max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
DIYgod/0006/a.py
saurabh896/python-1
3,976
12784965
<gh_stars>1000+ f = open('a.txt', 'rb') lines = f.readlines() for line in lines: pass f.close() f = open('a.txt', 'rb') for line in f: pass f.close() f = open('a.txt', 'rb') while true: line = f.readline() if not line: break pass f.close()
harvester/server/expiring_queue.py
Nisthar/CaptchaHarvester
545
12784971
<reponame>Nisthar/CaptchaHarvester from queue import Empty, Queue, SimpleQueue from threading import Timer from typing import Any class ExpiringQueue(Queue): def __init__(self, timeout: int, maxsize=0): super().__init__(maxsize) self.timeout = timeout self.timers: 'SimpleQueue[Timer]' = SimpleQueue() def put(self, item: Any) -> None: thread = Timer(self.timeout, self.expire) thread.start() self.timers.put(thread) super().put(item) def get(self, block=True, timeout=None) -> Any: thread = self.timers.get(block, timeout) thread.cancel() return super().get(block, timeout) def expire(self): self.get() def to_list(self): with self.mutex: return list(self.queue) if __name__ == '__main__': import time eq = ExpiringQueue(timeout=1) print(eq) eq.put(1) time.sleep(.5) eq.put(2) print(eq.to_list()) time.sleep(.6) print(eq.get_nowait()) print(eq.get_nowait())
ctc_fast/swbd-utils/score_frag_utts.py
SrikarSiddarth/stanford-ctc
268
12784986
<filename>ctc_fast/swbd-utils/score_frag_utts.py<gh_stars>100-1000 ''' Look at error rates only scoring utterances that contain frags ''' FRAG_FILE = '/deep/u/zxie/ctc_clm_transcripts/frags.txt' if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('hyp') parser.add_argument('stm') parser.add_argument('hyp_out') parser.add_argument('stm_out') args = parser.parse_args() # Read in utt keys with frags frag_utts = set() with open(FRAG_FILE, 'r') as fin: lines = fin.read().strip().splitlines() for l in lines: utt_key, frag_word = l.split(' ', 1) frag_utts.add(utt_key) # Read in hyps with open(args.hyp, 'r') as fin: lines = fin.read().splitlines() # Write the filtered hyp file frag_utt_count = 0 tot_utt_count = 0 fout = open(args.hyp_out, 'w') for l in lines: parts = l.split(' ', 1) if len(parts) == 1: assert False utt_key, utt = parts if utt_key not in frag_utts: tot_utt_count += 1 continue fout.write(l + '\n') tot_utt_count += 1 frag_utt_count += 1 fout.close() # Sanity check print '%d/%d utts contain frags' % (frag_utt_count, tot_utt_count) # Read in stm reference file stm_frag_utts = 0 frag_utt_starts = set() for ou in frag_utts: ou_start = '-'.join(ou.split('-')[0:2]) frag_utt_starts.add(ou_start) with open(args.stm, 'r') as fin: lines = fin.read().strip().splitlines() fout = open(args.stm_out, 'w') for l in lines: # Handle comments if l.startswith(';;'): fout.write(l+'\n') continue parts = l.split(' ', 6) utt_key_part, channel, utt_key, t_start, t_end, metadata, utt = parts stm_utt_key = '%s-%s_%06d' % (utt_key_part, channel.lower(), int(float(t_start) * 100)) print stm_utt_key if stm_utt_key not in frag_utt_starts: continue fout.write(l + '\n') stm_frag_utts += 1 fout.close() # Sanity check print '%d/%d stm utts contain frags' % (stm_frag_utts, tot_utt_count)
samples/python/40.timex-resolution/ambiguity.py
Aliacf21/BotBuilder-Samples
1,998
12784998
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from recognizers_date_time import recognize_datetime, Culture class Ambiguity: """ TIMEX expressions are designed to represent ambiguous rather than definite dates. For example: "Monday" could be any Monday ever. "May 5th" could be any one of the possible May 5th in the past or the future. TIMEX does not represent ambiguous times. So if the natural language mentioned 4 o'clock it could be either 4AM or 4PM. For that the recognizer (and by extension LUIS) would return two TIMEX expressions. A TIMEX expression can include a date and time parts. So ambiguity of date can be combined with multiple results. Code that deals with TIMEX expressions is frequently dealing with sets of TIMEX expressions. """ @staticmethod def date_ambiguity(): # Run the recognizer. results = recognize_datetime( "Either Saturday or Sunday would work.", Culture.English ) # We should find two results in this example. for result in results: # The resolution includes two example values: going backwards and forwards from NOW in the calendar. # Each result includes a TIMEX expression that captures the inherent date but not time ambiguity. # We are interested in the distinct set of TIMEX expressions. # There is also either a "value" property on each value or "start" and "end". distinct_timex_expressions = { value["timex"] for value in result.resolution["values"] if "timex" in value } print(f"{result.text} ({','.join(distinct_timex_expressions)})") @staticmethod def time_ambiguity(): # Run the recognizer. results = recognize_datetime( "We would like to arrive at 4 o'clock or 5 o'clock.", Culture.English ) # We should find two results in this example. for result in results: # The resolution includes two example values: one for AM and one for PM. # Each result includes a TIMEX expression that captures the inherent date but not time ambiguity. # We are interested in the distinct set of TIMEX expressions. distinct_timex_expressions = { value["timex"] for value in result.resolution["values"] if "timex" in value } # TIMEX expressions don't capture time ambiguity so there will be two distinct expressions for each result. print(f"{result.text} ({','.join(distinct_timex_expressions)})") @staticmethod def date_time_ambiguity(): # Run the recognizer. results = recognize_datetime( "It will be ready Wednesday at 5 o'clock.", Culture.English ) # We should find a single result in this example. for result in results: # The resolution includes four example values: backwards and forward in the calendar and then AM and PM. # Each result includes a TIMEX expression that captures the inherent date but not time ambiguity. # We are interested in the distinct set of TIMEX expressions. distinct_timex_expressions = { value["timex"] for value in result.resolution["values"] if "timex" in value } # TIMEX expressions don't capture time ambiguity so there will be two distinct expressions for each result. print(f"{result.text} ({','.join(distinct_timex_expressions)})")
tests/test_gosubdag_relationships.py
flying-sheep/goatools
477
12785033
#!/usr/bin/env python """Plot both the standard 'is_a' field and the optional 'part_of' relationship.""" from __future__ import print_function __copyright__ = "Copyright (C) 2016-2018, <NAME>, <NAME>, All rights reserved." import os import sys import timeit import datetime from goatools.base import download_go_basic_obo from goatools.obo_parser import GODag from goatools.gosubdag.gosubdag import GoSubDag REPO = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../..") def test_gosubdag_relationships(prt=sys.stdout): """Plot both the standard 'is_a' field and the 'part_of' relationship.""" goids = set([ "GO:0032501", "GO:0044707", # alt_id: GO:0032501 # BP 1011 L01 D01 B multicellular organismal process "GO:0050874", "GO:0007608", # sensory perception of smell "GO:0050911"]) # detection of chemical stimulus involved in sensory perception of smell # Load GO-DAG: Load optional 'relationship' fin_obo = os.path.join(REPO, "go-basic.obo") download_go_basic_obo(fin_obo, prt, loading_bar=None) go2obj_plain = GODag(fin_obo) go2obj_relat = GODag(fin_obo, optional_attrs=['relationship']) print("\nCreate GoSubDag with GO DAG containing no relationships.") tic = timeit.default_timer() # Create Plot object; Plot both 'is_a' and optional 'part_of' relationship gosubdag = GoSubDag(goids, go2obj_plain, relationships=False, prt=prt) # gosubdag.prt_goids(gosubdag.go2obj) goids_plain = set(gosubdag.go2obj) tic = _rpt_hms(tic, len(gosubdag.go2obj)) print("\nCreate GoSubDag while IGNORING relationships") # Create Plot object; Plot both 'is_a' and optional 'part_of' relationship gosubdag = GoSubDag(goids, go2obj_relat, relationships=False, prt=prt) # gosubdag.prt_goids(gosubdag.go2obj) goids_false = set(gosubdag.go2obj) tic = _rpt_hms(tic, len(gosubdag.go2obj)) assert goids_plain == goids_false print("\nCreate GoSubDag while loading only the 'part_of' relationship") gosubdag = GoSubDag(goids, go2obj_relat, relationships=['part_of'], prt=prt) # gosubdag.prt_goids(gosubdag.go2obj) goids_part_of = set(gosubdag.go2obj) tic = _rpt_hms(tic, len(gosubdag.go2obj)) assert goids_plain.intersection(goids_part_of) == goids_plain assert len(goids_part_of) > len(goids_plain) print("\nCreate GoSubDag while loading all relationships") gosubdag = GoSubDag(goids, go2obj_relat, relationships=True, prt=prt) # gosubdag.prt_goids(gosubdag.go2obj) goids_true = set(gosubdag.go2obj) tic = _rpt_hms(tic, len(gosubdag.go2obj)) assert goids_part_of.intersection(goids_true) == goids_part_of assert len(goids_true) >= len(goids_part_of) def _rpt_hms(tic, num_goids): """Report the elapsed time for particular events.""" elapsed_time = str(datetime.timedelta(seconds=(timeit.default_timer()-tic))) print("Elapsed HMS: {HMS} {N} GO IDs".format(HMS=elapsed_time, N=num_goids)) return timeit.default_timer() if __name__ == '__main__': test_gosubdag_relationships() # Copyright (C) 2016-2018, <NAME>, <NAME>, All rights reserved.
flash/video/classification/input_transform.py
Actis92/lightning-flash
1,457
12785058
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Callable import torch from flash.core.data.io.input_transform import InputTransform from flash.core.data.transforms import ApplyToKeys from flash.core.utilities.imports import _KORNIA_AVAILABLE, _PYTORCHVIDEO_AVAILABLE, requires if _KORNIA_AVAILABLE: import kornia.augmentation as K if _PYTORCHVIDEO_AVAILABLE: from pytorchvideo.transforms import UniformTemporalSubsample from torchvision.transforms import CenterCrop, Compose, RandomCrop else: ClipSampler, LabeledVideoDataset, EncodedVideo, ApplyTransformToKey = None, None, None, None @requires("video") @dataclass class VideoClassificationInputTransform(InputTransform): image_size: int = 244 temporal_sub_sample: int = 8 mean: torch.Tensor = torch.tensor([0.45, 0.45, 0.45]) std: torch.Tensor = torch.tensor([0.225, 0.225, 0.225]) data_format: str = "BCTHW" same_on_frame: bool = False def per_sample_transform(self) -> Callable: if self.training: per_sample_transform = [RandomCrop(self.image_size, pad_if_needed=True)] else: per_sample_transform = [CenterCrop(self.image_size)] return ApplyToKeys( "video", Compose([UniformTemporalSubsample(self.temporal_sub_sample)] + per_sample_transform) ) def per_batch_transform_on_device(self) -> Callable: return ApplyToKeys( "video", K.VideoSequential( K.Normalize(self.mean, self.std), data_format=self.data_format, same_on_frame=self.same_on_frame, ), )
tensorflow_graphics/datasets/features/camera_feature_test.py
Liang813/graphics
2,759
12785120
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for tensorflow_graphics.datasets.features.camera_feature.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import tensorflow_datasets as tfds from tensorflow_graphics.datasets.features import camera_feature class CameraFeatureTest(tfds.testing.FeatureExpectationsTestCase): """Test Cases for Camera FeatureConnector.""" def __get_camera_params(self): pose = {'R': np.eye(3).astype(np.float32), 't': np.zeros(3).astype(np.float32)} f = 35. optical_center = (640 / 2, 480 / 2) return pose, f, optical_center def test_simple_camera(self): """Tests camera parameters with fixed focal length, no skew and no aspect ratio.""" expected_pose, expected_f, expected_center = self.__get_camera_params() expected_intrinsics = np.asarray([[expected_f, 0, expected_center[0]], [0, expected_f, expected_center[1]], [0, 0, 1]], dtype=np.float32) expected_camera = {'pose': expected_pose, 'intrinsics': expected_intrinsics} inputs = {'f': expected_f, 'optical_center': expected_center, 'pose': expected_pose} lookat_inputs = { 'f': expected_f, 'optical_center': expected_center, 'pose': { 'look_at': np.array([0, 0, -1], dtype=np.float32), 'up': np.array([0, 1, 0], dtype=np.float32), 'position': np.array([0, 0, 0], dtype=np.float32) } } raising_pose_entry = { 'f': expected_f, 'optical_center': expected_center, 'pose': np.eye(4) } raising_pose_inputs = { 'f': expected_f, 'optical_center': expected_center, 'pose': {'rot': np.eye(3), 'trans': np.zeros(3)} } raising_lookat_inputs = { 'f': expected_f, 'optical_center': expected_center, 'pose': { 'l': np.array([0, 0, -1], dtype=np.float32), 'up': np.array([0, 1, 0], dtype=np.float32), 'C': np.array([0, 0, 0], dtype=np.float32) } } self.assertFeature( feature=camera_feature.Camera(), shape={ 'pose': { 'R': (3, 3), 't': (3,) }, 'intrinsics': (3, 3) }, dtype={ 'pose': { 'R': tf.float32, 't': tf.float32 }, 'intrinsics': tf.float32 }, tests=[ tfds.testing.FeatureExpectationItem( value=inputs, expected=expected_camera, ), tfds.testing.FeatureExpectationItem( value=lookat_inputs, expected=expected_camera ), tfds.testing.FeatureExpectationItem( value=raising_pose_inputs, raise_cls=ValueError, raise_msg='Wrong keys for pose feature provided' ), tfds.testing.FeatureExpectationItem( value=raising_lookat_inputs, raise_cls=ValueError, raise_msg='Wrong keys for pose feature provided' ), tfds.testing.FeatureExpectationItem( value=raising_pose_entry, raise_cls=ValueError, raise_msg='Pose needs to be a dictionary' ), ], ) def test_camera_with_aspect_ratio_and_skew(self): """Tests camera parameters with fixed focal length, aspect_ratio and skew.""" expected_pose, expected_f, expected_center = self.__get_camera_params() expected_aspect_ratio = expected_center[0] / expected_center[1] expected_skew = 0.6 expected_intrinsics = np.asarray( [[expected_f, expected_skew, expected_center[0]], [0, expected_aspect_ratio * expected_f, expected_center[1]], [0, 0, 1]], dtype=np.float32) expected_camera = {'pose': expected_pose, 'intrinsics': expected_intrinsics} inputs = {'f': expected_f, 'optical_center': expected_center, 'skew': expected_skew, 'aspect_ratio': expected_aspect_ratio, 'pose': expected_pose} self.assertFeature( feature=camera_feature.Camera(), shape={ 'pose': { 'R': (3, 3), 't': (3,) }, 'intrinsics': (3, 3) }, dtype={ 'pose': { 'R': tf.float32, 't': tf.float32 }, 'intrinsics': tf.float32 }, tests=[ tfds.testing.FeatureExpectationItem( value=inputs, expected=expected_camera, ), ], ) def test_full_camera_calibration_matrix(self): """Tests camera parameters with different focal length per camera axis and skew.""" expected_pose, _, expected_optical_center = self.__get_camera_params() expected_skew = 0.6 expected_f = (35., 40.) expected_intrinsics = np.array( [[expected_f[0], expected_skew, expected_optical_center[0]], [0, expected_f[1], expected_optical_center[1]], [0, 0, 1]], dtype=np.float32) expected_camera = {'pose': expected_pose, 'intrinsics': expected_intrinsics} inputs = {'f': expected_f, 'optical_center': expected_optical_center, 'skew': expected_skew, 'pose': expected_pose} raising_inputs = {'f': expected_f, 'aspect_ratio': 1.5, 'optical_center': expected_optical_center, 'skew': expected_skew, 'pose': expected_pose} self.assertFeature( feature=camera_feature.Camera(), shape={ 'pose': { 'R': (3, 3), 't': (3,) }, 'intrinsics': (3, 3) }, dtype={ 'pose': { 'R': tf.float32, 't': tf.float32 }, 'intrinsics': tf.float32 }, tests=[ tfds.testing.FeatureExpectationItem( value=inputs, expected=expected_camera, ), tfds.testing.FeatureExpectationItem( value=raising_inputs, raise_cls=ValueError, raise_msg='If aspect ratio is provided, f needs to ' 'be a single float', ), ], ) if __name__ == '__main__': tfds.testing.test_main()
__scraping__/investing.com - request, BS/main.py
whitmans-max/python-examples
140
12785164
# date: 2020.09.11 # author: Bartłomiej "furas" Burek (https://blog.furas.pl) # https://stackoverflow.com/questions/63840415/how-to-scrape-website-tables-where-the-value-can-be-different-as-we-chose-but-th import requests from bs4 import BeautifulSoup import csv url = 'https://id.investing.com/instruments/HistoricalDataAjax' payload = { "curr_id": "8830", "smlID": "300004", "header": "Data+Historis+Emas+Berjangka", "st_date": "01/30/2020", "end_date": "12/31/2020", "interval_sec": "Daily", "sort_col": "date", "sort_ord": "DESC", "action":"historical_data" } headers = { #"Referer": "https://id.investing.com/commodities/gold-historical-data", "User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:80.0) Gecko/20100101 Firefox/80.0", "X-Requested-With": "XMLHttpRequest" } fh = open('output.csv', 'w') csv_writer = csv.writer(fh) for year in range(2010, 2021): print('year:', year) payload["st_date"] = f"01/01/{year}" payload["end_date"] = f"12/31/{year}" r = requests.post(url, data=payload, headers=headers) #print(r.text) soup = BeautifulSoup(r.text, 'lxml') table = soup.find('table') for row in table.find_all('tr')[1:]: # [1:] to skip header row_data = [item.text for item in row.find_all('td')] print(row_data) csv_writer.writerow(row_data) fh.close()
lte/gateway/python/integ_tests/s1aptests/test_send_error_ind_for_dl_nas_with_auth_req.py
Aitend/magma
849
12785175
""" Copyright 2020 The Magma Authors. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import s1ap_types import s1ap_wrapper class TestSendErrorIndForDlNasWithAuthReq(unittest.TestCase): """Test sending of error indication for DL NAS message carrying authentication request """ def setUp(self): """Initialize""" self._s1ap_wrapper = s1ap_wrapper.TestWrapper() def tearDown(self): """Cleanup""" self._s1ap_wrapper.cleanup() def test_send_error_ind_for_dl_nas_with_auth_req(self): """Send error indication after receiving authentication request""" self._s1ap_wrapper.configIpBlock() self._s1ap_wrapper.configUEDevice(1) req = self._s1ap_wrapper.ue_req attach_req = s1ap_types.ueAttachRequest_t() attach_req.ue_Id = req.ue_id sec_ctxt = s1ap_types.TFW_CREATE_NEW_SECURITY_CONTEXT id_type = s1ap_types.TFW_MID_TYPE_IMSI eps_type = s1ap_types.TFW_EPS_ATTACH_TYPE_EPS_ATTACH attach_req.mIdType = id_type attach_req.epsAttachType = eps_type attach_req.useOldSecCtxt = sec_ctxt self._s1ap_wrapper._s1_util.issue_cmd( s1ap_types.tfwCmd.UE_ATTACH_REQUEST, attach_req, ) print("************************* Sent attach request") response = self._s1ap_wrapper.s1_util.get_response() self.assertEqual( response.msg_type, s1ap_types.tfwCmd.UE_AUTH_REQ_IND.value, ) print("************************* Received authentication request") # Send error indication error_ind = s1ap_types.fwNbErrIndMsg_t() # isUeAssoc flag to include optional MME_UE_S1AP_ID and eNB_UE_S1AP_ID error_ind.isUeAssoc = True error_ind.ue_Id = req.ue_id error_ind.cause.pres = True # Radio network causeType = 0 error_ind.cause.causeType = 0 # causeVal - Unknown-pair-ue-s1ap-id error_ind.cause.causeVal = 15 print("*** Sending error indication ***") self._s1ap_wrapper._s1_util.issue_cmd( s1ap_types.tfwCmd.ENB_ERR_IND_MSG, error_ind, ) # Context release response = self._s1ap_wrapper.s1_util.get_response() self.assertEqual( response.msg_type, s1ap_types.tfwCmd.UE_CTX_REL_IND.value, ) print("************************* Received UE_CTX_REL_IND") if __name__ == "__main__": unittest.main()
gerapy/pipelines/mongodb.py
hantmac/Gerapy
2,888
12785176
<filename>gerapy/pipelines/mongodb.py<gh_stars>1000+ import pymongo from twisted.internet.threads import deferToThread class MongoDBPipeline(object): def __init__(self, mongodb_uri, mongodb_database): self.mongodb_uri = mongodb_uri self.mongodb_database = mongodb_database @classmethod def from_crawler(cls, crawler): return cls( mongodb_uri=crawler.settings.get('MONGODB_URI'), mongodb_database=crawler.settings.get('MONGODB_DATABASE') ) def open_spider(self, spider): self.client = pymongo.MongoClient(self.mongodb_uri) self.database = self.client[self.mongodb_database] def _process_item(self, item, spider): allowed_spiders = item.mongodb_spiders allowed_collections = item.mongodb_collections if allowed_spiders and spider.name in allowed_spiders: for allowed_collection in allowed_collections: self.database[allowed_collection].insert(dict(item)) return item def close_spider(self, spider): self.client.close() def process_item(self, item, spider): return deferToThread(self._process_item, item, spider)
examples/pybullet/examples/frictionCone.py
stolk/bullet3
158
12785184
import pybullet as p import time import math p.connect(p.GUI) useMaximalCoordinates = False p.setGravity(0, 0, -10) plane = p.loadURDF("plane.urdf", [0, 0, -1], useMaximalCoordinates=useMaximalCoordinates) p.setRealTimeSimulation(0) velocity = 1 num = 40 p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0) p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 1) #disable this to make it faster p.configureDebugVisualizer(p.COV_ENABLE_TINY_RENDERER, 0) p.setPhysicsEngineParameter(enableConeFriction=1) for i in range(num): print("progress:", i, num) x = velocity * math.sin(2. * 3.1415 * float(i) / num) y = velocity * math.cos(2. * 3.1415 * float(i) / num) print("velocity=", x, y) sphere = p.loadURDF("sphere_small_zeroinertia.urdf", flags=p.URDF_USE_INERTIA_FROM_FILE, useMaximalCoordinates=useMaximalCoordinates) p.changeDynamics(sphere, -1, lateralFriction=0.02) #p.changeDynamics(sphere,-1,rollingFriction=10) p.changeDynamics(sphere, -1, linearDamping=0) p.changeDynamics(sphere, -1, angularDamping=0) p.resetBaseVelocity(sphere, linearVelocity=[x, y, 0]) prevPos = [0, 0, 0] for i in range(2048): p.stepSimulation() pos = p.getBasePositionAndOrientation(sphere)[0] if (i & 64): p.addUserDebugLine(prevPos, pos, [1, 0, 0], 1) prevPos = pos p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 1) while (1): time.sleep(0.01)
tools/third_party/pywebsocket3/example/cgi-bin/hi.py
meyerweb/wpt
2,479
12785192
<gh_stars>1000+ #!/usr/bin/env python print('Content-Type: text/plain') print('') print('Hi from hi.py')
scripts/visualize/match.py
facebookresearch/banmo
201
12785246
