob_map >= mix_thre] return noisy def generate_denoise(image, model, noise_level_list): ''' Description: Generate Denoised Blur Images ---------- [Input] image: model: noise_level_list: [Output] A blur image patch ''' #input images ISource = np2ts(image) ISource = torch.clamp(ISource, 0., 1.) ISource = Variable(ISource.cuda(),volatile=True) #input denoise conditions noise_map = np.zeros((1, 6, image.shape[0], image.shape[1])) #initialize the noise map before concatenating noise_map[0, :, :, :] = np.reshape(np.tile(noise_level_list, image.shape[0] * image.shape[1]), (6, image.shape[0], image.shape[1])) NM_tensor = torch.from_numpy(noise_map).type(torch.FloatTensor) NM_tensor = Variable(NM_tensor.cuda(),volatile=True) #generate blur images Res = model(ISource, NM_tensor) Out = torch.clamp(ISource-Res, 0., 1.) out_numpy = Out.data.squeeze(0).cpu().numpy() out_numpy = np.transpose(out_numpy, (1, 2, 0)) return out_numpy #TODO: two pixel shuffle functions to process the images def pixelshuffle(image, scale): ''' Discription: Given an image, return a reversible sub-sampling [Input]: Image ndarray float [Return]: A mosic image of shuffled pixels ''' if scale == 1: return image w, h ,c = image.shape mosaic = np.array([]) for ws in range(scale): band = np.array([]) for hs in range(scale): temp = image[ws::scale, hs::scale, :] #get the sub-sampled image band = np.concatenate((band, temp), axis = 1) if band.size else temp mosaic = np.concatenate((mosaic, band), axis = 0) if mosaic.size else band return mosaic def reverse_pixelshuffle(image, scale, fill=0, fill_image=0, ind=[0,0]): ''' Discription: Given a mosaic image of subsampling, recombine it to a full image [Input]: Image [Return]: Recombine it using different portions of pixels ''' w, h, c = image.shape real = np.zeros((w, h, c)) #real image wf = 0 hf = 0 for ws in range(scale): hf = 0 for hs in range(scale): temp = real[ws::scale, hs::scale, :] wc, hc, cc = temp.shape #get the shpae of the current images if fill==1 and ws==ind[0] and hs==ind[1]: real[ws::scale, hs::scale, :] = fill_image[wf:wf+wc, hf:hf+hc, :] else: real[ws::scale, hs::scale, :] = image[wf:wf+wc, hf:hf+hc, :] hf = hf + hc wf = wf + wc return real def scal2map(level, h, w, min_v=0., max_v=255.): ''' Change a single normalized noise level value to a map [Input]: level: a scaler noise level(0-1), h, w [Return]: a pytorch tensor of the cacatenated noise level map ''' #get a tensor from the input level level_tensor = torch.from_numpy(np.reshape(level, (1,1))).type(torch.FloatTensor) #make the noise level to a map level_tensor = level_tensor.view(stdN_tensor.size(0), stdN_tensor.size(1), 1, 1) level_tensor = level_tensor.repeat(1, 1, h, w) return level_tensor def scal2map_spatial(level1, level2, h, w): stdN_t1 = scal2map(level1, int(h/2), w) stdN_t2 = scal2map(level2, h-int(h/2), w) stdN_tensor = torch.cat([stdN_t1, stdN_t2], dim=2) return stdN_tensor
seq2seq/corpus.py
shinoyuki222/torch-light
310
12790271
import torch import argparse import logging from utils import corpora2idx, normalizeString from const import * class Dictionary(object): def __init__(self): self.word2idx = { WORD[BOS]: BOS, WORD[EOS]: EOS, WORD[PAD]: PAD, WORD[UNK]: UNK } self.idx = 4 def add(self, word): if self.word2idx.get(word) is None: self.word2idx[word] = self.idx self.idx += 1 def __call__(self, sents, min_count): words = [word for sent in sents for word in sent] word_count = {w: 0 for w in set(words)} for w in words: word_count[w]+=1 ignored_word_count = 0 for word, count in word_count.items(): if count <= min_count: ignored_word_count += 1 continue self.add(word) return ignored_word_count def __len__(self): return self.idx def __str__(self): return "%s(size = %d)".format(self.__class__.__name__, len(self.idx)) class Corpus(object): def __init__(self, save_data, max_len=20, min_word_count=1): self._save_data = save_data self._max_len = max_len self._min_word_count = min_word_count self.src_sents = None self.tgt_sents = None self.src_valid_sents = None self.tgt_valid_sents = None self.src_dict = Dictionary() self.tgt_dict = Dictionary() def parse(self): def gather_file(file_, max_len): en_sents, fra_sents, en_cut_count, fra_cut_count = [], [], 0, 0 for sentences in open(file_): en_, fra_ = [normalizeString(s) for s in sentences.strip().split('\t')] en_ws = [word for word in en_.strip().split()] fra_ws = [word for word in fra_.strip().split()] if len(en_ws) > max_len: en_cut_count += 1 en_ws = en_ws[:max_len] en_sents.append([WORD[BOS]] + en_ws + [WORD[EOS]]) if len(fra_ws) > max_len: fra_cut_count += 1 fra_ws = fra_ws[:max_len] fra_sents.append([WORD[BOS]] + fra_ws + [WORD[EOS]]) return fra_sents, en_sents, fra_cut_count, en_cut_count max_len = self._max_len - 2 src_train, tgt_train, fra_cut_count, en_cut_count = gather_file('data/train', max_len) src_valid, tgt_valid, _, _ = gather_file('data/test', max_len) print("English data`s length out of range numbers - [{}]".format(en_cut_count)) print("French data`s length out of range numbers - [{}]".format(fra_cut_count)) src_ignore = self.src_dict(src_train, self._min_word_count) tgt_ignore = self.tgt_dict(tgt_train, self._min_word_count) if src_ignore != 0: print("Ignored src word counts - [{}]".format(src_ignore)) if tgt_ignore != 0: print("Ignored tgt word counts - [{}]".format(tgt_ignore)) self.src_train = src_train self.tgt_train = tgt_train self.src_valid = src_valid self.tgt_valid = tgt_valid def save(self): data = { 'max_word_len': self._max_len, 'dict': { 'src': self.src_dict.word2idx, 'src_size': len(self.src_dict), 'tgt': self.tgt_dict.word2idx, 'tgt_size': len(self.tgt_dict) }, 'train': { 'src': corpora2idx(self.src_train, self.src_dict.word2idx), 'tgt': corpora2idx(self.tgt_train, self.tgt_dict.word2idx) }, 'valid': { 'src': corpora2idx(self.src_valid, self.src_dict.word2idx), 'tgt': corpora2idx(self.tgt_valid, self.tgt_dict.word2idx) } } torch.save(data, self._save_data) print('src corpora length - [{}] | target corpora length - [{}]'.format(len(self.src_dict), len(self.tgt_dict))) def process(self): self.parse() self.save() if __name__ == "__main__": parser = argparse.ArgumentParser(description='seq2sqe corpora') parser.add_argument('--save-data', type=str, default='data/seq2seq.pt', help='path to save processed data') parser.add_argument('--max-lenth', type=int, default=20, help='max length of sentence') parser.add_argument('--min-word-count', type=int, default=1, help='min corpora count to discard') args = parser.parse_args() corpus = Corpus(args.save_data, args.max_lenth, args.min_word_count) corpus.process()
third_party/upb/docs/render.py
echo80313/grpc
515
12790279
<reponame>echo80313/grpc<gh_stars>100-1000 #!/usr/bin/env python3 import subprocess import sys import shutil import os if len(sys.argv) < 2: print("Must pass a filename argument") sys.exit(1) in_filename = sys.argv[1] out_filename = in_filename.replace(".in.md", ".md") out_dir = in_filename.replace(".in.md", "") if in_filename == out_filename: print("File must end in .in.md") sys.exit(1) if os.path.isdir(out_dir): shutil.rmtree(out_dir) os.mkdir(out_dir) file_num = 1 with open(out_filename, "wb") as out_file, open(in_filename, "rb") as in_file: for line in in_file: if line.startswith(b"```dot"): dot_lines = [] while True: dot_line = next(in_file) if dot_line == b"```\n": break dot_lines.append(dot_line) dot_input = b"".join(dot_lines) svg_filename = out_dir + "/" + str(file_num) + ".svg" svg = subprocess.check_output(['dot', '-Tsvg', '-o', svg_filename], input=dot_input) out_file.write(b"<div align=center>\n") out_file.write(b"<img src='%s'/>\n" % (svg_filename.encode('utf-8'))) out_file.write(b"</div>\n") file_num += 1 else: out_file.write(line)
tools/real_world_impact/nsfw_urls.py
zealoussnow/chromium
14,668
12790301
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """NSFW urls in the Alexa top 2000 sites.""" nsfw_urls = set([ "http://xhamster.com/", "http://xvideos.com/", "http://livejasmin.com/", "http://pornhub.com/", "http://redtube.com/", "http://youporn.com/", "http://xnxx.com/", "http://tube8.com/", "http://youjizz.com/", "http://adultfriendfinder.com/", "http://hardsextube.com/", "http://yourlust.com/", "http://drtuber.com/", "http://beeg.com/", "http://largeporntube.com/", "http://nuvid.com/", "http://bravotube.net/", "http://spankwire.com/", "http://discreethearts.com/", "http://keezmovies.com/", "http://xtube.com/", "http://alphaporno.com/", "http://4tube.com/", "http://nudevista.com/", "http://porntube.com/", "http://xhamstercams.com/", "http://porn.com/", "http://video-one.com/", "http://perfectgirls.net/", "http://slutload.com/", "http://sunporno.com/", "http://tnaflix.com/", "http://pornerbros.com/", "http://h2porn.com/", "http://adult-empire.com/", "http://pornhublive.com/", "http://sexitnow.com/", "http://pornsharia.com/", "http://freeones.com/", "http://tubegalore.com/", "http://xvideos.jp/", "http://brazzers.com/", "http://fapdu.com/", "http://pornoxo.com/", "http://extremetube.com/", "http://hot-sex-tube.com/", "http://xhamsterhq.com/", "http://18andabused.com/", "http://tubepleasure.com/", "http://18schoolgirlz.com/", "http://chaturbate.com/", "http://motherless.com/", "http://yobt.com/", "http://empflix.com/", "http://hellporno.com/", "http://ashemaletube.com/", "http://watchmygf.com/", "http://redtubelive.com/", "http://met-art.com/", "http://gonzoxxxmovies.com/", "http://shufuni.com/", "http://vid2c.com/", "http://dojki.com/", "http://cerdas.com/", "http://overthumbs.com/", "http://xvideoslive.com/", "http://playboy.com/", "http://caribbeancom.com/", "http://tubewolf.com/", "http://xmatch.com/", "http://ixxx.com/", "http://nymphdate.com/", ])
python/keepsake/version.py
jsemric/keepsake
810
12790337
# This file is auto-generated by the root Makefile. Do not edit manually. version = "0.4.2"
beartype_test/a00_unit/a00_util/cache/test_utilcachecall.py
posita/beartype
1,056
12790348
<gh_stars>1000+ #!/usr/bin/env python3 # --------------------( LICENSE )-------------------- # Copyright (c) 2014-2021 Beartype authors. # See "LICENSE" for further details. ''' **Beartype callable caching utility unit tests.** This submodule unit tests the public API of the private :mod:`beartype._util.cache.utilcachecall` submodule. ''' # ....................{ IMPORTS }.................... #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # WARNING: To raise human-readable test errors, avoid importing from # package-specific submodules at module scope. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! from beartype.roar._roarwarn import _BeartypeUtilCallableCachedKwargsWarning from beartype_test.util.mark.pytmark import ignore_warnings from pytest import raises # ....................{ TESTS }.................... # Prevent pytest from capturing and displaying all expected non-fatal # beartype-specific warnings emitted by the @callable_cached decorator. @ignore_warnings(_BeartypeUtilCallableCachedKwargsWarning) def test_callable_cached_pass() -> None: ''' Test successful usage of the :func:`beartype._util.cache.utilcachecall.callable_cached` decorator. ''' # Defer heavyweight imports. from beartype._util.cache.utilcachecall import callable_cached # Callable memoized by this decorator. @callable_cached def still_i_rise(bitter, twisted, lies): # If an arbitrary condition, raise an exception whose value depends on # these parameters to exercise this decorator's conditional caching of # exceptions. if len(lies) == 6: raise ValueError(lies) # Else, return a value depending on these parameters to exercise this # decorator's conditional caching of return values. return bitter + twisted + lies # Objects to be passed as parameters below. bitter = ('You', 'may', 'write', 'me', 'down', 'in', 'history',) twisted = ('With', 'your', 'bitter,', 'twisted,', 'lies.',) lies = ('You', 'may', 'trod,', 'me,', 'in', 'the', 'very', 'dirt',) dust = ('But', 'still,', 'like', 'dust,', "I'll", 'rise',) # Assert that memoizing two calls passed the same positional arguments # caches and returns the same value. assert ( still_i_rise(bitter, twisted, lies) is still_i_rise(bitter, twisted, lies)) # Assert that memoizing two calls passed the same positional and keyword # arguments in the same order caches and returns the same value. assert ( still_i_rise(bitter, twisted=twisted, lies=lies) is still_i_rise(bitter, twisted=twisted, lies=lies)) # Assert that memoizing two calls passed the same keyword arguments in the # same order cache and return the same value. assert ( still_i_rise(bitter=bitter, twisted=twisted, lies=lies) is still_i_rise(bitter=bitter, twisted=twisted, lies=lies)) # Assert that memoizing a call expected to raise an exception does so. with raises(ValueError) as exception_first_info: still_i_rise(bitter, twisted, dust) # Assert that repeating that call reraises the same exception. with raises(ValueError) as exception_next_info: still_i_rise(bitter, twisted, dust) assert exception_first_info is exception_next_info # Assert that memoizing two calls passed the same keyword arguments in a # differing order cache and return differing values. assert ( still_i_rise(bitter=bitter, twisted=twisted, lies=lies) is not still_i_rise(twisted=twisted, lies=lies, bitter=bitter)) # Assert that passing one or more unhashable parameters to this callable # succeeds with the expected return value. assert still_i_rise( ('Just', 'like', 'moons',), ('and', 'like', 'suns',), ('With the certainty of tides',), ) == ( 'Just', 'like', 'moons', 'and', 'like', 'suns', 'With the certainty of tides', ) def test_callable_cached_fail() -> None: ''' Test unsuccessful usage of the :func:`beartype._util.cache.utilcachecall.callable_cached` decorator. ''' # Defer heavyweight imports. from beartype._util.cache.utilcachecall import callable_cached from beartype.roar._roarexc import _BeartypeUtilCallableCachedException # Assert that attempting to memoize a callable accepting one or more # variadic positional parameters fails with the expected exception. with raises(_BeartypeUtilCallableCachedException): @callable_cached def see_me_broken(*args): return args # Assert that attempting to memoize a callable accepting one or more # variadic keyword parameters fails with the expected exception. with raises(_BeartypeUtilCallableCachedException): @callable_cached def my_soulful_cries(**kwargs): return kwargs
tests/integration/test_networks.py
unparalleled-js/ape
210
12790410
<filename>tests/integration/test_networks.py import pytest from eth_typing import HexStr @pytest.mark.parametrize("block_id", ("latest", 0, "0", "0x0", HexStr("0x0"))) def test_get_block(eth_tester_provider, block_id): latest_block = eth_tester_provider.get_block(block_id) # Each parameter is the same as requesting the first block. assert latest_block.number == 0 assert latest_block.gas_data.base_fee == 1000000000 assert latest_block.gas_data.gas_used == 0
alipay/aop/api/domain/AlipayUserApplepayProvisioningbundleCreateModel.py
antopen/alipay-sdk-python-all
213
12790420