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # TODO: pass ft_cse to use fine-tuned feature # TODO: pass fine_steps -1 to use fine samples from absl import flags, app import sys sys.path.insert(0,'') sys.path.insert(0,'third_party') import numpy as np from matplotlib import pyplot as plt import matplotlib import torch import os import glob import pdb import cv2 import trimesh from scipy.spatial.transform import Rotation as R import imageio from utils.io import save_vid, str_to_frame, save_bones, draw_lines, vis_match from utils.colors import label_colormap from nnutils.train_utils import v2s_trainer from nnutils.geom_utils import obj_to_cam, tensor2array, vec_to_sim3, obj_to_cam,\ Kmatinv, K2mat, K2inv, sample_xy, resample_dp,\ raycast from nnutils.loss_utils import kp_reproj, feat_match, kp_reproj_loss from ext_utils.util_flow import write_pfm from ext_utils.flowlib import cat_imgflo opts = flags.FLAGS def construct_rays(dp_feats_rsmp, model, xys, rand_inds, Rmat, Tmat, Kinv, near_far, flip=True): device = dp_feats_rsmp.device bs,nsample,_ =xys.shape opts = model.opts embedid=model.embedid embedid = embedid.long().to(device)[:,None] rays = raycast(xys, Rmat, Tmat, Kinv, near_far) rtk_vec = rays['rtk_vec'] del rays feats_at_samp = [dp_feats_rsmp[i].view(model.num_feat,-1).T\ [rand_inds[i].long()] for i in range(bs)] feats_at_samp = torch.stack(feats_at_samp,0) # bs,ns,num_feat # TODO implement for se3 if opts.lbs and model.num_bone_used>0: bone_rts = model.nerf_body_rts(embedid) bone_rts = bone_rts.repeat(1,nsample,1) # TODO rearrange inputs feats_at_samp = feats_at_samp.view(-1, model.num_feat) xys = xys.view(-1,1,2) if flip: rtk_vec = rtk_vec.view(bs//2,2,-1).flip(1).view(rtk_vec.shape) bone_rts = bone_rts.view(bs//2,2,-1).flip(1).view(bone_rts.shape) rays = {'rtk_vec': rtk_vec, 'bone_rts': bone_rts} return rays, feats_at_samp, xys def match_frames(trainer, idxs, nsample=200): idxs = [int(i) for i in idxs.split(' ')] bs = len(idxs) opts = trainer.opts device = trainer.device model = trainer.model model.eval() # load frames and aux data for dataset in trainer.evalloader.dataset.datasets: dataset.load_pair = False batch = [] for i in idxs: batch.append( trainer.evalloader.dataset[i] ) batch = trainer.evalloader.collate_fn(batch) model.set_input(batch) rtk = model.rtk Rmat = rtk[:,:3,:3] Tmat = rtk[:,:3,3] Kmat = K2mat(rtk[:,3,:]) kaug = model.kaug # according to cropping, p = Kaug Kmat P Kaug = K2inv(kaug) Kinv = Kmatinv(Kaug.matmul(Kmat)) near_far = model.near_far[model.frameid.long()] dp_feats_rsmp = model.dp_feats # construct rays for sampled pixels rand_inds, xys = sample_xy(opts.img_size, bs, nsample, device,return_all=False) rays, feats_at_samp, xys = construct_rays(dp_feats_rsmp, model, xys, rand_inds, Rmat, Tmat, Kinv, near_far) model.update_delta_rts(rays) # re-project with torch.no_grad(): pts_pred = feat_match(model.nerf_feat, model.embedding_xyz, feats_at_samp, model.latest_vars['obj_bound'],grid_size=20,is_training=False) pts_pred = pts_pred.view(bs,nsample,3) xy_reproj = kp_reproj(pts_pred, model.nerf_models, model.embedding_xyz, rays) # draw imgs_trg = model.imgs.view(bs//2,2,-1).flip(1).view(model.imgs.shape) xy_reproj = xy_reproj.view(bs,nsample,2) xys = xys.view(bs,nsample, 2) sil_at_samp = torch.stack([model.masks[i].view(-1,1)[rand_inds[i]] \ for i in range(bs)],0) # bs,ns,1 for i in range(bs): img1 = model.imgs[i] img2 = imgs_trg[i] img = torch.cat([img1, img2],2) valid_idx = sil_at_samp[i].bool()[...,0] p1s = xys[i][valid_idx] p2s = xy_reproj[i][valid_idx] p2s[...,0] = p2s[...,0] + img1.shape[2] img = draw_lines(img, p1s,p2s) cv2.imwrite('tmp/match_%04d.png'%i, img) # visualize matching error if opts.render_size<=128: with torch.no_grad(): rendered, rand_inds = model.nerf_render(rtk, kaug, model.embedid, nsample=opts.nsample, ndepth=opts.ndepth) xyz_camera = rendered['xyz_camera_vis'][0].reshape(opts.render_size**2,-1) xyz_canonical = rendered['xyz_canonical_vis'][0].reshape(opts.render_size**2,-1) skip_idx = len(xyz_camera)//50 # vis 50 rays trimesh.Trimesh(xyz_camera[0::skip_idx].reshape(-1,3).cpu()).\ export('tmp/match_camera_pts.obj') trimesh.Trimesh(xyz_canonical[0::skip_idx].reshape(-1,3).cpu()).\ export('tmp/match_canonical_pts.obj') vis_match(rendered, model.masks, model.imgs, bs,opts.img_size, opts.ndepth) ## construct rays for all pixels #rand_inds, xys = sample_xy(opts.img_size, bs, nsample, device,return_all=True) #rays, feats_at_samp, xys = construct_rays(dp_feats_rsmp, model, xys, rand_inds, # Rmat, Tmat, Kinv, near_far, flip=False) #with torch.no_grad(): # pts_pred = feat_match(model.nerf_feat, model.embedding_xyz, feats_at_samp, # model.latest_vars['obj_bound'],grid_size=20,is_training=False) # pts_pred = pts_pred.view(bs,opts.render_size**2,3) # proj_err = kp_reproj_loss(pts_pred, xys, model.nerf_models, # model.embedding_xyz, rays) # proj_err = proj_err.view(pts_pred.shape[:-1]+(1,)) # proj_err = proj_err/opts.img_size * 2 # results = {} # results['proj_err'] = proj_err ## visualize current error stats #feat_err=model.latest_vars['fp_err'][:,0] #proj_err=model.latest_vars['fp_err'][:,1] #feat_err = feat_err[feat_err>0] #proj_err = proj_err[proj_err>0] #print('feat-med: %f'%(np.median(feat_err))) #print('proj-med: %f'%(np.median(proj_err))) #plt.hist(feat_err,bins=100) #plt.savefig('tmp/viser_feat_err.jpg') #plt.clf() #plt.hist(proj_err,bins=100) #plt.savefig('tmp/viser_proj_err.jpg') # visualize codes with torch.no_grad(): fid = torch.Tensor(range(0,len(model.impath))).cuda().long() D=model.pose_code(fid) D = D.view(len(fid),-1) ##TODO #px = torch.Tensor(range(len(D))).cuda() #py = px*2 #pz = px*5+1 #D = torch.stack([px,py,pz],-1) D = D-D.mean(0)[None] A = D.T.matmul(D)/D.shape[0] # fxf U,S,V=torch.svd(A) # code_proj_3d=D.matmul(V[:,:3]) cmap = matplotlib.cm.get_cmap('cool') time = np.asarray(range(len(model.impath))) time = time/time.max() code_proj_3d=code_proj_3d.detach().cpu().numpy() trimesh.Trimesh(code_proj_3d, vertex_colors=cmap(time)).export('tmp/0.obj') #plt.figure(figsize=(16,16)) plot_stack = [] weight_dir = opts.model_path.rsplit('/',1)[0] bne_path = sorted(glob.glob('%s/%s-*bne-mrender*.jpg'%\ (weight_dir, opts.seqname))) img_path = model.impath.copy() ## remove the last img for each video to make shape consistent with bone renders #for i in model.data_offset[1:][::-1]: # img_path.remove(img_path[i-1]) # code_proj_3d = np.delete(code_proj_3d, i-1,0) # plot the first video img_path = img_path [:model.data_offset[1]-2] code_proj_3d = code_proj_3d[:model.data_offset[1]-2] try: bne_path = bne_path [:model.data_offset[1]-2] except: pass for i in range(len(code_proj_3d)): plt.plot(code_proj_3d[i,0], code_proj_3d[i,1], color=cmap(time[i]), marker='o') plt.annotate(str(i), (code_proj_3d[i,0], code_proj_3d[i,1])) plt.xlim(code_proj_3d[:,0].min(), code_proj_3d[:,0].max()) plt.ylim(code_proj_3d[:,1].min(), code_proj_3d[:,1].max()) fig = plt.gcf() fig.canvas.draw() plot = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) plot = plot.reshape(fig.canvas.get_width_height()[::-1] + (3,)) print('plot pose code of frame id:%03d'%i) if len(bne_path) == len(code_proj_3d): bneimg = cv2.imread(bne_path[i]) bneimg = cv2.resize(bneimg,\ (bneimg.shape[1]*plot.shape[0]//bneimg.shape[0], plot.shape[0])) img=cv2.imread(img_path[i])[:,:,::-1] img = cv2.resize(img,\ (img.shape[1]*plot.shape[0]//img.shape[0], plot.shape[0])) plot = np.hstack([img, bneimg, plot]) plot_stack.append(plot) save_vid('tmp/code', plot_stack, suffix='.mp4', upsample_frame=150.,fps=30) save_vid('tmp/code', plot_stack, suffix='.gif', upsample_frame=150.,fps=30) # vis dps cv2.imwrite('tmp/match_dpc.png', model.dp_vis[model.dps[0].long()].cpu().numpy()*255) def main(_): opts.img_size=opts.render_size trainer = v2s_trainer(opts, is_eval=True) data_info = trainer.init_dataset() trainer.define_model(data_info) #write matching function img_match = match_frames(trainer, opts.match_frames) if __name__ == '__main__': app.run(main)
extras/api/urls.py
maznu/peering-manager
127
12785248
from peering_manager.api import OrderedDefaultRouter from . import views router = OrderedDefaultRouter() router.APIRootView = views.ExtrasRootView router.register("ix-api", views.IXAPIViewSet) router.register("job-results", views.JobResultViewSet) router.register("webhooks", views.WebhookViewSet) app_name = "extras-api" urlpatterns = router.urls
pyinfra/facts/yum.py
blarghmatey/pyinfra
1,532
12785286
from pyinfra.api import FactBase from .util import make_cat_files_command from .util.packaging import parse_yum_repositories class YumRepositories(FactBase): ''' Returns a list of installed yum repositories: .. code:: python [ { 'name': 'CentOS-$releasever - Apps', 'baseurl': 'http://mirror.centos.org/$contentdir/$releasever/Apps/$basearch/os/', 'gpgcheck': '1', 'enabled': '1', 'gpgkey': 'file:///<KEY>', }, ] ''' command = make_cat_files_command( '/etc/yum.conf', '/etc/yum.repos.d/*.repo', ) requires_command = 'yum' default = list def process(self, output): return parse_yum_repositories(output)
codegeneration/code_manip/file_utils.py
sacceus/BabylonCpp
277
12785308
<gh_stars>100-1000 import os import os.path import codecs from typing import * from bab_types import * def files_with_extension(folder: Folder, extension: Extension) -> List[FileFullPath]: r = [] ext_len = len(extension) if not os.path.isdir(folder): print("ouch") for root, _, files in os.walk(folder): for file in files: if file[-ext_len:] == extension: full_file = root + "/" + file full_file = full_file.replace("\\", "/") r.append(full_file) return r def file_has_utf8_bom(file: FileFullPath) -> bool: bom_marker = codecs.BOM_UTF8 with open(file, "rb") as f: content = f.read() start = content[:3] if start == bom_marker: #u'\ufeff': return True return False def file_has_windows_crlf(file: FileFullPath) -> bool: with open(file, "rb") as f: content = f.read() nb_lf = 0 nb_crlf = 0 was_last_char_cr = False for i, b in enumerate(content): if b == b'\n'[0]: if not was_last_char_cr: nb_lf = nb_lf + 1 if b == b'\r'[0]: nb_crlf = nb_crlf + 1 was_last_char_cr = True else: was_last_char_cr = False if nb_lf > 0 and nb_crlf > 0: raise Exception("Mixed CR CRLF!") return nb_crlf > nb_lf def read_file_lines_no_eol(file_full_path: FileFullPath) -> List[CodeLine]: with open(file_full_path, "r") as f: content = f.read() lines = content.split("\n") return lines def write_file_lines_no_eol(file_full_path: FileFullPath, lines: List[CodeLine]): content = "\n".join(lines) with open(file_full_path, "w") as f: f.write(content) def write_file_lines_no_eol_formatted( file: FileFullPath, lines: List[CodeLine], has_utf8_bom: bool, has_windows_crlf: bool ): bom_marker = codecs.BOM_UTF8 if has_windows_crlf: content = "\r\n".join(lines) else: content ="\n".join(lines) with open(file, "wb") as f: if has_utf8_bom: f.write(bom_marker) bytes_content = content.encode('utf-8') f.write(bytes_content) def is_cpp(file: FileFullPath) -> bool: return file.endswith(".cpp") def h_file_from_cpp(cpp_file: FileFullPath, all_h_files: List[FileFullPath]) -> Optional[FileFullPath]: items = cpp_file.split("/") file_with_parent_folder = "/".join(items[-2:]) basename_with_parent_folder = file_with_parent_folder.replace(".cpp", "") found_h_files = list(filter(lambda f: basename_with_parent_folder + ".h" in f, all_h_files)) assert(len(found_h_files) <= 1) if len(found_h_files) == 1: return found_h_files[0] else: return None def make_babylon_include_path(h_file: FileFullPath): include = h_file idx = include.find("include/babylon") if idx < 0: return None include = include[idx + 8:] return include
doc/examples/skeleton_behaviour.py
andrewbest-tri/py_trees
201
12785316
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import py_trees import random class Foo(py_trees.behaviour.Behaviour): def __init__(self, name): """ Minimal one-time initialisation. A good rule of thumb is to only include the initialisation relevant for being able to insert this behaviour in a tree for offline rendering to dot graphs. Other one-time initialisation requirements should be met via the setup() method. """ super(Foo, self).__init__(name) def setup(self): """ When is this called? This function should be either manually called by your program to setup this behaviour alone, or more commonly, via :meth:`~py_trees.behaviour.Behaviour.setup_with_descendants` or :meth:`~py_trees.trees.BehaviourTree.setup`, both of which will iterate over this behaviour, it's children (it's children's children ...) calling :meth:`~py_trees.behaviour.Behaviour.setup` on each in turn. If you have vital initialisation necessary to the success execution of your behaviour, put a guard in your :meth:`~py_trees.behaviour.Behaviour.initialise` method to protect against entry without having been setup. What to do here? Delayed one-time initialisation that would otherwise interfere with offline rendering of this behaviour in a tree to dot graph or validation of the behaviour's configuration. Good examples include: - Hardware or driver initialisation - Middleware initialisation (e.g. ROS pubs/subs/services) - A parallel checking for a valid policy configuration after children have been added or removed """ self.logger.debug(" %s [Foo::setup()]" % self.name) def initialise(self): """ When is this called? The first time your behaviour is ticked and anytime the status is not RUNNING thereafter. What to do here? Any initialisation you need before putting your behaviour to work. """ self.logger.debug(" %s [Foo::initialise()]" % self.name) def update(self): """ When is this called? Every time your behaviour is ticked. What to do here? - Triggering, checking, monitoring. Anything...but do not block! - Set a feedback message - return a py_trees.common.Status.[RUNNING, SUCCESS, FAILURE] """ self.logger.debug(" %s [Foo::update()]" % self.name) ready_to_make_a_decision = random.choice([True, False]) decision = random.choice([True, False]) if not ready_to_make_a_decision: return py_trees.common.Status.RUNNING elif decision: self.feedback_message = "We are not bar!" return py_trees.common.Status.SUCCESS else: self.feedback_message = "Uh oh" return py_trees.common.Status.FAILURE def terminate(self, new_status): """ When is this called? Whenever your behaviour switches to a non-running state. - SUCCESS || FAILURE : your behaviour's work cycle has finished - INVALID : a higher priority branch has interrupted, or shutting down """ self.logger.debug(" %s [Foo::terminate().terminate()][%s->%s]" % (self.name, self.status, new_status))
dfirtrack_artifacts/admin.py
cclauss/dfirtrack
273
12785349
from django.contrib import admin from dfirtrack_artifacts.models import ( Artifact, Artifactpriority, Artifactstatus, Artifacttype, ) # Register your models here. admin.site.register(Artifact) admin.site.register(Artifactpriority) admin.site.register(Artifactstatus) admin.site.register(Artifacttype)
packages/python/pyfora/Connection.py
ufora/ufora
571
12785350
<reponame>ufora/ufora<gh_stars>100-1000 # Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Connection Manages a connection to a pyfora cluster """ import pyfora.Exceptions as Exceptions import pyfora.Executor as Executor import pyfora.ObjectConverter as ObjectConverter import pyfora.RemotePythonObject as RemotePythonObject import pyfora.SocketIoJsonInterface as SocketIoJsonInterface import pyfora.ModuleDirectoryStructure as ModuleDirectoryStructure import threading # We defer importing SubscribableWebObjects.py to support auto doc generation # on readthedocs.org without running a full build. #import pyfora.SubscribableWebObjects as SubscribableWebObjects import pyfora import os class Connection(object): """A live connection to a pyfora cluster that can execute submitted Python code. Note: This is an internal implementation class that is primarily used by :class:`~pyfora.Executor.Executor`. Args: webObjectFactory (SubscribableWebObjects.WebObjectFactory): A factory for subscribable web objects. converter (Optional ObjectConverter.ObjectConverter): an optional object converter or None for the default converter. """ def __init__(self, webObjectFactory, converter): self.objectConverter = converter self.webObjectFactory = webObjectFactory self.closed = False self.viewOfEntireSystem = self.webObjectFactory.ViewOfEntireCumulusSystem({}) self.subscribeToMessages() self.logMessageHandler = None def subscribeToMessages(self): def onSuccess(messages): if self.closed: return self.pullAllMessages() def onChanged(messages): if self.closed: return self.pullAllMessages() self.subscribeToMessages() def onFailure(err): pass self.viewOfEntireSystem.subscribe_totalMessagesEver({ 'onSuccess': onSuccess, 'onFailure': onFailure, 'onChanged': onChanged }) def pullAllMessages(self): processed = threading.Event() def onSuccess(messages): try: for m in messages: if self.logMessageHandler: self.logMessageHandler(m) else: if not m['isDeveloperFacing']: print m['message'], finally: processed.set() def onFailure(err): processed.set() self.viewOfEntireSystem.clearAndReturnMostRecentMessages({}, { 'onSuccess': onSuccess, 'onFailure': onFailure }) return processed def pullAllMessagesAndProcess(self): self.pullAllMessages().wait() def triggerS3DatasetExport(self, valueAsString, bucketname, keyname, onCompletedCallback): if not isinstance(valueAsString, RemotePythonObject.ComputedRemotePythonObject): onCompletedCallback( Exceptions.PyforaError( "The argument to triggerS3DatasetExport should be a ComputedRemotePythonObject" ) ) return import pyfora.SubscribableWebObjects as SubscribableWebObjects if not isinstance(valueAsString.computedValue, SubscribableWebObjects.PyforaComputedValue): onCompletedCallback( Exceptions.PyforaError( "The object handle in the object passed to triggerS3DatasetExport should be a ComputedValue" ) ) return #first, ensure that the value itself resolves computedValue = valueAsString.computedValue computedValueToCalculate = self.webObjectFactory.ComputedValueForMember( { 'baseComputedValue': computedValue, 'memberName': '@pyfora_string_as_paged_vec_of_char' }) def onFailure(err): if not self.closed: onCompletedCallback(Exceptions.PyforaError(err['message'])) def isFinishedChanged(isFinished): if not self.closed and isFinished: self.triggerS3DatasetExportOnFinishedCalculation( computedValueToCalculate, bucketname, keyname, onCompletedCallback ) def subscribeToFinished(result): computedValueToCalculate.subscribe_isFinished({ 'onSuccess': isFinishedChanged, 'onFailure': onFailure, 'onChanged': isFinishedChanged }) computedValueToCalculate.increaseRequestCount( {}, {'onSuccess':subscribeToFinished, 'onFailure':onFailure} ) def getClusterStatus(self, onCompletedCallback): clusterStatus = self.webObjectFactory.PyforaCluster({}) def onSuccess(clusterStatus): onCompletedCallback(clusterStatus) def onFailure(err): onCompletedCallback(Exceptions.PyforaError(err['message'])) clusterStatus.getClusterStatus({}, { 'onSuccess': onSuccess, 'onFailure': onFailure }) def triggerS3DatasetExportOnFinishedCalculation(self, computedValue, bucketname, keyname, onCompletedCallback): def onSuccess(writeToS3TaskObject): #we have received a WriteToS3Task computed graph location self.subscribeToWriteToS3TaskResultAndCallCallback(writeToS3TaskObject, onCompletedCallback) def onFailure(err): onCompletedCallback(Exceptions.PyforaError(err['message'])) computedValue.writeToS3( {'bucketname': bucketname, 'keyname': keyname}, {'onSuccess': onSuccess, 'onFailure': onFailure} ) def subscribeToWriteToS3TaskResultAndCallCallback(self, writeToS3TaskObject, onCompletedCallback): def onSuccess(result): if not self.closed and result is not None: if result['success']: onCompletedCallback(None) else: onCompletedCallback(Exceptions.PyforaError(result['message'])) def onFailure(err): onCompletedCallback(Exceptions.PyforaError(err['message'])) writeToS3TaskObject.subscribe_successOrError({ 'onSuccess': onSuccess, 'onChanged': onSuccess, 'onFailure': onFailure }) def convertObject(self, objectId, binaryObjectRegistry, callback): def wrapper(*args, **kwargs): if not self.closed: callback(*args, **kwargs) self.objectConverter.convert(objectId, binaryObjectRegistry, wrapper) def createComputation(self, fn, args, onCreatedCallback): """Create a computation representing fn(*args). onCreatedCallback - called after defining the object. called with an Exception.PyforaError if there is an error, otherwise, called with a ComputedValue object representing the computation """ assert isinstance(fn, RemotePythonObject.RemotePythonObject) assert all([isinstance(arg, RemotePythonObject.RemotePythonObject) for arg in args]) computedValue = self.webObjectFactory.PyforaComputedValue({ 'argIds': (fn._pyforaComputedValueArg(),) + tuple( arg._pyforaComputedValueArg() for arg in args ) }) def onFailure(err): if not self.closed: onCreatedCallback(Exceptions.PyforaError(err)) def onSuccess(computationId): if not self.closed: onCreatedCallback(computedValue) def onChanged(computationId): pass computedValue.subscribe_submittedComputationId({ 'onSuccess': onSuccess, 'onFailure': onFailure, 'onChanged': onChanged }) def prioritizeComputation(self, computedValue, onPrioritizedCallback, onCompletedCallback, onFailedCallback): """Prioritize a given computation. computedValue - the callback result of creating a computation. onPrioritizedCallback - called with either an error or None on success of the prioritization onCompletedCallback - called with the "jsonStatus" if the computation finishes with a value onFailedCallback - called with a pyfora exception if the computation fails or throws an exception for some reason """ def onFailure(err): if not self.closed: onPrioritizedCallback(Exceptions.PyforaError(err)) def onSuccess(result): if not self.closed: onPrioritizedCallback(None) self._subscribeToComputationStatus(computedValue, onCompletedCallback, onFailedCallback) computedValue.increaseRequestCount({}, { 'onSuccess': onSuccess, 'onFailure': onFailure }) def triggerCompilationOnComputation(self, computedValue, onCompleted): """Trigger compilation of the code underlying a computation. This is exclusively used for testing purposes, as it only works when there is a single in-process cumulus node. Returns True on success, False on failure. """ def onFailure(err): onCompleted() def onSuccess(result): onCompleted() computedValue.triggerCompilation({}, { 'onSuccess': onSuccess, 'onFailure': onFailure }) @staticmethod def cancelComputation(computedValue): """Cancel a computation.""" def completed(_): pass computedValue.cancel({}, { 'onSuccess': completed, 'onFailure': completed }) def expandComputedValueToDictOfAssignedVarsToProxyValues(self, computedValue, onExpanded): """Given a computedValue that should represent a dictionary, expand it to a dictionary of ComputedValues. If it's not a dictionary, or something else happens, this will resolve to a PyforaError. """ def onResult(result): if result is not None and not self.closed: onExpanded(result) def onFailure(result): if isinstance(result, Exception): onExpanded(result) else: onExpanded( Exceptions.PyforaError( "Unknown error translating to dictionary of proxies: %s" + str(result) ) ) computedValue.increaseRequestCount( {}, {'onSuccess': lambda *args: None, 'onFailure': lambda *args: None} ) computedValue.subscribe_pyforaDictToAssignedVarsToComputedValues({ 'onSuccess': onResult, 'onFailure': onFailure, 'onChanged': onResult }) def expandComputedValueToTupleOfProxies(self, computedValue, onExpanded): def onResult(result): if result is not None and not self.closed: onExpanded(result) def onFailure(result): if isinstance(result, Exception): onExpanded(result) else: onExpanded( Exceptions.PyforaError( "Unknown error translating to dictionary of proxies: %s" + str(result) ) ) computedValue.increaseRequestCount( {}, {'onSuccess': lambda *args: None, 'onFailure': lambda *args: None} ) computedValue.subscribe_pyforaTupleToTupleOfComputedValues({ 'onSuccess': onResult, 'onFailure': onFailure, 'onChanged': onResult }) def _subscribeToComputationStatus(self, computedValue, onCompletedCallback, onFailedCallback): def statusChanged(jsonStatus): if not self.closed: if jsonStatus is not None: if jsonStatus['status'] == 'failure': onFailedCallback(Exceptions.PyforaError(jsonStatus['message'])) else: onCompletedCallback(jsonStatus) def onFailure(err): if not self.closed: onFailedCallback(Exceptions.PyforaError(err)) computedValue.subscribe_jsonStatusRepresentation({ 'onSuccess': statusChanged, 'onFailure': onFailure, 'onChanged': statusChanged }) def downloadComputation(self, computedValue, onResultCallback, maxBytecount=None): """download the result of a computation as json. onResultCallback - called with a PyforaError if there is a problem, or the json representation of the computation's result or exception otherwise. """ def onFailure(err): if not self.closed: onResultCallback(Exceptions.PyforaError(err['message'])) def resultChanged(jsonStatus): if not self.closed and jsonStatus is not None: onResultCallback(jsonStatus) computedValue.increaseRequestCount( {}, {'onSuccess': lambda *args: None, 'onFailure': lambda *args: None} ) def resultStatusChanged(populated): if not self.closed and populated: resultComputer.getResultAsJson({}, { 'onSuccess': resultChanged, 'onFailure': onFailure }) resultComputer = self.webObjectFactory.PyforaResultAsJson( {'computedValue': computedValue, 'maxBytecount': maxBytecount} ) resultComputer.subscribe_resultIsPopulated({ 'onSuccess': resultStatusChanged, 'onFailure': onFailure, 'onChanged': resultStatusChanged }) def close(self): self.closed = True self.webObjectFactory.getJsonInterface().close() def createObjectConverter(webObjectFactory): path = os.path.join(os.path.abspath(os.path.split(pyfora.__file__)[0]), "fora") moduleTree = ModuleDirectoryStructure.ModuleDirectoryStructure.read(path, "purePython", "fora") return ObjectConverter.ObjectConverter(webObjectFactory, moduleTree.toJson()) def connect(url, timeout=30.0): """Opens a connection to a pyfora cluster Args: url (str): The HTTP URL of the cluster's manager (e.g. ``http://192.168.1.200:30000``) timeout (Optional float): A timeout for the operation in seconds, or None to wait indefinitely. Returns: An :class:`~pyfora.Executor.Executor` that can be used to submit work to the cluster. """ socketIoInterface = SocketIoJsonInterface.SocketIoJsonInterface( url, '/subscribableWebObjects' ) socketIoInterface.connect(timeout=timeout) return connectGivenSocketIo(socketIoInterface) def connectGivenSocketIo(socketIoInterface): import pyfora.SubscribableWebObjects as SubscribableWebObjects webObjectFactory = SubscribableWebObjects.WebObjectFactory(socketIoInterface) return Executor.Executor(Connection(webObjectFactory, createObjectConverter(webObjectFactory)))
contrib/report_builders/json_report_builder.py
berndonline/flan
3,711
12785384
import json from typing import Any, Dict, List from contrib.descriptions import VulnDescriptionProvider from contrib.internal_types import ScanResult from contrib.report_builders import ReportBuilder class JsonReportBuilder(ReportBuilder): def __init__(self, description_provider: VulnDescriptionProvider): self.description_provider = description_provider self._buffer = {'ips': [], 'vulnerable': {}, 'not_vulnerable': {}} def init_report(self, start_date: str, nmap_command: str): self._buffer['start_date'] = start_date self._buffer['nmap_command'] = nmap_command def build(self) -> Any: return json.dumps(self._buffer) def add_vulnerable_services(self, scan_results: Dict[str, ScanResult]): for app_name, result in scan_results.items(): self._buffer['vulnerable'][app_name] = { 'vulnerabilities': [], 'locations': self._serialize_locations(result.locations) } for v in result.vulns: data = v.to_dict() description = self.description_provider.get_description(v.name, v.vuln_type) data['description'], data['url'] = description.text, description.url self._buffer['vulnerable'][app_name]['vulnerabilities'].append(data) def add_non_vulnerable_services(self, scan_results: Dict[str, ScanResult]): for app_name, result in scan_results.items(): self._buffer['not_vulnerable'][app_name] = { 'locations': self._serialize_locations(result.locations) } def add_ip_address(self, ip: str): self._buffer['ips'].append(ip) @staticmethod def _serialize_locations(locations: Dict[str, List[str]]): return {loc: [int(port) for port in ports] for loc, ports in locations.items()}
ros_compatibility/src/ros_compatibility/exceptions.py
SebastianHuch/ros-bridge
314
12785404
#!/usr/bin/env python # # Copyright (c) 2021 Intel Corporation # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # from ros_compatibility.core import get_ros_version ROS_VERSION = get_ros_version() if ROS_VERSION == 1: import rospy class ROSException(rospy.ROSException): pass class ROSInterruptException(rospy.ROSInterruptException): pass class ServiceException(rospy.ServiceException): pass elif ROS_VERSION == 2: import rclpy.exceptions class ROSException(Exception): pass class ROSInterruptException(rclpy.exceptions.ROSInterruptException): pass class ServiceException(Exception): pass
tests/unit/cartography/intel/gsuite/test_api.py
sckevmit/cartography
2,322
12785440
from unittest import mock from unittest.mock import patch from cartography.intel.gsuite import api def test_get_all_users(): client = mock.MagicMock() raw_request_1 = mock.MagicMock() raw_request_2 = mock.MagicMock() user1 = {'primaryEmail': '<EMAIL>'} user2 = {'primaryEmail': '<EMAIL>'} user3 = {'primaryEmail': '<EMAIL>'} client.users().list.return_value = raw_request_1 client.users().list_next.side_effect = [raw_request_2, None] raw_request_1.execute.return_value = {'users': [user1, user2]} raw_request_2.execute.return_value = {'users': [user3]} result = api.get_all_users(client) emails = [user['primaryEmail'] for response_object in result for user in response_object['users']] expected = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', ] assert sorted(emails) == sorted(expected) def test_get_all_groups(): client = mock.MagicMock() raw_request_1 = mock.MagicMock() raw_request_2 = mock.MagicMock() group1 = {'email': '<EMAIL>'} group2 = {'email': '<EMAIL>'} group3 = {'email': '<EMAIL>'} client.groups().list.return_value = raw_request_1 client.groups().list_next.side_effect = [raw_request_2, None] raw_request_1.execute.return_value = {'groups': [group1, group2]} raw_request_2.execute.return_value = {'groups': [group3]} result = api.get_all_groups(client) emails = [group['email'] for response_object in result for group in response_object['groups']] expected = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', ] assert sorted(emails) == sorted(expected) @patch('cartography.intel.gsuite.api.cleanup_gsuite_users') @patch('cartography.intel.gsuite.api.load_gsuite_users') @patch( 'cartography.intel.gsuite.api.get_all_users', return_value=[ {'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, {'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, ], ) def test_sync_gsuite_users(get_all_users, load_gsuite_users, cleanup_gsuite_users): client = mock.MagicMock() gsuite_update_tag = 1 session = mock.MagicMock() common_job_param = { "UPDATE_TAG": gsuite_update_tag, } api.sync_gsuite_users(session, client, gsuite_update_tag, common_job_param) users = api.transform_users(get_all_users()) load_gsuite_users.assert_called_with( session, users, gsuite_update_tag, ) cleanup_gsuite_users.assert_called_once() @patch('cartography.intel.gsuite.api.sync_gsuite_members') @patch('cartography.intel.gsuite.api.cleanup_gsuite_groups') @patch('cartography.intel.gsuite.api.load_gsuite_groups') @patch( 'cartography.intel.gsuite.api.get_all_groups', return_value=[ {'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, {'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, ], ) def test_sync_gsuite_groups(all_groups, load_gsuite_groups, cleanup_gsuite_groups, sync_gsuite_members): admin_client = mock.MagicMock() session = mock.MagicMock() gsuite_update_tag = 1 common_job_param = { "UPDATE_TAG": gsuite_update_tag, } api.sync_gsuite_groups(session, admin_client, gsuite_update_tag, common_job_param) groups = api.transform_groups(all_groups()) load_gsuite_groups.assert_called_with(session, groups, gsuite_update_tag) cleanup_gsuite_groups.assert_called_once() sync_gsuite_members.assert_called_with(groups, session, admin_client, gsuite_update_tag) def test_load_gsuite_groups(): ingestion_qry = """ UNWIND {GroupData} as group MERGE (g:GSuiteGroup{id: group.id}) ON CREATE SET g.firstseen = {UpdateTag} ON MATCH SET g.group_id = group.id, g.admin_created = group.adminCreated, g.description = group.description, g.direct_members_count = group.directMembersCount, g.email = group.email, g.etag = group.etag, g.kind = group.kind, g.name = group.name, g.lastupdated = {UpdateTag} """ groups = [] update_tag = 1 session = mock.MagicMock() api.load_gsuite_groups(session, groups, update_tag) session.run.assert_called_with( ingestion_qry, GroupData=groups, UpdateTag=update_tag, ) def test_load_gsuite_users(): ingestion_qry = """ UNWIND {UserData} as user MERGE (u:GSuiteUser{id: user.id}) ON CREATE SET u.firstseen = {UpdateTag} ON MATCH SET u.user_id = user.id, u.agreed_to_terms = user.agreedToTerms, u.archived = user.archived, u.change_password_at_next_login = user.changePasswordAtNextLogin, u.creation_time = user.creationTime, u.customer_id = user.customerId, u.etag = user.etag, u.include_in_global_address_list = user.includeInGlobalAddressList, u.ip_whitelisted = user.ipWhitelisted, u.is_admin = user.isAdmin, u.is_delegated_admin = user.isDelegatedAdmin, u.is_enforced_in_2_sv = user.isEnforcedIn2Sv, u.is_enrolled_in_2_sv = user.isEnrolledIn2Sv, u.is_mailbox_setup = user.isMailboxSetup, u.kind = user.kind, u.last_login_time = user.lastLoginTime, u.name = user.name.fullName, u.family_name = user.name.familyName, u.given_name = user.name.givenName, u.org_unit_path = user.orgUnitPath, u.primary_email = user.primaryEmail, u.email = user.primaryEmail, u.suspended = user.suspended, u.thumbnail_photo_etag = user.thumbnailPhotoEtag, u.thumbnail_photo_url = user.thumbnailPhotoUrl, u.lastupdated = {UpdateTag} """ users = [] update_tag = 1 session = mock.MagicMock() api.load_gsuite_users(session, users, update_tag) session.run.assert_called_with( ingestion_qry, UserData=users, UpdateTag=update_tag, ) def test_transform_groups(): param = [ {'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, {'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, ] expected = [ {'email': '<EMAIL>'}, {'email': 'group<EMAIL>'}, {'email': '<EMAIL>'}, {'email': '<EMAIL>'}, ] result = api.transform_groups(param) assert result == expected def test_transform_users(): param = [ {'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, {'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, ] expected = [ {'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}, ] result = api.transform_users(param) assert result == expected
mseg_semantic/utils/normalization_utils.py
weblucas/mseg-semantic
391
12785453
<reponame>weblucas/mseg-semantic<gh_stars>100-1000 #!/usr/bin/python3 import numpy as np import torch from typing import Optional, Tuple def get_imagenet_mean_std() -> Tuple[Tuple[float,float,float], Tuple[float,float,float]]: """ See use here in Pytorch ImageNet script: https://github.com/pytorch/examples/blob/master/imagenet/main.py#L197 Returns: - mean: Tuple[float,float,float], - std: Tuple[float,float,float] = None """ value_scale = 255 mean = [0.485, 0.456, 0.406] mean = [item * value_scale for item in mean] std = [0.229, 0.224, 0.225] std = [item * value_scale for item in std] return mean, std def normalize_img( input: torch.Tensor, mean: Tuple[float,float,float], std: Optional[Tuple[float,float,float]] = None): """ Pass in by reference Torch tensor, and normalize its values. Args: - input: Torch tensor of shape (3,M,N), must be in this order, and of type float (necessary). - mean: mean values for each RGB channel - std: standard deviation values for each RGB channel Returns: - None """ if std is None: for t, m in zip(input, mean): t.sub_(m) else: for t, m, s in zip(input, mean, std): t.sub_(m).div_(s)
algorithms/dynamic_programming/longest_consecutive_subsequence.py
ruler30cm/python-ds
1,723
12785464
<filename>algorithms/dynamic_programming/longest_consecutive_subsequence.py """ Given an array of integers, find the length of the longest sub-sequence such that elements in the subsequence are consecutive integers, the consecutive numbers can be in any order. The idea is to store all the elements in a set first. Then as we are iterating over the array, we check two things - 1. a number x can be a starting number in a sequence if x-1 is not present in the set. If this is the case, create a loop and check how many elements from x to x+j are in the set 2. if x -1 is there in the set, do nothing as this number is not a starting element and must have been considered in a different sequence """ def find_seq(arr, n): s = set() for num in arr: s.add(num) ans = 0 elements = [] for i in range(n): temp = [] if arr[i] - 1 not in s: j = arr[i] while j in s: temp.append(j) j += 1 if j - arr[i] > ans: ans = j - arr[i] elements = temp.copy() return ans, elements arr = [36, 41, 56, 35, 44, 33, 34, 92, 43, 32, 42] ans, elements = find_seq(arr, len(arr)) print('Length - ', ans) print('Elements - ', elements)
tracardi/service/wf/domain/error_debug_info.py
bytepl/tracardi
153
12785473
<filename>tracardi/service/wf/domain/error_debug_info.py from pydantic import BaseModel class ErrorDebugInfo(BaseModel): msg: str line: int file: str
tests/test_context.py
agronholm/asphalt
226
12785537
<reponame>agronholm/asphalt<filename>tests/test_context.py<gh_stars>100-1000 from __future__ import annotations import asyncio import sys from collections.abc import Callable from concurrent.futures import Executor, ThreadPoolExecutor from inspect import isawaitable from itertools import count from threading import Thread, current_thread from typing import AsyncGenerator, AsyncIterator, Dict, NoReturn, Optional, Tuple, Union from unittest.mock import patch import pytest import pytest_asyncio from async_generator import yield_ from asphalt.core import ( Context, Dependency, NoCurrentContext, ResourceConflict, ResourceNotFound, TeardownError, callable_name, context_teardown, current_context, executor, get_resource, inject, resource, ) from asphalt.core.context import ResourceContainer, require_resource @pytest.fixture def context() -> Context: return Context() @pytest_asyncio.fixture async def special_executor(context: Context) -> AsyncIterator[ThreadPoolExecutor]: executor = ThreadPoolExecutor(1) context.add_resource(executor, "special", types=[Executor]) yield executor executor.shutdown() class TestResourceContainer: @pytest.mark.parametrize("thread", [False, True], ids=["eventloop", "worker"]) @pytest.mark.parametrize( "context_attr", [None, "attrname"], ids=["no_attr", "has_attr"] ) @pytest.mark.asyncio async def test_generate_value(self, thread: bool, context_attr: str | None) -> None: container = ResourceContainer( lambda ctx: "foo", (str,), "default", context_attr, True ) context = Context() if thread: value = await context.call_in_executor(container.generate_value, context) else: value = container.generate_value(context) assert value == "foo" assert context.get_resource(str) == "foo" if context_attr: assert getattr(context, context_attr) == "foo" def test_repr(self) -> None: container = ResourceContainer("foo", (str,), "default", "attrname", False) assert repr(container) == ( "ResourceContainer(value='foo', types=[str], name='default', " "context_attr='attrname')" ) def test_repr_factory(self) -> None: container = ResourceContainer( lambda ctx: "foo", (str,), "default", "attrname", True ) assert repr(container) == ( "ResourceContainer(factory=test_context.TestResourceContainer" ".test_repr_factory.<locals>.<lambda>, types=[str], name='default', " "context_attr='attrname')" ) class TestContext: @pytest.mark.asyncio async def test_parent(self) -> None: """Test that the parent property points to the parent context instance, if any.""" async with Context() as parent: async with Context() as child: assert parent.parent is None assert child.parent is parent @pytest.mark.parametrize( "exception", [None, Exception("foo")], ids=["noexception", "exception"] ) @pytest.mark.asyncio async def test_close(self, context: Context, exception: Exception | None) -> None: """ Test that teardown callbacks are called in reverse order when a context is closed. """ def callback(exception=None): called_functions.append((callback, exception)) async def async_callback(exception=None): called_functions.append((async_callback, exception)) called_functions: list[tuple[Callable, BaseException | None]] = [] context.add_teardown_callback(callback, pass_exception=True) context.add_teardown_callback(async_callback, pass_exception=True) await context.close(exception) assert called_functions == [(async_callback, exception), (callback, exception)] @pytest.mark.asyncio async def test_close_while_running_teardown(self, context: Context) -> None: """ Test that trying to close the context from a teardown callback raises a RuntimeError. """ async def try_close_context() -> None: with pytest.raises(RuntimeError, match="this context is already closing"): await context.close() context.add_teardown_callback(try_close_context) await context.close() @pytest.mark.asyncio async def test_teardown_callback_exception(self, context: Context) -> None: """ Test that all callbacks are called even when some teardown callbacks raise exceptions, and that a TeardownError is raised in such a case, containing the exception objects. """ def callback1() -> None: items.append(1) def callback2() -> NoReturn: raise Exception("foo") context.add_teardown_callback(callback1) context.add_teardown_callback(callback2) context.add_teardown_callback(callback1) context.add_teardown_callback(callback2) items: list[int] = [] with pytest.raises(TeardownError) as exc: await context.close() assert "foo" in str(exc.value) assert items == [1, 1] assert len(exc.value.exceptions) == 2 @pytest.mark.asyncio async def test_close_closed(self, context: Context) -> None: """Test that closing an already closed context raises a RuntimeError.""" assert not context.closed await context.close() assert context.closed with pytest.raises(RuntimeError) as exc: await context.close() exc.match("this context has already been closed") def test_contextmanager_exception(self, context, event_loop): close_future = event_loop.create_future() close_future.set_result(None) exception = Exception("foo") with patch.object(context, "close", return_value=close_future): with pytest.raises(Exception) as exc, pytest.deprecated_call(): with context: raise exception # close.assert_called_once_with(exception) assert exc.value is exception @pytest.mark.asyncio async def test_async_contextmanager_exception(self, event_loop, context): """Test that "async with context:" calls close() with the exception raised in the block.""" close_future = event_loop.create_future() close_future.set_result(None) exception = Exception("foo") with patch.object(context, "close", return_value=close_future) as close: with pytest.raises(Exception) as exc: async with context: raise exception close.assert_called_once_with(exception) assert exc.value is exception @pytest.mark.parametrize("types", [int, (int,), ()], ids=["type", "tuple", "empty"]) @pytest.mark.asyncio async def test_add_resource(self, context, event_loop, types): """Test that a resource is properly added in the context and listeners are notified.""" event_loop.call_soon(context.add_resource, 6, "foo", None, types) event = await context.resource_added.wait_event() assert event.resource_types == (int,) assert event.resource_name == "foo" assert not event.is_factory assert context.get_resource(int, "foo") == 6 @pytest.mark.asyncio async def test_add_resource_name_conflict(self, context: Context) -> None: """Test that adding a resource won't replace any existing resources.""" context.add_resource(5, "foo") with pytest.raises(ResourceConflict) as exc: context.add_resource(4, "foo") exc.match( "this context already contains a resource of type int using the name 'foo'" ) @pytest.mark.asyncio async def test_add_resource_none_value(self, context: Context) -> None: """Test that None is not accepted as a resource value.""" exc = pytest.raises(ValueError, context.add_resource, None) exc.match('"value" must not be None') @pytest.mark.asyncio async def test_add_resource_context_attr(self, context: Context) -> None: """Test that when resources are added, they are also set as properties of the context.""" with pytest.deprecated_call(): context.add_resource(1, context_attr="foo") assert context.foo == 1 def test_add_resource_context_attr_conflict(self, context: Context) -> None: """ Test that the context won't allow adding a resource with an attribute name that conflicts with an existing attribute. """ context.a = 2 with pytest.raises(ResourceConflict) as exc, pytest.deprecated_call(): context.add_resource(2, context_attr="a") exc.match("this context already has an attribute 'a'") assert context.get_resource(int) is None @pytest.mark.asyncio async def test_add_resource_type_conflict(self, context: Context) -> None: context.add_resource(5) with pytest.raises(ResourceConflict) as exc: context.add_resource(6) exc.match( "this context already contains a resource of type int using the name 'default'" ) @pytest.mark.parametrize( "name", ["a.b", "a:b", "a b"], ids=["dot", "colon", "space"] ) @pytest.mark.asyncio async def test_add_resource_bad_name(self, context, name): with pytest.raises(ValueError) as exc: context.add_resource(1, name) exc.match( '"name" must be a nonempty string consisting only of alphanumeric characters ' "and underscores" ) @pytest.mark.asyncio async def test_add_resource_parametrized_generic_type( self, context: Context ) -> None: resource = {"a": 1} resource_type = Dict[str, int] context.add_resource(resource, types=[resource_type]) assert context.require_resource(resource_type) is resource assert context.get_resource(resource_type) is resource assert await context.request_resource(resource_type) is resource assert context.get_resource(Dict) is None assert context.get_resource(dict) is None @pytest.mark.asyncio async def test_add_resource_factory(self, context: Context) -> None: """Test that resources factory callbacks are only called once for each context.""" def factory(ctx): assert ctx is context return next(counter) counter = count(1) with pytest.deprecated_call(): context.add_resource_factory(factory, int, context_attr="foo") assert context.foo == 1 assert context.foo == 1 assert context.__dict__["foo"] == 1 @pytest.mark.asyncio async def test_add_resource_factory_parametrized_generic_type( self, context: Context ) -> None: resource = {"a": 1} resource_type = Dict[str, int] context.add_resource_factory(lambda ctx: resource, types=[resource_type]) assert context.require_resource(resource_type) is resource assert context.get_resource(resource_type) is resource assert await context.request_resource(resource_type) is resource assert context.get_resource(Dict) is None assert context.get_resource(dict) is None @pytest.mark.parametrize( "name", ["a.b", "a:b", "a b"], ids=["dot", "colon", "space"] ) @pytest.mark.asyncio async def test_add_resource_factory_bad_name(self, context, name): with pytest.raises(ValueError) as exc: context.add_resource_factory(lambda ctx: 1, int, name) exc.match( '"name" must be a nonempty string consisting only of alphanumeric characters ' "and underscores" ) @pytest.mark.asyncio async def test_add_resource_factory_coroutine_callback( self, context: Context ) -> None: async def factory(ctx): return 1 with pytest.raises(TypeError) as exc: context.add_resource_factory(factory, int) exc.match('"factory_callback" must not be a coroutine function') @pytest.mark.asyncio async def test_add_resource_factory_empty_types(self, context: Context) -> None: with pytest.raises(ValueError) as exc: context.add_resource_factory(lambda ctx: 1, ()) exc.match("no resource types were specified") @pytest.mark.asyncio async def test_add_resource_factory_context_attr_conflict( self, context: Context ) -> None: with pytest.deprecated_call(): context.add_resource_factory(lambda ctx: None, str, context_attr="foo") with pytest.raises(ResourceConflict) as exc, pytest.deprecated_call(): await context.add_resource_factory( lambda ctx: None, str, context_attr="foo" ) exc.match( "this context already contains a resource factory for the context attribute 'foo'" ) @pytest.mark.asyncio async def test_add_resource_factory_type_conflict(self, context: Context) -> None: context.add_resource_factory(lambda ctx: None, (str, int)) with pytest.raises(ResourceConflict) as exc: await context.add_resource_factory(lambda ctx: None, int) exc.match("this context already contains a resource factory for the type int") @pytest.mark.asyncio async def test_add_resource_factory_no_inherit(self, context: Context) -> None: """ Test that a subcontext gets its own version of a factory-generated resource even if a parent context has one already. """ with pytest.deprecated_call(): context.add_resource_factory(id, int, context_attr="foo") async with context, Context() as subcontext: assert context.foo == id(context) assert subcontext.foo == id(subcontext) @pytest.mark.asyncio async def test_add_resource_return_type_single(self, context: Context) -> None: def factory(ctx: Context) -> str: return "foo" async with context: context.add_resource_factory(factory) assert context.require_resource(str) == "foo" @pytest.mark.asyncio async def test_add_resource_return_type_union(self, context: Context) -> None: def factory(ctx: Context) -> Union[int, float]: return 5 async with context: context.add_resource_factory(factory) assert context.require_resource(int) == 5 assert context.require_resource(float) == 5 @pytest.mark.skipif(sys.version_info < (3, 10), reason="Requires Python 3.10+") @pytest.mark.asyncio async def test_add_resource_return_type_uniontype(self, context: Context) -> None: def factory(ctx: Context) -> int | float: return 5 async with context: context.add_resource_factory(factory) assert context.require_resource(int) == 5 assert context.require_resource(float) == 5 @pytest.mark.asyncio async def test_add_resource_return_type_optional(self, context: Context) -> None: def factory(ctx: Context) -> Optional[str]: return "foo" async with context: context.add_resource_factory(factory) assert context.require_resource(str) == "foo" @pytest.mark.asyncio async def test_getattr_attribute_error(self, context: Context) -> None: async with context, Context() as child_context: pytest.raises(AttributeError, getattr, child_context, "foo").match( "no such context variable: foo" ) @pytest.mark.asyncio async def test_getattr_parent(self, context: Context) -> None: """ Test that accessing a nonexistent attribute on a context retrieves the value from parent. """ async with context, Context() as child_context: context.a = 2 assert child_context.a == 2 @pytest.mark.asyncio async def test_get_resources(self, context: Context) -> None: context.add_resource(9, "foo") context.add_resource_factory(lambda ctx: len(ctx.context_chain), int, "bar") context.require_resource(int, "bar") async with context, Context() as subctx: subctx.add_resource(4, "foo") assert subctx.get_resources(int) == {1, 4} @pytest.mark.asyncio async def test_require_resource(self, context: Context) -> None: context.add_resource(1) assert context.require_resource(int) == 1 def test_require_resource_not_found(self, context: Context) -> None: """Test that ResourceNotFound is raised when a required resource is not found.""" exc = pytest.raises(ResourceNotFound, context.require_resource, int, "foo") exc.match("no matching resource was found for type=int name='foo'") assert exc.value.type == int assert exc.value.name == "foo" @pytest.mark.asyncio async def test_request_resource_parent_add(self, context, event_loop): """ Test that adding a resource to the parent context will satisfy a resource request in a child context. """ async with context, Context() as child_context: task = event_loop.create_task(child_context.request_resource(int)) event_loop.call_soon(context.add_resource, 6) resource = await task assert resource == 6 @pytest.mark.asyncio async def test_request_resource_factory_context_attr( self, context: Context ) -> None: """Test that requesting a factory-generated resource also sets the context variable.""" with pytest.deprecated_call(): context.add_resource_factory(lambda ctx: 6, int, context_attr="foo") await context.request_resource(int) assert context.