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayUserApplepayProvisioningbundleCreateModel(object): def __init__(self): self._alipay_user_identifier = None @property def alipay_user_identifier(self): return self._alipay_user_identifier @alipay_user_identifier.setter def alipay_user_identifier(self, value): self._alipay_user_identifier = value def to_alipay_dict(self): params = dict() if self.alipay_user_identifier: if hasattr(self.alipay_user_identifier, 'to_alipay_dict'): params['alipay_user_identifier'] = self.alipay_user_identifier.to_alipay_dict() else: params['alipay_user_identifier'] = self.alipay_user_identifier return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayUserApplepayProvisioningbundleCreateModel() if 'alipay_user_identifier' in d: o.alipay_user_identifier = d['alipay_user_identifier'] return o
examples/house-credit-default/get_input.py
wqruan/tf-encrypted
825
12790428
"""CLI for data preparation and processing.""" import argparse from utils import data_prep from utils import read_one_row from utils import save_input parser = argparse.ArgumentParser() parser.add_argument( "--save_row", type=int, default="0", help="Saves a single row to a file defaults to row 0", ) parser.add_argument( "--input_file", type=str, default="final_data_with_feature_engineered.csv", help=( "File to read the row from defaults to " "final_data_with_feature_engineered.csv" ), ) parser.add_argument( "--output_file", type=str, default="input.npy", help=("Output file with the input row defaults to " "input.npy"), ) config = parser.parse_args() input_file = config.input_file output_file = config.output_file save_row = config.save_row train_x_df, _ = data_prep(input_file) out = read_one_row(save_row, train_x_df) save_input(output_file, out)
evaluation/datasets/test_datasets.py
hsiehkl/pdffigures2
296
12790469
import unittest import math import datasets from pdffigures_utils import get_num_pages_in_pdf class TestDataset(unittest.TestCase): def test_pages_annotated_consistency(self): for dataset in datasets.DATASETS.values(): dataset = dataset() pages_annotated = dataset.get_annotated_pages_map() if pages_annotated is None: continue pdf_file_map = dataset.get_pdf_file_map() annotations = dataset.get_annotations("all") docs = dataset.get_doc_ids("all") self.assertEqual(set(docs), pages_annotated.keys()) for doc, pages in pages_annotated.items(): filename = pdf_file_map[doc] self.assertTrue(len(pages) <= dataset.MAX_PAGES_TO_ANNOTATE) num_pages = get_num_pages_in_pdf(filename) self.assertTrue(num_pages >= max(pages) - 1) expected_pages = math.ceil(num_pages*dataset.PAGE_SAMPLE_PERCENT) expected_pages = min(expected_pages, dataset.MAX_PAGES_TO_ANNOTATE) self.assertTrue(len(pages) == expected_pages) if doc in annotations: ann = annotations[doc] self.assertEqual(set(ann["annotated_pages"]), set(pages)) for fig in ann["figures"]: self.assertTrue(fig.page in pages) def test_consistency(self): for dataset in datasets.DATASETS.values(): dataset = dataset() all_docs = set(dataset.get_doc_ids(datasets.DatasetPartition("all"))) doc_map = dataset.get_pdf_file_map() self.assertEqual(len(all_docs - doc_map.keys()), 0) doc_map = dataset.get_color_image_file_map() if doc_map is not None: self.assertEqual(len(all_docs - doc_map.keys()), 0) doc_map = dataset.get_gray_image_file_map() if doc_map is not None: self.assertEqual(len(all_docs - doc_map.keys()), 0) documents = dataset.load_doc_ids(all_docs) self.assertEqual(all_docs, set([x.doc_id for x in documents])) for doc in documents: if doc.color_images is not None and doc.gray_images is not None: self.assertEqual(doc.gray_images.keys(), doc.color_images.keys()) pages_annotated = doc.pages_annotated for fig in doc.figures: self.assertTrue(fig.page in pages_annotated) self.assertEqual(doc.pdffile.split("/")[-1][:-4], doc.doc_id) if __name__ == '__main__': unittest.main()
mmdet/core/anchor/__init__.py
MinliangLin/TSD
454
12790473
from .anchor_generator import AnchorGenerator from .anchor_target import anchor_inside_flags, anchor_target, images_to_levels, unmap from .guided_anchor_target import ga_loc_target, ga_shape_target from .point_generator import PointGenerator from .point_target import point_target __all__ = [ "AnchorGenerator", "anchor_target", "anchor_inside_flags", "ga_loc_target", "ga_shape_target", "PointGenerator", "point_target", "images_to_levels", "unmap", ]
scrubadub/filth/date_of_birth.py
datascopeanalytics/scrubadub
190
12790533
import random import datetime import dateparser from faker import Faker from .base import Filth class DateOfBirthFilth(Filth): type = 'date_of_birth' min_age_years = 18 max_age_years = 100 @staticmethod def generate(faker: Faker) -> str: """Generates an example of this ``Filth`` type, usually using the faker python library. :param faker: The ``Faker`` class from the ``faker`` library :type faker: Faker :return: An example of this ``Filth`` :rtype: str """ formats = [ '%c', # Tue Aug 16 21:30:00 1988 (en_US); locale dependant '%x', # 08/16/1988 (en_US); locale dependant '%a %d %b %Y', # Sun 19 Jan 1999 '%A %d %B %Y', # Sunday 19 January 1999 '%d-%m-%Y', # 15-01-1999 '%A %dth, %B, %Y', # Monday 08th, January, 1973 ] return faker.date_of_birth().strftime(random.choice(formats)) def is_valid(self) -> bool: """Check to see if the found filth is valid.""" found_date = dateparser.parse(self.text) if found_date is None: return False years_since_identified_date = datetime.date.today().year - found_date.year return DateOfBirthFilth.min_age_years <= years_since_identified_date <= DateOfBirthFilth.max_age_years
scripts/kopf/example.py
victoriouscoder/oreilly-kubernetes
323
12790545
<gh_stars>100-1000 import kopf @kopf.on.create('oreilly.com', 'v1alpha1', 'book') def create_fn(spec, **kwargs): print(f"And here we are! Creating: {spec}") return {'message': 'hello world'} # will be the new status <EMAIL>('<EMAIL>', 'v1alpha1', 'book') #def update_fn(old, new, diff, **kwargs): # print('UPDATED') # print(f"The following object got updated: {spec}") # return {'message': 'updated'} <EMAIL>.delete('ore<EMAIL>', 'v1alpha1', 'book') #def delete_fn(metadata, **kwargs):
Chapter10/clean_sample.py
fbitti/Bioinformatics-with-Python-Cookbook-Second-Edition
244
12790549
<reponame>fbitti/Bioinformatics-with-Python-Cookbook-Second-Edition<gh_stars>100-1000 import sys sys.stdout.write('ID_1 ID_2 missing\n0 0 0 \n') for line in sys.stdin: ind = line.rstrip() sys.stdout.write('%s %s 0\n' % (ind, ind))
xv_leak_tools/scriptlets/command_line_for_pid.py
UAEKondaya1/expressvpn_leak_testing
219
12790558
#!/usr/bin/env python3 import argparse import sys import psutil from wrap_scriptlet import wrap_scriptlet def run(): parser = argparse.ArgumentParser() parser.add_argument('pid') args = parser.parse_args(sys.argv[1:]) process = psutil.Process(int(args.pid)) return process.cmdline() sys.exit(wrap_scriptlet(run))
addons/Sprytile-6b68d00/rx/linq/observable/dowhile.py
trisadmeslek/V-Sekai-Blender-tools
733
12790564
from rx.core import Observable from rx.internal import extensionmethod @extensionmethod(Observable) def do_while(self, condition): """Repeats source as long as condition holds emulating a do while loop. Keyword arguments: condition -- {Function} The condition which determines if the source will be repeated. Returns an observable {Observable} sequence which is repeated as long as the condition holds. """ return Observable.concat([self, Observable.while_do(condition, self)])
tests/missing_data/test_missing_data_air_passengers_None_None.py
shaido987/pyaf
377
12790570
<filename>tests/missing_data/test_missing_data_air_passengers_None_None.py import tests.missing_data.test_missing_data_air_passengers_generic as gen gen.test_air_passengers_missing_data(None, None)
vivit.py
rishikksh20/ViViT-pytorch
204
12790612
<filename>vivit.py import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange from module import Attention, PreNorm, FeedForward import numpy as np class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) self.norm = nn.LayerNorm(dim) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class ViViT(nn.Module): def __init__(self, image_size, patch_size, num_classes, num_frames, dim = 192, depth = 4, heads = 3, pool = 'cls', in_channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., scale_dim = 4, ): super().__init__() assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 patch_dim = in_channels * patch_size ** 2 self.to_patch_embedding = nn.Sequential( Rearrange('b t c (h p1) (w p2) -> b t (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.Linear(patch_dim, dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_frames, num_patches + 1, dim)) self.space_token = nn.Parameter(torch.randn(1, 1, dim)) self.space_transformer = Transformer(dim, depth, heads, dim_head, dim*scale_dim, dropout) self.temporal_token = nn.Parameter(torch.randn(1, 1, dim)) self.temporal_transformer = Transformer(dim, depth, heads, dim_head, dim*scale_dim, dropout) self.dropout = nn.Dropout(emb_dropout) self.pool = pool self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, x): x = self.to_patch_embedding(x) b, t, n, _ = x.shape cls_space_tokens = repeat(self.space_token, '() n d -> b t n d', b = b, t=t) x = torch.cat((cls_space_tokens, x), dim=2) x += self.pos_embedding[:, :, :(n + 1)] x = self.dropout(x) x = rearrange(x, 'b t n d -> (b t) n d') x = self.space_transformer(x) x = rearrange(x[:, 0], '(b t) ... -> b t ...', b=b) cls_temporal_tokens = repeat(self.temporal_token, '() n d -> b n d', b=b) x = torch.cat((cls_temporal_tokens, x), dim=1) x = self.temporal_transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] return self.mlp_head(x) if __name__ == "__main__": img = torch.ones([1, 16, 3, 224, 224]).cuda() model = ViViT(224, 16, 100, 16).cuda() parameters = filter(lambda p: p.requires_grad, model.parameters()) parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000 print('Trainable Parameters: %.3fM' % parameters) out = model(img) print("Shape of out :", out.shape) # [B, num_classes]
tests/test_engine.py
adithyavis/pywarm
194
12790680
<reponame>adithyavis/pywarm<filename>tests/test_engine.py # 08-31-2019; """ Test cases for warm.engine. """ import torch import torch.nn as nn import torch.nn.functional as F import copy from pathlib import Path import sys sys.path.append(str(Path(__file__).parent.parent)) from warm import engine def test_set_get_default_parent(): a = nn.Identity() b = nn.Identity() engine.set_default_parent(a) assert engine.get_default_parent() is a, 'get_default_parent result mismatchs set_default_parent.' engine.set_default_parent(b) assert engine.get_default_parent() is b, 'get_default_parent result mismatchs set_default_parent.' def test_auto_name(): a = nn.Identity() for i in range(10): assert engine._auto_name('test', a) == f'test_{i+1}', 'new calls to _auto_name failed to increment name count.' a(None) # test if forward pre hook is triggered to reset names assert engine._auto_name('test', a) == 'test_1', 'forward_pre_hook did not work.' def test_initialize(): a = nn.Parameter(torch.zeros(3, 4)) b = nn.Parameter(torch.zeros(3, 4)) c = nn.Parameter(torch.zeros(3, 4)) torch.manual_seed(1) engine.initialize_(a, 'normal_') torch.manual_seed(1) nn.init.normal_(b) assert torch.equal(a, b), 'initialize_ with str spec did not work correctly.' assert not torch.equal(a, c), 'initialize_ with str spec did not work.' torch.manual_seed(1) engine.initialize_(c, nn.init.normal_) assert torch.equal(a, c), 'initialize_ with function spec did not work correctly.' def test_activate(): a = torch.randn(3, 4) b = copy.deepcopy(a) a = engine.activate(a, 'hardshrink') b = F.hardshrink(b) assert torch.equal(a, b), 'activate with str spec did not work correctly.' a = engine.activate(a, 'relu') b = F.relu(b) assert torch.equal(a, b), 'activate with str spec did not work correctly.' def test_permute(): x = torch.randn(1, 2, 3) y = engine.permute(x, 'BCD', 'DCB') assert list(y.shape) == [3, 2, 1], 'permute 3d tensor with str in_shape and str out_shape did not work correctly.' y = engine.permute(x, 'BCD', None) assert list(y.shape) == [1, 2, 3], 'permute tensor with None out_shape did not work corretly.' y = engine.permute(x, 'BCD', [1, 0, 2]) assert list(y.shape) == [2, 1, 3], 'permute tensor with list out_shape did not work corretly.' x = torch.randn(1, 2, 3, 4) y = engine.permute(x, 'BCD', 'DCB') assert list(y.shape) == [3, 4, 2, 1], 'permute 4d tensor with str in_shape and str out_shape did not work correctly.' y = engine.permute(x, 'DBC', 'CDB') assert list(y.shape) == [4, 1, 2, 3], 'permute 4d tensor with str in_shape and str out_shape did not work correctly.' x = torch.randn(1, 2, 3, 4, 5) y = engine.permute(x, 'BDC', 'BCD') assert list(y.shape) == [1, 5, 2, 3, 4], 'permute 5d tensor with str in_shape and str out_shape did not work correctly.' x = torch.randn(1, 2) y = engine.permute(x, 'BDC', 'BCD') assert list(y.shape) == [1, 2], 'permute 2d tensor with str in_shape and str out_shape did not work correctly.' y = engine.permute(x, 'CBD', 'DBC') assert list(y.shape) == [2, 1], 'permute 2d tensor with str in_shape and str out_shape did not work correctly.' def test_unused_kwargs(): kw = {'unused1':0, 'unused2':0, 'base_class':0} unused = engine.unused_kwargs(kw) assert 'base_class' not in unused, 'unused_kwargs leaks used.' assert set(unused.keys()) == {'unused1', 'unused2'}, 'unused_kwargs did not filter kw correctly.' def test_prepare_model_is_ready(): class TestModel(nn.Module): def forward(self, x): x = engine.forward(x, nn.Linear, 'linear', base_arg=(x.shape[-1], 4, False), # in_features, out_features, bias in_shape=None, out_shape=None, base_shape=None, initialization={'weight':'ones_'}, activation=(F.dropout, {'p':1.0}), ) return x x = torch.randn(1, 2, 3) m = TestModel() assert not engine.is_ready(m), 'is_ready did not work correctly.' engine.prepare_model_(m, x) assert engine.is_ready(m), 'prepare_model_ did not work correctly.' assert m.linear_1.bias is None, 'linear_1 should not have bias.' assert torch.allclose(m.linear_1.weight, torch.Tensor([1.0])), 'linear_1.weight should be initialized to all 1s.' y = m(x) assert torch.allclose(y, torch.Tensor([0.0])), 'y should be all 0s because we dropout everything.' assert list(y.shape) == [1, 2, 4], 'y should have shape [1, 2, 4] after linear projection.' def test_forward(): x = torch.randn(1, 2, 3) m = nn.Module() engine.set_default_parent(m) class TripleOut(nn.Module): # to test tuple_out def forward(self, x, b=1, c='2'): return x+b, x, c y = engine.forward(x, base_class=TripleOut, base_name='tri', tuple_out=False) assert isinstance(y, torch.Tensor), 'tuple_out did not work correctly.' y = engine.forward(x, base_class=TripleOut, base_name='tri', tuple_out=True) assert isinstance(y, tuple) and len(y) == 3 and y[-1] == '2', 'tuple_out did not work correctly.' y = engine.forward(x, base_class=TripleOut, base_name='tri', forward_kw={'c':3}, tuple_out=True) assert y[-1] == 3, 'forward_kw did not work correctly.' y = engine.forward(x, base_class=TripleOut, base_name='tri', forward_arg=(2.0,)) assert torch.allclose(y-x, torch.Tensor([2.0])), 'forward_arg did not work correctly.' y = engine.forward(x, base_class=TripleOut, activation=(F.dropout, {'p':1.0})) assert torch.allclose(y, torch.Tensor([0.0])), 'activation did not work correctly.' y = engine.forward( x, base_class=nn.Linear, base_kw={'out_features':4}, infer_kw={'in_features':'C'}, base_shape='BDC') assert y.shape[1] == 4, 'base_kw, infer_kw did not work correctly.' def test_namespace(): m = nn.Module() engine.set_default_parent(m) @engine.namespace def f1(name=''): return ';'.join([f2(name=name) for i in range(2)]) @engine.namespace def f2(name=''): return name s0, s1, s2 = [f1() for i in range(3)] assert s0 == 'f1_1-f2_1;f1_1-f2_2' assert s1 == 'f1_2-f2_1;f1_2-f2_2' assert s2 == 'f1_3-f2_1;f1_3-f2_2'