__dict__["foo"] == 6 @pytest.mark.asyncio async def test_call_async_plain(self, context: Context) -> None: def runs_in_event_loop(worker_thread: Thread, x: int, y: int) -> int: assert current_thread() is not worker_thread return x + y def runs_in_worker_thread() -> int: worker_thread = current_thread() return context.call_async(runs_in_event_loop, worker_thread, 1, y=2) assert await context.call_in_executor(runs_in_worker_thread) == 3 @pytest.mark.asyncio async def test_call_async_coroutine(self, context: Context) -> None: async def runs_in_event_loop(worker_thread, x, y): assert current_thread() is not worker_thread await asyncio.sleep(0.1) return x + y def runs_in_worker_thread() -> int: worker_thread = current_thread() return context.call_async(runs_in_event_loop, worker_thread, 1, y=2) assert await context.call_in_executor(runs_in_worker_thread) == 3 @pytest.mark.asyncio async def test_call_async_exception(self, context: Context) -> None: def runs_in_event_loop() -> NoReturn: raise ValueError("foo") with pytest.raises(ValueError) as exc: await context.call_in_executor(context.call_async, runs_in_event_loop) assert exc.match("foo") @pytest.mark.asyncio async def test_call_in_executor(self, context: Context) -> None: """Test that call_in_executor actually runs the target in a worker thread.""" worker_thread = await context.call_in_executor(current_thread) assert worker_thread is not current_thread() @pytest.mark.parametrize( "use_resource_name", [True, False], ids=["direct", "resource"] ) @pytest.mark.asyncio async def test_call_in_executor_explicit(self, context, use_resource_name): executor = ThreadPoolExecutor(1) context.add_resource(executor, types=[Executor]) context.add_teardown_callback(executor.shutdown) executor_arg = "default" if use_resource_name else executor worker_thread = await context.call_in_executor( current_thread, executor=executor_arg ) assert worker_thread is not current_thread() @pytest.mark.asyncio async def test_call_in_executor_context_preserved(self, context: Context) -> None: """ Test that call_in_executor runs the callable in a copy of the current (PEP 567) context. """ async with Context() as ctx: assert await context.call_in_executor(current_context) is ctx @pytest.mark.asyncio async def test_threadpool(self, context: Context) -> None: event_loop_thread = current_thread() async with context.threadpool(): assert current_thread() is not event_loop_thread @pytest.mark.asyncio async def test_threadpool_named_executor( self, context: Context, special_executor: Executor ) -> None: special_executor_thread = special_executor.submit(current_thread).result() async with context.threadpool("special"): assert current_thread() is special_executor_thread class TestExecutor: @pytest.mark.asyncio async def test_no_arguments(self, context: Context) -> None: @executor def runs_in_default_worker() -> None: assert current_thread() is not event_loop_thread current_context() event_loop_thread = current_thread() async with context: await runs_in_default_worker() @pytest.mark.asyncio async def test_named_executor( self, context: Context, special_executor: Executor ) -> None: @executor("special") def runs_in_default_worker(ctx: Context) -> None: assert current_thread() is special_executor_thread assert current_context() is ctx special_executor_thread = special_executor.submit(current_thread).result() async with context: await runs_in_default_worker(context) @pytest.mark.asyncio async def test_executor_missing_context(self, context: Context): @executor("special") def runs_in_default_worker() -> None: current_context() with pytest.raises(RuntimeError) as exc: async with context: await runs_in_default_worker() exc.match( r"the first positional argument to %s\(\) has to be a Context instance" % callable_name(runs_in_default_worker) ) class TestContextTeardown: @pytest.mark.parametrize( "expected_exc", [None, Exception("foo")], ids=["no_exception", "exception"] ) @pytest.mark.asyncio async def test_function(self, expected_exc: Exception | None) -> None: phase = received_exception = None @context_teardown async def start(ctx: Context) -> AsyncIterator[None]: nonlocal phase, received_exception phase = "started" exc = yield phase = "finished" received_exception = exc context = Context() await start(context) assert phase == "started" await context.close(expected_exc) assert phase == "finished" assert received_exception == expected_exc @pytest.mark.parametrize( "expected_exc", [None, Exception("foo")], ids=["no_exception", "exception"] ) @pytest.mark.asyncio async def test_method(self, expected_exc: Exception | None) -> None: phase = received_exception = None class SomeComponent: @context_teardown async def start(self, ctx: Context) -> AsyncIterator[None]: nonlocal phase, received_exception phase = "started" exc = yield phase = "finished" received_exception = exc context = Context() await SomeComponent().start(context) assert phase == "started" await context.close(expected_exc) assert phase == "finished" assert received_exception == expected_exc def test_plain_function(self) -> None: def start(ctx) -> None: pass pytest.raises(TypeError, context_teardown, start).match( " must be an async generator function" ) @pytest.mark.asyncio async def test_bad_args(self) -> None: with pytest.deprecated_call(): @context_teardown async def start(ctx: Context) -> None: pass with pytest.raises(RuntimeError) as exc: await start(None) exc.match( r"the first positional argument to %s\(\) has to be a Context instance" % callable_name(start) ) @pytest.mark.asyncio async def test_exception(self) -> None: @context_teardown async def start(ctx: Context) -> AsyncIterator[None]: raise Exception("dummy error") yield context = Context() with pytest.raises(Exception) as exc_info: await start(context) exc_info.match("dummy error") @pytest.mark.asyncio async def test_missing_yield(self) -> None: with pytest.deprecated_call(): @context_teardown async def start(ctx: Context) -> None: pass await start(Context()) @pytest.mark.asyncio async def test_py35_generator(self) -> None: with pytest.deprecated_call(): @context_teardown async def start(ctx: Context) -> None: await yield_() await start(Context()) @pytest.mark.parametrize( "resource_func", [ pytest.param(Context.get_resource, id="get_resource"), pytest.param(Context.require_resource, id="require_resource"), pytest.param(Context.request_resource, id="request_resource"), ], ) @pytest.mark.asyncio async def test_get_resource_at_teardown(self, resource_func) -> None: resource: str async def teardown_callback() -> None: nonlocal resource resource = resource_func(ctx, str) if isawaitable(resource): resource = await resource async with Context() as ctx: ctx.add_resource("blah") ctx.add_teardown_callback(teardown_callback) assert resource == "blah" @pytest.mark.parametrize( "resource_func", [ pytest.param(Context.get_resource, id="get_resource"), pytest.param(Context.require_resource, id="require_resource"), pytest.param(Context.request_resource, id="request_resource"), ], ) @pytest.mark.asyncio async def test_generate_resource_at_teardown(self, resource_func) -> None: resource: str async def teardown_callback() -> None: nonlocal resource resource = resource_func(ctx, str) if isawaitable(resource): resource = await resource async with Context() as ctx: ctx.add_resource_factory(lambda context: "blah", [str]) ctx.add_teardown_callback(teardown_callback) assert resource == "blah" class TestContextFinisher: @pytest.mark.parametrize( "expected_exc", [None, Exception("foo")], ids=["no_exception", "exception"] ) @pytest.mark.asyncio async def test_context_teardown(self, expected_exc: Exception | None) -> None: phase = received_exception = None @context_teardown async def start(ctx: Context) -> AsyncIterator[None]: nonlocal phase, received_exception phase = "started" exc = yield phase = "finished" received_exception = exc context = Context() await start(context) assert phase == "started" await context.close(expected_exc) assert phase == "finished" assert received_exception == expected_exc @pytest.mark.asyncio async def test_current_context() -> None: pytest.raises(NoCurrentContext, current_context) async with Context() as parent_ctx: assert current_context() is parent_ctx async with Context() as child_ctx: assert current_context() is child_ctx assert current_context() is parent_ctx pytest.raises(NoCurrentContext, current_context) @pytest.mark.asyncio async def test_get_resource() -> None: async with Context() as ctx: ctx.add_resource("foo") assert get_resource(str) == "foo" assert get_resource(int) is None @pytest.mark.asyncio async def test_require_resource() -> None: async with Context() as ctx: ctx.add_resource("foo") assert require_resource(str) == "foo" pytest.raises(ResourceNotFound, require_resource, int) def test_explicit_parent_deprecation() -> None: parent_ctx = Context() pytest.warns(DeprecationWarning, Context, parent_ctx) @pytest.mark.asyncio async def test_context_stack_corruption(event_loop): async def generator() -> AsyncGenerator: async with Context(): yield gen = generator() await event_loop.create_task(gen.asend(None)) async with Context() as ctx: with pytest.warns( UserWarning, match="Potential context stack corruption detected" ): try: await event_loop.create_task(gen.asend(None)) except StopAsyncIteration: pass assert current_context() is ctx pytest.raises(NoCurrentContext, current_context) class TestDependencyInjection: @pytest.mark.asyncio async def test_static_resources(self) -> None: @inject async def injected( foo: int, bar: str = resource(), *, baz: str = resource("alt") ) -> Tuple[int, str, str]: return foo, bar, baz async with Context() as ctx: ctx.add_resource("bar_test") ctx.add_resource("baz_test", "alt") foo, bar, baz = await injected(2) assert foo == 2 assert bar == "bar_test" assert baz == "baz_test" @pytest.mark.asyncio async def test_sync_injection(self) -> None: @inject def injected( foo: int, bar: str = resource(), *, baz: str = resource("alt") ) -> Tuple[int, str, str]: return foo, bar, baz async with Context() as ctx: ctx.add_resource("bar_test") ctx.add_resource("baz_test", "alt") foo, bar, baz = injected(2) assert foo == 2 assert bar == "bar_test" assert baz == "baz_test" @pytest.mark.asyncio async def test_missing_annotation(self) -> None: async def injected( foo: int, bar: str = resource(), *, baz=resource("alt") ) -> None: pass pytest.raises(TypeError, inject, injected).match( f"Dependency for parameter 'baz' of function " f"'{__name__}.{self.__class__.__name__}.test_missing_annotation.<locals>" f".injected' is missing the type annotation" ) @pytest.mark.asyncio async def test_missing_resource(self) -> None: @inject async def injected(foo: int, bar: str = resource()) -> None: pass with pytest.raises(ResourceNotFound) as exc: async with Context(): await injected(2) exc.match("no matching resource was found for type=str name='default'") @pytest.mark.parametrize( "annotation", [ pytest.param(Optional[str], id="optional"), # pytest.param(Union[str, int, None], id="union"), pytest.param( "str | None", id="uniontype.10", marks=[ pytest.mark.skipif( sys.version_info < (3, 10), reason="Requires Python 3.10+" ) ], ), ], ) @pytest.mark.parametrize( "sync", [ pytest.param(True, id="sync"), pytest.param(False, id="async"), ], ) @pytest.mark.asyncio async def test_inject_optional_resource_async( self, annotation: type, sync: bool ) -> None: if sync: @inject def injected( res: annotation = resource(), # type: ignore[valid-type] ) -> annotation: # type: ignore[valid-type] return res else: @inject async def injected( res: annotation = resource(), # type: ignore[valid-type] ) -> annotation: # type: ignore[valid-type] return res async with Context() as ctx: retval = injected() if sync else (await injected()) assert retval is None ctx.add_resource("hello") retval = injected() if sync else (await injected()) assert retval == "hello" def test_resource_function_not_called(self) -> None: async def injected(foo: int, bar: str = resource) -> None: pass with pytest.raises(TypeError) as exc: inject(injected) exc.match( f"Default value for parameter 'bar' of function " f"{__name__}.{self.__class__.__name__}.test_resource_function_not_called" f".<locals>.injected was the 'resource' function – did you forget to add " f"the parentheses at the end\\?" ) def test_missing_inject(self) -> None: def injected(foo: int, bar: str = resource()) -> None: bar.lower() with pytest.raises(AttributeError) as exc: injected(1) exc.match( r"Attempted to access an attribute in a resource\(\) marker – did you " r"forget to add the @inject decorator\?" ) def test_no_resources_declared(self) -> None: def injected(foo: int) -> None: pass match = ( f"{__name__}.{self.__class__.__name__}.test_no_resources_declared.<locals>" f".injected does not have any injectable resources declared" ) with pytest.warns(UserWarning, match=match): func = inject(injected) assert func is injected def test_dependency_deprecated() -> None: with pytest.deprecated_call(): async def foo(res: str = Dependency()) -> None: pass
video_from_lv.py
pengzhou93/dancenet
499
12785539
import tensorflow as tf import numpy as np from model import decoder,vae import cv2 vae.load_weights("vae_cnn.h5") lv = np.load("lv.npy") fourcc = cv2.VideoWriter_fourcc(*'XVID') video = cv2.VideoWriter("output.avi", fourcc, 30.0, (208, 120)) for i in range(1000): data = lv[i].reshape(1,128) img = decoder.predict(data) img = np.array(img).reshape(120,208,1) img = img * 255 img = np.array(img).astype("uint8") img = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) video.write(img) video.release()
alipay/aop/api/domain/MedicalHospitalDeptInfo.py
snowxmas/alipay-sdk-python-all
213
12785558
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class MedicalHospitalDeptInfo(object): def __init__(self): self._code = None self._location = None self._name = None self._parent_name = None self._partner_code = None @property def code(self): return self._code @code.setter def code(self, value): self._code = value @property def location(self): return self._location @location.setter def location(self, value): self._location = value @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def parent_name(self): return self._parent_name @parent_name.setter def parent_name(self, value): self._parent_name = value @property def partner_code(self): return self._partner_code @partner_code.setter def partner_code(self, value): self._partner_code = value def to_alipay_dict(self): params = dict() if self.code: if hasattr(self.code, 'to_alipay_dict'): params['code'] = self.code.to_alipay_dict() else: params['code'] = self.code if self.location: if hasattr(self.location, 'to_alipay_dict'): params['location'] = self.location.to_alipay_dict() else: params['location'] = self.location if self.name: if hasattr(self.name, 'to_alipay_dict'): params['name'] = self.name.to_alipay_dict() else: params['name'] = self.name if self.parent_name: if hasattr(self.parent_name, 'to_alipay_dict'): params['parent_name'] = self.parent_name.to_alipay_dict() else: params['parent_name'] = self.parent_name if self.partner_code: if hasattr(self.partner_code, 'to_alipay_dict'): params['partner_code'] = self.partner_code.to_alipay_dict() else: params['partner_code'] = self.partner_code return params @staticmethod def from_alipay_dict(d): if not d: return None o = MedicalHospitalDeptInfo() if 'code' in d: o.code = d['code'] if 'location' in d: o.location = d['location'] if 'name' in d: o.name = d['name'] if 'parent_name' in d: o.parent_name = d['parent_name'] if 'partner_code' in d: o.partner_code = d['partner_code'] return o
idaes/power_generation/costing/power_plant_costing.py
carldlaird/idaes-pse
112
12785559
<gh_stars>100-1000 ################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# """ Power Plant costing library This method leverages NETL costing capabilities. Two main methods have been developed to calculate the capital cost of power generation plants: 1.- Fossil fueled power plants (from SCPC to IGCC) (get_PP_costing) 2.- supercritical CO2 power cycles (direct and indirect) (get_sCO2_unit_cost) other methods: * get_ASU_cost() to cost air separation units * costing_initialization() to initialize costing blocks * display_total_plant_costs() to display total plant cost * display_bare_erected_costs() to display BEC costs * build_flowsheet_cost_constraint() to display the total cost of the entire flowsheet * display_flowsheet_cost() to display flowsheet cost * check_sCO2_costing_bounds() to display a warnning if costing model have been used outside the range that where designed for """ __author__ = "Costing Team (<NAME> and <NAME>)" __version__ = "1.0.0" from pyomo.environ import Param, Var, Block, Constraint, Expression, value, \ Expr_if import idaes.core.util.scaling as iscale from idaes.power_generation.costing.costing_dictionaries import \ BB_costing_exponents, BB_costing_params, sCO2_costing_params from pyomo.util.calc_var_value import calculate_variable_from_constraint # ----------------------------------------------------------------------------- # Power Plant Costing Library # ----------------------------------------------------------------------------- def get_PP_costing(self, cost_accounts, scaled_param, units, tech, ccs='B'): ''' Power Plant Costing Method This method relies on the capital cost scaling methodologies developed by NETL. Report #DOE/NETL-341/013113 Multiple vendors quotes have been used to determine the cost of several plant equipments (i.e. boiler, pumps, heat exchangers, etc.), other cost incurred during the plant operation (i.e. solids handling, etc.) Scaling approach uses one main equation: SC = RC*(SP/RP)^Exp where: SC is the scaled cost RC is the reference cost SP is the scaled operational parameter RP is the reference operational parameter Exp is the scaling exponent The scaled cost is computed using ref values for different technoligies. Categories: 1 - Supercritical PC, air-fired, with and without CO2 capture, Illinois No. 6 coal 2 - Subcritical PC, air-fired, with and without CO2 capture, Illinois No. 6 coal 3 - Two-stage, slurry-feed, oxygen-blown gasifier with and without CO2 capture, Illinois No. 6 coal 4 - Single-stage, slurry-feed, oxygen-blown gasifier with and without CO2 capture, Illinois No. 6 coal 5 - Single-stage, dry-feed, oxygen-blown, up-flow gasifier with and without CO2 capture, Illinois No. 6 coal 6 - Natural gas, air-fired, with and without CO2 capture 7 - Advanced Ultrasupercritical PC This method computes the capital cost of units and main components of the power plant, and requires a few arguments to build a constraint as part of your main model. Args: * self: A block or unit model where costing constraints can be added to * accounts: A list of accounts to be included in the total cost, they should all use the same reference parameter * scaled_param: the process parameter for the system(s) being costed * units: the units of the scaled_param, used for verification * tech: int 1-7 representing the above catagories * ccs: 'A' or 'B' representing no CCS or CCS The appropriate scaling parameters for various cost accounts can be found in the QGESS on capital cost scaling (Report #DOE/NETL-341/013113). The correct units for the reference parameters are found in the BBR4 COE spreadsheet. ''' # ------------------------ Power Plant Cost ------------------------ # check to see if a costing block already exists if hasattr(self, 'costing'): raise AttributeError("{} already has an attribute costing. " "Check that you are not calling get_costing" " twice on the same model".format(self.name)) # create a costing Block self.costing = Block() self.costing.library = 'PP' # find flowsheet block to create global costing parameters try: fs = self.flowsheet() except AttributeError: fs = self.parent_block() # build flowsheet level parameters CE_index = year if not hasattr(fs, 'costing'): fs.get_costing(year='2018') CE_index = fs.costing.CE_index # define preloaded accounts PC_preloaded_accounts = {'Coal Handling': ['1.1', '1.2', '1.3', '1.4', '1.9a'], 'Sorbent Handling': ['1.5', '1.6', '1.7', '1.8', '1.9b'], 'Coal Feed': ['2.1', '2.2', '2.9a'], 'Sorbent Feed': ['2.5', '2.6', '2.9b'], 'Feedwater System': ['3.1', '3.3'], 'PC Boiler': ['4.9'], 'Steam Turbine': ['8.1'], 'Condenser': ['8.3'], 'Cooling Tower': ['9.1'], 'Circulating Water System': ['9.2', '9.3', '9.4', '9.6', '9.7'], 'Ash Handling': ['10.6', '10.7', '10.9']} IGCC_preloaded_accounts = {'Coal Handling': ['1.1', '1.2', '1.3', '1.4', '1.9'], 'Coal Feed': ['2.1', '2.2', '2.3', '2.4', '2.9'], 'Feedwater System': ['3.1', '3.3'], 'Gasifier': ['4.1'], 'Syngas Cooler': ['4.2'], 'ASU': ['4.3a'], 'ASU Oxidant Compression': ['4.3b'], 'Combustion Turbine': ['6.1', '6.3'], 'Syngas Expander': ['6.2'], 'HRSG': ['7.1', '7.2'], 'Steam Turbine': ['8.1'], 'Condenser': ['8.3'], 'Cooling Tower': ['9.1'], 'Circulating Water System': ['9.2', '9.3', '9.4', '9.6', '9.7'], 'Slag Handling': ['10.1', '10.2', '10.3', '10.6', '10.7', '10.8', '10.9']} NGCC_preloaded_accounts = {'Feedwater System': ['3.1', '3.3'], 'Combustion Turbine': ['6.1', '6.3'], 'HRSG': ['7.1', '7.2'], 'Steam Turbine': ['8.1'], 'Condenser': ['8.3'], 'Cooling Tower': ['9.1'], 'Circulating Water System': ['9.2', '9.3', '9.4', '9.6', '9.7']} AUSC_preloaded_accounts = {'PC Boiler': ['4.9'], 'Steam Turbine': ['8.1'], 'Steam Piping': ['8.4']} # preloaded account handling if type(cost_accounts) == str: if tech in [1, 2]: cost_accounts = PC_preloaded_accounts[cost_accounts] elif tech in [3, 4, 5]: cost_accounts = IGCC_preloaded_accounts[cost_accounts] elif tech == 6: cost_accounts = NGCC_preloaded_accounts[cost_accounts] elif tech == 7: cost_accounts = AUSC_preloaded_accounts[cost_accounts] else: AttributeError("{} technology not supported".format(self.name)) # check that all accounts use the same process parameter param_check = None for account in cost_accounts: param = BB_costing_exponents[str(tech)][account]['Process Parameter'] if param_check is None: param_check = param elif param != param_check: raise ValueError("{} cost accounts selected do not use " " the same process parameter".format(self.name)) # check that the user passed the correct units ref_units = BB_costing_params[str(tech)][ccs][cost_accounts[0]]['Units'] if units != ref_units: raise ValueError('Account %s uses units of %s. ' 'Units of %s were passed.' % (cost_accounts[0], ref_units, units)) # construct dictionaries account_names = {} exponents = {} reference_costs = {} reference_params = {} engineering_fees = {} process_contingencies = {} project_contingencies = {} for account in cost_accounts: account_names[account] = BB_costing_exponents[str( tech)][account]['Account Name'] exponents[account] = float( BB_costing_exponents[str(tech)][account]['Exponent']) reference_costs[account] = BB_costing_params[str( tech)][ccs][account]['BEC'] reference_params[account] = BB_costing_params[str( tech)][ccs][account]['RP Value'] engineering_fees[account] = BB_costing_params[str( tech)][ccs][account]['Eng Fee'] process_contingencies[account] = BB_costing_params[str( tech)][ccs][account]['Process Contingency'] project_contingencies[account] = BB_costing_params[str( tech)][ccs][account]['Project Contingency'] # Used by other functions for reporting results self.costing.account_names = account_names # define parameters self.costing.exp = Param(cost_accounts, mutable=True, initialize=exponents, doc='exponential parameter for account') self.costing.ref_cost = Param(cost_accounts, mutable=True, initialize=reference_costs, doc='reference cost for account') self.costing.ref_param = Param(cost_accounts, mutable=True, initialize=reference_params, doc='reference parameter for account') self.costing.eng_fee = Param(cost_accounts, mutable=True, initialize=engineering_fees, doc='engineering fee percentage') self.costing.process_conting = Param(cost_accounts, mutable=True, initialize=process_contingencies, doc='process contingency percentage') self.costing.project_conting = Param(cost_accounts, mutable=True, initialize=project_contingencies, doc='project contingency percentage') # define variables self.costing.bare_erected_cost = Var(cost_accounts, initialize=reference_costs, bounds=(0, 1e4), doc='scaled bare erected cost in $MM') self.costing.total_plant_cost = Var(cost_accounts, initialize=reference_costs, bounds=(0, 1e4), doc='total plant cost in $MM') # rule for scaling BEC # reference cost is in 2018 dollars, 671.1 is CE index for 2018 def bare_erected_cost_rule(costing, i): return (costing.bare_erected_cost[i]*1e3 == (CE_index/671.1)*costing.ref_cost[i] * (scaled_param/costing.ref_param[i])**costing.exp[i]) self.costing.bare_erected_cost_eq = Constraint( cost_accounts, rule=bare_erected_cost_rule) # rule for calculating TPC def total_plant_cost_rule(costing, i): return (costing.total_plant_cost[i] == costing.bare_erected_cost[i] * (1 + costing.eng_fee[i] + costing.process_conting[i]) * (1 + costing.project_conting[i])) self.costing.total_plant_cost_eq = Constraint( cost_accounts, rule=total_plant_cost_rule) # rule for sum of BEC def BEC_sum_rule(costing): return sum(costing.bare_erected_cost[i] for i in cost_accounts) self.costing.bare_erected_cost_sum = Expression(rule=BEC_sum_rule) # rule for sum of TPC def TPC_sum_rule(costing): return sum(costing.total_plant_cost[i] for i in cost_accounts) self.costing.total_plant_cost_sum = Expression(rule=TPC_sum_rule) # # add variable and constraint scaling for i in cost_accounts: iscale.set_scaling_factor(self.costing.bare_erected_cost[i], 1) iscale.set_scaling_factor(self.costing.total_plant_cost[i], 1) iscale.constraint_scaling_transform(self. costing.bare_erected_cost_eq[i], 1e-3, overwrite=False) iscale.constraint_scaling_transform(self. costing.total_plant_cost_eq[i], 1, overwrite=False) # ----------------------------------------------------------------------------- # Supercritical CO2 Costing Library # ----------------------------------------------------------------------------- def get_sCO2_unit_cost(self, equipment, scaled_param, temp_C=None, n_equip=1): ''' Args: self - pyomo Block where constraints will be made unit_name - the name of the SCO2 equipment to cost scaling_param - the scaling parameter (in appropriate units) for the selected equipment temp - the maximum temperature of the equipment. Not all types of equipment use a temperature correction factor, so it is optional n_equip - the number of pieces of equipment to cost Cost is in M$ ''' # check to see if a costing block already exists if hasattr(self, 'costing'): raise AttributeError("{} already has an attribute costing. " "Check that you are not calling get_costing" " twice on the same model".format(self.name)) # create a costing Block self.costing = Block() self.costing.library = 'sCO2' self.costing.equipment = equipment # find flowsheet block to create global costing parameters try: fs = self.flowsheet() except AttributeError: fs = self.parent_block() # build flowsheet level parameters CE_index = year if not hasattr(fs, 'costing'): fs.get_costing(year='2017') CE_index = fs.costing.CE_index param_dict = sCO2_costing_params[equipment] # define parameters self.costing.ref_cost = Param(mutable=True, initialize=param_dict['a'], doc='Reference cost') self.costing.exp = Param(mutable=True, initialize=param_dict['b'], doc='Scaling exponent') self.costing.c = Param(mutable=True, initialize=param_dict['c'], doc='coefficient for temperature correction') self.costing.d = Param(mutable=True, initialize=param_dict['d'], doc='coefficient for temperature correction') self.costing.material_cost = Param(mutable=True, doc='material installation cost', initialize=param_dict['Material Cost']) self.costing.labor_cost = Param(mutable=True, initialize=param_dict['Labor Cost'], doc='labor installation cost') # estimates for the percentages of TPC will be added later self.costing.eng_fee = Param(mutable=True, initialize=0, doc='engineering fee percentage') self.costing.process_conting = Param(mutable=True, initialize=0, doc='process contingency percentage') self.costing.project_conting = Param(mutable=True, initialize=0, doc='project contingency percentage') # define variables # n_equip is left as a fixed variable to support MINLP optimization self.costing.n_equip = Var(initialize=n_equip, doc='number of pieces of equipment') self.costing.n_equip.fix(n_equip) self.costing.scaled_param = Var(initialize=scaled_param, bounds=(0, 1e12), doc='scaled parameter') self.costing.temp_factor = Var(initialize=1, bounds=(0.9, 100), doc='temperature correction factor') self.costing.equipment_cost = Var(initialize=self.costing.ref_cost, bounds=(0, 1e4), doc='equipment cost of sCO2 unit in $MM') self.costing.bare_erected_cost = Var(initialize=self.costing.ref_cost, bounds=(0, 1e4), doc='bare erected cost of sCO2 unit' 'in $MM') self.costing.total_plant_cost = Var(initialize=self.costing.ref_cost, bounds=(0, 1e4), doc='total plant cost of sCO2 unit' 'in $MM') # divides the scaled parameter by the number of pieces of equipment def scaled_param_rule(costing): return costing.scaled_param*costing.n_equip == scaled_param self.costing.scaled_param_eq = Constraint(rule=scaled_param_rule) # check if equipment requires a temperature correction factor if equipment in ['Axial turbine', 'Radial turbine', 'Coal-fired heater', 'Natural gas-fired heater', 'Recuperator']: if temp_C is None: raise ValueError('Temperature argument is ' 'required to cost %s equipment' % equipment) else: self.costing.temperature = Var(initialize=500, bounds=(0, 1e6), doc='dummy var for temperature') self.costing.temp_eq = Constraint(expr=(self.costing.temperature == temp_C)) def temp_correction_rule(costing): # rule for temp correction return (Expr_if(costing.temperature < 550, 1e-6*costing.temperature + 1, 1 + costing.c*(costing.temperature - 550) + costing.d*(costing.temperature - 550)**2) == costing.temp_factor) self.costing.temp_correction_eq = Constraint( rule=temp_correction_rule) else: self.costing.temp_factor.fix(1) # rule for equipment cost def equipment_cost_rule(costing): return (costing.equipment_cost*1e6 == (CE_index/567.5) * costing.n_equip * costing.ref_cost * (costing.scaled_param**costing.exp) * costing.temp_factor) self.costing.equipment_cost_eq = Constraint(rule=equipment_cost_rule) # rule for bare erected cost def bare_erected_cost_rule(costing): return (costing.bare_erected_cost == costing.equipment_cost * (1 + costing.material_cost + costing.labor_cost)) self.costing.bare_erected_cost_eq = Constraint(rule=bare_erected_cost_rule) # rule for calculating total plant cost def total_plant_cost_rule(costing): return (costing.total_plant_cost == costing.bare_erected_cost * (1 + costing.eng_fee + costing.process_conting + costing.project_conting)) self.costing.total_plant_cost_eq = Constraint(rule=total_plant_cost_rule) # add variable and constraint scaling if equipment in ["Recuperator", "Direct air cooler"]: iscale.set_scaling_factor(self.costing.scaled_param, 1e-5) else: iscale.set_scaling_factor(self.costing.scaled_param, 1) iscale.set_scaling_factor(self.costing.equipment_cost, 1e3) iscale.set_scaling_factor(self.costing.bare_erected_cost, 1e3) iscale.set_scaling_factor(self.costing.total_plant_cost, 1e3) iscale.constraint_scaling_transform( self.costing.equipment_cost_eq, 1e-6, overwrite=False) iscale.constraint_scaling_transform( self.costing.bare_erected_cost_eq, 1e3, overwrite=False) iscale.constraint_scaling_transform( self.costing.bare_erected_cost_eq, 1e3, overwrite=False) # ----------------------------------------------------------------------------- # Air Separation Unit Costing Library # ----------------------------------------------------------------------------- def get_ASU_cost(self, scaled_param): # scaled parameter is O2 flowrate in TPD params = {'Reference Cost': 3.26e6, 'Reference Parameter': 13078, 'Exponent': 0.7, 'Eng Fee': 0.097, 'Process': 0, 'Project': 0.110} # check to see if a costing block already exists if hasattr(self, 'costing'): raise AttributeError("{} already has an attribute costing. " "Check that you are not calling get_costing" " twice on the same model".format(self.name)) # create a costing Block self.costing = Block() self.costing.library = 'ASU' # find flowsheet block to create global costing parameters try: fs = self.flowsheet() except AttributeError: fs = self.parent_block() # build flowsheet level parameters CE_index = year if not hasattr(fs, 'costing'): fs.get_costing(year='2017') CE_index = fs.costing.CE_index # define parameters self.costing.ref_cost = Param(initialize=params['Reference Cost'], mutable=True, doc='ASU reference cost') self.costing.ref_param = Param(initialize=params['Reference Parameter'], mutable=True, doc='ASU reference parameter value') self.costing.exp = Param(initialize=params['Exponent'], mutable=True, doc='ASU scaling exponent') self.costing.eng_fee = Param(mutable=True, initialize=params['Eng Fee'], doc='engineering fee percentage') self.costing.process_conting = Param(mutable=True, initialize=params['Process'], doc='process contingency percentage') self.costing.project_conting = Param(mutable=True, initialize=params['Project'], doc='project contingency percentage') # define variables self.costing.bare_erected_cost = Var(initialize=params['Reference Cost'], bounds=(0, 1e4), doc='scaled bare erected cost in $MM') self.costing.total_plant_cost = Var(initialize=params['Reference Cost'], bounds=(0, 1e4), doc='total plant cost in $MM') # rule for scaling BEC # reference cost is in 2008 dollars, 566.2 is CE index for Nov 2008 def bare_erected_cost_rule(costing): return (costing.bare_erected_cost*1e3 == (CE_index/566.2)*costing.ref_cost * (scaled_param/costing.ref_param)**costing.exp) self.costing.bare_erected_cost_eq = Constraint(rule=bare_erected_cost_rule) # rule for calculating TPC def total_plant_cost_rule(costing): return (costing.total_plant_cost == costing.bare_erected_cost * (1 + costing.eng_fee + costing.process_conting + costing.project_conting)) self.costing.total_plant_cost_eq = Constraint(rule=total_plant_cost_rule) # add variable and constraint scaling iscale.set_scaling_factor(self.costing.bare_erected_cost, 1) iscale.set_scaling_factor(self.costing.total_plant_cost, 1) iscale.constraint_scaling_transform( self.costing.bare_erected_cost_eq, 1e-3, overwrite=False) iscale.constraint_scaling_transform( self.costing.total_plant_cost_eq, 1, overwrite=False) # ----------------------------------------------------------------------------- # Costing Library Utility Functions # ----------------------------------------------------------------------------- def costing_initialization(fs): for o in fs.component_objects(descend_into=False): # look for costing blocks if hasattr(o, 'costing'): if o.costing.library == 'sCO2': if o.costing.equipment in ['Axial turbine', 'Radial turbine', 'Coal-fired heater', 'Natural gas-fired heater', 'Recouperator']: calculate_variable_from_constraint(o.costing.temperature, o.costing.temp_eq) calculate_variable_from_constraint(o.costing.temp_factor, o.costing. temp_correction_eq) calculate_variable_from_constraint(o.costing.scaled_param, o.costing.scaled_param_eq) calculate_variable_from_constraint(o.costing.equipment_cost, o.costing.equipment_cost_eq) calculate_variable_from_constraint(o.costing.bare_erected_cost, o.costing. bare_erected_cost_eq) calculate_variable_from_constraint(o.costing.total_plant_cost, o.costing. total_plant_cost_eq) elif o.costing.library in ['PP', 'ASU']: for key in o.costing.bare_erected_cost.keys(): calculate_variable_from_constraint(o.costing. bare_erected_cost[key], o.costing. bare_erected_cost_eq[ key]) calculate_variable_from_constraint(o.costing. total_plant_cost[key], o.costing. total_plant_cost_eq[ key]) def display_total_plant_costs(fs): print('-----Total Plant Costs-----') for o in fs.component_objects(descend_into=False): # look for costing blocks if hasattr(o, 'costing') and hasattr(o.costing, 'total_plant_cost'): print('%s: $%.2f Million' % (value(o.name), value(o.costing.total_cost))) def display_bare_erected_costs(fs): print('-----Bare Erected Costs-----') for o in fs.component_objects(descend_into=False): # look for costing blocks if hasattr(o, 'costing') and hasattr(o.costing, 'bare_erected_cost'): print('%s: $%.2f Million' % (value(o.name), value(o.costing.bare_erected_cost))) def display_equipment_costs(fs): print('-----Equipment Costs-----') for o in fs.component_objects(descend_into=False): # look for costing blocks if hasattr(o, 'costing') and hasattr(o.costing, 'equipment_cost'): print('%s: $%.2f Million' % (value(o.name), value(o.costing.equipment_cost))) def build_flowsheet_cost_constraint(m): total_cost_list = [] for o in m.fs.component_objects(descend_into=False): # look for costing blocks if hasattr(o, 'costing'): for key in o.costing.total_plant_cost.keys(): total_cost_list.append(o.costing.total_plant_cost[key]) m.fs.flowsheet_cost = Var(initialize=0, bounds=(0, 1e12), doc='cost of entire process') def flowsheet_cost_rule(fs): return fs.flowsheet_cost == sum(total_cost_list) m.fs.flowsheet_cost_eq = Constraint(rule=flowsheet_cost_rule) def display_flowsheet_cost(m): print('\n') print('Total flowsheet cost: $%.3f Million' % value(m.fs.flowsheet_cost_exp)) def check_sCO2_costing_bounds(fs): # interate through the children of the flowsheet for o in fs.component_objects(descend_into=False): # look for costing blocks if hasattr(o, 'costing'): costing = o.costing if costing.library == 'sCO2': equipment = costing.equipment lower_bound = sCO2_costing_params[equipment]['Lower Bound'] upper_bound = sCO2_costing_params[equipment]['Upper Bound'] if value(costing.scaled_param) < lower_bound: print('''%s: The scaled parameter (%f) is below the lower bound (%f).''' % (value(o.name), value(costing.scaled_param), lower_bound)) elif value(costing.scaled_param) > upper_bound: print('''%s: The scaled parameter (%f) is above the upper bound (%f).''' % (value(o.name), value(costing.scaled_param), upper_bound)) else: print('''%s: The scaled parameter is within the bounds.''' % value(o.name))
src/masonite/commands/__init__.py
cercos/masonite
1,816
12785561
<reponame>cercos/masonite<filename>src/masonite/commands/__init__.py from .CommandCapsule import CommandCapsule from .AuthCommand import AuthCommand from .TinkerCommand import TinkerCommand from .KeyCommand import KeyCommand from .ServeCommand import ServeCommand from .QueueWorkCommand import QueueWorkCommand from .QueueRetryCommand import QueueRetryCommand from .QueueTableCommand import QueueTableCommand from .QueueFailedCommand import QueueFailedCommand from .MakeControllerCommand import MakeControllerCommand from .MakeJobCommand import MakeJobCommand from .MakeMailableCommand import MakeMailableCommand from .MakeProviderCommand import MakeProviderCommand from .PublishPackageCommand import PublishPackageCommand from .MakePolicyCommand import MakePolicyCommand from .MakeTestCommand import MakeTestCommand from .DownCommand import DownCommand from .UpCommand import UpCommand from .MakeCommandCommand import MakeCommandCommand from .MakeViewCommand import MakeViewCommand from .MakeMiddlewareCommand import MakeMiddlewareCommand from .PresetCommand import PresetCommand from .Command import Command
calvinextras/calvinsys/web/pushbullet/Pushbullet.py
gabrielcercel/calvin-base
334
12785574
<reponame>gabrielcercel/calvin-base<gh_stars>100-1000 # -*- coding: utf-8 -*- # Copyright (c) 2017 Ericsson AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pushbullet from calvin.runtime.south.async import threads, async from calvin.utilities.calvinlogger import get_logger from calvin.runtime.south.calvinsys import base_calvinsys_object _log = get_logger(__name__) class Pushbullet(base_calvinsys_object.BaseCalvinsysObject): """ Pushbullet - Post messages to pushbullet channel Requires pushbullet.py (pip install pushbullet.py) """ init_schema = { "type": "object", "properties": { "api_key": { "description": "API key, see https://www.pushbullet.com/account", "type": "string" }, "channel_tag": { "description": "Pushbullet to post to, see http://www.pushbullet.com", "type": "string" } }, "required": ["api_key", "channel_tag"], "description": "Setup up api key and tag of channel to use for pushbullet messages" } can_write_schema = { "description": "Returns True if data can be posted, otherwise False", "type": "boolean" } write_schema = { "description": "Post update to configured pushbullet channel", "type": ["object", "string"], "properties": { "title": {"type": "string", "description": "title of message"}, "message": {"type": "string", "description": "message to post to channel"} } } def init(self, api_key, channel_tag, title=None): def init_pb(): try: # pushbullet = pbullet.Pushbullet({"api_key": api_key}) pb_api = pushbullet.PushBullet(api_key) ch = pb_api.get_channel(channel_tag) return (pb_api, ch) except Exception as e: _log.error("Failed to initialize pushbullet: {}".format(e)) def done(pb_chan): self.pushbullet, self.channel = pb_chan self.busy = False self.title = title self.busy = True in_progress = threads.defer_to_thread(init_pb) in_progress.addCallback(done) def can_write(self): return not self.busy def write(self, data): def send(): try: self.channel.push_note(title, message) except Exception as e: _log.error("Failed to send pushbullet: {}".format(e)) done() def done(*args, **kwargs): self.busy = False if isinstance(data, basestring): message = data title = self.title else : message = data.get("message") title = data.get("title") self.busy = True in_progress = threads.defer_to_thread(send) in_progress.addBoth(done) def close(self): del self.channel self.channel = None del self.pushbullet self.pushbullet = None
home.admin/BlitzTUI/blitztui/ui/qcode.py
PatrickScheich/raspiblitz
1,908
12785590
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'designer/qcode.ui' # # Created by: PyQt5 UI code generator 5.11.3 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_DialogShowQrCode(object): def setupUi(self, DialogShowQrCode): DialogShowQrCode.setObjectName("DialogShowQrCode") DialogShowQrCode.resize(480, 320) self.buttonBox = QtWidgets.QDialogButtonBox(DialogShowQrCode) self.buttonBox.setGeometry(QtCore.QRect(326, 268, 150, 50)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.buttonBox.sizePolicy().hasHeightForWidth()) self.buttonBox.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(24) self.buttonBox.setFont(font) self.buttonBox.setStyleSheet("background-color: lightgrey;\n" "font: 24pt \"Arial\";") self.buttonBox.setOrientation(QtCore.Qt.Vertical) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setObjectName("buttonBox") self.top_right_logo = QtWidgets.QLabel(DialogShowQrCode) self.top_right_logo.setGeometry(QtCore.QRect(430, 2, 40, 60)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.top_right_logo.sizePolicy().hasHeightForWidth()) self.top_right_logo.setSizePolicy(sizePolicy) self.top_right_logo.setText("") self.top_right_logo.setPixmap(QtGui.QPixmap(":/RaspiBlitz/images/RaspiBlitz_Logo_Berry.png")) self.top_right_logo.setScaledContents(True) self.top_right_logo.setAlignment(QtCore.Qt.AlignCenter) self.top_right_logo.setObjectName("top_right_logo") self.frame = QtWidgets.QFrame(DialogShowQrCode) self.frame.setGeometry(QtCore.QRect(0, 0, 320, 320)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.frame.sizePolicy().hasHeightForWidth()) self.frame.setSizePolicy(sizePolicy) self.frame.setStyleSheet("background-color: rgb(255, 255, 255);") self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel) self.frame.setFrameShadow(QtWidgets.QFrame.Raised) self.frame.setObjectName("frame") self.qcode = QtWidgets.QLabel(self.frame) self.qcode.setGeometry(QtCore.QRect(1, 1, 318, 318)) self.qcode.setStyleSheet("background-color: white") self.qcode.setText("") self.qcode.setPixmap(QtGui.QPixmap(":/RaspiBlitz/images/RaspiBlitz_Logo_Stacked.png")) self.qcode.setScaledContents(True) self.qcode.setAlignment(QtCore.Qt.AlignCenter) self.qcode.setObjectName("qcode") self.label = QtWidgets.QLabel(DialogShowQrCode) self.label.setGeometry(QtCore.QRect(330, 4, 88, 60)) self.label.setText("") self.label.setPixmap(QtGui.QPixmap(":/RaspiBlitz/images/RaspiBlitz_Logo_Stacked.png")) self.label.setScaledContents(True) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName("label") self.horizontalLayoutWidget = QtWidgets.QWidget(DialogShowQrCode) self.horizontalLayoutWidget.setGeometry(QtCore.QRect(320, 70, 161, 191)) self.horizontalLayoutWidget.setObjectName("horizontalLayoutWidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.horizontalLayoutWidget) self.verticalLayout.setContentsMargins(6, 0, 6, 0) self.verticalLayout.setObjectName("verticalLayout") self.line = QtWidgets.QFrame(self.horizontalLayoutWidget) self.line.setFrameShape(QtWidgets.QFrame.HLine) self.line.setFrameShadow(QtWidgets.QFrame.Sunken) self.line.setObjectName("line") self.verticalLayout.addWidget(self.line) self.memo_key = QtWidgets.QLabel(self.horizontalLayoutWidget) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(11) font.setBold(True) font.setItalic(False) font.setUnderline(False) font.setWeight(75) self.memo_key.setFont(font) self.memo_key.setScaledContents(False) self.memo_key.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop) self.memo_key.setWordWrap(True) self.memo_key.setObjectName("memo_key") self.verticalLayout.addWidget(self.memo_key) self.memo_value = QtWidgets.QLabel(self.horizontalLayoutWidget) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(11) self.memo_value.setFont(font) self.memo_value.setScaledContents(False) self.memo_value.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTop|QtCore.Qt.AlignTrailing) self.memo_value.setWordWrap(True) self.memo_value.setObjectName("memo_value") self.verticalLayout.addWidget(self.memo_value) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.status_key = QtWidgets.QLabel(self.horizontalLayoutWidget) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(11) font.setBold(True) font.setUnderline(False) font.setWeight(75) self.status_key.setFont(font) self.status_key.setScaledContents(False) self.status_key.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop) self.status_key.setWordWrap(True) self.status_key.setObjectName("status_key") self.horizontalLayout.addWidget(self.status_key) self.status_value = QtWidgets.QLabel(self.horizontalLayoutWidget) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(11) self.status_value.setFont(font) self.status_value.setScaledContents(False) self.status_value.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTop|QtCore.Qt.AlignTrailing) self.status_value.setWordWrap(True) self.status_value.setObjectName("status_value") self.horizontalLayout.addWidget(self.status_value) self.verticalLayout.addLayout(self.horizontalLayout) self.inv_amt_key = QtWidgets.QLabel(self.horizontalLayoutWidget) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.inv_amt_key.setFont(font) self.inv_amt_key.setObjectName("inv_amt_key") self.verticalLayout.addWidget(self.inv_amt_key) self.inv_amt_value = QtWidgets.QLabel(self.horizontalLayoutWidget) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(11) font.setBold(False) font.setWeight(50) self.inv_amt_value.setFont(font) self.inv_amt_value.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.inv_amt_value.setObjectName("inv_amt_value") self.verticalLayout.addWidget(self.inv_amt_value) self.amt_paid_key = QtWidgets.QLabel(self.horizontalLayoutWidget) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.amt_paid_key.setFont(font) self.amt_paid_key.setObjectName("amt_paid_key") self.verticalLayout.addWidget(self.amt_paid_key) self.amt_paid_value = QtWidgets.QLabel(self.horizontalLayoutWidget) font = QtGui.QFont() font.setFamily("Arial") font.setPointSize(11) self.amt_paid_value.setFont(font) self.amt_paid_value.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.amt_paid_value.setObjectName("amt_paid_value") self.verticalLayout.addWidget(self.amt_paid_value) self.spinner = QtWidgets.QWidget(DialogShowQrCode) self.spinner.setGeometry(QtCore.QRect(440, 0, 40, 40)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.spinner.sizePolicy().hasHeightForWidth()) self.spinner.setSizePolicy(sizePolicy) self.spinner.setObjectName("spinner") self.spinner.raise_() self.buttonBox.raise_() self.top_right_logo.raise_() self.frame.raise_() self.label.raise_() self.horizontalLayoutWidget.raise_() self.retranslateUi(DialogShowQrCode) self.buttonBox.accepted.connect(DialogShowQrCode.accept) QtCore.QMetaObject.connectSlotsByName(DialogShowQrCode) def retranslateUi(self, DialogShowQrCode): _translate = QtCore.QCoreApplication.translate DialogShowQrCode.setWindowTitle(_translate("DialogShowQrCode", "Dialog")) self.memo_key.setText(_translate("DialogShowQrCode", "Memo")) self.memo_value.setText(_translate("DialogShowQrCode", "RB-Vivid-Badger")) self.status_key.setText(_translate("DialogShowQrCode", "Status")) self.status_value.setText(_translate("DialogShowQrCode", "Open/Paid")) self.inv_amt_key.setText(_translate("DialogShowQrCode", "Invoice Amount")) self.inv_amt_value.setText(_translate("DialogShowQrCode", "123456798")) self.amt_paid_key.setText(_translate("DialogShowQrCode", "Amount Paid")) self.amt_paid_value.setText(_translate("DialogShowQrCode", "N/A")) from . import resources_rc if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) DialogShowQrCode = QtWidgets.QDialog() ui = Ui_DialogShowQrCode() ui.setupUi(DialogShowQrCode) DialogShowQrCode.show() sys.exit(app.exec_())