vega/trainer/callbacks/hccl.py
This-50m/vega
724
12790682
<filename>vega/trainer/callbacks/hccl.py<gh_stars>100-1000 # -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Data parallel callback.""" import logging import vega from .callback import Callback from vega.common import ClassFactory, ClassType from vega.common.general import General logger = logging.getLogger(__name__) @ClassFactory.register(ClassType.CALLBACK) class Hccl(Callback): """Callback that saves the evaluated Performance.""" def __init__(self): """Initialize ModelCheckpoint callback.""" super(Hccl, self).__init__() self.priority = 260 def init_trainer(self, logs=None): """Set trainer object for current callback.""" if not self.trainer.hccl: return if vega.is_torch_backend(): self._init_pytorch_trainer() if vega.is_ms_backend(): self._init_ms_trainer() def _init_pytorch_trainer(self): import torch import torch.distributed as dist logger.info("init HCCL") model = self.trainer.model dist.init_process_group( backend='hccl', init_method=f"tcp://{General.cluster.hccl_server_ip}:{General.cluster.hccl_port}", world_size=self.trainer.num_workers, rank=self.trainer.rank_id) model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[self.trainer.device_id], broadcast_buffers=General.cluster.enable_broadcast_buffers) self.trainer.model = model def _init_ms_trainer(self): from mindspore import context from mindspore.context import ParallelMode from mindspore.communication.management import init logger.info("init HCCL") context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) init() def before_epoch(self, epoch, logs=None): """Be called before each epoach.""" if not vega.is_torch_backend() or not self.trainer.hccl: return if self.trainer.sampler is not None: self.trainer.sampler.set_epoch(epoch) def after_train(self, logs=None): """Stop session.""" if self.trainer.hccl and vega.is_tf_backend(): self.trainer.sess.run(self.trainer.npu_shutdown) self.trainer.sess.close()
sbin/db_mgmt_cwe.py
AlexFaraino/cve-search
377
12790718
<gh_stars>100-1000 #!/usr/bin/env python3 # # Import script of NIST CWE Common Weakness Enumeration. # # Until now, the import is only import Weakness description. # # The format is the following: # # { "_id" : ObjectId("52b70521b261026f36818515"), "weaknessabs" : "Variant", # "name" : "ASP.NET Misconfiguration: Missing Custom Error Page", # "description_summary" : "An ASP .NET application must enable custom error # pages in order to prevent attackers from mining information from the # framework's built-in responses.An ASP .NET application must enable custom # error pages in order to prevent attackers from mining information from the # framework's built-in responses.", "status" : "Draft", "id" : "12" } # # Software is free software released under the "Modified BSD license" # # Copyright (c) 2013-2014 <NAME> - <EMAIL> # Copyright (c) 2015-2016 <NAME> - <EMAIL> # Imports import os import sys runPath = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(runPath, "..")) from dateutil.parser import parse as parse_datetime from xml.sax import make_parser from xml.sax.handler import ContentHandler import argparse import zipfile import tempfile from lib.ProgressBar import progressbar from lib.Config import Configuration import lib.DatabaseLayer as db argparser = argparse.ArgumentParser(description='populate/update NIST CWE Common Weakness Enumeration database') argparser.add_argument('-v', action='store_true', help='verbose output') args = argparser.parse_args() class CWEHandler(ContentHandler): def __init__(self): self.cwe = [] self.description_summary_tag = False self.weakness_tag = False def startElement(self, name, attrs): if name == 'Weakness': self.weakness_tag = True self.statement = "" self.weaknessabs = attrs.get('Weakness_Abstraction') self.name = attrs.get('Name') self.idname = attrs.get('ID') self.status = attrs.get('Status') self.cwe.append({'name': self.name, 'id': self.idname, 'status': self.status, 'weaknessabs': self.weaknessabs}) elif name == 'Description_Summary' and self.weakness_tag: self.description_summary_tag = True self.description_summary = "" def characters(self, ch): if self.description_summary_tag: self.description_summary += ch.replace(" ", "") def endElement(self, name): if name == 'Description_Summary' and self.weakness_tag: self.description_summary_tag = False self.description_summary = self.description_summary + self.description_summary self.cwe[-1]['description_summary'] = self.description_summary.replace("\n", "") elif name == 'Weakness': self.weakness_tag = False # make parser parser = make_parser() ch = CWEHandler() parser.setContentHandler(ch) # check modification date try: (f, r) = Configuration.getFeedData('cwe') except Exception as e: print(e) sys.exit("Cannot open url %s. Bad URL or not connected to the internet?"%(Configuration.getFeedURL("cwe"))) lastmodified = parse_datetime(r.headers['last-modified'], ignoretz=True) i = db.getLastModified('cwe') if i is not None: if lastmodified == i: print("Not modified") sys.exit(0) # parse xml and store in database parser.parse(f) cweList=[] for cwe in progressbar(ch.cwe): cwe['description_summary']=cwe['description_summary'].replace("\t\t\t\t\t", " ") if args.v: print (cwe) cweList.append(cwe) db.bulkUpdate('cwe', cweList) #update database info after successful program-run db.setColUpdate('cwe', lastmodified)
pseudo/middlewares/standard_middleware.py
mifieldxu/pseudo-lang
661
12790741
from pseudo.middlewares.middleware import Middleware from pseudo.pseudo_tree import Node class StandardMiddleware(Middleware): ''' changes standard_iterable_call in return to a special type used by go ''' @classmethod def process(cls, tree): return cls().transform(tree) def transform_r(self, node, in_block=False, assignment=None): if node.value.type == 'standard_iterable_call': node.value.type = 'standard_iterable_call_return' return node.value else: return node transform_explicit_return = transform_implicit_return = transform_r
conf.py
evhub/coconut
3,624
12790748
<reponame>evhub/coconut<gh_stars>1000+ #!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------------------------------------------------- # INFO: # ----------------------------------------------------------------------------------------------------------------------- """ Author: <NAME> License: Apache 2.0 Description: Sphinx configuration file for the Coconut Programming Language. """ # ----------------------------------------------------------------------------------------------------------------------- # IMPORTS: # ----------------------------------------------------------------------------------------------------------------------- from __future__ import print_function, absolute_import, unicode_literals, division import sys import os.path sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) from coconut.root import * # NOQA from coconut.constants import ( version_str_tag, without_toc, with_toc, ) from coconut.util import univ_open import pydata_sphinx_theme # NOQA import myst_parser # NOQA # ----------------------------------------------------------------------------------------------------------------------- # README: # ----------------------------------------------------------------------------------------------------------------------- with univ_open("README.rst", "r") as readme_file: readme = readme_file.read() with univ_open("index.rst", "w") as index_file: index_file.write(readme.replace(without_toc, with_toc)) # ----------------------------------------------------------------------------------------------------------------------- # DEFINITIONS: # ----------------------------------------------------------------------------------------------------------------------- from coconut.constants import ( # NOQA project, copyright, author, highlight_language, ) version = VERSION release = version_str_tag html_theme = "pydata_sphinx_theme" html_theme_options = { } master_doc = "index" exclude_patterns = ["README.*"] source_suffix = [".rst", ".md"] default_role = "code" extensions = ["myst_parser"] myst_enable_extensions = [ "smartquotes", ] myst_heading_anchors = 4 html_sidebars = { "**": [ "localtoc.html", ], }
cscs-checks/libraries/magma/magma_checks.py
CLIP-HPC/reframe
167
12790785
<gh_stars>100-1000 # Copyright 2016-2021 Swiss National Supercomputing Centre (CSCS/ETH Zurich) # ReFrame Project Developers. See the top-level LICENSE file for details. # # SPDX-License-Identifier: BSD-3-Clause import reframe as rfm import reframe.utility.sanity as sn @rfm.simple_test class MagmaCheck(rfm.RegressionTest): subtest = parameter(['cblas_z', 'zgemm', 'zsymmetrize', 'ztranspose', 'zunmbr']) valid_systems = ['daint:gpu', 'dom:gpu'] valid_prog_environs = ['builtin'] num_gpus_per_node = 1 prebuild_cmds = ['patch < patch.txt'] modules = ['magma'] maintainers = ['AJ', 'SK'] tags = {'scs', 'production', 'maintenance'} @run_before('compile') def set_build_system_opts(self): self.build_system = 'Make' self.build_system.makefile = f'Makefile_{self.subtest}' self.build_system.cxxflags = ['-std=c++11'] self.build_system.ldflags = ['-lcusparse', '-lcublas', '-lmagma', '-lmagma_sparse'] self.executable = f'./testing_{self.subtest}' # FIXME: Compile cblas_z with -O0 since with a higher level a # segmentation fault is thrown if self.subtest == 'cblas_z': self.build_system.cxxflags += ['-O0'] @run_before('run') def set_exec_opts(self): if self.subtest == 'zgemm': self.executable_opts = ['--range 1088:3136:1024'] @sanity_function def assert_success(self): return sn.assert_found(r'Result = PASS', self.stdout) @run_before('performance') def set_performance_patterns(self): if self.subtest == 'cblas_z': self.perf_patterns = { 'duration': sn.extractsingle(r'Duration: (\S+)', self.stdout, 1, float) } self.reference = { 'daint:gpu': { 'duration': (0.10, None, 1.05, 's'), }, 'dom:gpu': { 'duration': (0.10, None, 1.05, 's'), }, } elif self.subtest == 'zgemm': self.perf_patterns = { 'magma': sn.extractsingle( r'MAGMA GFlops: (?P<magma_gflops>\S+)', self.stdout, 'magma_gflops', float, 2 ), 'cublas': sn.extractsingle( r'cuBLAS GFlops: (?P<cublas_gflops>\S+)', self.stdout, 'cublas_gflops', float, 2) } self.reference = { 'daint:gpu': { 'magma': (3692.65, -0.05, None, 'Gflop/s'), 'cublas': (4269.31, -0.09, None, 'Gflop/s'), }, 'dom:gpu': { 'magma': (3692.65, -0.05, None, 'Gflop/s'), 'cublas': (4269.31, -0.09, None, 'Gflop/s'), } } elif self.subtest == 'zsymmetrize': self.perf_patterns = { 'gpu_perf': sn.extractsingle(r'GPU performance: (\S+)', self.stdout, 1, float), } self.reference = { 'daint:gpu': { 'gpu_perf': (158.3, -0.05, None, 'GB/s'), }, 'dom:gpu': { 'gpu_perf': (158.3, -0.05, None, 'GB/s'), } } elif self.subtest == 'ztranspose': self.perf_patterns = { 'gpu_perf': sn.extractsingle( r'GPU performance: (?P<gpu_performance>\S+)', self.stdout, 'gpu_performance', float ) } self.reference = { 'daint:gpu': { 'gpu_perf': (498.2, -0.05, None, 'GB/s'), }, 'dom:gpu': { 'gpu_perf': (498.2, -0.05, None, 'GB/s'), } } elif self.subtest == 'zunmbr': self.perf_patterns = { 'gpu_perf': sn.extractsingle( r'GPU performance: (?P<gpu_performance>\S+)', self.stdout, 'gpu_performance', float ) } self.reference = { 'daint:gpu': { 'gpu_perf': (254.7, -0.05, None, 'Gflop/s'), }, 'dom:gpu': { 'gpu_perf': (254.7, -0.05, None, 'Gflop/s'), } }
tests/core/validation/test_transaction_validation.py
dbfreem/py-evm
1,641
12790789
<reponame>dbfreem/py-evm import pytest from eth.vm.forks.london.transactions import UnsignedDynamicFeeTransaction from eth.vm.forks.berlin.transactions import UnsignedAccessListTransaction from eth_utils import ValidationError @pytest.mark.parametrize( "unsigned_access_list_transaction,is_valid", ( # While ethereum tests do not yet have Berlin or London transaction tests, # this adds a few tests to test some obvious cases, especially positive test cases. (UnsignedAccessListTransaction( chain_id=123456789, nonce=0, gas_price=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 20, (1, 2)),), ), True), (UnsignedAccessListTransaction( chain_id=0, nonce=0, gas_price=0, gas=0, to=b'\xf0' * 20, value=0, data=b'', access_list=(), ), True), (UnsignedAccessListTransaction( chain_id=123456789, nonce=0, gas_price=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 20, ()),), ), True), (UnsignedAccessListTransaction( chain_id=123456789, nonce=0, gas_price=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 19, (1,)),), # access_list address fails validation ), False), (UnsignedAccessListTransaction( chain_id='1', # chain_id fails validation nonce=0, gas_price=0, gas=0, to=b'\xf0' * 20, value=0, data=b'', access_list=(), ), False), ) ) def test_validate_unsigned_access_list_transaction(unsigned_access_list_transaction, is_valid): if is_valid: unsigned_access_list_transaction.validate() else: with pytest.raises(ValidationError): unsigned_access_list_transaction.validate() @pytest.mark.parametrize( "unsigned_dynamic_fee_transaction,is_valid", ( # While ethereum tests do not yet have Berlin or London transaction tests, # this adds a few tests to test some obvious cases, especially positive test cases. (UnsignedDynamicFeeTransaction( chain_id=123456789, nonce=0, max_fee_per_gas=1000000000, max_priority_fee_per_gas=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 20, (1, 2)),), ), True), (UnsignedDynamicFeeTransaction( chain_id=0, nonce=0, max_fee_per_gas=0, max_priority_fee_per_gas=0, gas=0, to=b'\xf0' * 20, value=0, data=b'', access_list=(), ), True), (UnsignedDynamicFeeTransaction( chain_id=123456789, nonce=0, max_fee_per_gas=1000000000, max_priority_fee_per_gas=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 20, ()),), ), True), (UnsignedDynamicFeeTransaction( chain_id=123456789, nonce=0, max_fee_per_gas=1000000000, max_priority_fee_per_gas=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 19, (1,)),), # access_list address fails validation ), False), (UnsignedDynamicFeeTransaction( chain_id='1', # chain_id fails validation nonce=0, max_fee_per_gas=1000000000, max_priority_fee_per_gas=1000000000, gas=0, to=b'\xf0' * 20, value=0, data=b'', access_list=(), ), False), ) ) def test_validate_unsigned_dynamic_fee_transaction(unsigned_dynamic_fee_transaction, is_valid): if is_valid: unsigned_dynamic_fee_transaction.validate() else: with pytest.raises(ValidationError): unsigned_dynamic_fee_transaction.validate()
the-cloudwatch-dashboard/python/app.py
mttfarmer/serverless
1,627
12790794
<reponame>mttfarmer/serverless #!/usr/bin/env python3 from aws_cdk import core from the_cloudwatch_dashboard.the_cloudwatch_dashboard_stack import TheCloudwatchDashboardStack app = core.App() TheCloudwatchDashboardStack(app, "the-cloudwatch-dashboard") app.synth()
inst/python/python_predict.py
cynthiayang525/PatientLevelPrediction
141
12790810
<reponame>cynthiayang525/PatientLevelPrediction<gh_stars>100-1000 # apply random forest model on new data #=============================================================== # INPUT: # 1) location of new data # 2) location of model # # OUTPUT: # it returns a file with indexes merged with prediction for test index - named new_pred #================================================================ import numpy as np from collections import OrderedDict import os import sys import timeit import math #from sklearn.ensemble import RandomForestClassifier #from sklearn.naive_bayes import GaussianNB from scipy.sparse import coo_matrix,csr_matrix,vstack,hstack #from sklearn.feature_selection import SelectFromModel #from sklearn.cross_validation import PredefinedSplit from sklearn.externals.joblib import Memory #from sklearn.datasets import load_svmlight_file from sklearn.externals import joblib if "python_dir" in globals(): sys.path.insert(0, python_dir) import TorchUtils as tu #================================================================ print("Applying Python Model") ########################################################################### def get_temproal_data(covariates, population): p_ids_in_cov = set(covariates[:, 0]) timeid_len = len(set(covariates[:, -2])) full_covariates = np.array([]).reshape(0,4) default_covid = covariates[0, 1] for p_id in population[:, 0]: if p_id not in p_ids_in_cov: tmp_x = np.array([p_id, default_covid, 1, 0]).reshape(1,4) #default cov id, timeid=1 full_covariates = np.concatenate((full_covariates, tmp_x), axis=0) else: tmp_x = covariates[covariates[:, 0] == p_id, :] #print tmp_x.shape, X.shape full_covariates = np.concatenate((full_covariates, tmp_x), axis=0) X, patient_keys = tu.convert_to_temporal_format(full_covariates, timeid_len = timeid_len, predict = True) return X print("Loading Data...") # load data + train,test indexes + validation index y=population[:,1] #print covariates.shape if modeltype == 'temporal': X = plpData.to_dense().numpy() X = X[np.int64(population[:, 0]), :] #X = get_temproal_data(covariates, population) dense = 0 else: #print included X = plpData[population[:,0],:] X = X[:,included.flatten()] # load index file print("population loaded- %s rows and %s columns" %(np.shape(population)[0], np.shape(population)[1])) print("Dataset has %s rows and %s columns" %(X.shape[0], X.shape[1])) print("Data ready for model has %s features" %(np.shape(X)[1])) ########################################################################### # uf dense convert if dense==1: print("converting to dense data...") X=X.toarray() ########################################################################### # load model print("Loading model...") modelTrained = joblib.load(os.path.join(model_loc,"model.pkl")) print(X.shape) print("Calculating predictions on population...") if autoencoder: autoencoder_model = joblib.load(os.path.join(model_loc, 'autoencoder_model.pkl')) X = autoencoder_model.get_encode_features(X) if modeltype == 'temporal': test_batch = tu.batch(X, batch_size = 32) test_pred = [] for test in test_batch: pred_test1 = modelTrained.predict_proba(test)[:, 1] test_pred = np.concatenate((test_pred , pred_test1), axis = 0) else: test_pred = modelTrained.predict_proba(X)[:, 1] if test_pred.ndim != 1: test_pred = test_pred[:,1] print("Prediction complete: %s rows" %(np.shape(test_pred)[0])) print("Mean: %s prediction value" %(np.mean(test_pred))) # merge pred with population test_pred.shape = (population.shape[0], 1) prediction = np.append(population,test_pred, axis=1)
postgres-debezium-ksql-elasticsearch/python_kafka_notify.py
alonsoir/examples-2
1,150
12790834
<reponame>alonsoir/examples-2<gh_stars>1000+ # rmoff / 13 Jun 2018 from slackclient import SlackClient from confluent_kafka import Consumer, KafkaError import json import time import os,sys token = os.environ.get('SLACK_API_TOKEN') if token is None: print('\n\n*******\nYou need to set your Slack API token in the SLACK_API_TOKEN environment variable\n\nExiting.\n\n*******\n') sys.exit(1) sc = SlackClient(token) # Set 'auto.offset.reset': 'smallest' if you want to consume all messages # from the beginning of the topic settings = { 'bootstrap.servers': 'localhost:9092', 'group.id': 'python_kafka_notify.py', 'default.topic.config': {'auto.offset.reset': 'largest'} } c = Consumer(settings) c.subscribe(['UNHAPPY_PLATINUM_CUSTOMERS']) try: while True: msg = c.poll(0.1) time.sleep(5) if msg is None: continue elif not msg.error(): print('Received message: {0}'.format(msg.value())) if msg.value() is None: continue try: app_msg = json.loads(msg.value().decode()) except: app_msg = json.loads(msg.value()) try: email=app_msg['EMAIL'] message=app_msg['MESSAGE'] channel='unhappy-customers' text=('`%s` just left a bad review :disappointed:\n> %s\n\n_Please contact them immediately and see if we can fix the issue *right here, right now*_' % (email, message)) print('\nSending message "%s" to channel %s' % (text,channel)) except: print('Failed to get channel/text from message') channel='general' text=msg.value() try: sc_response = sc.api_call('chat.postMessage', channel=channel, text=text, username='KSQL Notifications', icon_emoji=':rocket:') if not sc_response['ok']: print('\t** FAILED: %s' % sc_response['error']) except Exception as e: print(type(e)) print(dir(e)) elif msg.error().code() == KafkaError._PARTITION_EOF: print('End of partition reached {0}/{1}' .format(msg.topic(), msg.partition())) else: print('Error occured: {0}'.format(msg.error().str())) except Exception as e: print(type(e)) print(dir(e)) finally: c.close()
alipay/aop/api/response/AlipayEcoDoctemplateSettingurlQueryResponse.py
antopen/alipay-sdk-python-all
213
12790842
<filename>alipay/aop/api/response/AlipayEcoDoctemplateSettingurlQueryResponse.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayEcoDoctemplateSettingurlQueryResponse(AlipayResponse): def __init__(self): super(AlipayEcoDoctemplateSettingurlQueryResponse, self).__init__() self._setting_url = None @property def setting_url(self): return self._setting_url @setting_url.setter def setting_url(self, value): self._setting_url = value def parse_response_content(self, response_content): response = super(AlipayEcoDoctemplateSettingurlQueryResponse, self).parse_response_content(response_content) if 'setting_url' in response: self.setting_url = response['setting_url']
test/manual/annotations/test_list_annotations.py
membranepotential/mendeley-python-sdk
103
12790848
<reponame>membranepotential/mendeley-python-sdk<filename>test/manual/annotations/test_list_annotations.py from test import get_user_session, cassette, sleep from test.resources.documents import create_document, delete_all_documents def test_should_list_annotations(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/annotations/list_annotations/list_annotations.yaml'): doc = create_document(session) doc.add_note("A nice annotation") page = session.annotations.list() assert len(page.items) == 1 assert page.count == 1 annotation = page.items[0] assert annotation.text == "A nice annotation" assert annotation.privacy_level == 'private' assert annotation.type == 'note' assert annotation.last_modified assert annotation.profile.id assert annotation.profile.display_name assert annotation.document().id == doc.id assert annotation.document().title == doc.title def test_should_page_through_annotations(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/annotations/list_annotations/page_through_annotations.yaml'): doc = create_document(session) file = doc.attach_file('fixtures/resources/files/basket.txt') file.add_sticky_note("annotation 1", 100, 200, 1) file.add_sticky_note("annotation 2", 100, 200, 1) file.add_sticky_note("annotation 3", 100, 200, 1) first_page = session.annotations.list(page_size=2) assert len(first_page.items) == 2 assert first_page.count == 3 assert first_page.items[0].text == 'annotation 2' assert first_page.items[1].text == 'annotation 1' second_page = first_page.next_page assert len(second_page.items) == 1 assert second_page.count == 3 assert second_page.items[0].text == 'annotation 3' def test_should_list_annotations_modified_since(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/annotations/list_annotations/modified_since.yaml'): doc = create_document(session, 'title 1') file = doc.attach_file('fixtures/resources/files/basket.txt') annotation = file.add_sticky_note("annotation 1", 100, 200, 1) sleep(2) file.add_sticky_note("annotation 2", 100, 200, 1) file.add_sticky_note("annotation 3", 100, 200, 1) page = session.annotations.list(modified_since=annotation.created.replace(seconds=+1)) assert len(page.items) == 2 assert page.count == 2 assert page.items[0].text == 'annotation 2' assert page.items[1].text == 'annotation 3' def test_should_list_annotations_deleted_since(): session = get_user_session() delete_all_documents() with cassette('fixtures/resources/annotations/list_annotations/deleted_since.yaml'): doc = create_document(session, 'title 1') file = doc.attach_file('fixtures/resources/files/basket.txt') annotation1 = file.add_sticky_note("annotation 1", 100, 200, 1) annotation2 = file.add_sticky_note("annotation 2", 100, 200, 1) annotation3 = file.add_sticky_note("annotation 3", 100, 200, 1) annotation1.delete() sleep(2) annotation2.delete() annotation3.delete() page = session.annotations.list(deleted_since=annotation3.created.replace(seconds=+1)) assert len(page.items) == 2 assert page.count == 2
applications/tensorflow2/image_classification/custom_exceptions.py
payoto/graphcore_examples
260
12790850
# Copyright (c) 2021 Graphcore Ltd. All rights reserved. class UnsupportedFormat(TypeError): pass class DimensionError(ValueError): pass class MissingArgumentException(ValueError): pass class InvalidPrecisionException(NameError): pass class UnallowedConfigurationError(ValueError): pass
examples/s3-2017/rtu2a.py
pgaulon/minicps
119
12790899
<reponame>pgaulon/minicps """ rtu2a.py """ from minicps.devices import RTU from utils import STATE, RTU2A_PROTOCOL from utils import RTU_PERIOD_SEC from utils import IP # rtu2a tags from utils import CO_0_2a, CO_1_2a, CO_2_2a, CO_3_2a from utils import HR_0_2a, HR_1_2a, HR_2_2a from utils import wadi1, wadi1_bin import time RTU2A_ADDR = IP['rtu2a'] + ':502' RTU2B_ADDR = IP['rtu2b'] + ':502' SCADA_ADDR = IP['scada'] + ':502' class RTU2a(RTU): def pre_loop(self, sleep=0.6): """rtu2a pre loop. - sleep """ time.sleep(sleep) def main_loop(self): """rtu2a main loop. - challenge 1 """ # print('DEBUG: wadi1: {}'.format(wadi1)) # print('DEBUG: wadi1_bin: {}'.format(wadi1_bin)) assert (len(wadi1_bin) / 8) == len(wadi1) # print('DEBUG: len(wadi1): {}'.format(len(wadi1))) # print('DEBUG: len(wadi1_bin): {}'.format(len(wadi1_bin))) # print('DEBUG: len(wadi1_bin)/8: {}'.format(len(wadi1_bin) / 8)) count = 0 while(True): if count >= len(wadi1_bin): count = 0 if wadi1_bin[count] == '1': #self.send(CO_0_2a, True, RTU2A_ADDR) self.send(CO_0_2a, True, SCADA_ADDR) # print("DEBUG: rtu2a send {} count {}".format(True, count)) else: #self.send(CO_0_2a, False, RTU2A_ADDR) self.send(CO_0_2a, False, SCADA_ADDR) # print("DEBUG: rtu2a send {} count {}".format(False, count)) count += 1 # NOTE: read sensors # co_0_2a = True if self.get(CO_0_2a) == '1' else False # print("DEBUG: rtu2a co_0_2a: {}".format(co_0_2a)) # print("DEBUG: self.receive co_0_2a: \ # {}".format(self.receive(CO_0_2a, RTU2A_ADDR))) # print("DEBUG: rtu2a main loop") time.sleep(RTU_PERIOD_SEC) if __name__ == "__main__": rtu2a = RTU2a( name='rtu2a', state=STATE, protocol=RTU2A_PROTOCOL)
backend/www/photo_store.py
sleepingAnt/viewfinder
645
12790902
# Copyright 2012 Viewfinder Inc. All Rights Reserved. """HTTP request handler for serving viewfinder photo image file assets. In case of a local file store, permissions for the current user and the requested photo are verified and the requester is redirected to the FileObjectStoreHandler. For an s3 file store, permissions for the current user and the requested photo are verified and the requester is redirected to a pre-authorized, expiring S3 URL. PhotoStoreHandler: Request handler for authorizing photo requests """ __authors__ = ['<EMAIL> (<NAME>)', '<EMAIL> (<NAME>)'] import base64 import httplib import logging from tornado import gen, options, web from viewfinder.backend.base import handler from viewfinder.backend.db.episode import Episode from viewfinder.backend.db.photo import Photo from viewfinder.backend.db.post import Post from viewfinder.backend.db.user_post import UserPost from viewfinder.backend.db.viewpoint import Viewpoint from viewfinder.backend.www import base options.define('validate_cert', default=True, help='set to False to allow insecure file obj store for testing') def GeneratePhotoUrl(obj_store, photo_id, suffix): """Generate S3 signed URL for the given photo. The S3 response will contain a Cache-Control header specifying private caching and a 1 year max age. """ return obj_store.GenerateUrl(photo_id + suffix, cache_control='private,max-age=31536000') class PhotoStoreHandler(base.BaseHandler): """Handles PUT requests by storing image assets in the object store. GET request retrieve image assets. Each method type verifies user authentication credentials. """ @handler.asynchronous(datastore=True, obj_store=True) @gen.engine def get(self, episode_id, photo_id, suffix): """Verifies user credentials and then redirects to the URL where the actual image bits are stored. """ url = yield PhotoStoreHandler.GetPhotoUrl(self._client, self._obj_store, episode_id, photo_id, suffix) self.redirect(url) @handler.asynchronous(datastore=True, obj_store=True) @gen.engine def put(self, episode_id, photo_id, suffix): """Verifies user credentials. If the user has write access to the photo, and if an 'If-None-Match' is present, sends a HEAD request to the object store to determine asset Etag. If the Etag matches, returns a 304. Otherwise, generates an upload URL and redirects. """ def _GetUploadUrl(photo, verified_md5): content_type = photo.content_type or 'image/jpeg' return self._obj_store.GenerateUploadUrl(photo_id + suffix, content_type=content_type, content_md5=verified_md5) # Always expect well-formed Content-MD5 header. This ensures that the image data always matches # what is in the metadata, and also enables the detection of any bit corruption on the wire. if 'Content-MD5' not in self.request.headers: raise web.HTTPError(400, 'Missing Content-MD5 header.') try: request_md5 = self.request.headers['Content-MD5'] actual_md5 = base64.b64decode(request_md5).encode('hex') except: raise web.HTTPError(400, 'Content-MD5 header "%s" is not a valid base-64 value.' % request_md5) # Match against the MD5 value stored in the photo metadata. if suffix not in ['.t', '.m', '.f', '.o']: raise web.HTTPError(404, 'Photo not found; "%s" suffix is invalid.' % suffix) # Ensure that user has permission to PUT the photo. yield PhotoStoreHandler._AuthorizeUser(self._client, episode_id, photo_id, write_access=True) # Get photo metadata, which will be used to create the upload URL. photo = yield gen.Task(Photo.Query, self._client, photo_id, None) # Get name of MD5 attribute in the photo metadata. if suffix == '.o': attr_name = 'orig_md5' elif suffix == '.f': attr_name = 'full_md5' elif suffix == '.m': attr_name = 'med_md5' elif suffix == '.t': attr_name = 'tn_md5' else: raise web.HTTPError(404, 'Photo not found; "%s" suffix is invalid.' % suffix) # Check for the existence of the photo's image data in S3. etag = yield gen.Task(Photo.IsImageUploaded, self._obj_store, photo.photo_id, suffix) expected_md5 = getattr(photo, attr_name) if expected_md5 != actual_md5: if etag is None: # Since there is not yet any photo image data, update the photo metadata to be equal to the # actual MD5 value. setattr(photo, attr_name, actual_md5) yield gen.Task(photo.Update, self._client) # Redirect to the S3 location. self.redirect(_GetUploadUrl(photo, request_md5)) else: # The client often sends mismatched MD5 values due to non-deterministic JPG creation IOS code. # Only log the mismatch if it's an original photo to avoid spamming logs. if suffix == '.o': logging.error('Content-MD5 header "%s" does not match expected MD5 "%s"' % (actual_md5, expected_md5)) self.set_status(400) self.finish() else: # Check for If-None-Match header, which is used by client to check whether photo image data # already exists (and therefore no PUT of the image data is needed). match_etag = self.request.headers.get('If-None-Match', None) if match_etag is not None and etag is not None and (match_etag == '*' or match_etag == etag): # Photo image data exists and is not modified, so no need for client to PUT it again. self.set_status(httplib.NOT_MODIFIED) self.finish() else: # Redirect to the S3 upload location. self.redirect(_GetUploadUrl(photo, request_md5)) @classmethod @gen.coroutine def GetPhotoUrl(cls, client, obj_store, episode_id, photo_id, suffix): """Checks that the current user (in Viewfinder context) is authorized to get the specified photo, and returns a signed S3 URL for the photo if so. """ yield gen.Task(PhotoStoreHandler._AuthorizeUser, client, episode_id, photo_id, write_access=False) raise gen.Return(GeneratePhotoUrl(obj_store, photo_id, suffix)) @classmethod @gen.coroutine def _AuthorizeUser(cls, client, episode_id, photo_id, write_access): """Checks that the current user (in Viewfinder context) user is authorized to access the given photo: 1. The photo must exist, and be in the given episode 2. The photo must not be unshared 3. If uploading the photo, the user must be the episode owner 4. A prospective user has access only to photos in the viewpoint specified in the cookie """ context = base.ViewfinderContext.current() if context is None or context.user is None: raise web.HTTPError(401, 'You are not logged in. Only users that have logged in can access this URL.') user_id = context.user.user_id post_id = Post.ConstructPostId(episode_id, photo_id) episode, post = yield [gen.Task(Episode.QueryIfVisible, client, user_id, episode_id, must_exist=False), gen.Task(Post.Query, client, episode_id, photo_id, None, must_exist=False)] if episode is None or post is None: raise web.HTTPError(404, 'Photo was not found or you do not have permission to view it.') if write_access and episode.user_id != user_id: raise web.HTTPError(403, 'You do not have permission to upload this photo; it is not owned by you.') if post.IsUnshared(): raise web.HTTPError(403, 'This photo can no longer be viewed; it was unshared.') # BUGBUG(Andy): The 1.5 client has a bug where it always passes in the library episode id # when trying to fetch a photo, even if the photo is part of a conversation. This results # in 403 errors when a user tries to sync to their library. For now, I'm disabling this # check. Once 2.0 has established itself, I'll re-enable the check. #if post.IsRemoved(): # raise web.HTTPError(403, 'This photo can no longer be viewed; it was removed.') if not context.CanViewViewpoint(episode.viewpoint_id): # Always allow system viewpoints to be accessed by a prospective user. viewpoint = yield gen.Task(Viewpoint.Query, client, episode.viewpoint_id, None) if not viewpoint.IsSystem(): raise web.HTTPError(403, 'You do not have permission to view this photo. ' 'To see it, you must register an account.') def _IsInteractiveRequest(self): """Always returns false, as this API is accessed programatically.""" return False
docs/examples/fig6p24.py
uluturki/Mathematics-of-Epidemics-on-Networks
136
12790938
import networkx as nx import EoN from collections import defaultdict import matplotlib.pyplot as plt import scipy import random colors = ['#5AB3E6','#FF2000','#009A80','#E69A00', '#CD9AB3', '#0073B3','#F0E442'] rho = 0.01 Nbig=500000 Nsmall = 5000 tau =0.4 gamma = 1. def poisson(): return scipy.random.poisson(5) def PsiPoisson(x): return scipy.exp(-5*(1-x)) def DPsiPoisson(x): return 5*scipy.exp(-5*(1-x)) bimodalPk = {8:0.5, 2:0.5} def PsiBimodal(x): return (x**8 +x**2)/2. def DPsiBimodal(x): return(8*x**7 + 2*x)/2. def homogeneous(): return 5 def PsiHomogeneous(x): return x**5 def DPsiHomogeneous(x): return 5*x**4 PlPk = {} exponent = 1.418184432 kave = 0 for k in range(1,81): PlPk[k]=k**(-exponent)*scipy.exp(-k*1./40) kave += k*PlPk[k] normfact= sum(PlPk.values()) for k in PlPk: PlPk[k] /= normfact #def trunc_pow_law(): # r = random.random() # for k in PlPk: # r -= PlPk[k] # if r<0: # return k def PsiPowLaw(x): #print PlPk rval = 0 for k in PlPk: rval += PlPk[k]*x**k return rval def DPsiPowLaw(x): rval = 0 for k in PlPk: rval += k*PlPk[k]*x**(k-1) return rval def get_G(N, Pk): while True: ks = [] for ctr in range(N): r = random.random() for k in Pk: if r<Pk[k]: break else: r-= Pk[k] ks.append(k) if sum(ks)%2==0: break G = nx.configuration_model(ks) return G report_times = scipy.linspace(0,20,41) def process_degree_distribution(Gbig, Gsmall, color, Psi, DPsi, symbol): t, S, I, R = EoN.fast_SIR(Gsmall, tau, gamma, rho=rho) plt.plot(t, I*1./Gsmall.order(), ':', color = color) t, S, I, R = EoN.fast_SIR(Gbig, tau, gamma, rho=rho) plt.plot(t, I*1./Gbig.order(), color = color) N= Gbig.order()#N is arbitrary, but included because our implementation of EBCM assumes N is given. t, S, I, R = EoN.EBCM(N, lambda x: (1-rho)*Psi(x), lambda x: (1-rho)*DPsi(x), tau, gamma, 1-rho) I = EoN.subsample(report_times, t, I) plt.plot(report_times, I/N, symbol, color = color, markeredgecolor='k') #<NAME> Gsmall = nx.fast_gnp_random_graph(Nsmall, 5./(Nsmall-1)) Gbig = nx.fast_gnp_random_graph(Nbig, 5./(Nbig-1)) process_degree_distribution(Gbig, Gsmall, colors[0], PsiPoisson, DPsiPoisson, '^') #Bimodal Gsmall = get_G(Nsmall, bimodalPk) Gbig = get_G(Nbig, bimodalPk) process_degree_distribution(Gbig, Gsmall, colors[1], PsiBimodal, DPsiBimodal, 'o') #Homogeneous Gsmall = get_G(Nsmall, {5:1.}) Gbig = get_G(Nbig, {5:1.}) process_degree_distribution(Gbig, Gsmall, colors[2], PsiHomogeneous, DPsiHomogeneous, 's') #Powerlaw Gsmall = get_G(Nsmall, PlPk) Gbig = get_G(Nbig, PlPk) process_degree_distribution(Gbig, Gsmall, colors[3], PsiPowLaw, DPsiPowLaw, 'd') plt.axis(xmin=0, ymin=0, xmax = 20, ymax = 0.2) plt.xlabel('$t$') plt.ylabel('Proportion Infected') plt.savefig('fig6p24.png')
crank/net/module/mlfb.py
abeersaqib/crank
162
12790955
<reponame>abeersaqib/crank<filename>crank/net/module/mlfb.py #! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright (c) 2021 <NAME> <<EMAIL>> # # Distributed under terms of the MIT license. """ """ import librosa import scipy.signal import torch import torch.nn as nn class MLFBLayer(torch.nn.Module): def __init__( self, fs=22050, fft_size=1024, n_mels=80, fmin=None, fmax=None, eps=1.0e-10 ): super().__init__() fmin = 0 if fmin is None else fmin fmax = fs / 2 if fmax is None else fmax mel_basis = librosa.filters.mel( sr=fs, n_fft=fft_size, n_mels=n_mels, fmin=fmin, fmax=fmax, ) self.eps = eps self.register_buffer("mel_basis", torch.from_numpy(mel_basis.T).float()) def forward( self, x, ): mlfb = torch.matmul(x, self.mel_basis) mlfb = torch.clamp(mlfb, min=self.eps).log10() return mlfb class STFTLayer(torch.nn.Module): def __init__( self, fs=22050, hop_size=256, fft_size=1024, win_length=None, window="hann", center=True, pad_mode="reflect", return_complex=False, ): super().__init__() self.hop_size = hop_size self.fft_size = fft_size self.win_length = fft_size if win_length is None else win_length self.center = center self.pad_mode = pad_mode self.return_complex = return_complex """ prepare window parameter type of window - "hann": hanning window - "param": parameter-based window - "conv": convolution-based window """ self.window_type = window if window == "param": win = scipy.signal.get_window("hann", self.win_length).astype(float) self.register_parameter( "window", nn.Parameter(torch.from_numpy(win), requires_grad=True) ) elif window == "conv": kernel_size = 65 self.window_conv = nn.Sequential( nn.Conv1d( in_channels=1, out_channels=24, kernel_size=kernel_size, stride=1, padding=(kernel_size - 1) // 2, ), nn.Sigmoid(), ) else: self.window = window def forward(self, x): if self.window_type == "param": window = self.window elif self.window_type == "conv": x = x.unsqueeze(-1).transpose(1, 2) x = torch.mean(self.window_conv(x).transpose(1, 2), -1) window = None else: f = getattr(torch, f"{self.window}_window") window = f(self.win_length, dtype=x.dtype, device=x.device) stft = torch.stft( x, n_fft=self.fft_size, win_length=self.win_length, hop_length=self.hop_size, window=window, center=self.center, pad_mode=self.pad_mode, return_complex=self.return_complex, ) return stft.transpose(1, 2).float() class MLFBScalerLayer(nn.Module): def __init__(self, scaler): super().__init__() self.register_parameter( "mean", nn.Parameter(torch.from_numpy(scaler.mean_).float(), requires_grad=False), ) self.register_parameter( "std", nn.Parameter( torch.from_numpy(scaler.var_).float().sqrt(), requires_grad=False ), ) def forward(self, x): return (x - self.mean) / self.std class LogMelFilterBankLayer(nn.Module): def __init__( self, fs=22050, hop_size=256, fft_size=1024, win_length=None, window="hann", center=True, pad_mode="reflect", n_mels=80, fmin=None, fmax=None, scaler=None, ): super().__init__() self.stft_layer = STFTLayer( fs, hop_size, fft_size, win_length, window, center=center, pad_mode=pad_mode, ) self.mlfb_layer = MLFBLayer(fs, fft_size, n_mels, fmin, fmax) if scaler is not None: self.scaler_layer = MLFBScalerLayer(scaler) else: self.scaler_layer = None def forward(self, x): stft = self.stft_layer(x) amplitude = torch.sqrt(stft[..., 0] ** 2 + stft[..., 1] ** 2) mlfb = self.mlfb_layer(amplitude) if self.scaler_layer is not None: mlfb = self.scaler_layer(mlfb) return mlfb
library/keystone_service_provider.py
pgraziano/ursula
193
12790992
<reponame>pgraziano/ursula<gh_stars>100-1000 #!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2016, IBM # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # try: import shade HAS_SHADE = True except ImportError: HAS_SHADE = False DOCUMENTATION = ''' --- author: <NAME> module: keystone_service_provider short_description: register sp on keystone idp description: - This module registers a keystone service provider on the keystone identity provider. options: service_provider_id: description: - A globally unique id to identify the service provider example -sp.id required: true service_provider_url: description: - URL that is found in the service provider's metadata (Which is usually found in https://keystone.sp/Shibboleth.sso/metadata) example -https://keystone.sp/Shibboleth.sso/SAML2/ECP required: true service_provider_auth_url: description: - URL that is used to authenticate with the identity provider This URL should be available once the idp registered on the sp example -'http://keystone.sp/v3/OS-FEDERATION/' 'identity_providers/keystone-idp/protocols/saml2/auth' required: true enabled: description: - A value of True enables the service provider and False disables it. default: True description: description: The description of the service provider. state: description: - Indicate desired state of the resource choices: ['present', 'absent'] default: present ''' def _needs_update(module, service_provider): """Check for differences in the updatable values. Note: Names cannot be updated. """ params_dict = dict(sp_url='service_provider_url', auth_url='service_provider_auth_url', enabled='enabled', description='description') for sp_attr, module_attr in params_dict.items(): module_val = module.params.get(module_attr, None) if module_val != getattr(service_provider, sp_attr, None): return True return False def _system_state_change(module, service_provider): state = module.params['state'] if state == 'present': if not service_provider: return True return _needs_update(module, service_provider) if state == 'absent' and service_provider: return True return False def _get_cloud(**kwargs): cloud_shade = shade.openstack_cloud(**kwargs) cloud_shade.cloud_config.config['identity_api_version'] = '3' cloud = ShadePlaceholder(cloud_shade.keystone_client) return cloud class ShadePlaceholder(object): def __init__(self, keystone_client): self.client = keystone_client def get_service_provider(self, sp_id): for sp in self.client.federation.service_providers.list(): if getattr(sp, 'id') == sp_id: return sp return None def create_service_provider( self, sp_id, sp_url, sp_auth_url, enabled, description): service_provider = self.client.federation.service_providers.create( id=sp_id, sp_url=sp_url, auth_url=sp_auth_url, enabled=enabled, description=description) return service_provider def update_service_provider( self, sp_id, sp_url, sp_auth_url, enabled, description): service_provider = self.client.federation.service_providers.update( service_provider=sp_id, sp_url=sp_url, auth_url=sp_auth_url, enabled=enabled, description=description) return service_provider def delete_service_provider(self, sp_id): self.client.federation.service_providers.delete(service_provider=sp_id) def main(): argument_spec = openstack_full_argument_spec( service_provider_id=dict(required=True), service_provider_url=dict(required=True), service_provider_auth_url=dict(required=True), enabled=dict(required=False, type='bool', default=True), description=dict(required=False, default=None), state=dict(default='present', choices=['absent', 'present']), ) module_kwargs = openstack_module_kwargs() module = AnsibleModule(argument_spec, supports_check_mode=True, **module_kwargs) if not HAS_SHADE: module.fail_json(msg='shade is required for this module') sp_id = module.params['service_provider_id'] sp_url = module.params['service_provider_url'] sp_auth_url = module.params['service_provider_auth_url'] enabled = module.params['enabled'] description = module.params['description'] state = module.params['state'] try: cloud = _get_cloud(**module.params) service_provider = cloud.get_service_provider(sp_id) if module.check_mode: changed = _system_state_change(module, service_provider) module.exit_json(changed=changed) changed = False if state == 'present': if not service_provider: service_provider = cloud.create_service_provider( sp_id, sp_url, sp_auth_url, enabled, description) changed = True else: if _needs_update(module, service_provider): service_provider = cloud.update_service_provider( sp_id, sp_url, sp_auth_url, enabled, description) changed = True module.exit_json( changed=changed, service_provider=[service_provider.id, service_provider.sp_url, service_provider.auth_url, enabled, description]) if state == 'absent': if service_provider: cloud.delete_service_provider(sp_id) changed = True module.exit_json(changed=changed) except Exception as e: module.fail_json(msg="service provider failed: %s" % str(e)) # this is magic, see lib/ansible/module_common.py from ansible.module_utils.basic import * from ansible.module_utils.openstack import * if __name__ == '__main__': main()
tests/__init__.py
lpnueg4/-logzero
1,091
12790998
<filename>tests/__init__.py # -*- coding: utf-8 -*- """Unit test package for logzero."""
solver/spoof.py
juandesant/astrometry.net
460
12791022
<reponame>juandesant/astrometry.net # This file is part of the Astrometry.net suite. # Licensed under a 3-clause BSD style license - see LICENSE try: import pyfits except ImportError: try: from astropy.io import fits as pyfits except ImportError: raise ImportError("Cannot import either pyfits or astropy.io.fits") import math from math import exp from matplotlib.pylab import imread from numpy.oldnumeric.functions import zeros, ravel I=imread('3.png') I=I[:,:,:3] (h,w,planes) = I.shape XY = pyfits.open('16b.fits')[1].data X = XY.field('X') Y = XY.field('Y') psfw = 1.0 stars = zeros((h,w)).astype(float) for (x,y) in zip(X,Y): ix = int(round(x)) iy = int(round(y)) for dy in range(-5, 6): yy = iy + dy if yy < 0 or yy >= h: continue for dx in range(-5, 6): xx = ix + dx if xx < 0 or xx >= w: continue dd = (xx - x)**2 + (yy - y)**2 stars[yy,xx] += exp(-dd / (2 * psfw**2)) #1./(psfw**2 * 2 * math.pi #origfrac = 0.5 #maxorig = I.max() #starfrac = (1.0 - origfrac) + (1.0 - maxorig) #for p in range(planes): # I[:,:,p] = I[:,:,p] * origfrac + stars/stars.max() * starfrac for p in range(planes): I[:,:,p] = I[:,:,p] * 0.7 + stars/stars.max() * 0.8 f=open('out.ppm', 'wb') f.write('P6 %i %i %i\n' % (w, h, 255)) #for j in range(h): # for i in range(w): # for p in range(planes): # f.write(chr(int(round(I[j,i,p] * 255.0)))) flatI = (I.ravel() * 255.0).round().astype(int) f.write("".join([chr(min(i,255)) for i in flatI])) f.close()
products/ui/llbuildui/model.py
uraimo/swift-llbuild
1,034
12791034
import struct from sqlalchemy import * from sqlalchemy.orm import relation, relationship from sqlalchemy.ext.declarative import declarative_base # DB Declaration Base = declarative_base() class KeyName(Base): __tablename__ = "key_names" id = Column(Integer, nullable=False, primary_key=True) name = Column('key', String, nullable=False) def __repr__(self): return "%s%r" % ( self.__class__.__name__, (self.id, self.name)) class RuleResult(Base): __tablename__ = "rule_results" id = Column(Integer, nullable=False, primary_key=True) key_id = Column(Integer, ForeignKey(KeyName.id), nullable=False) value_bytes = Column("value", Binary, nullable=False) built_at = Column(Integer, nullable=False) computed_at = Column(Integer, nullable=False) key = relation(KeyName) dependencies_bytes = Column("dependencies", Binary, nullable=True) def __repr__(self): return "%s%r" % ( self.__class__.__name__, (self.id, self.key, self.value, self.built_at, self.computed_at)) @property def value(self): return BuildValue(self.value_bytes) @property def dependencies(self): if self.dependencies_bytes is None: return [] else : num_dependencies = len(self.dependencies_bytes) / 8 return struct.unpack("<" + str(num_dependencies) + "Q", self.dependencies_bytes) ### class BuildValue(object): # FIXME: This is a manually Python translation of the C++ # llbuild::buildsystem::BuildValue type, which is unfortunate, but it isn't # available via an API we can access directly yet. kinds = [ "Invalid", "VirtualInput", "ExistingInput", "MissingInput", "DirectoryContents", "DirectoryTreeSignature", "StaleFileRemoval", "MissingOutput", "FailedInput", "SuccessfulCommand", "FailedCommand", "PropagatedFailureCommand", "CancelledCommand", "SkippedCommand", "Target", ] def __init__(self, data): bytes = str(data) # The first byte is the kind. if bytes: self.kind = self.__class__.kinds[struct.unpack("<B", bytes[0])[0]] bytes = bytes[1:] else: self.kind = "Invalid" # The next item is the signature, if used. if self.hasCommandSignature: self.signature = struct.unpack("<Q", bytes[:8])[0] bytes = bytes[8:] else: self.signature = None # The outputs follow, if used. if self.hasOutputInfo: numOutputs = struct.unpack("<I", bytes[:4])[0] bytes = bytes[4:] self.outputs = [] for i in range(numOutputs): # Read the file information. self.outputs.append(FileInfo(bytes[:48])) bytes = bytes[48:] else: self.outputs = None # The strings follow, if used. if self.hasStringList: stringsLength = struct.unpack("<Q", bytes[:8])[0] bytes = bytes[8:] if stringsLength == 0: self.strings = [] else: stringData = bytes[:stringsLength] bytes = bytes[stringsLength:] assert len(stringData) == stringsLength assert stringData[-1] == '\0' self.strings = stringData[:-1].split("\0") else: self.strings = None assert len(bytes) == 0 @property def hasCommandSignature(self): return self.kind in ("SuccessfulCommand", "DirectoryTreeSignature") @property def hasStringList(self): return self.kind in ("DirectoryContents", "StaleFileRemoval") @property def hasOutputInfo(self): return self.kind in ("ExistingInput", "SuccessfulCommand", "DirectoryContents") def __repr__(self): output = "BuildValue(kind=%r" % self.kind if self.signature is not None: output += ", signature=%0x" % self.signature if self.outputs is not None: output += ", outputs=%r" % self.outputs if self.strings is not None: output += ", strings=%r" % self.strings output += ")" return output class FileInfo(object): def __init__(self, bytes): (self.device, self.inode, self.mode, self.size, modTimeSec, modTimeNano) = struct.unpack("<QQQQQQ", bytes) self.modTime = (modTimeSec, modTimeNano) def __repr__(self): return "FileInfo(device=%r, inode=%#0x, mode=%r, size=%r, mtime=(%r, %r))" % ( self.device, self.inode, self.mode, self.size, self.modTime[0], self.modTime[1])
ldap2pg/defaults.py
ng-pe/ldap2pg
151
12791043
from itertools import chain from textwrap import dedent from .utils import string_types shared_queries = dict( datacl=dedent("""\ WITH grants AS ( SELECT (aclexplode(datacl)).grantee AS grantee, (aclexplode(datacl)).privilege_type AS priv FROM pg_catalog.pg_database WHERE datname = current_database() UNION SELECT q.* FROM (VALUES (0, 'CONNECT'), (0, 'TEMPORARY')) AS q CROSS JOIN pg_catalog.pg_database WHERE datacl IS NULL AND datname = current_database() ) SELECT grants.priv AS key, NULL as namespace, COALESCE(rolname, 'public') FROM grants LEFT OUTER JOIN pg_catalog.pg_roles AS rol ON grants.grantee = rol.oid WHERE grantee = 0 OR rolname IS NOT NULL """), defacl=dedent("""\ WITH grants AS ( SELECT defaclnamespace, defaclrole, (aclexplode(defaclacl)).grantee AS grantee, (aclexplode(defaclacl)).privilege_type AS priv, defaclobjtype AS objtype FROM pg_catalog.pg_default_acl ) SELECT priv || '_on_' || objtype AS key, nspname, COALESCE(rolname, 'public') AS rolname, TRUE AS full, pg_catalog.pg_get_userbyid(defaclrole) AS owner FROM grants JOIN pg_catalog.pg_namespace nsp ON nsp.oid = defaclnamespace LEFT OUTER JOIN pg_catalog.pg_roles AS rol ON grants.grantee = rol.oid WHERE (grantee = 0 OR rolname IS NOT NULL) AND nspname NOT LIKE 'pg\\_%temp\\_%' AND nspname <> 'pg_toast' -- ORDER BY 1, 2, 3, 5 """), globaldefacl=dedent("""\ WITH grants AS ( SELECT defaclrole AS owner, (aclexplode(defaclacl)).grantee, (aclexplode(defaclacl)).privilege_type AS priv FROM pg_default_acl AS def WHERE defaclnamespace = 0 UNION SELECT rol.oid AS owner, 0 AS grantee, 'EXECUTE' AS priv FROM pg_roles AS rol LEFT OUTER JOIN pg_catalog.pg_default_acl AS defacl ON defacl.defaclrole = rol.oid AND defacl.defaclnamespace = 0 WHERE defaclacl IS NULL ) SELECT priv AS key, NULL AS "schema", COALESCE(rolname, 'public') as rolname, TRUE AS "full", pg_catalog.pg_get_userbyid(owner) AS owner FROM grants LEFT OUTER JOIN pg_catalog.pg_roles AS rol ON grants.grantee = rol.oid WHERE rolname IS NOT NULL OR grantee = 0 """), nspacl=dedent("""\ WITH grants AS ( SELECT nspname, (aclexplode(nspacl)).grantee AS grantee, (aclexplode(nspacl)).privilege_type AS priv FROM pg_catalog.pg_namespace ) SELECT grants.priv AS key, nspname, COALESCE(rolname, 'public') AS rolname FROM grants LEFT OUTER JOIN pg_catalog.pg_roles AS rol ON grants.grantee = rol.oid WHERE (grantee = 0 OR rolname IS NOT NULL) AND nspname NOT LIKE 'pg\\_%temp\\_%' AND nspname <> 'pg_toast' ORDER BY 1, 2 """) ) _datacl_tpl = dict( type='datacl', inspect=dict(shared_query='datacl', keys=['%(privilege)s']), grant="GRANT %(privilege)s ON DATABASE {database} TO {role};", revoke="REVOKE %(privilege)s ON DATABASE {database} FROM {role};", ) _global_defacl_tpl = dict( type='globaldefacl', inspect=dict(shared_query='globaldefacl', keys=['%(privilege)s']), grant=( "ALTER DEFAULT PRIVILEGES FOR ROLE {owner}" " GRANT %(privilege)s ON %(TYPE)s TO {role};"), revoke=( "ALTER DEFAULT PRIVILEGES FOR ROLE {owner}" " REVOKE %(privilege)s ON %(TYPE)s FROM {role};"), ) _defacl_tpl = dict( type="defacl", inspect=dict(shared_query='defacl', keys=['%(privilege)s_on_%(t)s']), grant=dedent("""\ ALTER DEFAULT PRIVILEGES FOR ROLE {owner} IN SCHEMA {schema} GRANT %(privilege)s ON %(TYPE)s TO {role}; """), revoke=dedent("""\ ALTER DEFAULT PRIVILEGES FOR ROLE {owner} IN SCHEMA {schema} REVOKE %(privilege)s ON %(TYPE)s FROM {role}; """), ) _nspacl_tpl = dict( type="nspacl", inspect=dict(shared_query='nspacl', keys=['%(privilege)s']), grant="GRANT %(privilege)s ON SCHEMA {schema} TO {role};", revoke="REVOKE %(privilege)s ON SCHEMA {schema} FROM {role};", ) # ALL TABLES is tricky because we have to manage partial grant. But the # trickiest comes when there is no tables in a namespace. In this case, is it # granted or revoked ? We have to tell ldap2pg that this grant is irrelevant on # this schema. # # Here is a truth table: # # FOR GRANT | no grant | partial grant | fully granted # -----------+----------+---------------+--------------- # no tables | NOOP | N/D | N/D # -----------+----------+---------------+--------------- # 1+ tables | GRANT | GRANT | NOOP # -----------+----------+---------------+--------------- # # FOR REVOKE | no grant | partial grant | fully granted # -----------+----------+---------------+--------------- # no tables | NOOP | N/D | N/D # -----------+----------+---------------+--------------- # 1+ tables | NOOP | REVOKE | REVOKE # -----------+----------+---------------+--------------- # # When namespace has NO tables, we always return a row with full as NULL, # meaning privilege is irrelevant : it is both granted and revoked. # # When namespace has tables, we compare grants to availables tables to # determine if privilege is fully granted. If the privilege is not granted at # all, we drop the row in WHERE clause to ensure the privilege is considered as # revoked. # _allrelacl_tpl = dict( type='nspacl', inspect=dedent("""\ WITH namespace_rels AS ( SELECT nsp.oid, nsp.nspname, array_remove(array_agg(rel.relname ORDER BY rel.relname), NULL) AS rels FROM pg_catalog.pg_namespace nsp LEFT OUTER JOIN pg_catalog.pg_class AS rel ON rel.relnamespace = nsp.oid AND relkind IN %(t_array)s WHERE nspname NOT LIKE 'pg\\_%%temp\\_%%' AND nspname <> 'pg_toast' GROUP BY 1, 2 ), all_grants AS ( SELECT relnamespace, (aclexplode(relacl)).privilege_type, (aclexplode(relacl)).grantee, array_agg(relname ORDER BY relname) AS rels FROM pg_catalog.pg_class WHERE relkind IN %(t_array)s GROUP BY 1, 2, 3 ), all_roles AS ( SELECT 0 AS oid, 'public' AS rolname UNION SELECT oid, rolname from pg_roles ) SELECT nspname, rolname, CASE WHEN nsp.rels = ARRAY[]::name[] THEN NULL ELSE nsp.rels = COALESCE(grants.rels, ARRAY[]::name[]) END AS "full" FROM namespace_rels AS nsp CROSS JOIN all_roles AS rol LEFT OUTER JOIN all_grants AS grants ON relnamespace = nsp.oid AND grantee = rol.oid AND privilege_type = '%(privilege)s' WHERE NOT (array_length(nsp.rels, 1) IS NOT NULL AND grants.rels IS NULL) -- ORDER BY 1, 2 """), grant="GRANT %(privilege)s ON ALL %(TYPE)s IN SCHEMA {schema} TO {role}", revoke=( "REVOKE %(privilege)s ON ALL %(TYPE)s IN SCHEMA {schema} FROM {role}"), ) _allprocacl_tpl = dict( type='nspacl', inspect=dedent("""\ WITH grants AS (SELECT pronamespace, grantee, priv, array_agg(DISTINCT proname ORDER BY proname) AS procs FROM ( SELECT pronamespace, proname, (aclexplode(proacl)).grantee, (aclexplode(proacl)).privilege_type AS priv FROM pg_catalog.pg_proc UNION SELECT pronamespace, proname, 0 AS grantee, 'EXECUTE' AS priv FROM pg_catalog.pg_proc WHERE proacl IS NULL ) AS grants GROUP BY 1, 2, 3 ), namespaces AS ( SELECT nsp.oid, nsp.nspname, array_remove(array_agg(DISTINCT pro.proname ORDER BY pro.proname), NULL) AS procs FROM pg_catalog.pg_namespace nsp LEFT OUTER JOIN pg_catalog.pg_proc AS pro ON pro.pronamespace = nsp.oid GROUP BY 1, 2 ), roles AS ( SELECT oid, rolname FROM pg_catalog.pg_roles UNION SELECT 0, 'public' ) SELECT nspname, rolname, CASE WHEN nsp.procs = ARRAY[]::name[] THEN NULL ELSE nsp.procs = COALESCE(grants.procs, ARRAY[]::name[]) END AS "full" FROM namespaces AS nsp CROSS JOIN roles LEFT OUTER JOIN grants ON pronamespace = nsp.oid AND grants.grantee = roles.oid WHERE NOT (array_length(nsp.procs, 1) IS NOT NULL AND grants.procs IS NULL) AND (priv IS NULL OR priv = '%(privilege)s') AND nspname NOT LIKE 'pg\\_%%temp\\_%%' -- ORDER BY 1, 2 """), # noqa grant="GRANT %(privilege)s ON ALL %(TYPE)s IN SCHEMA {schema} TO {role}", revoke=( "REVOKE %(privilege)s ON ALL %(TYPE)s IN SCHEMA {schema} FROM {role}"), ) _types = { 'FUNCTIONS': ('f',), 'TABLES': ('r', 'v', 'f'), 'TYPES': ('T',), 'SEQUENCES': ('S',), } def format_keys(fmt, fmt_kwargs): if '%(t)' in fmt: for t in fmt_kwargs['t']: yield fmt % dict(fmt_kwargs, t=t) else: yield fmt % fmt_kwargs def make_privilege(tpl, name, TYPE, privilege): t = _types.get(TYPE) fmt_args = dict( t=t, # Loose SQL formatting t_array='(%s)' % (', '.join(['%r' % i for i in t or []])), TYPE=TYPE, privilege=privilege.upper(), ) privilege = dict() for k, v in tpl.items(): if isinstance(v, string_types): v = v % fmt_args else: if v['shared_query'] not in shared_queries: raise Exception("Unknown query %s." % v['shared_query']) v = v.copy() v['keys'] = list(chain(*[ format_keys(key, fmt_args) for key in v['keys'] ])) privilege[k] = v return name, privilege def make_proc_privileges( privilege, TYPE='FUNCTIONS', namefmt='__%(privilege)s_on_%(type)s__'): fmtkw = dict(privilege=privilege.lower(), type=TYPE.lower()) all_ = '__%(privilege)s_on_all_%(type)s__' % fmtkw default = '__default_%(privilege)s_on_%(type)s__' % fmtkw global_def = '__global_default_%(privilege)s_on_%(type)s__' % fmtkw name = namefmt % fmtkw return dict([ make_privilege(_allprocacl_tpl, all_, TYPE, privilege), make_privilege(_defacl_tpl, default, TYPE, privilege), make_privilege(_global_defacl_tpl, global_def, TYPE, privilege), (name, [all_, default, global_def]), ]) def make_rel_privileges( privilege, TYPE, namefmt='__%(privilege)s_on_%(type)s__'): fmtkw = dict(privilege=privilege.lower(), type=TYPE.lower()) all_ = '__%(privilege)s_on_all_%(type)s__' % fmtkw default = '__default_%(privilege)s_on_%(type)s__' % fmtkw name = namefmt % fmtkw return dict([ make_privilege(_allrelacl_tpl, all_, TYPE, privilege), make_privilege(_defacl_tpl, default, TYPE, privilege), (name, [all_, default]), ]) def make_well_known_privileges(): privileges = dict([ make_privilege(_datacl_tpl, '__connect__', None, 'CONNECT'), make_privilege(_datacl_tpl, '__temporary__', None, 'TEMPORARY'), make_privilege(_nspacl_tpl, '__create_on_schemas__', None, 'CREATE'), make_privilege(_nspacl_tpl, '__usage_on_schemas__', None, 'USAGE'), make_privilege( _defacl_tpl, '__default_usage_on_types__', 'TYPES', 'USAGE'), ]) # This is a compatibility alias. privileges['__usage_on_types__'] = ['__default_usage_on_types__'] privileges.update(make_proc_privileges('EXECUTE', 'FUNCTIONS')) privileges['__execute__'] = ['__execute_on_functions__'] for privilege in 'DELETE', 'INSERT', 'REFERENCES', 'TRIGGER', 'TRUNCATE': privileges.update( make_rel_privileges(privilege, 'TABLES')) alias = '__%s__' % (privilege.lower(),) privileges[alias] = ['__%s_on_tables__' % (privilege.lower(),)] for privilege in 'SELECT', 'UPDATE': privileges.update(make_rel_privileges(privilege, 'TABLES')) privileges.update(make_rel_privileges(privilege, 'SEQUENCES')) privileges.update(make_rel_privileges('USAGE', 'SEQUENCES')) privileges['__all_on_schemas__'] = [ '__create_on_schemas__', '__usage_on_schemas__', ] privileges['__all_on_sequences__'] = [ '__select_on_sequences__', '__update_on_sequences__', '__usage_on_sequences__', ] privileges['__all_on_tables__'] = [ '__delete__', '__insert__', '__references__', '__select_on_tables__', '__trigger__', '__truncate__', '__update_on_tables__', ] return privileges
python/veles/tests/data/test_repack.py
pombredanne/veles
918
12791058
<reponame>pombredanne/veles<gh_stars>100-1000 # Copyright 2017 CodiLime # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from veles.data.bindata import BinData from veles.data.repack import Endian, Repacker class TestRepacker(unittest.TestCase): def test_endian(self): self.assertNotEqual(Endian.LITTLE, Endian.BIG) def test_simple_copy(self): r = Repacker(endian=Endian.LITTLE, from_width=8, to_width=8) self.assertEqual(r.repack_unit, 8) self.assertEqual(r.repack_size(num_elements=2), 2) self.assertEqual(r.repackable_size(from_size=2), 2) a = BinData(8, [1, 2, 3, 4]) b = r.repack(a, start=1, num_elements=2) self.assertEqual(b, BinData(8, [2, 3])) self.assertEqual(r.repack(a), a) def test_gather_8to16_little(self): r = Repacker(endian=Endian.LITTLE, from_width=8, to_width=16) self.assertEqual(r.repack_unit, 16) self.assertEqual(r.repack_size(2), 4) self.assertEqual(r.repackable_size(2), 1) self.assertEqual(r.repackable_size(3), 1) self.assertEqual(r.repackable_size(4), 2) a = BinData(8, [1, 2, 3, 4, 5, 6]) b = r.repack(a, start=1, num_elements=2) self.assertEqual(b, BinData.from_spaced_hex(16, '0302 0504')) c = r.repack(a, start=1) self.assertEqual(b, c) d = r.repack(a) self.assertEqual(d, BinData.from_spaced_hex(16, '0201 0403 0605')) def test_gather_8to16_big(self): r = Repacker(endian=Endian.BIG, from_width=8, to_width=16) self.assertEqual(r.repack_unit, 16) self.assertEqual(r.repack_size(2), 4) self.assertEqual(r.repackable_size(2), 1) self.assertEqual(r.repackable_size(3), 1) self.assertEqual(r.repackable_size(4), 2) a = BinData(8, [1, 2, 3, 4, 5, 6]) b = r.repack(a, start=1, num_elements=2) self.assertEqual(b, BinData.from_spaced_hex(16, '0203 0405')) c = r.repack(a, start=1) self.assertEqual(b, c) d = r.repack(a) self.assertEqual(d, BinData.from_spaced_hex(16, '0102 0304 0506')) def test_mash_8to12_little(self): r = Repacker(Endian.LITTLE, 8, 12) self.assertEqual(r.repack_unit, 24) self.assertEqual(r.repack_size(1), 2) self.assertEqual(r.repack_size(2), 3) self.assertEqual(r.repackable_size(1), 0) self.assertEqual(r.repackable_size(2), 1) self.assertEqual(r.repackable_size(3), 2) self.assertEqual(r.repackable_size(4), 2) a = BinData.from_spaced_hex(8, '12 34 56 78 9a') b = r.repack(a, 1, 2) self.assertEqual(b, BinData.from_spaced_hex(12, '634 785')) c = r.repack(a, 1) self.assertEqual(b, c) d = r.repack(a) self.assertEqual(d, BinData.from_spaced_hex(12, '412 563 a78')) def test_mash_8to12_big(self): r = Repacker(Endian.BIG, 8, 12) self.assertEqual(r.repack_unit, 24) self.assertEqual(r.repack_size(1), 2) self.assertEqual(r.repack_size(2), 3) self.assertEqual(r.repackable_size(1), 0) self.assertEqual(r.repackable_size(2), 1) self.assertEqual(r.repackable_size(3), 2) self.assertEqual(r.repackable_size(4), 2) a = BinData.from_spaced_hex(8, '12 34 56 78 9a') b = r.repack(a, 1, 2) self.assertEqual(b, BinData.from_spaced_hex(12, '345 678')) c = r.repack(a, 1) self.assertEqual(b, c) d = r.repack(a) self.assertEqual(d, BinData.from_spaced_hex(12, '123 456 789')) def test_split_8to1_little(self): r = Repacker(Endian.LITTLE, 8, 1) self.assertEqual(r.repack_unit, 8) self.assertEqual(r.repack_size(12), 2) self.assertEqual(r.repack_size(8), 1) self.assertEqual(r.repack_size(9), 2) self.assertEqual(r.repack_size(17), 3) self.assertEqual(r.repackable_size(1), 8) a = BinData.from_spaced_hex(8, '12 34 56') b = r.repack(a, 1, 12) c = BinData.from_spaced_hex(1, ' '.join(format(0x634, '012b')[::-1])) self.assertEqual(b, c) def test_split_8to1_big(self): r = Repacker(Endian.BIG, 8, 1) self.assertEqual(r.repack_unit, 8) self.assertEqual(r.repack_size(12), 2) self.assertEqual(r.repack_size(8), 1) self.assertEqual(r.repack_size(9), 2) self.assertEqual(r.repack_size(17), 3) self.assertEqual(r.repackable_size(1), 8) a = BinData.from_spaced_hex(8, '12 34 56') b = r.repack(a, 1, 12) c = BinData.from_spaced_hex(1, ' '.join(format(0x345, '012b'))) self.assertEqual(b, c) def test_split_60to20_little(self): r = Repacker(Endian.LITTLE, 60, 20) self.assertEqual(r.repack_unit, 60) self.assertEqual(r.repack_size(1), 1) self.assertEqual(r.repack_size(2), 1) self.assertEqual(r.repack_size(3), 1) self.assertEqual(r.repack_size(4), 2) self.assertEqual(r.repackable_size(1), 3) a = BinData(60, [0xfedcba987654321]) b = r.repack(a) self.assertEqual(b, BinData.from_spaced_hex(20, '54321 a9876 fedcb')) def test_split_60to20_big(self): r = Repacker(Endian.BIG, 60, 20) self.assertEqual(r.repack_unit, 60) self.assertEqual(r.repack_size(1), 1) self.assertEqual(r.repack_size(2), 1) self.assertEqual(r.repack_size(3), 1) self.assertEqual(r.repack_size(4), 2) self.assertEqual(r.repackable_size(1), 3) a = BinData(60, [0xfedcba987654321]) b = r.repack(a) self.assertEqual(b, BinData.from_spaced_hex(20, 'fedcb a9876 54321')) def test_split_16to8_little(self): r = Repacker(Endian.LITTLE, 16, 8) self.assertEqual(r.repack_unit, 16) self.assertEqual(r.repack_size(3), 2) self.assertEqual(r.repackable_size(3), 6) a = BinData(16, [0x1234, 0x5678, 0x9abc]) b = r.repack(a, 1, 3) self.assertEqual(b, BinData.from_spaced_hex(8, '78 56 bc')) def test_split_16to8_big(self): r = Repacker(Endian.BIG, 16, 8) self.assertEqual(r.repack_unit, 16) self.assertEqual(r.repack_size(3), 2) self.assertEqual(r.repackable_size(3), 6) a = BinData(16, [0x1234, 0x5678, 0x9abc]) b = r.repack(a, 1, 3) self.assertEqual(b, BinData.from_spaced_hex(8, '56 78 9a')) def test_padded_8to23_left_little(self): r = Repacker(Endian.LITTLE, 8, 23, high_pad=9) self.assertEqual(r.repack_unit, 32) self.assertEqual(r.repack_size(2), 8) self.assertEqual(r.repackable_size(7), 1) self.assertEqual(r.repackable_size(8), 2) a = BinData.from_spaced_hex(8, '11 22 33 44 55 66 77 88 99 aa') b = r.repack(a, 1, 2) self.assertEqual(b, BinData.from_spaced_hex(23, '443322 087766')) def test_padded_8to23_right_little(self): r = Repacker(Endian.LITTLE, 8, 23, low_pad=9) self.assertEqual(r.repack_unit, 32) self.assertEqual(r.repack_size(2), 8) self.assertEqual(r.repackable_size(7), 1) self.assertEqual(r.repackable_size(8), 2) a = BinData.from_spaced_hex(8, '11 22 33 44 55 66 77 88 99 aa') b = r.repack(a, 1, 2) self.assertEqual(b, BinData.from_spaced_hex(23, '2aa219 4cc43b')) def test_padded_8to23_mixed_little(self): r = Repacker(Endian.LITTLE, 8, 23, low_pad=8, high_pad=1) self.assertEqual(r.repack_unit, 32) self.assertEqual(r.repack_size(2), 8) self.assertEqual(r.repackable_size(7), 1) self.assertEqual(r.repackable_size(8), 2) a = BinData.from_spaced_hex(8, '11 22 33 44 55 66 77 88 99 aa') b = r.repack(a, 1, 2) self.assertEqual(b, BinData.from_spaced_hex(23, '554433 198877')) def test_padded_8to23_left_big(self): r = Repacker(Endian.BIG, 8, 23, high_pad=9) self.assertEqual(r.repack_unit, 32) self.assertEqual(r.repack_size(2), 8) self.assertEqual(r.repackable_size(7), 1) self.assertEqual(r.repackable_size(8), 2) a = BinData.from_spaced_hex(8, '11 22 33 44 55 66 77 88 99 aa') b = r.repack(a, 1, 2) self.assertEqual(b, BinData.from_spaced_hex(23, '334455 778899')) def test_padded_8to23_right_big(self): r = Repacker(Endian.BIG, 8, 23, low_pad=9) self.assertEqual(r.repack_unit, 32) self.assertEqual(r.repack_size(2), 8) self.assertEqual(r.repackable_size(7), 1) self.assertEqual(r.repackable_size(8), 2) a = BinData.from_spaced_hex(8, '11 22 33 44 55 66 77 88 99 aa') b = r.repack(a, 1, 2) self.assertEqual(b, BinData.from_spaced_hex(23, '1119a2 333bc4')) def test_padded_8to23_mixed_big(self): r = Repacker(Endian.BIG, 8, 23, low_pad=8, high_pad=1) self.assertEqual(r.repack_unit, 32) self.assertEqual(r.repack_size(2), 8) self.assertEqual(r.repackable_size(7), 1) self.assertEqual(r.repackable_size(8), 2) a = BinData.from_spaced_hex(8, '11 22 33 44 55 66 77 88 99 aa') b = r.repack(a, 1, 2) self.assertEqual(b, BinData.from_spaced_hex(23, '223344 667788'))
service-configs/zabbix/partitioning/zabbix-partitioning.py
digideskio/adminscripts
110
12791064
<gh_stars>100-1000 #!/usr/bin/python import psycopg2 from optparse import OptionParser tables = { 'history':'daily', 'history_sync':'daily', 'history_uint':'daily', 'history_uint_sync':'daily', 'history_str':'daily', 'history_str_sync':'daily', 'history_log':'daily', 'history_text':'daily', 'trends':'monthly', 'trends_uint':'monthly', 'acknowledges':'monthly', 'alerts':'monthly', 'auditlog':'monthly', 'events':'monthly', 'service_alarms':'monthly', } #change these settings db_user = 'zabbix' db_pw = '<PASSWORD>' db = 'zabbix' db_host = 'localhost' ##### parser = OptionParser() parser.add_option("-i", "--init", dest="init",help="partitioning init",action="store_true", default=False) (options, args) = parser.parse_args() if options.init: init = 1 else: init = 0 db_connection = psycopg2.connect(database=db, user=db_user, password=<PASSWORD>,host=db_host) db_cursor = db_connection.cursor() for table_key, table_value in tables.iteritems(): db_cursor.execute('''select create_zbx_partitions(%s,%s,%s)''',[table_key,table_value,init]) db_connection.commit() db_cursor.close() db_connection.close()
tests/test_timer_dec.py
pnpnpn/timy
300
12791103
<gh_stars>100-1000 from unittest import mock from timy import timer from timy.settings import timy_config @mock.patch('timy.output') def test_timer_no_tracking(p_output): timy_config.tracking = False @timer() def func(): pass func() p_output.assert_not_called() @mock.patch('timy.output') @mock.patch('time.perf_counter') def test_timer_include_sleeptime(p_perf_counter, p_output): timy_config.tracking = True @timer() def func(): pass p_perf_counter.return_value = 1 func() p_output.assert_has_calls([ mock.call( timy_config.DEFAULT_IDENT, 'executed (func) for 1 time in 0.000000'), mock.call( timy_config.DEFAULT_IDENT, 'best time was 0.000000'), ]) @mock.patch('timy.output') @mock.patch('time.process_time') def test_timer_include_sleeptime_no(p_process_time, p_output): timy_config.tracking = True @timer(include_sleeptime=False) def func(): pass p_process_time.return_value = 1 func() p_output.assert_has_calls([ mock.call( timy_config.DEFAULT_IDENT, 'executed (func) for 1 time in 0.000000'), mock.call( timy_config.DEFAULT_IDENT, 'best time was 0.000000'), ]) @mock.patch('timy.output') @mock.patch('time.perf_counter') def test_timer_with_loops(p_perf_counter, p_output): timy_config.tracking = True LOOPS = 4 @timer(loops=LOOPS) def func(): pass p_perf_counter.return_value = 1 func() p_output.assert_has_calls([ mock.call( timy_config.DEFAULT_IDENT, 'executed (func) for {} times in 0.000000'.format(LOOPS)), mock.call( timy_config.DEFAULT_IDENT, 'best time was 0.000000'), ])
src/word_fix.py
thoppe/orthographic-pedant
155
12791148
<reponame>thoppe/orthographic-pedant<gh_stars>100-1000 import os, json, logging, glob, codecs, os, time, subprocess from contextlib import contextmanager import requests logging.basicConfig(level=logging.INFO) logging.getLogger("requests").setLevel(logging.WARNING) FLAG_fork = True FLAG_delete = True fork_sleep_time = 10 clone_error_sleep_time = 60 # Verify that there is a token set as an env variable and load it shell_token = "GITHUB_ORTHOGRAPHIC_TOKEN" GITHUB_TOKEN = os.environ[shell_token] login_params = {"access_token":GITHUB_TOKEN,} API_URL = "https://api.github.com/repos" fork_url = API_URL + "/{user_name}/{repo_name}/forks" pulls_url = API_URL + "/{user_name}/{repo_name}/pulls" delete_url = API_URL + "/{user_name}/{repo_name}" push_url = "https://{bot_name}:{bot_password}@github.com/{bot_name}/{repo_name} {branch_name}:{branch_name}" clone_url = "https://github.com/orthographic-pedant/{repo_name}" # Load the PR text with open("messages/pull_request.txt") as FIN: pull_request_msg = ' '.join(FIN.read().split()) with open("messages/commit_header.txt") as FIN: commit_header_msg = FIN.read().strip() with open("messages/commit_text.txt") as FIN: commit_text_msg = FIN.read().strip() def is_branch_different_from_default(repo): # Checks if any substantial commits have been made cmd = "git diff {master_branch} --".format(**repo) p = subprocess.check_output(cmd,shell=True).strip() # If any edits have been made this will return True return p def pull_request_repo(repo): if not is_branch_different_from_default(repo): logging.info("No edits have been made, skipping!".format(**repo)) return False logging.info("Creating pull request for {full_name}".format(**repo)) data = { "head" :"{bot_name}:{branch_name}".format(**repo), "base" : repo["master_branch"], "title" : repo["commit_header"], "body" : pull_request_msg.format(**repo), } url = pulls_url.format(**repo) r = requests.post(url,params=login_params,json=data) if "errors" in r.json(): from pprint import pprint print pprint(r.json()["errors"]) logging.info("Pull request status {}".format(r)) return True def fork_repo(repo): f_url = fork_url.format(**repo) r = requests.post(f_url,params=login_params) status = r.status_code logging.info("Creating fork, status {}".format(status)) assert(status == 202) logging.info("Sleeping for {} seconds.".format(fork_sleep_time)) time.sleep(fork_sleep_time) def push_commits(repo): logging.info("Push new branch {bot_name}:{branch_name}".format(**repo)) cmd = "git push -u " + push_url.format(**repo) os.system(cmd) def clone_repo(repo): git_endpoint = clone_url.format(**repo) cmd = "git clone -q --single-branch --depth 1 " + git_endpoint if not os.path.exists(repo["repo_name"]): try: msg = u"Cloning repo {full_name}".format(**repo) logging.info(msg) subprocess.check_output(cmd,shell=True) except: msg = u"Cloning repo {full_name} again after sleep".format(**repo) logging.info(msg) time.sleep(clone_error_sleep_time) subprocess.check_output(cmd,shell=True) os.system(cmd) def does_git_branch_exist(repo): # Checks if a branch already exists of a given name cmd = "git rev-parse -q --verify {branch_name}".format(**repo) try: p = subprocess.check_output(cmd,shell=True).strip() except subprocess.CalledProcessError: return False # Valid SHA1 hash will be forty characters long return len(p.strip()) == 40 def create_branch(repo): # Attempts to create the branch in repo["branch_name"] if not does_git_branch_exist(repo): logging.info("Creating new branch {branch_name}".format(**repo)) cmd = "git checkout -b {branch_name}".format(**repo) os.system(cmd) def delete_bot_repo(repo): url = API_URL + "/{bot_name}/{repo_name}".format(**repo) r = requests.delete(url,params=login_params) msg = "Deleted bot repo {repo_name}, status {}" logging.info(msg.format(r.status_code,**repo)) def fix_word(line,w1,w2): line = line.replace(w1.title(),w2.title()) line = line.replace(w1,w2) line = line.replace(w1.lower(),w2.lower()) line = line.replace(w1.upper(),w2.upper()) return line def fix_file(f, w1, w2): corrections = 0 newlines = [] with codecs.open(f,'r','utf-8') as FIN: for line in FIN: if w1.lower() in line.lower(): logging.info("Fixing {}->{} in {}".format(w1,w2,f)) line = fix_word(line,w1,w2) corrections += 1 newlines.append(line) with codecs.open(f,'w','utf-8') as FOUT: FOUT.write(''.join(newlines)) return corrections @contextmanager def enter_repo(repo): # Remember our original directory org_dir = os.getcwd() repo["bot_name"] = "orthographic-pedant" repo["bot_password"] = <PASSWORD> # Used so github can track the submissions... repo["bot_email"] = "travis.hoppe"+"+orthographicpendant"+"@"+"<EMAIL>" # Record the full name of the repo repo["full_name"] = "{user_name}:{repo_name}".format(**repo) logging.info("Entered {}".format(repo["full_name"])) if FLAG_fork: fork_repo(repo) # Create the directories os.system("mkdir -p forks") os.chdir("forks") clone_repo(repo) # Enter the repo directory os.chdir(repo["repo_name"]) # Get the current branch name p = subprocess.check_output("git show-branch",shell=True) repo["master_branch"] = p.split(']')[0].split('[')[1] # Set the username cmd = 'git config user.name "{bot_name}"'.format(**repo) os.system(cmd) cmd = 'git config user.email "{bot_email}"'.format(**repo) os.system(cmd) yield logging.info("Exiting {}".format(repo["full_name"])) if FLAG_delete: delete_bot_repo(repo) os.chdir(org_dir) os.system("rm -rf forks") def fix_repo(full_name, good_word, bad_word): full_name = full_name.strip() user_name, repo_name = full_name.split('/') repo = { "access_token" : GITHUB_TOKEN, "user_name" : user_name, "repo_name" : repo_name, "good_word" : good_word, "bad_word" : bad_word, } # Check if the user_name is a "bad_word", this is a false positive! if bad_word.lower() in user_name.lower(): return False # Check if repo_name is a "bad_word", this is also a false positive! if bad_word.lower() in repo_name.lower(): return False with enter_repo(repo): # Find READMES F_README = [x for x in glob.glob("*.*") if 'readme.' in x.lower()] repo["branch_name"] = "spell_check/{}".format(good_word) create_branch(repo) # Fix READMES total_corrections = 0 for fr in F_README: try: correction_count = fix_file(fr, bad_word, good_word) except UnicodeDecodeError: # Skip the repo if the file is too funky for utf-8 msg = "UnicodeDecode Error" logging.error(msg) return False total_corrections += correction_count logging.info("Fixed {} spelling mistakes".format(total_corrections)) # Commit changes repo["commit_header"] = commit_header_msg.format(**repo) repo["commit_text"] = commit_text_msg.format(**repo) cmd = 'git commit -a -m "{commit_header}" -m "{commit_text}"'.format(**repo) os.system(cmd) # Push the changes to bot directory push_commits(repo) # Create pull request pull_status = pull_request_repo(repo) return pull_status ############################################################### if __name__ == "__main__": # Target word bad_word = "Celcius" good_word = "Celsius" full_name = "thoppe/I-am-error" fix_repo(full_name, good_word, bad_word)
udatetime/_pure.py
kashnick/udatetime
244
12791149
<reponame>kashnick/udatetime from datetime import tzinfo, timedelta, datetime as dt_datetime from time import time, gmtime from math import floor, ceil DATE_TIME_FORMAT = '%Y-%m-%dT%H:%M:%S.%f' class TZFixedOffset(tzinfo): def __init__(self, offset): self.offset = offset def utcoffset(self, dt=None): return timedelta(seconds=self.offset * 60) def dst(self, dt=None): return timedelta(0) def tzname(self, dt=None): sign = '+' if self.offset < 0: sign = '-' return "%s%d:%d" % (sign, self.offset / 60, self.offset % 60) def __repr__(self): return self.tzname() def _timestamp_to_date_time(timestamp, tzinfo): t_full = timestamp + (tzinfo.offset * 60) timestamp = int(floor(t_full)) frac = (t_full - timestamp) * 1e6 us = int(floor(frac + 0.5) if frac >= 0.0 else ceil(frac - 0.5)) if us == 1e6: timestamp += 1 us = 0 y, m, d, hh, mm, ss, weekday, jday, dst = gmtime(timestamp) ss = min(ss, 59) # if sec > 59, set 59 (platform leap support) return dt_datetime(y, m, d, hh, mm, ss, us, tzinfo) def _format_date_time(date_time): tm = date_time.timetuple() offset = 0 sign = '+' if date_time.tzinfo is not None: if date_time.tzinfo.__class__ is not TZFixedOffset: # TODO: Support all tzinfo subclasses by calling utcoffset() raise ValueError('Only TZFixedOffset supported.') offset = date_time.tzinfo.offset if offset < 0: offset = offset * -1 sign = '-' return '%04d-%02d-%02dT%02d:%02d:%02d.%06d%c%02d:%02d' % ( tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, date_time.microsecond, sign, offset / 60, offset % 60 ) def _get_local_utc_offset(): ts = time() return ( dt_datetime.fromtimestamp(ts) - dt_datetime.utcfromtimestamp(ts) ).total_seconds() / 60 local_utc_offset = _get_local_utc_offset() local_timezone = TZFixedOffset(local_utc_offset) utc_timezone = TZFixedOffset(0) def utcnow(): '''datetime aware object in UTC with current date and time.''' return _timestamp_to_date_time(time(), utc_timezone) def now(): '''datetime aware object in local timezone with current date and time.''' return _timestamp_to_date_time(time(), local_timezone) def from_rfc3339_string(rfc3339_string): '''Parse RFC3339 compliant date-time string.''' rfc3339_string = rfc3339_string.replace(' ', '').lower() if 't' not in rfc3339_string: raise ValueError( 'Invalid RFC3339 string. Missing \'T\' date/time separator.' ) (date, _, _time) = rfc3339_string.partition('t') if not date or not _time: raise ValueError('Invalid RFC3339 string.') try: (year, month, day) = date.split('-') year = int(year) month = int(month) day = int(day) except ValueError: raise ValueError('Invalid RFC3339 string. Invalid date.') try: (hour, minute, second) = _time[:8].split(':') hour = int(hour) minute = int(minute) second = int(second) except ValueError: raise ValueError('Invalid RFC3339 string. Invalid time.') usec = 0 offset = None if len(_time) > 8: if _time[8] == '.': usec_buf = '' for c in _time[9:]: if c in '0123456789': usec_buf += c else: break if len(usec_buf) > 6: raise ValueError('Invalid RFC3339 string. Invalid fractions.') usec = int(usec_buf) if len(usec_buf) > 0 and len(usec_buf) < 6: # ugly as shit, but good damn multiplication precision makes # it a mess usec = usec * int('1' + '0' * (6 - len(usec_buf))) _time = _time[9 + len(usec_buf):] elif _time[8] == 'z': offset = 0 if len(_time[9:]): raise ValueError( 'Invalid RFC3339 string. Remaining data after time zone.' ) else: _time = _time[8:] else: offset = 0 if offset is None and (len(_time) == 0 or _time[0] == 'z'): offset = 0 if len(_time[1:]): raise ValueError( 'Invalid RFC3339 string. Remaining data after time zone.' ) elif offset is None: if _time[0] not in '+-': raise ValueError('Invalid RFC3339 string. Expected timezone.') negative = True if _time[0] == '-' else False try: (off_hour, off_minute) = _time[1:].split(':') off_hour = int(off_hour) off_minute = int(off_minute) except ValueError: raise ValueError('Invalid RFC3339 string. Invalid timezone.') offset = (off_hour * 60) + off_minute if negative: offset = offset * -1 return dt_datetime( year, month, day, hour, minute, second, usec, TZFixedOffset(offset) ) def to_rfc3339_string(date_time): '''Serialize date_time to RFC3339 compliant date-time string.''' if date_time and date_time.__class__ is not dt_datetime: raise ValueError("Expected a datetime object.") return _format_date_time(date_time) def from_timestamp(timestamp, tz=None): '''timestamp[, tz] -> tz's local time from POSIX timestamp.''' if tz is None: tz = local_timezone elif tz.__class__ is not TZFixedOffset: # TODO: Support all tzinfo subclasses by calling utcoffset() raise ValueError('Only TZFixedOffset supported.') return _timestamp_to_date_time(timestamp, tz) def from_utctimestamp(timestamp): '''timestamp -> UTC datetime from a POSIX timestamp (like time.time()).''' return _timestamp_to_date_time(timestamp, utc_timezone) def utcnow_to_string(): '''Current UTC date and time RFC3339 compliant date-time string.''' return _format_date_time(utcnow()) def now_to_string(): '''Local date and time RFC3339 compliant date-time string.''' return _format_date_time(now())
datasets/check_utils.py
AkshatShetty101/dmm-8803
247
12791171
import math import time import pickle import sys import os import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from datasets.data_utils import project_image_to_rect, compute_box_3d def adjust_coord_for_view(points): return points[:, [2, 0, 1]] * np.array([1, -1, -1]) def draw_box3d(corners, ax): ''' 8, 3 ''' order = np.array([ 0, 1, 1, 2, 2, 3, 3, 0, 4, 5, 5, 6, 6, 7, 7, 4, 3, 7, 0, 4, 2, 6, 1, 5]).reshape(-1, 2) for i in range(len(order)): ax.plot(corners[order[i], 0], corners[order[i], 1], corners[order[i], 2]) def draw_points(pts, ax): ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2]) def check_box_frustum(box, P, center, dimension, angle): x1, y1, x2, y2 = box box_corner = compute_box_3d(center, dimension, angle, P) # 8, 3 z1 = np.arange(0, 70, 0.1) xyz1 = np.zeros((len(z1), 3)) xyz1[:, 0] = x1 xyz1[:, 1] = y1 xyz1[:, 2] = z1 xyz1_rect = project_image_to_rect(xyz1, P) xyz1[:, 0] = x2 xyz1[:, 1] = y2 xyz1[:, 2] = z1 xyz2_rect = project_image_to_rect(xyz1, P) xyz1[:, 0] = x1 xyz1[:, 1] = y2 xyz1[:, 2] = z1 xyz3_rect = project_image_to_rect(xyz1, P) xyz1[:, 0] = x2 xyz1[:, 1] = y1 xyz1[:, 2] = z1 xyz4_rect = project_image_to_rect(xyz1, P) fig = plt.figure() ax = fig.gca(projection='3d') draw_box3d(box_corner, ax) draw_points(xyz1_rect, ax) draw_points(xyz2_rect, ax) draw_points(xyz3_rect, ax) draw_points(xyz4_rect, ax) plt.show() def check_norm(self, points, ref_points, gt_box3d_corners, pred_box3d_corners): fig = plt.figure() ax = fig.gca(projection='3d') points = adjust_coord_for_view(points) ref_points = adjust_coord_for_view(ref_points) gt_box3d_corners = adjust_coord_for_view(gt_box3d_corners) pred_box3d_corners = adjust_coord_for_view(pred_box3d_corners) # ax.set_aspect('equal') # ax.axis('equal') ax.set_axis_on() ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') draw_points(points, ax) draw_points(ref_points, ax) draw_box3d(gt_box3d_corners, ax) draw_box3d(pred_box3d_corners, ax) plt.show()
source/grammar/openqasm_reference_parser/exceptions.py
shiyunon/openqasm
603
12791229
<gh_stars>100-1000 __all__ = ["Qasm3ParserError"] class Qasm3ParserError(Exception): pass
examples/internationalisation/testLangs.py
tgolsson/appJar
666
12791245
<filename>examples/internationalisation/testLangs.py import sys sys.path.append("../../") from appJar import gui def press(btn): app.changeLanguage(btn) app=gui() app.showSplash() app.addLabel("l1", "default text") app.addButtons(["English", "Korean", "French"], press) app.addLabel("l2", "default text") app.addLabel("l3", "default text") app.addLabelEntry("Genome") app.addLabelScale("s1") app.addMessage("m1", "Default message text") app.addListBox("fruits", ["apples", "oranges", "tomatoes"]) app.addOptionBox("fruits", ["apples", "oranges", "tomatoes"]) app.addSpinBox("fruits", ["apples", "oranges", "tomatoes"]) app.addCheckBox("b1") app.addCheckBox("b2") app.addCheckBox("b3") app.startLabelFrame("Names") app.addRadioButton("name", "b1") app.addRadioButton("name", "b2") app.addRadioButton("name", "b3") app.addRadioButton("name", "b4") app.stopLabelFrame() app.addRadioButton("age", "b1") app.addRadioButton("age", "b2") app.addRadioButton("age", "b3") app.addLink("l1", None) app.addWebLink("l2", "http://www.appJar.info") app.addMeter("m1") app.addEntry("e1") app.addEntry("e2") app.setEntryDefault("e1", "<DEFAULT>") app.go(language="ENGLISH")
Chapter 2/computational_graph.py
shantam21/Deep-Learning-with-TensorFlow-2-and-Keras
267
12791256
<reponame>shantam21/Deep-Learning-with-TensorFlow-2-and-Keras<gh_stars>100-1000 import tensorflow.compat.v1 as tf tf.disable_v2_behavior() in_a = tf.placeholder(dtype=tf.float32, shape=(2)) def model(x): with tf.variable_scope("matmul"): W = tf.get_variable("W", initializer=tf.ones(shape=(2,2))) b = tf.get_variable("b", initializer=tf.zeros(shape=(2))) return x * W + b out_a = model(in_a) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) outs = sess.run([out_a], feed_dict={in_a: [1, 0]}) writer = tf.summary.FileWriter("./logs/example", sess.graph)
docqa/triviaqa/build_complete_vocab.py
Willyoung2017/doc-qa
422
12791269
import argparse from os.path import exists from docqa.triviaqa.build_span_corpus import TriviaQaOpenDataset from docqa.triviaqa.evidence_corpus import get_evidence_voc """ Build vocab of all words in the triviaqa dataset, including all documents and all train questions. """ def main(): parser = argparse.ArgumentParser() parser.add_argument("output") parser.add_argument("-m", "--min_count", type=int, default=1) parser.add_argument("-n", "--n_processes", type=int, default=1) args = parser.parse_args() if exists(args.output): raise ValueError() data = TriviaQaOpenDataset() corpus_voc = get_evidence_voc(data.evidence, args.n_processes) print("Adding question voc...") train = data.get_train() for q in train: corpus_voc.update(q.question) print("Saving...") with open(args.output, "w") as f: for word, c in corpus_voc.items(): if c >= args.min_count: f.write(word) f.write("\n") if __name__ == "__main__": main()
cellphonedb/utils/dataframe_functions.py
chapuzzo/cellphonedb
278
12791290
<gh_stars>100-1000 import pandas as pd from cellphonedb.utils import dataframe_format def dataframes_has_same_data(dataframe1: pd.DataFrame, dataframe2: pd.DataFrame, round_decimals: bool = False) -> pd.DataFrame: dataframe1 = dataframe1.copy(deep=True) dataframe2 = dataframe2.copy(deep=True) columns_names_1 = list(dataframe1.columns.values) columns_names_1.sort() dataframe1 = dataframe_format.bring_columns_to_end(columns_names_1, dataframe1) columns_names_2 = list(dataframe2.columns.values) columns_names_2.sort() dataframe2 = dataframe_format.bring_columns_to_end(columns_names_2, dataframe2) if not dataframe1.empty: dataframe1 = dataframe1.sort_values(columns_names_1).reset_index(drop=True) if round_decimals: dataframe1 = dataframe1.round(5) if not dataframe2.empty: dataframe2 = dataframe2.sort_values(columns_names_2).reset_index(drop=True) if round_decimals: dataframe2 = dataframe2.round(5) if dataframe1.empty and dataframe2.empty: return pd.Series(dataframe1.columns.values).equals(pd.Series(dataframe2.columns.values)) return dataframe1.equals(dataframe2)
scanpy/datasets/__init__.py
mkmkryu/scanpy2
1,171
12791330
"""Builtin Datasets. """ from ._datasets import ( blobs, burczynski06, krumsiek11, moignard15, paul15, toggleswitch, pbmc68k_reduced, pbmc3k, pbmc3k_processed, visium_sge, ) from ._ebi_expression_atlas import ebi_expression_atlas