recipes/Python/473781_mthreadpy_version_2/recipe-473781.py
tdiprima/code
2,023
12785601
<reponame>tdiprima/code # #include <windows.h> import thread # #include <math.h> import math # #include <stdio.h> import sys # #include <stdlib.h> import time # static int runFlag = TRUE; runFlag = True # void main(int argc, char *argv[]) { def main(argc, argv): global runFlag # unsigned int runTime # PYTHON: NO CODE # SYSTEMTIME now; # PYTHON: NO CODE # WORD stopTimeMinute, stopTimeSecond; # PYTHON: NO CODE # // Get command line argument, N try: N = abs(int(argv[1])) except: sys.exit(1) # // Get the time the threads should run, runtime try: runTime = abs(int(argv[2])) except: sys.exit(1) # // Calculate time to halt (learn better ways to do this later) # GetSystemTime(&now); now = time.localtime() # printf("mthread: Suite starting at system time # %d:%d:%d\n", now.wHour, now.wMinute, now.wSecond); sys.stdout.write('mthread: Suite starting at system time %d:%d:%d\n' \ % (now.tm_hour, now.tm_min, now.tm_sec)) # stopTimeSecond = (now.wSecond + (WORD) runTime) % 60; stopTimeSecond = (now.tm_sec + runTime) % 60 # stopTimeMinute = now.wMinute + (now.wSecond + # (WORD) runTime) / 60; stopTimeMinute = now.tm_min + (now.tm_sec + runTime) / 60 # // For 1 to N # for (i = 0; i < N; i++) { for i in range(N): # // Create a new thread to execute simulated word thread.start_new_thread(threadWork, ()) # Sleep(100); // Let newly created thread run time.sleep(0.1) # } # PYTHON: NO CODE # // Cycle while children work ... # while (runFlag) { while runFlag: # GetSystemTime(&now); now = time.localtime() # if ((now.wMinute >= stopTimeMinute) # && # (now.wSecond >= stopTimeSecond) # ) if now.tm_min >= stopTimeMinute \ and now.tm_sec >= stopTimeSecond: # runFlag = FALSE; runFlag = False # Sleep(1000); time.sleep(1) # } # PYTHON: NO CODE # Sleep(5000); time.sleep(5) # } # PYTHON: NO CODE # // The code executed by each worker thread (simulated work) # DWORD WINAPI threadWork(LPVOID threadNo) { def threadWork(): threadNo = thread.get_ident() # // Local variables # double y; # PYTHON: NO CODE # const double x = 3.14159; x = 3.14159 # const double e = 2.7183; e = 2.7183 # int i; # PYTHON: NO CODE # const int napTime = 1000; // in milliseconds napTime = 1000 # const int busyTime = 40000; busyTime = 40000 # DWORD result = 0; result = 0 # // Create load # while (runFlag) { while runFlag: # // Parameterized processor burst phase # for (i = 0; i < busyTime; i++) for i in range(busyTime): # y = pow(x, e); y = math.pow(x, e) # // Parameterized sleep phase # Sleep(napTime); time.sleep(napTime / 1000.0) # // Write message to stdout sys.stdout.write('Thread %s just woke up.\n' % threadNo) # } # PYTHON: NO CODE # // Terminating # return result; return result # } # PYTHON: NO CODE if __name__ == '__main__': main(len(sys.argv), sys.argv)
atest/testdata/keywords/PositionalOnly.py
bhirsz/robotframework
7,073
12785671
def one_argument(arg, /): return arg.upper() def three_arguments(a, b, c, /): return '-'.join([a, b, c]) def with_normal(posonly, /, normal): return posonly + '-' + normal def defaults(required, optional='default', /): return required + '-' + optional def types(first: int, second: float, /): return first + second def kwargs(x, /, **y): return '%s, %s' % (x, ', '.join('%s: %s' % item for item in y.items()))
rx/internal/basic.py
mmpio/RxPY
4,342
12785672
from typing import Any from datetime import datetime # Defaults def noop(*args, **kw): """No operation. Returns nothing""" pass def identity(x: Any) -> Any: """Returns argument x""" return x def default_now() -> datetime: return datetime.utcnow() def default_comparer(x: Any, y: Any) -> bool: return x == y def default_sub_comparer(x, y): return x - y def default_key_serializer(x: Any) -> str: return str(x) def default_error(err) -> Exception: if isinstance(err, BaseException): raise err else: raise Exception(err)
src/transformer_deploy/backends/pytorch_utils.py
dumpmemory/transformer-deploy
698
12785687
<filename>src/transformer_deploy/backends/pytorch_utils.py # Copyright 2022, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utils related to Pytorch inference. """ from typing import Callable, Dict, Tuple import torch from torch.onnx import TrainingMode from transformers import AutoConfig, PreTrainedModel def infer_classification_pytorch( model: PreTrainedModel, run_on_cuda: bool ) -> Callable[[Dict[str, torch.Tensor]], torch.Tensor]: """ Perform Pytorch inference for classification task :param model: Pytorch model (transformers) :param run_on_cuda: True if should be ran on GPU :return: a function to perform inference """ def infer(inputs: Dict[str, torch.Tensor]) -> torch.Tensor: model_output = model(**inputs).logits.detach() # noqa: F821 if run_on_cuda: torch.cuda.synchronize() return model_output return infer def infer_feature_extraction_pytorch( model: PreTrainedModel, run_on_cuda: bool ) -> Callable[[Dict[str, torch.Tensor]], torch.Tensor]: """ Perform Pytorch inference for feature extraction task :param model: Pytorch model (sentence-transformers) :param run_on_cuda: True if should be ran on GPU :return: a function to perform inference """ def infer(inputs: Dict[str, torch.Tensor]) -> torch.Tensor: model_output = model(**inputs).detach() # noqa: F821 if run_on_cuda: torch.cuda.synchronize() return model_output return infer def get_model_size(path: str) -> Tuple[int, int]: """ Find number of attention heads and hidden layer size of a model :param path: path to model :return: tupple of # of attention heads and hidden layer size (0 if not found) """ config = AutoConfig.from_pretrained(pretrained_model_name_or_path=path) num_attention_heads = getattr(config, "num_attention_heads", 0) hidden_size = getattr(config, "hidden_size", 0) return num_attention_heads, hidden_size # TODO manage encoder / decoder architecture + cache def convert_to_onnx( model_pytorch: torch.nn.Module, output_path: str, inputs_pytorch: Dict[str, torch.Tensor], quantization: bool, var_output_seq: bool, ) -> None: """ Convert a Pytorch model to an ONNX graph by tracing the provided input inside the Pytorch code. Pytorch sometimes fails to infer output tensor shape of models In ONNX graph, some axis name may be marked like "Divoutput_dim_1" which is a generated name, and there may be a warning: ** "WARNING: The shape inference of prim::Constant type is missing, so it may result in wrong shape inference for the exported graph. Please consider adding it in symbolic function." ** ex.: https://discuss.pytorch.org/t/bidirectional-lstm-and-onnx-runtime-warnings/136374 :param model_pytorch: Pytorch model (transformers) :param output_path: where to save ONNX file :param inputs_pytorch: Tensor, can be dummy data, shape is not important as we declare all axes as dynamic. Should be on the same device than the model (CPU or GPU) :param quantization: model is quantized :param var_output_seq: variable size sequence """ if quantization: try: from pytorch_quantization.nn import TensorQuantizer except ImportError: raise ImportError( "It seems that pytorch-quantization is not yet installed. " "It is required when you enable the quantization flag and use CUDA device." "Please find installation instructions on " "https://github.com/NVIDIA/TensorRT/tree/main/tools/pytorch-quantization or use:\n" "pip3 install git+ssh://[email protected]/NVIDIA/TensorRT#egg=pytorch-quantization\\&" "subdirectory=tools/pytorch-quantization/" ) TensorQuantizer.use_fb_fake_quant = True if hasattr(model_pytorch, "config") and hasattr(model_pytorch.config, "use_cache"): use_cache = getattr(model_pytorch.config, "use_cache") setattr(model_pytorch.config, "use_cache", False) # dynamic axis == variable length axis dynamic_axis = dict() for k in inputs_pytorch.keys(): if var_output_seq: # seq axis name is fixed to be matched with output seq axis name (for output shape prediction) dynamic_axis[k] = {0: "batch_size", 1: "sequence"} else: # if there is no specific requirement, each axis name is unique, fix some issue on T5 model dynamic_axis[k] = {0: "batch_size", 1: f"sequence-{k}"} dynamic_axis["output"] = {0: "batch_size"} if var_output_seq: dynamic_axis["output"][1] = "sequence" # replace int64 input tensors by int32 -> for ONNX Runtime binding API and expected by TensorRT engine for k, v in inputs_pytorch.items(): if not isinstance(v, torch.Tensor): continue if v.dtype in [torch.long, torch.int64]: inputs_pytorch[k] = v.type(torch.int32) with torch.no_grad(): torch.onnx.export( model_pytorch, # model to optimize args=tuple(inputs_pytorch.values()), # tuple of multiple inputs f=output_path, # output path / file object opset_version=13, # the ONNX version to use, >= 13 supports channel quantized model do_constant_folding=True, # simplify model (replace constant expressions) input_names=list(inputs_pytorch.keys()), # input names output_names=["output"], # output axis name, hard coded so only 1 output supported dynamic_axes=dynamic_axis, # declare dynamix axis for each input / output training=TrainingMode.EVAL, # always put the model in evaluation mode verbose=False, ) if quantization: TensorQuantizer.use_fb_fake_quant = False if hasattr(model_pytorch, "config") and hasattr(model_pytorch.config, "use_cache"): setattr(model_pytorch.config, "use_cache", use_cache)
runtime/stdlib/jitlog.py
cheery/lever
136
12785693
<gh_stars>100-1000 # There is a convenient PYPYLOG=jit-log-opt:logfile # to enable jit logging from outside. # But I like having the option to # enable it from the inside. from rpython.rtyper.lltypesystem import rffi, lltype, llmemory from rpython.rlib.rjitlog import rjitlog from rpython.rlib import jit from space import * import fs module = Module(u'jitlog', {}, frozen=True) def builtin(fn): name = fn.__name__.rstrip('_').decode('utf-8') module.setattr_force(name, Builtin(fn, name)) return fn @builtin @signature(fs.File) def enable(fileobj): try: rjitlog.enable_jitlog(rffi.r_long(fileobj.fd)) except rjitlog.JitlogError as error: raise unwind(LError( error.msg.decode('utf-8'))) return null @builtin @signature() @jit.dont_look_inside def disable(): rjitlog.disable_jitlog() return null
packages/core/minos-microservice-common/minos/common/datetime.py
sorasful/minos-python
247
12785700
from datetime import ( datetime, timezone, ) def current_datetime() -> datetime: """Get current datetime in `UTC`. :return: A ``datetime`` instance. """ return datetime.now(tz=timezone.utc) NULL_DATETIME = datetime.max.replace(tzinfo=timezone.utc)
wpca/tests/test_utils.py
radicamc/wpca
123
12785717
from itertools import chain, combinations import numpy as np from numpy.testing import assert_allclose from wpca.tests.tools import assert_allclose_upto_sign from wpca.utils import orthonormalize, random_orthonormal, weighted_mean def test_orthonormalize(): rand = np.random.RandomState(42) X = rand.randn(3, 4) X2 = orthonormalize(X) assert_allclose_upto_sign(X[0] / np.linalg.norm(X[0]), X2[0]) assert_allclose(np.dot(X2, X2.T), np.eye(X2.shape[0]), atol=1E-15) def test_random_orthonormal(): def check_random_orthonormal(N, M, rows): X = random_orthonormal(N, M, rows=rows, random_state=42) assert X.shape == (N, M) if rows: C = np.dot(X, X.T) else: C = np.dot(X.T, X) assert_allclose(C, np.eye(C.shape[0]), atol=1E-15) for M in [5]: for N in range(1, M + 1): yield check_random_orthonormal, N, M, True yield check_random_orthonormal, M, N, False def test_weighted_mean(): def check_weighted_mean(shape, axis): rand = np.random.RandomState(0) x = rand.rand(*shape) w = rand.rand(*shape) wm = weighted_mean(x, w, axis) assert_allclose(wm, np.average(x, axis, w)) assert_allclose(wm, (w * x).sum(axis) / w.sum(axis)) for ndim in range(1, 5): shape = tuple(range(3, 3 + ndim)) axis_tuples = chain(*(combinations(range(ndim), nax) for nax in range(ndim + 1))) for axis in chain([None], range(ndim), axis_tuples): yield check_weighted_mean, shape, axis
xc/xc7/tests/serdes/generate_tests.py
bl0x/symbiflow-arch-defs
183
12785746
#!/usr/bin/env python3 """ Creates the header file for the OSERDES test with the correct configuration of the DATA_WIDTH and DATA_RATE """ import argparse def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--input', required=True, help="Input top file to be generated" ) parser.add_argument( '--output', required=True, help="Output top file to be generated" ) parser.add_argument( '--data_width', required=True, help="Data width of the OSERDES" ) parser.add_argument( '--data_rate', required=True, help="Data rate of the OSERDES" ) args = parser.parse_args() with open(args.input, "r") as f: lines = f.read().splitlines() with open(args.output, 'w') as f: print('`define DATA_WIDTH_DEFINE {}'.format(args.data_width), file=f) print('`define DATA_RATE_DEFINE \"{}\"'.format(args.data_rate), file=f) for line in lines: print(line, file=f) if __name__ == "__main__": main()
src/bitmessageqt/bitmessage_icons_rc.py
coffeedogs/PyBitmessage
1,583
12785761
<gh_stars>1000+ # -*- coding: utf-8 -*- # Resource object code # # Created: Sa 21. Sep 13:45:58 2013 # by: The Resource Compiler for PyQt (Qt v4.8.4) # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore qt_resource_data = "\ \x00\x00\x03\x66\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xff\x61\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x41\x64\x6f\x62\x65\x20\x49\x6d\x61\x67\x65\x52\x65\x61\x64\ \x79\x71\xc9\x65\x3c\x00\x00\x03\x08\x49\x44\x41\x54\x78\xda\x84\ \x53\x6d\x48\x53\x51\x18\x7e\xce\xfd\xd8\x75\x9b\x8e\xdc\x2c\xdd\ \x4c\x5d\x4e\xa7\xc9\xe6\xb7\xf6\x61\x61\x11\x14\x52\x16\xf5\xc7\ \x0a\x0b\xa2\x3f\x41\x51\x41\x61\x7f\x0a\x84\xa2\x9f\xfd\xeb\x67\ \x7f\xfa\x51\x44\x50\x91\x14\x15\x5a\x14\x41\x25\x6d\x44\x59\x68\ \x69\xd9\x74\xa6\x6d\xd7\x7d\x38\xb6\xdd\x6d\x77\xa7\x73\x2d\x4d\ \x84\xe8\x81\x87\xf7\x7d\xef\x7b\xde\xe7\xbe\xe7\x9c\xf7\x10\x30\ \x48\x84\x20\x4f\xb3\xf8\x8b\xb3\x1b\xe9\xbc\xe5\x38\x14\xb3\x74\ \x2f\x73\xab\x18\x47\x28\x45\x6f\x36\x0b\xff\xc2\x3a\xde\xc6\xb2\ \x06\xcd\x61\x24\x4b\x04\xbe\x87\x09\x48\x82\x89\x8a\xb8\x62\xaf\ \x76\x75\x5a\x4a\xcb\x9d\x31\x85\xae\x9d\x0d\xce\x15\x7c\xf1\xa3\ \xef\x67\x18\xd0\xc8\xe1\x1f\xf0\xcf\x01\x43\x53\xc4\xf1\x33\x04\ \x57\x20\x12\x29\xcc\x31\x5b\x84\x4d\x7b\xf6\x18\xb5\x78\xcc\x0f\ \x07\x23\x34\x0a\xcb\xea\x0a\x19\x4f\x32\xda\x19\xc7\x53\x04\x91\ \x99\x10\xc4\xde\xd3\xa7\x61\x30\x1a\xa1\xb2\xde\xb5\x98\xe7\xb0\ \x85\xe5\xc7\xb4\x02\x81\x2e\xa9\x66\xfe\xb9\x86\xd6\xd6\xfd\xee\ \xba\x3a\xcb\x3b\x8f\x47\x9e\x78\xe7\x8d\xc5\x13\x88\x4a\x3a\x1d\ \x94\x78\x1c\x82\x28\x22\xae\x6d\x8b\x47\x23\x5b\x7e\x6d\x5e\xa0\ \xdd\xf9\x77\xe7\xcf\x3e\xd3\x0d\xbd\xa7\x3a\xac\x2e\xa7\x15\x43\ \x9f\x6d\xd6\xae\x43\xde\xb0\x51\x44\x74\x6c\x78\x18\xf6\x8a\x0a\ \x68\x96\xc5\x1a\x4a\x16\x6a\x84\xad\xce\xc5\xfa\xae\xc1\x69\x53\ \x65\xbd\xdb\x8e\x74\x32\x09\xcd\xea\xf2\x4c\xb9\x0e\x5b\x94\x0c\ \xdc\xba\xe9\x6d\xda\xbe\xa3\xd1\xf3\xe4\xb1\x37\xf7\xb7\x40\xc1\ \xa2\x40\x26\xbb\x28\xc0\x75\xd5\x29\x23\xc9\xb9\xb9\x8d\x99\x74\ \x1a\x2a\xe3\xae\xfa\xf4\xc7\xf1\x92\xa2\x60\xce\xc4\x0f\x4b\x85\ \xb3\x0a\xcf\xfb\x6e\xd2\x57\xdd\x35\x1f\x73\x43\xc9\x47\x33\x25\ \x26\x4c\x15\xe7\x82\x27\xb5\x07\x41\x09\x87\x7c\x75\x66\xc8\x28\ \x66\xaa\x4b\x2a\xdd\x4d\xec\x42\x85\xf0\x6c\x20\xf5\x32\x3c\xfa\ \x4d\x3a\xd1\xe3\xd4\xd7\xb4\x54\xa5\x14\x17\xa6\xdb\xaa\x6d\x85\ \x5b\xda\x0b\x9e\xe6\x04\x12\xe1\x3c\xc1\x8e\x2c\xfd\xc2\x7f\x6d\ \xba\x8c\x41\x7d\x07\x1e\x99\x8e\x40\xa5\x24\xc0\x7d\xb8\xb1\x3e\ \x96\x26\xb6\x57\xaf\x07\xfc\x74\x77\x77\x45\xc1\x6a\x87\x79\x2a\ \x91\xc0\xd9\x8e\xa3\xb8\x3d\xe5\x41\xe9\xaa\x62\x93\xcb\x5c\x5e\ \x6b\xa0\xba\x35\xdf\x02\x93\xe2\x92\x39\xa0\xcd\xfd\xa6\xc3\x3b\ \x83\xf2\x2c\x69\x6c\x6e\x41\x24\x1a\x13\xef\x8f\xb4\xbe\x1f\xf7\ \x49\x93\x49\x76\x26\xb2\x2c\x43\xb3\x1a\xd4\x54\x46\xaa\x36\x97\ \xb9\x69\x54\x69\x23\x7c\x77\xdf\x0a\x70\xe2\x7e\x83\x24\xd4\x1c\ \xeb\x74\xef\x5b\x19\x19\x2a\xb6\x4b\x32\xc6\x15\x0b\x82\xf9\x95\ \xa1\xab\x0f\xfb\x3d\x49\xce\x17\x6b\x19\xf6\x0e\x0c\x6e\xf0\x6f\ \xa3\x69\x55\x0f\x45\x35\xd0\x74\x36\x07\xa3\xd1\x27\x84\x3f\x70\ \xe7\x4c\xe7\xfa\xf2\xee\xa6\x2a\xeb\x5a\x4b\x7e\x9e\xe4\xf3\x4d\ \xe3\xd2\xde\x52\x9c\xbf\xeb\x43\x59\x99\x15\x72\x28\x9a\x7a\xfb\ \xe9\xfb\x68\x5f\xff\xeb\x7b\xea\x83\x93\xd7\x97\x0d\x9e\xcc\x41\ \x89\x36\xd7\xda\xcd\xf5\xd9\x4c\x76\xfe\x2d\x2d\x6f\x97\xaa\xd0\ \xd5\x39\xac\x35\x90\x4c\xe5\xfc\xe6\x9e\x11\xed\x41\x2d\x61\x90\ \xf0\xf5\x87\x2e\xc0\xda\xd0\x4e\x79\x29\x41\x05\x7d\x0c\x82\x3e\ \xde\x36\x7d\xf5\xcd\xcb\xa2\xe3\xeb\x48\x26\x69\x20\x99\x84\x91\ \xa8\x8a\x1e\x3f\xbc\x2f\xe8\xec\xe8\x45\x1a\x99\x04\x8d\x4c\x2c\ \xb6\x40\xfe\x0c\x85\x05\xff\x87\xac\xfd\x71\xf9\xc7\x5f\x02\x0c\ \x00\x00\x31\x44\x70\x94\xe4\x6d\xa8\x00\x00\x00\x00\x49\x45\x4e\ \x44\xae\x42\x60\x82\ \x00\x00\x02\xaf\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xff\x61\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x41\x64\x6f\x62\x65\x20\x49\x6d\x61\x67\x65\x52\x65\x61\x64\ \x79\x71\xc9\x65\x3c\x00\x00\x02\x51\x49\x44\x41\x54\x78\xda\x9c\ \x53\xcf\x6b\x13\x51\x10\xfe\x36\xfb\x62\x8d\x69\x48\x62\x9b\x18\ \x8d\xab\x5d\xd3\x84\xa2\x10\xbd\x48\x0f\x62\xa9\xd8\x93\xe0\x49\ \x0f\xa5\x20\x52\xb0\xe0\x7f\xe0\x45\x3c\xf5\xa6\x77\x7b\xe8\x55\ \x28\x41\x3d\x78\x28\x7a\xf0\x47\x51\xa4\xbd\x58\x0d\xa8\x60\x5a\ \x13\x51\xd0\x43\x89\x69\xf3\x63\xb3\xc9\xee\x3e\x67\x9e\xd9\xa2\ \x08\x4a\x1d\x18\xde\xdb\x99\xf9\xbe\xf7\xcd\x7b\xb3\xda\x8d\x85\ \x05\xb0\x69\x9a\x76\x9e\x96\xfd\xf8\xbb\x3d\x71\x1c\x67\xad\xdb\ \xe9\xe0\xdc\xf3\x19\x48\x0a\x08\xd7\x75\xfd\xe4\x81\xeb\x93\x93\ \x73\x0e\x7d\x73\xc2\x95\x12\x5d\xda\x77\x3d\x4f\xed\x2b\x95\x0a\ \x1e\x15\x8b\x57\xa5\x94\x1a\xa5\x4b\x3e\x28\x30\xf1\xf8\x32\xcc\ \xb5\x7b\x20\x56\x4d\x72\xb1\xe3\xc0\xe9\x76\xe1\xf6\xbc\xd3\x6e\ \xc3\x6a\x36\xd1\x68\x34\x30\x3b\x35\x35\x47\xb9\xb3\x44\x92\xf5\ \x09\x04\xfb\xf0\xa7\x07\x57\x5a\x32\x78\x41\xd3\x2e\xe1\xc5\xea\ \x2a\x3c\x22\x8a\xc5\x62\x68\xb5\x5a\x38\x3e\x32\xa2\x0a\xab\xd5\ \x2a\xee\x2c\x2e\x22\x9f\x4c\xde\x5e\x29\xcc\x3e\x85\x8e\x02\x85\ \xe7\x05\xa9\x1b\x44\x40\xcf\x65\x8f\x9e\x9c\x60\x6d\x99\x4c\x06\ \x74\x82\x22\x89\xc7\xe3\x08\xea\xba\x22\x38\x35\x3a\x8a\x0e\xa9\ \x0b\x85\xc3\x18\x68\x5d\x3c\x23\x1f\xbe\x7a\x2d\x3d\x77\x50\xb8\ \x12\xc6\x5e\xe3\xd8\xf0\x26\x5d\x4c\x40\xd3\x54\xaf\xd1\x68\x54\ \x9d\xc8\x24\x1f\x89\x8c\x09\x39\xc6\x8a\x4e\xe4\xf3\xb0\x6d\x1b\ \x49\xc2\x54\x2b\x45\x43\xb8\x1e\x0e\xed\x8e\x26\xf7\x59\x56\x1b\ \xbf\x2a\xe0\xd3\x7d\x25\xb2\x47\xe2\x2b\xe2\x5a\xc6\x30\x96\x14\ \xc8\xa1\x60\x38\x16\x6a\x12\x3b\x3d\x25\xca\xe5\xf2\x36\xc0\x57\ \xc2\x2b\x7f\xb3\x82\xc3\xa9\x14\xb8\x96\x31\x8c\x15\x8e\x87\x5c\ \x24\x65\x26\xac\xf7\x75\x94\x0b\xd7\x30\x40\xb7\xde\x97\x1b\x47\ \x5f\x76\xec\x37\x25\xf6\x87\x25\x04\x4b\x4b\xf8\xba\xbe\x07\x56\ \xdb\x46\xc4\x34\x13\x8c\xe5\x16\x44\x24\x91\x4e\x4d\x27\x7e\x3e\ \x0b\x4f\xd2\xca\xf2\x7d\x38\xc2\x50\x40\x7e\x0d\x6e\x63\x73\xf9\ \x2e\x4e\x8f\x8d\xab\x9a\x69\x53\x2d\x29\xc6\xb2\x02\xb1\xb5\xb1\ \x41\x7d\x59\x2a\xda\x4f\x00\x23\x9d\xc6\x97\x67\x37\x15\x41\x93\ \x62\x3c\x58\xe6\x90\x89\x66\xbd\x8e\x46\xad\xa6\xea\x42\xa1\x10\ \x1c\x45\xe0\x4a\xe1\xf0\xf0\x90\xb3\xd5\x88\xcc\xc8\x66\x71\xd0\ \x3c\xf2\xc7\x1c\x7f\x2e\x6d\x0f\xa0\xaa\x67\xac\xe8\x7a\x08\x76\ \x3a\x34\x71\xe4\xbe\xad\xbf\x7d\x87\x7f\x99\xae\x0b\x30\x56\x34\ \x6c\xf4\x4b\xc9\x5a\x74\xec\xc4\x18\xc3\x58\xf1\xe6\x9b\xac\x6c\ \xcd\xdf\x7a\x89\xff\xb0\xf2\x77\x54\x78\x76\x76\x91\xc7\x7a\xff\ \xc5\x4e\x8c\x2f\xad\xf6\x43\x80\x01\x00\xc1\x52\x4e\xcc\x97\x5f\ \x6c\x5a\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x02\xcc\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x01\x68\xf4\xcf\xf7\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x02\x6c\x49\x44\x41\x54\x38\ \xcb\x4d\xd2\xbd\x6b\xdd\x65\x14\x07\xf0\xcf\xaf\xb9\x49\x9a\x10\ \x69\x08\x06\x6a\x2c\x82\xf4\x25\x2e\xed\x50\x87\x4e\x85\x2e\x42\ \xb2\x34\xe0\xe4\x58\x10\xea\x58\x69\x57\x47\x57\x83\xd2\x49\xc1\ \xad\xfe\x01\xba\x28\xb8\xa8\x93\x83\xa0\x4b\x41\x89\x10\x1b\x43\ \x20\x37\x37\xf7\xe6\xbe\xfe\xee\xef\x2d\xc7\xe1\xb9\x6a\x1f\x38\ \x1c\x9e\xf3\x7c\xbf\xe7\x7c\x9f\x73\x4e\x16\xb7\x6e\x71\xf5\x6a\ \x2d\xae\x5f\x2f\x82\x10\x0f\x1e\x6c\xc6\x8d\x1b\xc4\xc5\x8b\xf1\ \x17\x21\xee\xdf\xbf\x19\x77\xee\x44\xac\xad\x45\xcc\xcf\x47\x36\ \xc4\x11\x91\xe3\x67\x64\xb1\xb3\xc3\xa5\x4b\xbf\xd8\xdf\xff\xd1\ \xf3\xe7\x4f\xc4\xce\x4e\xc4\x95\x2b\x11\xab\xab\x31\xa0\x16\x1b\ \x1b\x11\x44\x45\xfc\x40\x64\x07\xc4\x18\x2f\xb0\xc7\x6e\x16\xdb\ \xdb\xac\xaf\x7f\xab\x69\xb6\x74\x3a\x9c\x9d\x31\x1e\x27\xdf\xed\ \x2e\xb6\x8c\xc7\x7b\x8e\x8f\xaf\x39\x3c\xe4\xf4\x94\xf3\x73\xd0\ \x8f\xd0\xa6\x10\xcb\xcb\x4f\x83\x28\x67\x56\x10\x6d\xe2\x27\xe2\ \x19\x91\x75\x92\x6e\x6d\x86\x7d\x56\x06\xe8\xa2\xe6\x83\xd7\xf9\ \x22\x8b\x7b\xf7\xd8\xd8\x60\x71\xf1\x13\x79\xfe\xc8\xd9\xd9\x6f\ \xda\xed\xf7\xb4\xdb\x7f\xea\xf5\xb4\x5c\xbe\xbc\x60\x7e\xbe\xd0\ \xef\xd3\xe9\x30\x1a\xbd\x6d\x30\xd8\x33\x99\x7c\xa7\x28\xb6\x5b\ \xca\x72\xa2\xdb\xe5\xe0\x20\x89\xac\x6b\xea\x5a\x33\x1c\x6e\x9d\ \xb1\xd9\x72\x7c\x3c\xa7\xdd\xe6\xf0\x90\xe9\x14\x54\x11\x4e\xd0\ \xe1\xab\x96\xa3\x23\xfa\xfd\xf4\x18\x21\x90\xe3\x24\x89\x7f\x23\ \x8b\x56\x2b\x9a\xba\x56\x63\x0e\x25\xfe\xc6\xef\x18\xf0\x59\xd6\ \xe6\xd3\x21\x8f\x4a\x34\x29\xe8\x45\xfa\xb6\x55\xb2\xd6\x84\x0f\ \x8f\xd9\xef\x26\xa0\x5e\x02\x8d\x96\x79\xe5\x35\x64\x71\xf7\x2e\ \x6b\x6b\xac\xac\xb0\xb0\xf0\x58\x96\x7d\xac\xae\x97\x14\x45\xd2\ \x35\x9d\x52\x14\xe4\x39\x93\x49\x6e\x32\xf9\xc8\x64\xb2\x2b\xcf\ \x29\xcb\xd9\x42\x2c\x2d\x7d\xee\xc2\x85\x87\xaa\x2a\x01\x87\x43\ \x46\xa3\x44\x2e\x4b\x9a\x26\x59\x59\xa6\x58\x9e\x8b\xe9\x74\xb7\ \xe2\x49\x4b\x51\x3c\x55\x96\x0f\x4d\xa7\x89\xd8\xeb\xa5\x4d\xc8\ \x73\xaa\x8a\x08\x20\xcb\xa8\x6b\x65\x84\x1c\x13\x1e\x17\xcc\x65\ \x71\xfb\x76\xa1\xae\x17\xe4\x79\x5a\xa3\xe1\x30\x91\x9b\xe6\x7f\ \x32\xff\xb5\x77\x34\x6b\xd4\x20\x25\x39\x69\x39\x3a\x3a\x50\x55\ \xd7\x54\x55\xaa\x58\x96\xa2\x69\xbc\x7c\xce\x67\xed\x1f\xa6\xe1\ \xe9\xe2\x0c\x05\x07\x59\xc3\xcd\x29\xbf\x56\xcc\xd5\xb3\x4a\x90\ \xcd\x7c\x83\xe9\x4b\xe4\x53\xf4\x53\xc2\x66\x81\xb7\xb2\x6e\x92\ \xb5\x30\xe6\xeb\x9c\xad\x7f\xe7\xd9\xa0\x4a\x55\xe4\x33\xc9\xa3\ \xd9\x1d\xdf\x2c\xf3\xee\xab\x34\x59\x0f\xe3\x19\xa0\x9f\xfc\x9b\ \x23\xde\x1f\xf1\x4e\xce\x66\x91\x12\xfd\xd1\xf0\xfd\x1c\x5f\x2e\ \xb1\x7f\x09\xeb\x33\xfb\x07\x6a\x4f\x76\xe7\x35\x05\x41\x4b\x00\ \x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x02\x24\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xff\x61\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x41\x64\x6f\x62\x65\x20\x49\x6d\x61\x67\x65\x52\x65\x61\x64\ \x79\x71\xc9\x65\x3c\x00\x00\x01\xc6\x49\x44\x41\x54\x78\xda\x8c\ \x53\x3d\x4b\x03\x41\x10\x7d\xd9\x3b\xf5\x44\x45\x8b\x44\x34\xa2\ \xc4\x42\x49\x2b\xe8\xcf\xb0\xf3\x07\x28\xd6\x82\x9d\x20\x58\x88\ \x0a\x36\x82\x8d\x95\xa0\x58\x0b\x16\xda\x8b\xd8\x08\x09\x44\x0b\ \x8b\x54\x22\x7e\x44\x10\x41\x42\xce\xe4\x2e\xb7\x1f\xce\x9c\xe6\ \xcb\x5c\xc0\xe5\x06\x6e\xdf\xbe\xf7\x66\x76\x76\x37\x96\xdd\x05\ \x62\xc0\x12\x80\x14\xfe\x3f\x1e\x0d\x70\x3c\xbb\x66\x60\x1b\xfa\ \xa3\x6f\x72\x6e\xf5\x62\x03\x5a\x03\x4a\x75\x96\x59\x16\x20\x04\ \xb2\xfb\xf3\x5b\x35\x48\x84\x06\x06\xe2\x25\x93\x01\x1b\x18\x29\ \x61\xaa\x7e\x7b\x10\xce\xeb\xcc\x63\x3e\xeb\x42\x03\xc5\x49\x35\ \x44\x6f\x3c\x8e\xfb\xcb\x4b\xca\x22\x60\x44\x7b\x30\xce\xeb\xcc\ \x63\x3e\xeb\x78\xd8\xfa\xc7\xc9\x1a\x1a\x4e\xa0\xe2\x96\x70\x73\ \x7e\x51\xaf\xd8\xf3\x3c\x38\x8e\x53\x9f\x4f\x4c\x4f\x81\x79\xa4\ \xb1\x6a\x98\xfd\xeb\x24\x0c\xed\x7d\x38\x39\x1a\x46\x08\x74\x75\ \xe3\x29\x9f\xc7\x44\x3a\x0d\x1d\x54\xeb\x26\xcc\xe3\x0a\xfe\x1a\ \x58\x5a\x05\x50\x32\x68\x34\x4c\xc4\x30\xd0\xd7\x87\x28\x9c\x34\ \x56\xbb\x81\x54\xd0\xdc\xa8\xdf\x11\x13\x16\x1d\x08\x63\x11\x78\ \x94\x81\x51\x92\xb2\x35\x88\x42\x59\x90\x94\x39\x0a\xef\x50\x41\ \x00\xdd\x54\xaa\x1f\x28\x2c\xf6\x6c\xa2\xfa\xa6\xa8\x99\x92\x22\ \x80\xef\x2b\x64\xa6\x8f\x5a\x0d\xa4\xaa\x19\x48\xda\x6b\x23\x53\ \xd9\xf5\x70\x32\x53\x6e\xba\x45\x22\x0c\xf7\xae\x04\xd2\x44\x54\ \x10\x96\xda\xa8\xc0\xfd\x2c\xc2\xae\x54\x90\xcb\xe5\x90\x48\x24\ \xc2\x7e\xa4\x52\x29\xe8\x62\xa9\x53\x0f\xa8\x59\x4d\xd7\xd8\x25\ \x62\x77\xb9\x8c\x34\x1d\x63\xbd\x2a\x9a\xeb\xd2\x57\xab\xc1\xdd\ \x23\x90\x4e\xc2\x79\x79\x7a\xa5\x9b\xaa\x9a\x7a\xe0\xe3\xe3\x74\ \xa5\xed\x39\x0c\xc6\x87\xe0\x55\xe1\xe4\x0b\xc0\x02\x1b\xec\x9c\ \x61\xf0\x60\x19\xfd\xe3\xe3\xc9\xd6\xf3\x1e\x1b\x89\x7e\x4f\x76\ \x17\x6e\xaf\xd1\xcf\xba\x6d\xa0\x68\xb3\xe9\xfd\x33\x0a\x87\x7b\ \xeb\x57\xff\x7d\xcb\x0f\xef\x28\xb0\x8e\xa2\xf8\x2d\xc0\x00\x14\ \x2c\x1a\x71\xde\xeb\xd2\x54\x00\x00\x00\x00\x49\x45\x4e\x44\xae\ \x42\x60\x82\ \x00\x00\x06\xe3\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x90\x00\x00\x00\x90\x08\x06\x00\x00\x00\xe7\x46\xe2\xb8\ \x00\x00\x00\x04\x73\x42\x49\x54\x08\x08\x08\x08\x7c\x08\x64\x88\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\x00\x00\x0e\xc4\ \x01\x95\x2b\x0e\x1b\x00\x00\x06\x85\x49\x44\x41\x54\x78\x9c\xed\ \x9d\x4b\x72\xe3\x38\x10\x44\xc1\x8e\x5e\xf8\x3c\x3a\x8e\x0f\xa8\ \xe3\xf8\x3c\xda\x79\x16\x0e\x4c\xd3\x10\x89\x6f\x7d\xb2\x0a\xf5\ \x96\x0e\x59\x2c\x24\x12\x29\x90\x20\xc1\xe3\xf3\xe3\xeb\x3b\xa5\ \x94\x9e\xaf\xc7\x91\x0c\x92\xeb\xb7\x8c\x65\xed\x8f\xb2\x03\x2c\ \x37\x46\xbb\x86\x59\xac\x69\x7e\xd6\xfa\x28\xff\x90\xb1\xd6\xa8\ \x8c\x45\x23\x59\xd1\xfa\x4a\xdb\x5b\x03\x65\xac\x34\xae\xc4\x92\ \x91\xd0\x35\xbe\xd3\xf2\xf9\x7a\x1c\x47\xeb\x43\xe7\x0f\x53\x17\ \x26\x81\x05\x23\xa1\x6a\xdb\xe3\x89\x6e\x03\x9d\xff\x69\xb5\x30\ \x0d\x90\x8d\x84\xa6\x69\x8f\x56\xb9\xe6\x5f\x85\x8f\x88\x8c\xd6\ \xe8\x5e\x10\x8d\x84\xa2\xe5\x4c\xff\x4f\x1b\xa8\xfc\x22\x6b\x20\ \x19\x49\x5b\xc3\x51\x2d\xce\xf5\xbe\x15\x3e\x2b\xac\xb6\x08\xb3\ \x20\x18\x49\x4b\x3b\x8a\xbe\x26\x33\xd0\xd5\x97\x5b\x42\xd3\x48\ \xd2\x9a\xad\xb4\xb5\xac\xf5\xb2\x70\x0a\x31\xc3\x48\xfd\x48\x69\ \xc5\xd1\xaf\x6c\x06\xba\x3b\xa0\x15\x24\x8d\xc4\xad\x11\x55\x5b\ \xae\xea\xbc\x2d\x9c\x5a\x40\x8b\x46\x92\x32\x11\x97\x36\x12\x7d\ \xf8\x97\xf2\x00\x35\x2c\x2d\xda\x5e\xad\x0f\x22\x4c\xb6\x7b\xe1\ \xa8\xf5\xae\xdf\xaa\x9d\xc9\x29\x1a\xa2\x91\x6a\x97\xec\x5b\x9f\ \x59\x81\x4a\x0b\x8d\xfe\x12\x4b\xa0\x12\xa4\x44\x9a\xb9\x80\x86\ \x94\x48\xdc\xb5\xd4\xfa\xa8\xd9\x79\xd6\xe7\x01\x35\x28\x96\x6f\ \x34\xcf\x58\x11\xfa\x46\x2d\x81\x4a\x24\x13\x89\xe3\x2c\x53\x32\ \x91\x90\xce\x10\xbb\x3a\xcb\xcb\xb5\x11\x89\xab\xec\x9c\xcb\x41\ \x88\xfd\x00\x93\x40\x25\x94\x89\xa4\x31\x62\x29\x8f\xa9\x35\xdf\ \xea\xd1\x9e\x75\x64\x51\x32\x63\x24\xce\x0b\x68\x94\x35\xdc\x7d\ \xbf\x05\xcd\x61\x13\xa8\x64\x24\x91\xb4\x85\x3f\x33\x93\x48\x08\ \xf5\xf7\x0e\x9a\xa1\x91\x85\xd0\xb0\xcc\x55\x03\xb9\xea\xa3\x9c\ \x8f\xd5\xee\x3f\x47\xd7\xf7\x0a\xb3\x06\xca\x48\x5c\x25\x46\x9a\ \xd0\x4b\x30\xd2\xde\x3f\x5c\x5f\x2c\x05\x72\x47\xd4\x40\xd4\x72\ \x86\x21\x03\xa1\x62\xad\x33\x3e\x3f\xbe\xbe\x51\x8d\x3f\xaa\xe5\ \xb0\x81\x50\x3b\xeb\xf9\x7a\x1c\xa8\xb5\x65\x90\x8d\x33\x8b\x99\ \xb3\xb0\x5e\x10\x27\xa4\x48\xb5\xd4\x98\x19\x80\x53\x3f\x61\xe8\ \x23\x3d\x25\x8c\x44\xf2\x98\x38\x25\xee\x12\xa8\xc4\xfb\x5a\x15\ \x15\xb3\x83\x6d\x7a\x12\xad\x3d\xba\x47\x91\x48\xa4\x1d\x12\xa7\ \xc4\x7d\x02\x95\x78\x5a\xab\xa2\x62\x65\x60\x2d\x9d\xc6\x5b\x4b\ \xa1\x33\x14\x89\xb4\x63\xe2\x94\x6c\x97\x40\x25\x56\xd7\xaa\xa8\ \x58\x1d\x44\xcb\x17\x12\x2d\xa7\xd0\x99\x9e\x44\x8a\xc4\x79\x07\ \xfe\x66\xee\x1e\x76\x5b\xab\xa2\x82\x42\x37\x92\xa5\x0c\x2f\x29\ \x74\xc6\x63\x9b\x38\xd8\x7e\x0e\x74\x45\xa4\x4f\x3f\x64\x8b\xa9\ \x1e\x46\x6c\xcc\x71\xc6\x89\x04\x4a\x7b\x24\xce\x19\xca\xc1\x4e\ \x7a\x3b\x87\xb5\x14\x8a\xc4\x59\x67\xcb\x04\xda\xd9\x34\xd4\x83\ \x9c\xfc\x86\x32\xe4\x14\x8a\xc4\xa1\x67\x8b\x04\x0a\xd3\xfc\xc0\ \x31\xb8\x59\x6e\x69\x45\x49\xa1\x48\x1c\x7e\x5c\x26\x50\x98\xe6\ \x1d\xae\x41\xcd\x76\x53\xbd\xd6\x6e\x1b\x61\x1e\x59\x4c\xec\xcd\ \x17\xac\xc1\x39\x98\xff\x46\x27\x07\x2b\xb8\x9c\x03\x59\xc3\xca\ \x26\x9b\x57\xdf\xcf\xfe\x60\x21\xca\x19\x19\x32\x12\x1d\xcd\xf5\ \xdd\xac\x06\x0a\xf3\xe8\x21\x65\x4a\x91\x47\x9b\xc3\x48\x6d\xac\ \xa6\x90\xab\xd3\xf8\xe0\x07\x49\x33\x8a\x6d\xae\x10\x86\x6a\x63\ \x31\x85\x5c\x2f\x65\xec\x88\xb4\x09\x45\xb7\x77\x09\x63\xb5\xb1\ \x96\x42\x5b\xdd\xce\xe1\x1d\x0d\xf3\x89\x6f\x30\x15\x06\x6b\x63\ \x29\x85\xb6\xbe\xa5\xd5\x13\x5a\xa6\x53\xd9\xe2\x2e\x8c\xd6\xc6\ \x4a\x0a\xc5\x63\x3d\x0e\xd0\x34\x9b\xda\x26\x9b\x61\xb8\x36\x16\ \x52\x28\x1e\x6d\x36\x8e\xb6\xc9\x54\xb7\xf9\x0d\xe3\xb5\xd1\x36\ \x48\x8b\xd8\xde\xc5\x30\x08\xe6\x52\xdf\x68\x3c\x0c\xd8\x06\xc1\ \x28\x77\x6c\xbb\xc5\x9d\x75\x50\x4c\xa5\x9e\x40\x29\x85\x11\x7b\ \x40\x31\x4c\xc9\x36\xdb\xfc\x7a\x02\xc9\x4c\x10\x09\x94\x52\x18\ \xb2\x07\x24\xe3\x64\xa6\xde\xb5\x65\xf5\x29\x82\x80\x1e\xf6\x97\ \xb5\x05\xbe\x89\xe7\xc2\x0c\x82\xf4\x0b\x00\xf7\xbe\xb0\x98\x0b\ \xb5\x41\xfa\xd5\x80\x7a\xe5\x65\x98\x47\x0f\xd1\xd3\xf8\x30\x92\ \x3e\x28\x29\xd4\x6d\xa0\x30\x8d\x5f\x54\x96\x32\xc2\x50\xfa\x20\ \xa4\x50\x97\x81\xc2\x2c\x7e\x51\xbd\x9d\x23\x8c\xa5\x8f\x76\x0a\ \x35\x0d\x14\x26\xf1\x0b\xc4\x2d\xad\x61\x30\x7d\x34\x53\xa8\x6a\ \xa0\x30\x87\x5f\xa0\x1e\xeb\x09\xa3\xe9\xa3\x95\x42\xb7\x06\x0a\ \x53\xf8\x05\xf2\xd1\xe6\x30\x9c\x3e\x1a\x29\x74\x69\xa0\x30\x83\ \x5f\xa0\xb7\x77\x09\xe3\xe9\x23\x9d\x42\x6f\x06\x0a\x13\xf8\xc5\ \xc4\x16\x77\x61\x40\x7d\x24\x53\xe8\x97\x81\xa2\xf3\xfd\x62\x6a\ \x9b\xdf\x30\xa2\x3e\x52\x29\xf4\xbf\x81\xa2\xd3\xfd\x62\xf2\x55\ \x07\x61\x48\x7d\x24\x52\xe8\x4f\x4a\xd1\xd9\x9e\xe1\x36\xd1\xf1\ \xf9\xf1\xf5\xcd\xd9\xc1\xda\xf7\xab\x04\xbc\xc4\x1b\x0b\x15\x79\ \xbe\x1e\x22\x0f\x76\x72\x06\x04\xcc\xb3\xf1\x3b\xf1\x7c\x3d\x0e\ \xc9\x9f\x75\x4e\x93\xb2\x3d\x99\x1a\xe9\xf3\x8e\xc7\xb9\x60\x24\ \x90\x00\xd2\x89\x73\x05\xd7\x80\x66\x49\xa0\x48\x9f\x1f\xb4\x4d\ \x23\x41\x24\x10\x03\x08\x89\x73\x05\xc7\xc0\x26\x4f\xa0\x9d\xd3\ \x07\xd1\x34\xdc\x44\x02\x11\x80\x9a\x38\x57\x50\x0f\x70\xd2\x04\ \xda\x2d\x7d\xac\x98\x86\x93\x48\xa0\x09\x2c\x25\xce\x15\x94\x03\ \x9d\x2c\x81\x76\x48\x1f\xcb\xa6\xe1\x22\x12\xa8\x13\x6f\xe6\x81\ \x7a\xb0\xd0\x6b\xfa\x9c\x4d\xf3\xf9\xf1\xf5\xed\xb5\x9d\x2b\x44\ \x02\x5d\x50\x9b\xe3\x78\x32\x12\x45\x3b\x96\xe7\x40\x5e\xc4\x4c\ \x69\xec\x67\x2a\xb7\xdb\xdb\x4f\xdb\x28\x91\x40\x69\xed\xac\xca\ \x7a\x22\xad\xd6\xbe\x94\x40\x96\x85\x4b\x89\x36\x3d\x76\x4d\xa4\ \x2d\x13\x88\xf3\x3a\x8e\xc5\x44\x5a\xa9\x77\x3a\x81\xac\x89\x94\ \x92\x6c\x3a\xec\x92\x48\x5b\x24\x90\xe6\x95\x63\x2b\x89\x34\x5b\ \xe3\x54\x02\x59\x10\x24\x25\xac\xd1\xef\x35\x91\x5c\x26\x10\xf2\ \x5a\x15\x72\x22\xcd\xd4\x35\x9c\x40\xa8\x8d\x4f\xc9\xd6\xe8\x46\ \xd6\x71\x04\x37\x09\x64\xc9\x3c\xc8\x8c\x1a\x7b\xc8\x40\x68\xa3\ \xc6\xfa\x5a\x55\xfe\xa9\xb5\x6c\xfe\xa1\xc2\x51\x3a\xa8\x34\x4e\ \xeb\x33\x2b\x70\xb4\xb9\x56\x1b\xa2\xc6\x35\xba\xe7\x40\x08\x0d\ \xb3\xbe\x56\xd5\x53\x4b\xfe\x0c\x82\xde\x3d\x0c\x77\x88\x06\x14\ \x23\x76\x65\xad\x6b\xe6\xff\x28\x8e\x4d\x75\xfc\x59\x7a\xea\xee\ \x4a\x20\xad\x46\x58\x5f\xab\xa2\x38\x16\x7a\x22\x75\x35\x50\xba\ \xf8\x99\x9f\x2a\xae\x63\x20\xbd\x16\x3d\x25\xbc\xbe\x68\x26\x90\ \x64\xc1\xd6\xd7\xaa\x24\xea\x47\x4b\xa4\x66\x83\xd1\xb7\x1f\xa1\ \xaa\xaf\x76\x07\xe2\xec\xff\x4a\xa0\xdd\x3f\xd5\x04\xe2\x2e\x0e\ \xe9\x0c\x69\x26\x91\x10\xea\xd7\x4e\xa4\xaa\x00\x5c\x45\x71\x4c\ \x8e\xa9\xa9\x75\x0c\x82\x71\xee\x90\xee\x33\xd1\x0b\x5a\x1c\xc2\ \x7b\x9d\xa3\xad\x42\xad\x8b\xaa\x81\x3c\x9c\x95\x58\x32\xcf\x19\ \xee\x7e\x9c\x9e\x38\xce\x1e\x90\x1a\xb4\xd3\x5a\x54\xb8\x2e\x88\ \xb2\x18\xc8\xcb\xfe\x7f\x35\x76\x35\x52\xd9\xee\x37\x11\x56\x0e\ \xa0\x21\xaa\xf6\xf5\x90\xdd\x8c\xc4\x62\x20\xef\xd7\x41\x7a\xd8\ \xc9\x48\xe7\xb6\xfe\x6a\xf4\xe8\x97\x21\x88\x86\x62\xa0\x0c\x82\ \x26\x33\x8c\xe8\xb8\x6c\x20\x24\x91\xd0\x0c\x94\x41\xd2\x68\x84\ \x51\x0f\x34\x6f\xcc\xba\xfa\x27\x24\x50\x0d\x94\x41\xd4\xac\x87\ \x96\xae\x43\x06\x42\x16\x01\xdd\x40\x19\x64\x0d\x6b\xb4\x7c\x51\ \x5d\x47\xb1\xd0\x68\x2b\x06\xca\x58\xd0\xf4\x8a\xbb\x25\x9d\x4b\ \x03\x59\x6a\xa4\x35\x03\x65\x2c\x69\x7c\xa6\xd4\xfb\xd7\xdb\x62\ \x2c\x36\xca\xaa\x81\x32\x16\x35\x4f\xe9\x9f\xee\xff\x01\x8b\x65\ \xc9\x17\x1c\x9e\xef\x70\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\ \x60\x82\ \x00\x00\x02\xf0\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xff\x61\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x41\x64\x6f\x62\x65\x20\x49\x6d\x61\x67\x65\x52\x65\x61\x64\ \x79\x71\xc9\x65\x3c\x00\x00\x02\x92\x49\x44\x41\x54\x78\xda\x84\ \x53\x5f\x48\x53\x61\x14\x3f\xf7\xee\x6e\x22\x0b\x4c\x6b\xac\x60\ \x6a\xb5\x39\xdd\x06\x36\xd9\x70\x6b\xb8\x31\xd4\xb2\x35\x82\x3d\ \x4c\x50\x50\x08\x1f\x24\x84\x24\x56\xea\xc3\xdc\x2a\x63\x36\x1d\ \x4d\xa1\xb0\xf0\xc1\x17\x1f\x7c\xb0\x3f\x0f\x51\x96\x12\xe8\xa6\ \x84\xa6\xeb\x45\xa9\x84\x22\x25\x08\xb7\x97\xec\x45\xe6\xee\xdd\ \xed\x7c\x97\xb5\x36\x1a\x74\xe0\xc7\xe1\xfb\x9d\xf3\xfb\x9d\xf3\ \xdd\x8f\x4b\x41\x4e\xd0\xc5\xc5\x20\xa9\xa8\x80\xc3\xdd\x5d\x48\ \x1f\x1c\x40\x75\x43\x03\x68\x6d\x36\xa0\x45\x22\xa0\x69\x5a\x85\ \x2d\x8d\x90\x1f\x3f\x18\x28\x10\x4a\xa3\x11\xaa\x4d\x26\x41\x98\ \x89\xaa\x74\x3a\xdd\x38\x3b\x34\xf4\xf8\x0f\x41\x21\xdc\x7e\xff\ \xd5\x3c\x83\x53\x7a\xbd\x20\x16\x31\x79\x74\x55\x9a\xe3\x9a\x66\ \x03\x81\x47\xd1\xf5\x75\xf8\xb0\xb5\x05\x75\x3a\x1d\x58\xb1\x0f\ \x79\x4a\xe8\x2c\xaf\xab\x83\xd3\x48\x30\xcc\x3f\x0b\x55\x71\x1c\ \xd7\xfc\x34\x18\x9c\xc0\x0c\x89\xfd\x7d\x28\x2d\x2b\xa3\x30\xf3\ \xa4\xc8\x11\x03\x53\x47\x07\x88\xc4\xe2\x42\x37\x51\xe3\x84\xf3\ \xcf\x42\xa1\x87\xc9\x64\x12\x44\x78\x1d\x8d\x52\x09\xdf\xe3\x71\ \xbe\x5c\x2e\x17\x1a\xb0\x4e\xd3\x50\x38\xd4\x2c\xc7\x5d\x78\x82\ \xe2\x58\x2c\x06\x57\x70\xc8\xd6\xe6\x26\x9c\x51\x28\xc0\x6e\x30\ \x80\xba\xb2\x12\x2e\x79\x3c\xd7\x70\x83\x85\x42\x06\xd5\x1c\xcb\ \xb6\x3c\x0f\x87\x1f\xbc\x5f\x5b\x83\xbb\x7e\x3f\x1c\xe0\x8b\xdc\ \x1a\x1c\x24\x2b\x0b\x1f\xd6\xd1\xdb\xdb\x8b\xd3\x17\xf0\x1e\xdb\ \x4c\x01\xf1\xc5\x17\x13\x13\xe3\xef\x56\x56\xe0\x8e\xd7\x9b\x2d\ \x04\x46\x47\x41\x52\x54\x04\x2d\x3d\x3d\xd7\x29\x8a\x9a\x47\xa3\ \xcf\x84\xcf\x35\xa8\x61\x59\xd6\xf1\x6a\x72\x32\xbc\xbc\xb4\x04\ \xbe\xfe\xfe\x6c\x61\x64\x6c\x0c\x8c\xf5\xf5\xd0\xdc\xdd\xed\x41\ \xf1\x1b\x51\x46\x9c\x6b\xa0\x21\xe2\xd7\x53\x53\xf7\x23\x8b\x8b\ \xe0\xef\xeb\xcb\x8a\xef\x85\xc3\x60\xb6\x58\xa0\xb1\xab\xeb\x06\ \x8a\xe7\x50\xfc\x29\x77\x65\x62\xa0\xe1\x52\x29\xe7\xfc\xf4\x74\ \x28\x8a\xe2\x00\xae\x2d\x91\x48\x84\xe2\xed\x60\x10\x2c\x56\x2b\ \xd8\x3b\x3b\xfb\x80\x88\x19\x26\x2b\xfe\x8a\xdf\xe7\xcb\xea\x2a\ \x30\x38\xf9\xf2\xdb\x99\x99\x91\xbd\x78\x1c\xc6\x87\x87\x41\x2a\ \x95\x0a\x0d\x37\x7d\x3e\x41\x6c\x6b\x6f\x1f\xc0\xc9\x2f\x71\xf2\ \x47\xc2\xef\xe0\xab\xec\x6c\x6c\xfc\x5d\x41\xdf\xda\xaa\x3d\xeb\ \x76\x0f\xfc\xe4\x79\x7e\x2e\x12\xe1\x5d\x2e\x17\x3f\x1f\x8d\xf2\ \xbf\xf0\x4c\x78\x52\x37\xb4\xb5\x81\xa2\xb6\xb6\xf0\x83\x9f\xd0\ \x6a\xa1\xc6\xe9\xd4\xa9\x1d\x0e\x2f\x31\xd9\xde\xdb\xe3\xf7\x31\ \x93\x33\xe1\x49\xfd\x7f\x41\xfe\x98\x92\x12\x95\xaa\x49\x6e\x36\ \x0f\x11\x13\x92\x8f\xaa\x54\x76\xe4\x8f\x21\x4a\x49\x1d\x71\x04\ \x51\x8c\x28\x42\x88\x33\x3a\x8a\xca\x1c\x4e\x22\x8e\x4b\x64\x32\ \x85\x58\x26\x3b\x97\x4a\x24\x96\x0f\x13\x89\x6f\xc8\xa5\x10\x6c\ \x26\x13\x1c\xe6\x70\x04\xdc\x6f\x01\x06\x00\x2d\x06\x04\x62\x7f\ \xe8\x51\x71\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x03\x37\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xff\x61\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x41\x64\x6f\x62\x65\x20\x49\x6d\x61\x67\x65\x52\x65\x61\x64\ \x79\x71\xc9\x65\x3c\x00\x00\x02\xd9\x49\x44\x41\x54\x78\xda\x6c\ \x93\x5d\x48\x14\x51\x14\xc7\xff\xbb\xb3\xbb\xb6\xab\x95\x5b\x46\ \xae\x99\xba\x7e\x40\x42\x46\x12\xa5\x4b\x49\xe8\x83\x60\x22\x11\ \x3d\x94\xf6\xd6\x43\xe9\x6b\x81\x6f\x46\xd1\x43\x54\xd0\xf6\x49\ \xf6\x24\x44\x81\x6f\x3d\x04\x8b\x08\x9a\x60\x59\xb6\x18\x65\xe9\ \x22\xbb\xce\xb8\xea\xfa\xb1\x8b\xdf\xe3\x3a\xbb\xb3\xce\xed\xcc\ \x75\x35\xad\x2e\x73\xb9\x77\xe6\x9c\xf3\xbf\xbf\x73\xee\x19\xc3\ \xad\xf6\x76\x18\x0c\x06\x3e\x35\x4d\x83\x3e\x68\x5f\x47\x8b\x03\ \xff\x1f\xdd\xeb\x89\x44\x40\x4d\x24\xc0\x18\x83\x69\xbb\xc5\x48\ \x22\x09\x32\xd0\xc8\x6a\xa9\xaf\x6f\x9d\x8e\x44\x61\xb7\x5b\xb8\ \xb0\x46\xce\x43\x81\x00\x3a\x07\x07\x1b\xf5\x33\x68\xfa\x79\xcc\ \x0e\x6d\x12\x30\x0a\x02\x74\xf5\xc8\x9c\x02\x8a\x44\x24\xb2\x86\ \x99\xd9\x28\xa6\x66\x56\x21\xcb\x32\xee\x36\x34\xb4\x92\xbd\x8a\ \xbc\x8b\xf4\x90\x4d\x82\x3a\xc2\x71\x24\xf1\x21\x08\x42\xc5\xe4\ \x62\x08\xcb\xb2\x8a\xe2\x9c\x83\xc8\xb0\x5a\xa1\xae\xaf\xe3\xc7\ \xf0\x3c\xde\x7a\x3c\x28\xc9\xc8\x68\x7d\xd2\xde\x7e\x83\xdc\xdd\ \x26\x8d\x0c\x9b\xc8\x23\x81\x15\xe4\xe6\x59\x77\x20\x0f\x07\xa7\ \x91\x99\xbe\x1f\xa9\x29\x36\x9c\x38\xea\x42\x82\x6c\x66\xb3\x19\ \xe5\xc1\xa0\xc2\x09\xd4\x8d\x9c\xe1\x17\x65\x3d\x03\x04\xc7\xd6\ \x78\x71\xf4\x7a\xea\xc8\x35\xe5\xe5\xf8\xe8\xf3\xc1\xbe\xc7\x8c\ \x0c\xbb\x8d\x93\x08\x24\x10\x8b\xc5\x0c\x1b\x02\xaa\xca\xc9\x8b\ \x9c\xa9\xf0\x4b\xab\x70\x1e\xb6\xf0\x53\x74\xc7\x21\x71\x03\x59\ \x1f\x83\xbf\xfc\xa8\xad\xa8\x24\x1b\xa3\xca\xa9\x88\x93\xc0\xc9\ \xee\x6e\x12\x88\xc7\xb9\x80\x38\x1e\x85\xd1\x68\xc0\xd8\x64\x9c\ \x13\xd0\x83\x92\xc2\xd3\x9c\x44\x7f\x5f\x54\xc7\x71\x60\x5f\x0a\ \xdf\xc7\x07\x06\xd0\xe8\x76\x5f\xd3\xc2\xe1\x21\x23\xa1\x70\x9c\ \xc2\x1c\x1b\x4f\xa1\x20\x67\x17\xf2\xf9\x4c\x41\x2e\xd1\x64\x67\ \x0b\xc8\xcb\xb7\x52\x41\xe3\x98\x5f\x4a\x60\xc4\x1f\x42\xaf\xf7\ \x3b\xca\x9a\x9a\x8e\x45\x80\x3b\x26\x42\xe1\x04\x52\x68\x8d\xdf\ \xc0\x58\x28\xc6\x4f\xd7\x34\xb6\x45\xc2\x98\x02\x9b\x05\xb0\xa8\ \xfd\x08\x8e\x2e\xa3\xe6\xfa\x55\xd4\xb9\x5c\x3d\x17\x19\xbb\x67\ \x8a\x25\x05\x0a\xb2\x6d\x18\x9d\x8c\x22\x2f\xcb\xca\x6f\x80\x17\ \x32\xb9\x1a\xa8\x37\xc4\x2e\x2f\x7c\xa1\xf7\xa8\x39\x75\x1c\xee\ \xa7\x12\x66\x9d\xce\xaf\xdf\x04\xa1\xd3\xa4\x28\xca\x06\xc1\x54\ \x92\x60\x4a\xd9\xca\x7b\x93\x24\xb6\xf8\x09\xc6\xb9\x37\x28\xab\ \x3c\x8b\x8e\x8e\x7e\x5c\xba\xd0\x82\xd7\x7d\x3d\xe1\xb6\x89\x09\ \xfc\x21\x38\x44\x04\xa1\x28\xf2\x75\x02\x60\x8b\x60\x61\xb6\x17\ \xe2\xec\x73\x54\x53\xf0\xc3\x47\xee\xd1\x8e\x61\xc7\x87\xa1\x97\ \xcd\x7e\x4d\x96\x97\xe5\x70\x38\xdf\x34\x23\x8a\xd8\xeb\x70\x18\ \x44\x22\xd0\x5b\x5c\x9a\x56\x92\x79\x33\x44\x17\x46\x11\x09\x3c\ \xc0\x19\x57\x29\x1e\x3f\x7b\x21\x05\x25\xa5\xb9\xcf\x23\x7d\x01\ \xa4\xcd\xe6\xd7\x83\x90\x7e\xe4\xfc\xf9\x9b\x14\xc0\x88\x40\x5f\ \x18\x9d\xcc\xd6\x89\xfd\xb3\xe7\x36\x63\xf2\x08\x7b\xd7\x56\xc5\ \x6a\xaf\x94\xbe\x22\x5f\xfb\xdf\xbf\xa6\xde\x4d\xb9\xbb\x8b\x8b\ \xab\x8d\x69\x69\xff\x18\x97\xbc\xde\xfb\x97\xcf\xa5\xfe\x1c\x5e\ \xcd\xec\x93\xc2\x96\x81\x15\x9f\xaf\x8b\x3e\x8b\xdb\x7d\x7e\x0b\ \x30\x00\x66\x8d\xa1\xfd\x87\x65\xe6\x27\x00\x00\x00\x00\x49\x45\ \x4e\x44\xae\x42\x60\x82\ \x00\x00\x02\xa1\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xff\x61\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x41\x64\x6f\x62\x65\x20\x49\x6d\x61\x67\x65\x52\x65\x61\x64\ \x79\x71\xc9\x65\x3c\x00\x00\x02\x43\x49\x44\x41\x54\x78\xda\xa4\ \x93\xcf\x6b\x13\x51\x10\xc7\xbf\xfb\x23\x6b\xd3\x4d\x63\x53\x51\ \x69\x93\x2d\x52\x62\xc5\xb6\x54\x08\x52\x28\x28\xb4\xa8\x08\xc5\ \x5e\x84\xfe\x01\x3d\x49\x2f\x9e\x7a\x29\x96\x9e\xf2\x07\xf4\xa4\ \x88\x17\x7f\x1c\x82\x22\x2a\xb9\x05\x5a\xe8\x49\x94\x0a\xb1\x58\ \x24\x97\x68\x49\xa5\x31\x35\x90\xd2\xcd\x26\xd9\xcd\x6e\xd6\x99\ \xad\x5b\x82\xb4\x50\x71\x60\xf6\xbd\x37\xcc\x7c\xdf\x7c\xde\xdb\ \x27\xb8\xae\x8b\xff\x31\x79\x66\x69\xe9\x70\x21\x08\xc2\x34\x0d\ \x7d\xff\x50\xbf\x23\xf3\xd7\x69\xb5\xfc\x40\xf4\x4d\x32\xf9\xe8\ \x24\x3d\x09\xe4\x77\x17\x17\xe7\x64\xda\x15\x92\x28\xc2\x34\x4d\ \x8e\x8b\x0e\x21\x7d\x2e\xba\xa8\x14\xbe\x42\x8b\x0f\x63\x20\xd2\ \x3a\x52\x40\xa4\x1a\xbb\xd9\x14\xbd\x0e\x04\x5a\x28\x8a\x82\x9a\ \x61\x88\x36\x09\xec\x15\xbe\xa0\x98\xdf\x84\x08\x07\x5a\xe2\x32\ \x0a\xa5\x12\x82\xc1\x20\x6c\xdb\x46\x6f\x4f\x8f\x27\x20\xd1\xc6\ \xbe\xc0\x34\x5c\xb7\x8f\x15\x03\x8a\x72\x6d\x65\x7d\x1d\xdb\xbb\ \x3a\x8a\xe5\x32\x6a\xe1\x5f\xa8\x7e\x32\xd0\xa0\x42\xdf\xce\x77\ \x77\xe3\x4a\x3c\x8e\x00\xe5\x37\x2d\x4b\x94\x6d\xc7\x39\x86\xfb\ \xe6\x91\xdc\x4f\x33\x19\x9c\x56\x55\x5c\xd0\x34\x58\x96\x25\xc9\ \xdc\x06\x73\x3f\xcb\xba\xf8\xfe\xfe\x35\xc6\x6f\xcf\xe0\xd6\xc0\ \xf1\xdc\x6a\x67\x27\x62\xd1\x28\x6c\x3a\x78\xcb\x34\x45\x91\x05\ \x98\xfb\xe7\x87\x57\xd8\x5c\x4d\x61\x63\xe5\x25\x9a\x8e\x83\xb5\ \x6c\x16\x1b\x5b\x5b\xf8\x98\xcb\x79\x6b\x76\xce\x4b\x2e\x2f\xa7\ \x9f\xa4\x52\xab\xcd\x03\x01\x49\x66\x0e\x56\x3b\xa3\x0d\xa1\x5a\ \xad\xe2\x5c\xff\x10\x2c\x62\x8e\xc5\x62\xde\xae\x2a\xb5\x6b\xfd\ \x39\x03\xe6\x56\x43\x21\x69\x6e\x76\xf6\x06\xd5\xc1\xd0\xf5\x80\ \xcc\x1c\xac\xf6\xee\x6d\x1a\x86\x61\x60\x2d\x93\xc6\x9d\xeb\xf7\ \x91\xa3\x9d\x7d\x2b\x45\x22\xa8\xd7\xeb\x18\x4f\x24\x50\xd3\xf5\ \xca\xd9\x78\x7c\x21\x14\x0e\x77\x39\x86\x51\x96\x99\x83\x3b\x78\ \xf1\x70\x9e\x52\xe7\xbd\x82\x7a\xad\x86\xab\xa3\xa3\xde\x3c\x48\ \xcc\xbe\x71\x9e\x24\x49\xdf\xec\x7c\xfe\xf9\x1e\xc0\xe7\x5e\x11\ \x99\x83\x3b\x60\xae\xde\x91\x91\x05\x1e\x2d\xe2\xf5\xbd\x3d\xce\ \x79\xa4\x60\x5c\x9c\x9c\xdc\xa1\xe2\x22\x79\x03\x97\xa6\xa6\x1e\ \xec\x9a\xa6\x5b\xa1\x57\xc5\x73\x1e\x7f\xe8\xfa\xa1\xb7\xc7\x39\ \x8f\xe7\xe4\x88\x8d\x8d\x1d\x5c\x6d\xd7\xe0\xe0\x3d\x49\x55\xfb\ \xab\xfb\xfb\xba\xd2\x68\x6c\x5b\x1d\x1d\x1a\xf3\xf9\x6d\xff\x1d\ \x27\xee\x02\xf9\xe3\xf6\x7f\xe3\x14\x79\x84\xaf\xf9\x04\x6f\xc8\ \xe3\xf6\x5a\x27\x1b\x9e\x98\xc0\x6f\x01\x06\x00\x48\xae\x45\x78\ \x60\x4e\x1f\xe2\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \ \x00\x00\x02\x75\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xff\x61\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x41\x64\x6f\x62\x65\x20\x49\x6d\x61\x67\x65\x52\x65\x61\x64\ \x79\x71\xc9\x65\x3c\x00\x00\x02\x17\x49\x44\x41\x54\x78\xda\xa4\ \x93\x4f\x6b\x13\x51\x14\xc5\xcf\x9b\x37\x93\x49\xc6\xa9\x25\xa3\ \x15\x63\x16\x2e\x02\x06\xad\x0b\x45\xc1\x95\x5f\xc0\x3f\x0b\x21\ \x1b\xa5\x20\xb8\x31\xea\x7c\x82\xac\xf4\x2b\x54\x5b\x23\x88\x1b\ \x4b\xb3\x70\xe1\x42\xb7\x82\x20\xe8\x42\xbb\x70\xa1\x62\x36\xa2\ \xa0\x51\xda\x1a\xc2\x4c\xa6\x26\x93\xcc\x78\xef\x75\x5a\xb4\x2a\ \x54\x7c\x70\xb8\x2f\x93\x7b\x7e\xf7\xbc\x37\x89\xaa\xd5\x6a\x50\ \x4a\x9d\x06\xb0\x07\xff\xb6\x3e\xa5\x69\xfa\xc0\x4c\x92\x84\x3f\ \x94\x9b\xcd\xe6\xcd\x38\x8e\xb7\xe4\xb4\x2c\x0b\xf5\x7a\xfd\x12\ \xef\xcd\xd1\x68\xc4\xd5\x18\x0c\x06\xf0\x7d\x1f\x0c\x64\x11\x5d\ \xea\x78\x3c\x46\x18\xf6\xa9\xa6\x62\xf4\x3c\x0f\xf3\xf3\xd7\x41\ \x3e\xe3\x67\x80\xe2\xca\x86\x6a\xb5\x0a\x4e\xf2\xed\x68\x05\xa3\ \xc7\x2f\xb1\xb2\xf2\x95\x9e\x6b\x32\xdb\xb0\xed\x3c\xa2\x28\x60\ \x33\x4b\x09\x20\x8b\x6d\xf0\x43\x9e\xc6\x49\x58\x69\x79\x07\x56\ \x57\xbb\x64\x88\x91\xcf\x6f\x13\xb3\x65\xe5\xa9\x27\x16\x00\xf9\ \x8c\x0d\x23\x49\x33\x48\x00\x34\x39\x8a\x22\xa8\xbd\xbb\x08\x94\ \x60\xf2\x60\x05\xe5\xd9\x3a\x26\x4f\x1c\x13\x90\x69\xda\x92\x90\ \x3d\xec\x35\x86\xc3\x21\x48\x3f\x40\xa5\x22\x9d\x37\x84\x73\xed\ \xbc\x5c\xd6\xf6\xe9\x0a\x3c\xff\x14\x7a\x8d\x16\x01\x8b\xa8\x35\ \xaf\x12\xc0\x94\x04\xec\x61\xef\xc6\x11\xb8\x26\xef\xbf\xa0\xdf\ \x5d\x43\xf7\xe1\x53\xb8\x07\xf6\xa1\x78\xf9\x24\xfa\xb7\x1f\xc1\ \x75\x8b\x48\x5b\x4b\xb8\x77\xf7\x19\xbf\x72\x49\xb0\x7e\x04\x93\ \x29\xb4\x24\x8e\xe3\x38\xe8\xf5\x7a\x30\x0c\x0b\xfa\xed\x07\x84\ \xfe\x2c\x0a\x85\x09\x0c\x0c\x2d\x46\x5e\xb6\xad\xd7\x13\x68\x01\ \xb4\xdb\x6d\x94\x4a\xa5\x1c\x37\x34\x1a\x8d\x2d\xfd\x0e\xb8\x37\ \x08\x82\x5c\xa7\xd3\x01\x63\x3d\xd7\x75\x67\xb4\xd6\xbb\x37\x37\ \xd2\xa4\xb2\x4c\x31\xcd\x8f\x9b\xbf\xa3\x0b\xff\x4c\xf7\xb5\xc0\ \x80\x02\x69\x82\xfb\x7e\xe9\x98\xce\x01\xaf\x86\x7e\xb6\xbf\x41\ \xfb\xdf\xf8\xa4\x40\xfd\x35\xe7\xe2\xd4\x2d\xbc\x89\x8f\xc8\x7e\ \xbf\xb5\x84\x73\xcb\x17\xff\xd4\xc6\x53\x77\x92\x2a\xa4\x43\xa4\ \xc3\xa4\xaa\x24\x5a\x0c\x71\xe6\xce\x59\x01\xdc\xbf\xd0\xe2\xf2\ \x82\x93\x93\xde\x65\xfb\xe7\xa4\xd7\x9c\xc0\xca\x8e\xe1\x66\x72\ \xf8\xad\xe0\x8a\x33\x83\x29\x75\x5c\xc6\x2c\xa7\x4f\x30\x17\x2d\ \x64\x43\xd7\x38\x7a\xa6\x48\xf1\x9f\xe6\x7f\xd6\x77\x01\x06\x00\ \xf9\x1f\x11\xa0\x42\x25\x9c\x34\x00\x00\x00\x00\x49\x45\x4e\x44\ \xae\x42\x60\x82\ \x00\x00\x07\x62\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x18\x00\x00\x00\x18\x08\x06\x00\x00\x01\x97\x70\x0d\x6e\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x07\x02\x49\x44\x41\x54\x48\ \xc7\x55\x95\x6b\x70\x5d\x55\x15\xc7\x7f\xfb\x3c\xee\x3d\xe7\x9e\ \x7b\x93\xfb\x68\x4a\x93\x86\xb6\x69\x4b\xaa\x38\x16\x06\x3a\x16\ \x4b\x81\x22\x4c\xad\x55\xa9\x83\xce\xe0\xa3\x55\xa1\x0a\xc3\x07\ \xf0\x05\x0c\x33\x38\xea\x28\xc2\xe0\x03\x44\x1c\x18\x64\x8a\x03\ \xa3\x32\x08\x88\xa0\x0c\x8f\x3e\xd2\x34\x84\x16\xab\x96\x3e\xd2\ \x34\x49\x9b\x26\x6d\x92\x9b\xc7\xcd\x4d\x9a\xe6\xde\xdc\x7b\xf6\ \x39\x67\xf9\x21\x24\xc0\xfa\xb8\x67\xd6\xfa\xed\xb5\xd6\xff\xbf\ \xb7\x12\x11\x82\x20\xa0\xe2\x57\x2f\x41\x44\x78\xef\xf0\x51\x29\ \x57\x66\x04\x11\xa1\xa9\xa9\x59\x0e\x1f\x3d\x22\x68\xad\x69\x6b\ \x6b\x7f\x48\x6b\x8d\xaa\x56\xab\x4c\x97\x4b\x72\xf8\xbd\xa3\x18\ \x57\xac\xbd\x4a\x9c\xb8\xc3\xe2\xc6\x06\xc5\xfb\xd5\x6a\x47\xc7\ \x0a\xd7\x74\xf5\x74\x8b\xef\xfb\xf2\xce\x81\x03\x62\x00\xb4\xee\ \x6b\x9b\x0c\x42\xbd\x77\xf9\xb2\x26\x76\xed\xde\x8d\x6d\x59\xeb\ \x0d\x80\x96\xdd\xfb\x9e\xfc\xfa\x4d\xdf\xe4\xca\x75\x1b\x48\x67\ \xd2\x6a\xcd\xe5\x6b\xde\x26\x08\x02\x82\x20\x20\x0c\x43\x0e\x1d\ \x3a\xfc\x42\x10\x04\x68\xad\x21\x08\x02\xa5\xb5\x66\x4f\x4b\xab\ \xe4\x47\x86\x45\x6b\x2d\x22\x82\xa1\x94\x92\xb6\xb6\xf6\xb1\x65\ \x4d\x4b\x58\x90\xcd\xd1\xd6\xde\xce\xc0\xc0\xd0\x76\xd5\xdd\xd3\ \x43\x32\x99\x94\x64\x32\x89\x48\xc4\xa1\x43\x47\x58\x50\x97\x55\ \x6a\xed\xa7\xd6\xcb\xe4\xe4\x24\x7e\xe0\xf3\xf8\xe3\x7f\xc0\x30\ \x0d\xe3\xd2\x4b\x57\x8b\x71\xff\x03\x3f\x57\xb9\x5c\x8e\x86\x0b\ \xea\x19\x2f\x14\xd8\x78\xfd\x17\xa2\xa1\x81\x85\xa2\x44\x84\x30\ \x0c\x11\x11\xa5\x94\x32\x80\xb0\xe3\x78\x67\x7b\xa9\x34\xb3\xae\ \x7e\xf1\x42\x1a\x16\x35\x30\x75\xee\x5c\x21\x9b\xcd\xd6\x45\x51\ \x88\xc1\xfb\xa1\x94\x12\xd3\x34\xc3\x7f\xbd\xf6\xba\x80\x5a\x77\ \xe1\x92\x06\xea\x72\x75\xd8\x96\x05\x8a\x05\xbb\x5b\xf6\x4a\x7f\ \xff\xd9\x9b\x95\x88\x70\xac\xe3\x04\x41\xa8\x1f\x9d\x3a\x37\x75\ \x67\x43\x43\x3d\xa9\x9a\x24\xe9\x54\x2d\x96\x6d\xd1\xd5\xdd\xcd\ \xe0\x60\x9e\xfa\x86\x45\xac\x6a\x6e\x56\x4a\x44\xb8\x62\xed\xd5\ \x92\x1f\x1e\x22\x0c\x23\x1e\x7c\xf0\x97\x6c\xdb\xf6\x35\xb4\xd6\ \xb4\xef\xdf\x8f\x5f\xd5\xd4\xd6\xa6\x4e\x15\x27\x8a\x2b\x2f\xbb\ \xec\x32\x94\x88\xf0\xd8\x63\x4f\x7c\xef\xaf\x7f\x79\xee\x77\x5a\ \x6b\xb4\xd6\x84\x51\x44\xa9\x34\xcd\x8b\x7f\x7f\x9e\x6a\xb5\xf2\ \xd6\xba\x2b\xee\xdb\x08\x1d\x84\xe1\xc4\x6c\xc2\xce\xb7\x5a\xf0\ \xb5\xaf\x06\x06\x07\x6b\x0e\x1e\x3c\xf8\x8f\xb3\x67\x07\x36\x44\ \x41\xc8\x8f\xee\xfe\xfe\x77\x1a\x16\xd7\xef\x08\xfc\xd5\xfe\xd8\ \x18\x76\x47\x07\xcf\xcf\xef\x6e\x6e\x67\x5a\x6b\x46\x47\x47\xd7\ \xb6\xb4\xec\xdb\x7b\xba\xaf\xef\xae\x48\xa2\xb9\x73\x25\x22\x1f\ \x4c\x09\xb0\x94\x52\x18\x86\x61\xff\xef\xd0\x91\x03\x0b\xea\x72\ \xd7\x78\xa9\xe4\xaf\xc3\x20\x94\x62\xb1\xf8\x25\x40\x01\xf3\x09\ \x1e\x10\x98\xa6\xc9\x1b\x6f\xee\x2a\xcd\x4d\x2a\x1e\x8b\x61\x18\ \x06\x75\x75\x75\x2f\x9f\x3c\xd5\x7b\xe7\x87\x13\x4a\xb3\xe3\x3d\ \xfe\x70\x26\x93\xb6\x1d\x37\x46\x22\x91\xc0\x75\x5c\x82\x20\xe0\ \xc0\xbf\xdf\xa5\xb7\xb7\xef\x11\x00\x43\x29\x85\x52\x8a\x99\x4a\ \xf5\xaa\xfe\xfe\x33\x3f\x48\x67\xd2\x78\x9e\x47\xca\xf3\x30\x0d\ \x83\xa1\xfc\x10\xe5\x52\x85\x85\x0b\xeb\x66\xef\x7d\xbc\xb3\x1b\ \xa5\x14\x3d\x3d\xdd\xfb\x56\x35\x37\xe3\x79\x2e\x5e\xc2\xc3\xb2\ \x6c\x2a\x95\x0a\xdd\x3d\x27\xb1\x4c\x9b\x8b\x9a\x57\xdc\x00\x60\ \x84\x91\x06\x09\x5f\x6a\x6e\xbe\x88\x4c\x2e\x4d\x22\x91\x20\xee\ \xc4\x51\x4a\xd1\xd9\x75\x82\x28\x8c\x48\x26\x93\xd5\x7c\x3e\xff\ \x4f\x00\xa3\xab\xb3\xfb\x8e\x2f\xdf\x78\xd3\x8d\xd7\x6e\xb8\x9e\ \xad\xdf\xb8\x99\x94\x97\xc2\x89\xc5\x19\x2f\x8e\x33\x38\x90\x27\ \x9b\xcd\x31\x31\x39\xbe\xb4\x50\x28\x00\x60\x8c\x0c\x8f\xd6\x64\ \xb3\x59\xea\xea\xea\xe8\xeb\xeb\x63\x71\x63\x13\xcf\x3d\xf7\x3c\ \xa7\x7a\x7b\xc9\xe6\x72\x04\x81\xde\xa7\x94\x39\x72\xf1\xc5\x1f\ \x9f\x15\xe9\xce\xdd\x2d\xfc\xf4\xc7\x3f\x93\x30\x0c\xf1\x7d\x1f\ \xad\x03\x7c\x5d\xe5\xf6\xdb\x6f\x63\xd3\xe6\x8d\x7c\xac\xf9\xbe\ \x5e\x38\xb4\x1c\x26\x98\x98\x98\xd8\x6c\x48\x14\x71\xf7\x3d\x77\ \x27\x52\xa9\x14\xa9\x54\x8a\x4c\x26\x4d\x36\x93\xe5\xe9\x1d\xcf\ \x50\xa9\x54\xfe\x08\xef\x2c\x87\x5e\xca\xe5\x09\xda\xdb\xb9\xd5\ \x22\x52\xa4\x92\x5e\x75\xfb\x77\xb7\xab\xe3\xc7\x8f\xdf\x72\xf4\ \xe8\xb1\x27\xa7\xcf\x4f\x5b\xcb\x96\x37\x95\x6d\xdb\xbe\xad\xbf\ \x3f\x7f\x6c\x70\x90\xdf\x77\x76\x82\xd6\x6c\x9d\x77\xdc\x5c\x88\ \x08\x4a\x29\x00\x25\x22\x02\x60\x9a\x26\x85\xc2\xf8\xe7\x8e\x1c\ \x39\xfa\xd2\x74\xa9\xe4\xe6\x72\x59\x72\x0b\x72\x24\x93\x1e\xa6\ \x61\xcc\x58\xa6\xf5\x94\xeb\xba\x8f\x24\x12\x89\x3e\x80\x28\x12\ \x40\xb0\x6d\x9b\x8f\x00\x44\xc4\x02\x16\x29\xa5\xf2\x40\x38\x57\ \xbc\xf7\x74\xdf\xfd\x9d\x27\xba\xef\x4b\xd7\xd6\x90\x4c\x26\xf1\ \xbc\x04\xb1\xb8\x8d\xeb\xba\x24\x13\x1e\xf1\x78\x1c\xc3\x30\x98\ \x9a\x9a\x92\xf3\xe7\xcf\x3f\x5c\x5f\x5f\x7f\x97\x42\x50\x86\xf9\ \x11\x80\xfa\xa0\x89\xd9\x2e\xb4\xd6\xa9\xfd\xfb\xdf\x7d\xbb\xea\ \xfb\xab\x73\xb9\x1c\x6e\xc2\xc1\xf3\x12\xc4\xe3\x71\x1c\xc7\xc1\ \x4b\x24\xb0\x2d\x1b\x11\xc1\xf7\x7d\x86\x47\x46\xe8\xeb\xef\xa7\ \x5c\x9a\x29\x7c\xe6\xda\x0d\x97\xbb\xae\x73\xe6\xc3\xee\x11\x40\ \x94\x52\x58\x96\x45\xb1\x38\xb1\xe9\x8d\x37\x77\x4e\x99\x96\xb5\ \xba\xb1\xb1\x91\x74\x3a\x4d\x2a\x95\xc4\x71\x1d\x3c\xcf\x23\x99\ \x48\x60\x9b\x16\x22\x42\xb9\x5c\xa6\xb7\xef\x34\xbd\xa7\xfb\x08\ \x83\x88\x54\x2a\xb5\xa0\xab\xab\xfb\x16\x00\x0b\x60\x64\x74\xf4\ \x43\x14\x89\x9d\xe9\x1f\x78\x75\x64\x64\xec\xb3\x8d\x8d\x8d\x78\ \x09\x8f\xb8\x13\x23\xe6\xd8\x38\xb1\x38\xae\xe3\x12\x8b\xc5\x30\ \x0d\x83\x50\x84\xa9\xa9\x29\x7a\x7a\x4e\x52\x2a\x95\x09\xc3\x90\ \x78\x3c\xc6\xd2\x65\x4b\x06\x16\xd7\xd7\xef\x98\x07\x14\xc6\xc6\ \x67\x8d\x64\x59\x6b\xf2\xc3\xc3\xed\x5a\xeb\x58\xd3\xb2\xa5\xc4\ \xdd\x38\x8e\x13\x23\x16\x8b\x11\x77\x1c\xdc\x78\x1c\xdb\xb2\x31\ \x0c\x83\x20\x0c\x29\x8c\x17\xe8\xea\xea\x41\xeb\x00\x11\xa1\xb6\ \xb6\x96\x4c\x26\xbd\x2f\x1e\x8f\x5d\x33\x5e\x2c\x72\xc1\xc2\x85\ \xb3\x00\xc7\x71\x38\x71\xa2\xfb\xde\xd6\xd6\xd6\x07\xc3\x28\x62\ \xe9\x92\x0b\xb1\x6c\x93\x35\x6b\x2e\xa7\x26\x55\x83\x44\x11\x22\ \xb3\x1f\x9f\xa1\x0c\xb4\xd6\x0c\x0e\xe7\xe9\xe9\xea\x41\x04\x1c\ \xc7\x25\x93\x49\x33\x75\xfe\xdc\x43\xf9\xe1\xa1\x7b\x87\xf2\x83\ \xb8\xae\xfb\x01\xe0\x85\xbf\xbd\xf8\xea\xcb\x2f\xbf\xf2\x45\xa5\ \x14\x95\x4a\x05\x5f\xfb\xf8\x5a\x53\x2a\x95\xa8\x56\xab\xac\x5f\ \x7f\x25\x0f\x3c\xf0\x0b\x2e\x59\xfd\x49\x44\x84\x9e\x13\x27\x39\ \x75\xaa\x77\xbe\xb0\x9b\x70\x28\x14\x0a\xb7\x06\x81\x7e\x2a\x16\ \x8b\xb1\x72\xe5\x4a\x5c\xd7\x65\x4e\xeb\xbc\xf2\xca\x6b\x8d\xcf\ \x3e\xf3\xec\x7f\x06\x07\x87\x2e\x98\x83\x84\x61\x48\x18\x86\x44\ \x51\x84\x20\x54\x7c\x9f\xca\xcc\x0c\xdf\xfa\xf6\x56\xb6\x6c\xb9\ \x61\xf6\xf9\x4f\xd7\x00\x42\x6d\x4d\xcb\x1d\xcb\x9b\x8e\x6c\x87\ \x73\x97\x42\x11\x98\x28\xc0\xd0\x4f\x44\xa6\x9f\x50\x22\xc2\xae\ \xdd\x2d\xa0\x14\xad\x7b\x5a\x7f\xdb\xb2\x67\xef\x0f\xc3\x28\xc4\ \x34\x4d\xa2\x28\x9a\x87\x44\x51\x84\x44\xc2\x4c\x65\x86\xfa\x86\ \x7a\x1e\x79\xf4\x37\xd8\xb6\xe5\x17\x0a\x85\xeb\xae\x5e\x7f\x4f\ \x1b\x9c\x01\x86\x81\x88\x28\x82\xb1\x31\x18\x1b\xe3\xcf\xb3\xdf\ \xc8\xce\x96\x59\x05\x45\xc2\xe4\xe4\x24\xbd\xa7\x4f\x7f\xf5\xd8\ \xb1\x63\xbf\x1a\x19\x1e\xb9\x30\x08\x02\x4c\xd3\x44\x29\x35\x6f\ \xc8\x72\x79\x86\x1b\xbf\xb2\xe5\xfc\xe6\xcf\x6f\xfa\x74\x14\x45\ \x1d\xab\x2e\xba\xa4\xec\xfb\xe2\x2a\x05\x61\x08\x03\x03\xd0\xd1\ \x01\xa5\x12\x77\xcc\x76\xb0\x6b\xcf\x9c\x4a\x4d\x11\xe1\xdc\xd4\ \x74\x18\x86\x21\x95\x4a\x85\x62\xb1\x48\xb5\xea\xaf\x31\x4d\x63\ \xb3\x32\x68\x4e\xd7\xa6\x27\x57\xac\x58\xfe\xa7\x74\xa6\xf6\xbf\ \x86\xa9\xb0\x4c\x8b\xb8\xfd\x09\xfa\xfb\xb9\x6e\x68\x88\x6d\xc5\ \x22\xb5\x33\x33\xbc\x6e\xdb\x3c\x9d\x48\x10\xfc\x1f\x86\x93\xb9\ \x1a\xfd\x43\x9a\xa3\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\ \x82\ \x00\x00\x02\x77\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xff\x61\ \x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\x77\x61\x72\x65\ \x00\x41\x64\x6f\x62\x65\x20\x49\x6d\x61\x67\x65\x52\x65\x61\x64\ \x79\x71\xc9\x65\x3c\x00\x00\x02\x19\x49\x44\x41\x54\x78\xda\x8c\ \x93\xbd\xaf\xa1\x41\x14\xc6\xcf\xcb\x2b\xe2\x26\x16\x05\xb1\x42\ \x43\xa2\x11\xbd\x66\x23\xa2\x22\xb9\xff\xc1\xaa\xf7\xd6\x1a\x0a\ \x09\x89\x46\xb7\xd1\xdd\x68\x97\xbf\x60\x2b\x8a\x0d\xb1\x85\x8f\ \x42\x50\xae\x50\x21\x44\x04\xb1\xbe\x3f\x76\x9e\xb3\x5e\xb9\x37\ \x5b\xac\x93\x8c\x31\x73\xcc\xef\x79\xce\x99\x21\x25\x93\x49\xba\ \x5e\xaf\x24\x49\xd2\x33\x11\x7d\xa4\xff\xc7\x8f\xf3\xf9\xdc\x3b\ \x1e\x8f\x94\xc9\x64\x48\xc6\x8e\x4a\xa5\xa2\xd3\xe9\x64\x4b\x24\ \x12\xaf\x22\xc9\x40\x0c\xb1\x77\x1f\x58\xf7\x7a\x3d\x2a\x95\x4a\ \x2f\x37\x50\x0f\x1f\x00\x3c\x8b\x24\x94\x3f\xb5\x5a\x2d\x9a\x4e\ \xa7\xa4\x56\xab\xc9\x60\x30\xd0\x78\x3c\x26\x9d\x4e\x47\xbb\xdd\ \x8e\xdc\x6e\x37\xad\xd7\x6b\x4a\xa7\xd3\xaf\xf1\x78\x1c\x10\x49\ \x8c\x5f\x92\x50\xfd\xf2\x88\x32\x20\xc3\xe1\x90\x34\x1a\x0d\xcb\ \x67\xb3\xd9\x68\xa3\xd1\xf8\x2a\xa3\x16\xfc\xe8\x72\xb9\xfc\x33\ \x2b\x10\x28\x87\x42\x21\x2a\x16\x8b\x64\xb5\x5a\xc9\x62\xb1\x50\ \xbd\x5e\xdf\x71\xf9\x02\x20\xfa\x27\x51\xb3\xd9\xa4\x6e\xb7\xcb\ \xfd\xa8\x56\xab\xd4\xef\xf7\xa9\xdd\x6e\x93\x2c\xcb\x34\x9f\xcf\ \xa9\x50\x28\xd0\x6c\x36\xa3\x72\xb9\x8c\x86\xd3\x7e\xbf\x97\xb8\ \x07\x0a\xc0\xe7\xf3\xdd\x95\x03\x81\x00\xcf\x18\x70\xe8\xf7\xfb\ \xd9\x89\x56\xab\xa5\x5a\xad\xc6\xd0\xc3\xe1\xf0\x17\x00\x12\x00\ \xb9\x5c\x8e\xed\x79\xbd\x5e\x4a\xa5\x52\x64\xb3\xd9\xc8\xe9\x74\ \x52\x24\x12\xa1\x7c\x3e\x4f\x66\xb3\x99\x3c\x1e\x0f\x94\x19\x70\ \x77\x00\x12\x00\xe1\x70\x98\x1d\x38\x1c\x0e\xee\xbc\xc9\x64\xe2\ \x32\x50\x52\x30\x18\x64\x37\xc8\x0d\x06\x03\x06\x88\xa6\x32\x40\ \xa5\x38\xc0\x95\x2d\x16\x0b\xae\x0f\xca\x88\xd1\x68\xc4\x80\xc9\ \x64\x42\xcb\xe5\x92\x0f\xe2\xb6\xde\xf5\x00\x24\x6c\xc0\x32\x1c\ \xe0\x40\x2c\x16\xbb\x5f\x29\x94\xed\x76\x3b\xcf\x6f\x01\xdb\xed\ \xf6\xbd\x03\x58\x53\x1c\x54\x2a\x15\xea\x74\x3a\x3c\x03\x88\x1c\ \xe6\xdb\x41\x5a\xad\x56\x70\xcc\xaf\x58\x56\x48\x8a\xed\xb7\x25\ \xa0\x0f\x58\xbb\x5c\x2e\xe5\xff\x82\x07\xf4\x3d\x1a\x8d\xfe\x14\ \x8e\x26\x0c\x00\x49\x51\xc7\x7d\x23\xb0\x36\x1a\x8d\xac\x86\x40\ \x0e\x00\xc4\x66\xb3\x69\x89\x7e\x7c\x13\x5f\x57\x2c\xa8\xd7\xeb\ \x3f\x0b\x7b\x36\x7a\x30\x84\xf2\x48\xf4\x2d\xaf\xbc\x60\xd8\x7f\ \x12\xe3\x03\xfa\xf1\xc0\xf9\xeb\x4d\xf9\x37\x2f\x04\xe0\x8f\x00\ \x03\x00\xe7\xe3\x7a\x6e\x30\xbb\xf3\xb7\x00\x00\x00\x00\x49\x45\ \x4e\x44\xae\x42\x60\x82\ \x00\x00\x06\x71\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x90\x00\x00\x00\x90\x08\x02\x00\x00\x00\x68\x24\x75\xef\ \x00\x00\x00\x03\x73\x42\x49\x54\x08\x08\x08\xdb\xe1\x4f\xe0\x00\ \x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\x00\x00\x0e\xc4\x01\ \x95\x2b\x0e\x1b\x00\x00\x06\x14\x49\x44\x41\x54\x78\x9c\xed\x9d\ \x4b\x76\xa3\x30\x10\x45\x71\x8e\x07\xc9\x72\xb2\x9d\x64\x7d\xde\ \x4e\xb2\x1c\x0f\xe9\x01\x69\x2c\x0b\xa1\x6f\x7d\x5e\x95\xf5\x66\ \xdd\xb1\x41\xd4\xd5\xe5\x23\x0b\xb8\x7c\xbd\xff\x2c\xcb\x72\xbb\ \x7f\x2e\x18\xf9\xfe\xf8\xd5\x6e\x42\x1c\xa8\xe2\x5c\x36\x60\x5b\ \xa0\x5a\xa6\xdd\x84\x47\x10\xca\xb2\x17\xe4\xb2\xae\x6b\x54\x1d\ \x84\xf6\x6d\x01\xc1\xa6\x5b\x90\xa8\x08\xd7\xb3\x4f\x20\x60\xdb\ \xda\x00\x82\x4d\x3e\xc7\x0d\xbf\xdd\x3f\x2f\xeb\xba\x26\xff\xb6\ \x7f\x82\xbd\x5d\x75\x51\xc4\x26\x5f\x84\x0c\x8e\x84\x61\xc7\x6f\ \x22\x60\x7b\x11\xdb\x32\x1b\xb8\x55\xe0\xcf\xb0\xfc\x47\xc3\x2f\ \x20\x44\x18\x9b\xcc\x86\x57\xd6\xbf\x60\xd8\x71\x89\x08\xd8\x9c\ \xd9\x56\xb3\x21\x7b\xd9\x1f\x86\x55\x7e\x33\xfa\xbe\x7a\x04\xb0\ \xf1\x6d\x6c\x47\xc1\x1b\x0c\x3b\xae\x09\x01\x9b\x51\xdb\x9a\x1a\ \x1c\xd6\xf9\xc9\xb0\xd6\x05\x1d\x17\xa7\x1b\x26\x6c\xb4\x1b\x38\ \x58\xe1\x4e\xc3\x8e\x2d\x40\xc0\x06\x6e\x5b\x5f\xc3\xa2\xc2\xbe\ \xe5\xff\xdc\xd4\x1a\x90\x4a\x21\x74\x9d\x28\x84\xc5\x21\x30\x2c\ \x8c\xba\x6d\x61\x5d\x6e\xf7\x4f\xf5\x3e\x34\xd8\x80\x63\x25\x13\ \xc0\xc6\xb7\x53\x05\x5b\xb2\xcd\x8a\x3b\x49\xa6\x95\x12\x1b\x16\ \x46\x0c\x5b\xe5\x25\xa7\x18\x36\xaa\x15\x25\x4b\x97\x06\x46\xb8\ \x33\x61\xc5\xd6\x71\x72\xcc\x8a\x4d\xa0\x4f\x30\x1a\x16\x86\x1c\ \x5b\x77\x69\x98\xb0\x91\x2f\xf0\xac\x56\xa7\xc0\x38\x8e\xd8\x24\ \xd8\x48\x5a\x45\x88\x4d\xf8\x00\x29\x64\x58\x98\x6e\x6c\x4c\xbd\ \xb8\x7b\xb1\x7c\xa8\x32\xc5\xc9\x01\x63\x3d\x2d\x6e\xc2\xc6\xda\ \x8b\x3b\xb0\x29\x5e\x2d\x28\x18\x16\xa6\x88\x4d\xac\x34\x95\xd8\ \xd4\xc7\x9a\x0b\xc0\x64\xae\x3d\x93\xd8\x54\x7a\x71\x06\x9b\xfa\ \x35\xf8\x96\x78\xf0\xf7\x18\xf9\x5f\x0b\x59\xaf\x63\xea\xa3\xd8\ \x63\x32\x89\xc7\x12\x3b\x16\x41\x1b\x90\x8e\xbc\x40\x8e\x49\x2e\ \x35\xc0\xe4\x83\x50\x29\x95\xb1\xec\x9a\x0d\xaf\x02\x26\x5f\xc1\ \xdb\xfd\x53\x0b\x1b\xce\xcf\x0e\xc9\x28\x9f\x25\xe6\x63\x74\x0c\ \xb0\x2f\x95\x1d\xb4\x76\x97\xa8\xb8\x9b\x12\xb0\x0d\xdc\xaa\x30\ \xd0\x86\x85\xb1\x32\x06\xd8\x97\xfa\x1e\xd9\x70\xd2\x81\x70\x2e\ \x40\x68\x9b\x21\xab\xc2\x98\x31\x2c\x0c\xec\x18\x60\x5f\x9a\xba\ \x60\xdb\x69\x3d\x82\x64\x7b\x3a\x6c\x33\x6a\x55\x18\x93\x86\x85\ \xc1\x19\x03\xec\x4b\x6b\x9f\x6b\xbe\x70\x86\x92\x6c\x4f\xc6\x36\ \x07\x56\x85\x31\x6f\x58\x98\xc8\x36\x7c\x4e\x1d\xbd\xbf\x67\x68\ \x0a\x53\xb2\x3d\xe0\xcd\x1b\x8c\x2b\xc3\x16\x0b\x56\xed\xe9\xeb\ \x58\x9d\x83\xbf\x80\xbd\xd8\xd9\xb1\xea\x2c\x1e\x0c\xb3\xc8\xa9\ \xbb\xc7\xf7\xff\xbc\x82\x20\xd9\x8b\x58\x15\xc6\xaa\x61\xa6\x39\ \x8d\xf4\xf5\xa1\x1f\x30\x55\x24\x7b\x41\xab\xc2\x58\x32\xcc\x07\ \xa7\xc1\x5e\x3e\x3a\x45\x40\xec\x0e\x7b\x1f\xb4\xc6\x83\x6e\x98\ \x33\x4e\xe3\xfd\x9b\x60\x12\x0e\xdf\x9d\x29\xce\x68\x91\x04\xd1\ \x30\xaf\x9c\x48\x7a\xf6\xd5\x6b\x75\xbc\x06\xd1\x30\xb4\x8c\x9b\ \x41\x78\x77\x24\xd9\x44\x52\x84\x81\x0f\xa6\xd0\xde\x8c\x3a\x18\ \x1a\x60\x8e\x69\x8d\x87\x96\x37\xe5\x54\x6d\xc7\xd8\x70\x24\xc3\ \x3d\xad\xf7\x11\x72\xd2\xc4\x37\x43\x38\x86\x07\x22\x99\x8d\xa1\ \x29\xa3\xe1\x60\x4c\x7f\xbb\x91\x63\x84\x08\x92\xd9\xfb\x79\xc5\ \x4a\x98\xe8\xb2\xdc\xd0\xe7\x18\xa4\xba\x64\xb6\xa7\x08\xc0\x86\ \x8f\x2b\xd7\x2d\xb3\x8e\x71\xea\x4a\xe6\x67\x9a\x1b\x4e\x58\x89\ \x32\xde\x94\xee\x18\xaa\xa2\x64\x0e\xa7\x6a\xeb\x86\x9b\x25\xef\ \x63\x1f\x1c\xa3\xd5\x92\xcc\xc9\xed\x46\x20\x11\xa0\xc8\xfe\x60\ \x15\xc7\x80\x55\x24\x33\x7c\xcb\x2c\x5a\x64\xf8\x49\x3c\xba\xc8\ \x31\x66\x79\xc9\x8c\x3d\xf6\x01\x36\x62\xe4\x84\x1e\x0e\xe6\x18\ \xb6\xb0\x64\x4f\x6f\x99\xcd\x04\x67\xe6\xd0\x8b\xa7\x16\xd8\x0c\ \x48\xe6\xbc\x44\x9a\x88\xed\x81\x44\x9f\x97\x38\x8f\x64\xe3\x91\ \x7b\x84\xac\x63\x5a\xe3\xa1\x3f\xad\x9f\xd8\x8a\x91\x91\xac\x00\ \x6c\x72\x12\x08\xd7\xd0\xd4\x84\x57\x8c\x80\x64\x39\x60\x93\x90\ \x40\x78\x7f\x5e\x99\x08\x8b\xe1\x96\xec\x14\xd8\x64\x23\x10\x89\ \x29\x02\x13\x64\x31\xac\x92\xa5\x81\x4d\x2a\x02\x91\x9b\xe6\x36\ \x71\x16\xc3\x27\x59\x02\xd8\xe4\x21\x10\xe9\xa9\xda\x13\x6a\x31\ \x4c\x92\x91\xbd\xda\x9e\x69\x39\x2e\xa3\x73\xbb\xd1\x44\x5b\x0c\ \x87\x64\x4f\xc0\x26\x03\x81\x68\xde\x32\x3b\x01\x17\x43\x2e\xd9\ \x03\xd8\xac\xbe\x40\xf4\x1f\xfb\x30\x31\x17\x43\x2b\xd9\x1f\xb0\ \x59\x77\x81\xa0\x3c\xba\x68\xc2\x2e\x86\x50\xb2\xb7\x65\x56\x5c\ \x24\x54\xcc\x2e\x5f\xef\x3f\x24\x85\x9e\xf3\x44\x65\x52\x7e\x53\ \x7a\x4d\xbc\xd2\x22\x7c\x6d\xfb\x42\xb4\x07\x42\x7c\xf1\x36\x42\ \x38\x5e\x6d\x4b\xc2\x9e\x60\xe6\xaf\x33\xbd\xc0\x8f\xc4\xd3\xb0\ \x47\x64\x5e\x18\x3d\xb8\x84\x51\xc3\x7c\xe8\x05\x6e\x55\x98\x57\ \x37\x4c\xc0\xaa\x28\x83\x5d\x7c\xc8\x30\xd3\x7a\x19\xb2\x2a\xcc\ \x2b\x1a\x26\x6f\x55\x94\x91\x8e\xde\x6f\x98\x45\xbd\x8c\x5a\x15\ \xe6\x55\x0c\x53\xb7\x2a\x4a\x77\x77\xef\x34\xcc\x90\x5e\x50\x9c\ \xc6\xe3\xdc\x30\x64\x5a\x72\x13\x49\xf1\xf5\xda\x39\xf9\x7b\xa7\ \x95\x37\xc3\x92\xc7\x2a\x58\x6c\x1d\xad\x6a\x3e\x86\x61\x6e\xf9\ \x52\xb1\xf7\xdb\x5a\x8e\xbc\x93\xac\x89\x07\xc3\x9a\xce\x00\xd1\ \x6c\x6b\x6d\x4c\x9b\x61\x50\x9b\xba\x0c\xe8\x62\xd7\x36\xab\x86\ \x91\x5c\x57\x81\xd8\xd6\xd4\x86\x06\xc3\x10\xb6\x6d\x61\xd0\xc2\ \x96\x6d\x96\x0c\x63\x1d\xad\xd0\xb5\xad\x7e\xd5\xb5\x86\xe9\xea\ \x25\xd6\xfd\xf1\x6d\x43\x37\x4c\x65\x0c\x50\xc5\xb6\xca\x35\x56\ \x19\xa6\xa2\x97\x7a\x37\x07\x39\x66\x47\x01\x35\x4c\x9d\x96\x4a\ \x6a\xba\x48\x19\x98\x64\x47\x43\x1b\x03\xdc\x76\xc8\x50\xbd\x07\ \xe5\x01\x97\xc9\xa2\x28\x9e\x02\x44\x2b\xdd\xfe\x29\xd0\x87\xbe\ \x3f\x7e\xf3\xdb\x5b\x00\x26\xd0\x44\xb4\x31\xc0\xcc\x8a\xc4\xb0\ \x65\xa2\x69\x58\x13\x03\x01\x6c\x95\x0b\xe7\xc6\x96\x97\x2c\x07\ \x8c\xaf\x4d\x68\x63\x80\x1d\x0b\xd4\xb2\x4d\xda\x30\xc2\x3b\x65\ \x48\x16\x35\xb8\x10\x26\x6c\x19\xc9\x4e\x81\x91\x37\x02\x6d\x0c\ \x90\xb0\x3d\x92\xb6\x49\x18\xc6\x7a\xe0\xe9\xc0\xc6\xd4\x1e\x5a\ \x6c\x67\x92\xa5\x81\x51\xad\x15\x6d\x0c\x50\xa0\x3d\xdc\xb6\x71\ \x19\xa6\x72\xf1\x94\xc1\x26\xdc\x1e\x12\x6c\x49\xc9\x12\xc0\x06\ \x57\xa3\x3e\x2e\x10\xb5\x5f\xb1\x3d\x1c\xb6\x51\x8e\x25\xa2\x8d\ \xe2\x2c\x00\xbd\x67\x19\x2b\xcb\x11\x76\x6c\x58\x5f\x77\x40\xa8\ \x4b\x32\x38\xbf\x6f\x51\xd9\x16\xdf\x94\xde\xba\x44\xcc\x1b\x81\ \x93\x41\xc0\xb6\x65\xa4\xc8\x4f\x86\x35\x2d\x08\x67\xfb\x2b\xe3\ \xc3\xb6\x27\xc3\x2a\x17\x21\x70\x5d\xc5\x1d\x04\x6c\x5b\x5a\x6b\ \xfe\x30\xac\xe6\x9b\x38\xdb\x39\x18\xbb\xb6\x3d\x0c\xcb\x7f\x47\ \xf8\x12\x58\x32\x08\xd8\xb6\xd4\x20\xb8\x16\x3f\x8a\xb3\x3d\x4c\ \xb1\x65\xdb\x9f\x61\xc9\x0f\x29\x8e\x56\x68\x05\x01\xdb\x96\x33\ \x22\xd7\xe4\xdf\x70\xda\x2d\x1c\x7c\xdb\x2e\xeb\xba\x86\xff\xab\ \xde\x56\x84\xb9\x37\x5b\xd4\x4b\xb1\x27\xac\xc9\xe3\xb5\xc0\x20\ \xed\xc3\x01\xb6\x05\xa4\x2c\xcb\xff\xca\xfc\x03\x0c\x3a\xb7\xd7\ \x9d\x1e\xca\x90\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \ \x00\x00\x07\x3c\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x18\x00\x00\x00\x18\x08\x06\x00\x00\x01\x97\x70\x0d\x6e\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x06\xdc\x49\x44\x41\x54\x48\ \xc7\x55\x95\x59\x6c\x54\xd7\x19\xc7\xff\xe7\x2e\x73\x77\xcf\x6e\ \x7b\xc6\x0e\x60\x30\x13\xb1\x04\x12\x07\x95\x94\x90\x1a\xda\x4a\ \x49\x53\x35\x54\xb4\x52\x9a\x86\xb4\x4d\xe9\xf2\xd4\x28\x6d\x43\ \x15\xa9\x2f\x51\x93\x80\xd2\x2c\x28\x52\x15\xa9\x8d\x68\x95\xbc\ \x44\x6d\x1a\x51\xd2\x46\x4d\xd8\x8c\xed\xb8\x40\x69\x4b\xd8\xed\ \x19\xb0\xc7\x60\x7b\x6c\x33\x1e\xcc\xc0\x8c\x67\xee\xb9\xe7\x7c\ \x7d\x18\x6c\xc8\x79\x3c\xba\xff\xef\xf7\x2d\xff\xef\x1e\x46\x44\ \x08\x82\x00\x35\xbf\xbe\x16\x44\x84\xcf\x4e\x9d\xa1\x6a\x6d\x8e\ \x40\x44\xe8\xe8\xc8\xd0\xa9\x33\xa7\x09\x9c\x73\xf4\xf7\x0f\xbc\ \xc2\x39\x07\xab\xd7\xeb\xb8\x59\xad\xd0\xa9\xcf\xce\x40\x79\x60\ \xfd\x43\x64\x1a\x26\xda\xda\xd3\x0c\xb7\xa2\x85\xa7\xaf\x16\xbb\ \x87\x72\x59\xf2\x7d\x9f\xfe\x75\xec\x18\x29\x00\xd0\xdb\xd7\x3f\ \x1b\x08\x7e\x64\xe9\x92\x0e\x1c\x3c\x74\x08\xba\xa6\x6d\x54\x00\ \xa0\xe7\x50\xdf\xef\xbf\xfb\xf8\xf7\xf0\xe0\x86\x4d\x88\x44\x23\ \x6c\x5d\x57\xd7\x00\x82\x20\x40\x10\x04\x10\x42\xe0\xe4\xc9\x53\ \xef\x07\x41\x00\xce\x39\x10\x04\x01\xe3\x9c\xe3\x70\x4f\x2f\x15\ \xa6\x26\x89\x73\x4e\x44\x04\x85\x31\x46\xfd\xfd\x03\x57\x97\x74\ \x2c\x42\x22\x16\x47\xff\xc0\x00\xc6\xc6\x26\xb6\xb3\x6c\x2e\x07\ \xd7\x75\xc9\x75\x5d\x10\x49\x9c\x3c\x79\x1a\x89\x64\x8c\xb1\xf5\ \x5f\xd8\x48\xb3\xb3\xb3\xf0\x03\x1f\x6f\xbd\xf5\x3b\x28\xaa\xa2\ \xdc\x7b\xef\x1a\x52\x5e\xda\xf9\x1b\x16\x8f\xc7\x91\x6e\x49\x61\ \xa6\x58\x44\x24\xd2\x44\xc9\x78\x02\x8c\x88\x20\x84\x00\x11\x31\ \xc6\x98\x02\x40\x9c\x3b\x7f\x61\xa0\x52\x99\xdb\x90\x6a\x6b\x46\ \xba\x35\x8d\xf2\xf5\xeb\xc5\x58\x2c\x96\x94\x52\x40\xc1\xad\xc3\ \x18\x23\x55\x55\xc5\x3f\x3e\xfa\x27\x01\x6c\xc3\x5d\x8b\xd2\x48\ \xc6\x93\xd0\x35\x0d\x60\x48\x1c\xea\x39\x42\xa3\xa3\x57\x9e\x66\ \x44\x84\xb3\xe7\x06\x11\x08\xfe\x66\xf9\x7a\xf9\x99\x74\x3a\x05\ \xaf\xc9\x45\xc4\x0b\x43\xd3\x35\x0c\x65\xb3\x18\x1f\x2f\x20\x95\ \x6e\xc5\xdd\x99\x0c\x63\x44\x84\x07\xd6\x7f\x89\x0a\x93\x13\x10\ \x42\x62\xd7\xae\x97\xf1\xd4\x53\x4f\x80\x73\x8e\x81\xa3\x47\xe1\ \xd7\x39\xc2\x61\xef\x52\xe9\x5a\xa9\xb3\xab\xab\xab\x91\xd2\x93\ \xdb\x9e\x78\x36\x9d\x4a\xa3\xb5\xa5\x05\xaf\xbd\xfa\x3a\x56\xaf\ \xee\x42\x26\xb3\x0a\x9e\xe7\xc1\xf5\xec\xfd\x3e\xf7\x3b\xd3\xe9\ \x74\x23\x75\x22\xc2\x81\xfd\x3d\xf0\xb9\xcf\xc6\xc6\xc7\x9b\x4e\ \x9c\x38\xf1\xb7\x2b\x57\xc6\x36\xc9\x40\xe0\x97\x3b\x9e\xfd\x51\ \xba\x2d\xb5\x67\xd5\x8a\x95\x60\x8c\x35\x8a\x9d\x9f\xdd\xfc\xcc\ \x38\xe7\x98\x9e\x9e\x5e\xdf\xd3\xd3\x77\x64\x24\x9f\x7f\x4e\x92\ \x9c\xbf\x67\x44\x74\xbb\x4b\x00\x34\xc6\x18\x14\x45\xd1\xff\x77\ \xf2\xf4\xb1\x44\x32\xde\xed\x78\xee\xab\x22\x10\x54\x2a\x95\xbe\ \x09\x80\x01\x58\x10\x38\x00\x02\x55\x55\xf1\xf1\x27\x07\x2b\xf3\ \x9d\x32\x42\x21\x28\x8a\x82\x64\x32\xb9\xf7\xe2\xa5\xe1\x67\xee\ \x14\x54\x1a\xed\x3d\xff\x46\x34\x1a\xd1\x4d\x2b\x04\xdb\xb6\x61\ \x99\x16\x82\x20\xc0\xb1\x7f\x1f\xc7\xf0\x70\x7e\x37\x00\x28\x8c\ \x31\x30\xc6\x30\x57\xab\x3f\x34\x3a\x7a\xf9\xe7\x91\x68\x04\x8e\ \xe3\xc0\x73\x1c\xa8\x8a\x82\x89\xc2\x04\xaa\x95\x1a\x9a\x9b\x93\ \x8d\xbc\xcf\x5f\xc8\x82\x31\x86\x5c\x2e\xdb\x77\x77\x26\x03\xc7\ \xb1\xe0\xd8\x0e\x34\x4d\x47\xad\x56\x43\x36\x77\x11\x9a\xaa\x63\ \x79\x66\xd9\x63\x00\xa0\x08\xc9\x01\x12\x1f\x64\x32\xcb\x11\x8d\ \x47\x60\xdb\x36\x0c\xd3\x00\x63\x0c\x17\x86\x06\x21\x85\x84\xeb\ \xba\xf5\x42\xa1\xf0\x77\x00\x50\x86\x2e\x64\x7f\xf6\xad\xad\x8f\ \x6f\xdd\xbc\xe9\xab\xd8\xf6\xe4\xd3\xf0\x1c\x0f\x66\xc8\xc0\x4c\ \x69\x06\xe3\x63\x05\xc4\x62\x71\x5c\x9b\x9d\x59\x5c\x2c\x16\x01\ \x00\xca\xd4\xe4\x74\x53\x2c\x16\x43\x32\x99\x44\x3e\x9f\x47\x5b\ \x7b\x07\xde\x7b\xef\xcf\xb8\x34\x3c\x8c\x58\x3c\x8e\x20\xe0\x7d\ \x8c\xa9\x53\x2b\x57\xae\x68\x08\x56\xac\x5e\xf1\x32\x63\x0c\xae\ \xe3\xa2\xc9\xf5\x90\x6a\x69\xc5\x0b\x2f\xbc\x88\xe3\x47\x4f\x20\ \x91\x88\x22\x10\xbc\xdb\x30\x34\x08\x21\x1b\x02\x92\x12\x3b\x7e\ \xb5\xc3\xf6\x3c\x0f\x9e\xe7\x21\x1a\x8d\x20\x16\x8d\xe1\x8f\x7b\ \xde\x41\xad\x56\xfb\x83\xae\xeb\xb8\x6f\xed\x7d\x48\xc4\xe2\x0d\ \x01\x24\x83\xe7\x3a\xf5\xed\x3f\xde\xce\xba\x37\x77\x6f\x8f\x27\ \x13\x81\xeb\x79\x58\x75\xcf\xaa\xaa\xae\xeb\x3f\x4d\xb5\xa6\xe0\ \x79\x1e\x88\xe8\xb6\xf9\x84\x10\x0b\xfe\x20\xa2\x79\xa3\x31\xba\ \xf5\x95\xaa\xaa\x28\x16\x67\xbe\x76\xfa\xf4\x99\x0f\x6e\x56\x2a\ \x56\x3c\x1e\x43\x3c\x11\x87\xeb\x3a\x50\x15\x65\x4e\x53\xb5\xb7\ \x2d\xcb\xda\x6d\xdb\x76\x1e\x00\xa4\x24\x00\x04\x5d\xd7\x3f\x0f\ \x20\x22\x0d\x40\x2b\x63\xac\x00\x40\xcc\x07\x1f\x1e\xc9\xbf\x74\ \x61\x30\xfb\xeb\x48\xb8\x09\xae\xeb\xc2\x71\x6c\x84\x0c\x1d\x96\ \x65\xc1\xb5\x1d\x18\x86\x01\x45\x51\x50\x2e\x97\xe9\xc6\x8d\x1b\ \x6f\xa4\x52\xa9\xe7\x18\x08\x4c\x51\x3f\x07\x60\xb7\x8b\x68\x54\ \xc1\x39\xf7\x8e\x1e\x3d\xfe\x69\xdd\xf7\xd7\xc4\xe3\x71\x58\xb6\ \x09\xc7\xb1\x61\x18\x06\x4c\xd3\x84\x63\xdb\xd0\x35\x1d\x44\x04\ \xdf\xf7\x31\x39\x35\x85\xfc\xe8\x28\xaa\x95\xb9\xe2\x97\x37\x6f\ \xba\xdf\xb2\xcc\xcb\x77\x6e\x0f\x01\x20\xc6\x18\x34\x4d\x43\xa9\ \x74\xed\x91\x8f\x3f\x39\x50\x56\x35\x6d\x4d\x7b\x7b\x3b\x22\x91\ \x08\x3c\xcf\x85\x69\x99\x70\x1c\x07\xae\x6d\x43\x57\x35\x10\x11\ \xaa\xd5\x2a\x86\xf3\x23\x18\x1e\xc9\x43\x04\x12\x9e\xe7\x25\x86\ \x86\xb2\x3f\x04\x00\x0d\x00\xa6\xa6\xa7\xef\xa0\x50\xe8\xf2\xe8\ \xd8\x87\x53\x53\x57\x1f\x6e\x6f\x6f\x87\x63\x3b\x30\xcc\x10\x42\ \xa6\x0e\x33\x64\xc0\x32\x2d\x84\x42\x21\xa8\x8a\x02\x41\x84\x72\ \xb9\x8c\x5c\xee\x22\x2a\x95\x2a\x84\x10\x30\x8c\x10\x16\x2f\x59\ \x34\xd6\x96\x4a\xed\x59\x00\x14\xaf\xce\x34\x16\x49\xd3\xd6\x15\ \x26\x27\x07\x38\xe7\xa1\x8e\x25\x8b\x61\x58\x06\x4c\x33\x84\x50\ \x28\x04\xc3\x34\x61\x19\x06\x74\x4d\x87\xa2\x28\x08\x84\x40\x71\ \xa6\x88\xa1\xa1\x1c\x38\x0f\x40\x44\x08\x87\xc3\x88\x46\x23\x7d\ \x86\x11\xea\x9e\x29\x95\xd0\xd2\xdc\xdc\x00\x98\xa6\x89\xc1\xc1\ \xec\xf3\xbd\xbd\xbd\xbb\x84\x94\x58\xbc\xe8\x2e\x68\xba\x8a\x75\ \xeb\xee\x47\x93\xd7\x04\x92\x12\x44\x8d\x87\x4f\x61\x0a\x38\xe7\ \x18\x9f\x2c\x20\x37\x94\x03\x11\x60\x9a\x16\xa2\xd1\x08\xca\x37\ \xae\xbf\x52\x98\x9c\x78\x7e\xa2\x30\x0e\xcb\xb2\x6e\x03\xde\xff\ \xcb\x5f\x3f\xdc\xbb\x77\xdf\x37\x18\x63\xa8\xd5\x6a\xf0\xb9\x0f\ \x9f\x73\x54\x2a\x15\xd4\xeb\x75\x6c\xdc\xf8\x20\x76\xee\x7c\x11\ \x6b\xd7\xdc\x03\x22\x42\x6e\xf0\x22\x2e\x5d\x1a\x5e\x08\x6c\xd9\ \x26\x8a\xc5\xe2\x4f\x82\x80\xbf\x1d\x0a\x85\xd0\xd9\xd9\x09\xcb\ \xb2\x6e\xef\xc1\xbe\x7d\x1f\xb5\xbf\xfb\xce\xbb\xff\x19\x1f\x9f\ \x68\x99\x87\x08\x21\x20\x84\x80\x94\x12\x04\x42\xcd\xf7\x51\x9b\ \x9b\xc3\xf7\x7f\xb0\x0d\x5b\xb6\x3c\xd6\xf8\xfd\x47\x9a\x00\x10\ \x4a\xa5\x6b\x0f\x83\xb1\xfd\x52\x4a\x2c\x5d\xda\x81\x70\x53\x13\ \xa4\x94\x68\x4e\x24\x1b\x80\x83\x87\x7a\x00\xc6\xd0\x7b\xb8\xf7\ \xf5\x9e\xc3\x47\x7e\x21\xa4\x80\xaa\xaa\x90\x52\x2e\x40\xa4\x94\ \x20\x49\x98\xab\xcd\x21\x95\x4e\x61\xf7\x9b\xaf\x41\xd7\x35\xbf\ \x58\x2c\x7e\xc5\x34\xcd\x4f\x89\x08\xaa\xaa\xc2\x73\x3d\xa4\xd3\ \x69\xa8\xaa\x0a\xdb\xb2\x6e\x3d\x23\x07\x7a\x1a\x0e\x92\x84\xd9\ \xd9\x59\x0c\x8f\x8c\x7c\xe7\xec\xd9\xb3\xbf\x9d\x9a\x9c\xba\x2b\ \x08\x02\xa8\xaa\x0a\xc6\xd8\xc2\x42\x56\xab\x73\xd8\xfa\xed\x2d\ \x37\x1e\xfd\xfa\x23\x5f\x94\x52\x9e\xe3\x9c\xa3\xb5\xa5\x15\x6d\ \xe9\xf4\xc2\xac\x00\x40\x51\x94\x5b\x15\x1c\x3c\x3c\xef\x52\x95\ \x88\x70\xbd\x7c\x53\x08\x21\x50\xab\xd5\x50\x2a\x95\x50\xaf\xfb\ \xeb\x54\x55\x79\x94\x29\xc8\x44\xc2\x91\xd9\x65\xcb\x96\xfe\x29\ \x12\x0d\xff\x57\x51\x19\x34\x55\x43\xa6\x73\x39\x74\x5d\x87\x94\ \x12\x77\x1e\x45\x51\xf0\x7f\x60\x84\x69\x65\x48\xcf\xfa\x14\x00\ \x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x07\x65\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x18\x00\x00\x00\x18\x08\x06\x00\x00\x01\x97\x70\x0d\x6e\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x07\x05\x49\x44\x41\x54\x48\ \xc7\x55\x95\x6b\x70\x54\xe5\x19\xc7\x7f\xef\x39\x67\x77\xcf\xd9\ \x73\x36\xd9\x4b\x16\xd8\x10\xb9\x08\xc6\x82\x8a\x8a\x99\x62\x11\ \x05\x6a\x47\xad\x9d\x8a\x83\x9d\xb1\x17\x6c\x6b\x69\xeb\x27\xed\ \x4d\x3a\x76\xec\x4c\x6d\x55\x1c\xab\x15\x1d\x3b\xf6\xc2\xd0\x8e\ \x8e\x2d\xb5\x6a\x29\xb6\x4e\xbd\x00\x21\x89\x29\x58\x6c\xb9\x5f\ \xb2\x81\x64\x03\x49\x36\x09\x9b\x4d\x08\x6c\xb2\xbb\xe7\xf2\xf4\ \x43\x48\xd0\xe7\xe3\x3b\xf3\x3c\xbf\xf7\x79\x9e\xff\xff\x7d\x95\ \x88\xe0\x79\x1e\xe5\x6a\xe5\x5a\x44\x84\x03\x07\x0f\xcb\x78\x79\ \x42\x10\x11\xe6\xcf\x6f\x94\x83\x87\x0f\x09\xae\xeb\xd2\xd6\xd6\ \xfe\xb4\xeb\xba\xa8\x4a\xa5\xc2\x85\xf1\x92\x1c\x3c\x70\x18\xed\ \xc6\x65\x37\x8b\x19\x31\x99\xdd\x50\xaf\xb8\x58\xad\x76\xe8\x6c\ \x61\x65\x47\x67\x56\xaa\xd5\xaa\xfc\x7b\xef\x5e\xd1\x00\x5a\x5a\ \xdb\x46\x3d\xdf\xdd\x7d\xf9\xbc\xf9\xec\xd8\xb9\x93\x90\x61\xac\ \xd0\x00\x9a\x77\xb6\xfe\xee\xab\xf7\x7e\x9d\x9b\x96\xaf\x22\x9e\ \x88\xab\xa6\xa6\xa6\x0f\xf0\x3c\x0f\xcf\xf3\xf0\x7d\x9f\xfd\xfb\ \x0f\xbe\xee\x79\x1e\xae\xeb\x82\xe7\x79\xca\x75\x5d\x76\x35\xb7\ \x48\x7e\x70\x40\x5c\xd7\x15\x11\x41\x53\x4a\x49\x5b\x5b\xfb\xd9\ \x79\xf3\xe7\x50\x97\x4c\xd1\xd6\xde\x4e\x6f\x6f\xff\x7a\x95\xed\ \xec\xc4\x71\x1c\x71\x1c\x07\x91\x80\xfd\xfb\x0f\x51\x97\x4e\x2a\ \xb5\xec\xd3\x2b\x64\x74\x74\x94\xaa\x57\xe5\xa5\x97\x7e\x8d\xa6\ \x6b\xda\x75\xd7\x2d\x11\xed\x89\x8d\xbf\x50\xa9\x54\x8a\xfa\x99\ \x19\x86\x0b\x05\x6e\xbb\x67\x6d\xd0\x9b\x9e\x21\x4a\x44\xf0\x7d\ \x1f\x11\x51\x4a\x29\x0d\xf0\x8f\x1e\x3b\xde\x5e\x2a\x4d\x2c\xcf\ \xcc\x9e\x41\xfd\xac\x7a\xc6\xce\x9d\x2b\x24\x93\xc9\x74\x10\xf8\ \x68\x5c\x0c\xa5\x94\xe8\xba\xee\xff\xf3\xed\x7f\x09\xa8\xe5\x97\ \xcd\xa9\x27\x9d\x4a\x13\x32\x0c\x50\xd4\xed\x6c\xde\x2d\x3d\x3d\ \x67\xee\x57\x22\xc2\x91\xa3\x27\xf0\x7c\xf7\x85\xb1\x73\x63\x0f\ \xd5\xd7\x67\x88\xd5\x38\xc4\x63\xb5\x18\x21\x83\x8e\x6c\x96\xbe\ \xbe\x3c\x99\xfa\x59\x5c\xd9\xd8\xa8\x94\x88\x70\xe3\xb2\x5b\x24\ \x3f\xd0\x8f\xef\x07\x3c\xf5\xd4\x93\xdc\x77\xdf\x57\x70\x5d\x97\ \xf6\x3d\x7b\xa8\x56\x5c\x6a\x6b\x63\xa7\x8a\x23\xc5\x85\x4b\x97\ \x2e\x45\x89\x08\x2f\xbe\xf8\x9b\xef\xfd\xf9\x4f\x5b\x9f\x77\x5d\ \x17\xd7\x75\xf1\x83\x80\x52\xe9\x02\x6f\xfc\xed\x35\x2a\x95\xf2\ \x7b\xcb\x9f\x79\xf6\x36\x0e\x1c\x40\xfa\xfb\xb3\x4a\x44\x78\xff\ \xbd\x66\xaa\x6e\x55\xf5\xf6\xf5\xd5\xec\xdb\xb7\xef\xef\x67\xce\ \xf4\xae\x0a\x3c\x9f\x1f\x6d\xf8\xfe\xb7\xeb\x67\x67\xb6\x04\xd7\ \x2c\x39\xd8\x07\x4b\xb2\xf0\xc4\xf4\xee\xa6\x76\xe6\xba\x2e\x43\ \x43\x43\xcb\x9a\x9b\x5b\x77\x77\xe7\x72\x0f\x07\x12\x4c\x9d\x2b\ \x11\xb9\x34\x25\xc0\x50\x4a\xa1\x69\x5a\xe8\x7f\xfb\x0f\xed\xad\ \x4b\xa7\x56\xda\x31\xe7\x19\xdf\xf3\xa5\x58\x2c\xde\x0d\x28\x60\ \x3a\xc1\x06\x3c\x5d\xd7\x79\xe7\xdd\x1d\xa5\xa9\x49\x45\xc2\x61\ \x34\x4d\x23\x9d\x4e\x6f\x3b\x79\xaa\xeb\xa1\x8f\x27\x94\x26\xc7\ \x7b\xec\xb9\x44\x22\x1e\x32\xad\x30\xd1\x68\x14\xcb\xb4\xf0\x3c\ \x8f\xbd\xff\xf9\x90\xae\xae\xdc\x26\x00\x4d\x29\x85\x52\x8a\x89\ \x72\xe5\xe6\x9e\x9e\xd3\x3f\x88\x27\xe2\xd8\xb6\x4d\xcc\xb6\xd1\ \x35\x8d\xfe\x7c\x3f\xe3\xa5\x32\x33\x66\xa4\x27\xef\x7d\xec\x78\ \x16\xa5\x14\x9d\x9d\xd9\xd6\x2b\x1b\x1b\xb1\x6d\x0b\x3b\x6a\x63\ \x18\x21\xca\xe5\x32\xd9\xce\x93\x18\x7a\x88\x2b\x1a\x17\xdc\x05\ \xa0\xf9\x81\x0b\xe2\xbf\xd9\xd8\x78\x05\x89\x54\x9c\x68\x34\x4a\ \xc4\x8c\xa0\x94\xe2\x78\xc7\x09\x02\x3f\xc0\x71\x9c\x4a\x3e\x9f\ \xff\x07\x80\xd6\x71\x3c\xfb\xe0\x3d\x6b\xef\x5d\xbb\x7a\xd5\xe7\ \x58\xf7\xb5\xfb\x89\xd9\x31\xcc\x70\x84\xe1\xe2\x30\x7d\xbd\x79\ \x92\xc9\x14\x23\xa3\xc3\x73\x0b\x85\x02\x00\xda\xe0\xc0\x50\x4d\ \x32\x99\x24\x9d\x4e\x93\xcb\xe5\x98\xdd\x30\x9f\xad\x5b\x5f\xe3\ \x54\x57\x17\xc9\x54\x0a\xcf\x73\x5b\x95\xd2\x07\x17\x2f\x5e\x34\ \x99\xb0\xe8\xea\x45\x4f\x2a\xa5\x70\x6c\x87\x1a\x27\x46\x66\xe6\ \x2c\x1e\x7b\xec\x71\x3e\xdc\xb3\x8f\xba\xba\x04\xcb\x9f\xdf\xf4\ \x97\xdb\x7e\xf2\x88\x24\x17\x5f\x2d\x25\x5d\xbf\x5e\x93\x20\x60\ \xc3\x8f\x37\x44\x63\xb1\x18\xb1\x58\x8c\x44\x22\x4e\x32\x91\xe4\ \x0f\x5b\x5e\xa6\x5c\x2e\xff\x9e\x7d\xfb\x7e\xce\x47\x1f\x31\x91\ \xcf\xd3\x1a\x04\x3f\xd5\x08\x14\x31\xc7\xae\xac\xff\xce\x7a\xb5\ \x72\xf5\xca\xf5\xa9\x74\x9d\xe7\xc4\x62\x5c\x75\xcd\x55\xe3\xa1\ \x50\xe8\x81\xfe\xee\xee\x9b\xdb\x80\x57\xc0\xcf\xc1\xba\x69\xc7\ \x4d\x85\x88\xa0\x94\x02\x50\x22\x22\x00\xba\xae\x53\x28\x0c\x7f\ \xfe\xd0\xa1\xc3\x6f\x5e\x28\x95\xac\x54\x2a\x49\xaa\x2e\x85\xe3\ \xd8\xe8\x9a\x36\x61\xe8\xc6\x66\xcb\xb2\x36\x45\xa3\xd1\x1c\x40\ \x10\x08\x20\x84\x42\x21\x3e\x01\x10\x11\x03\x98\xa5\x94\xca\x03\ \xfe\x54\xf1\xae\xee\xdc\x13\xc7\x4f\x64\x1f\x8d\xd7\xd6\xe0\x38\ \x0e\xb6\x1d\x25\x1c\x09\x61\x59\x16\x4e\xd4\x26\x12\x89\xa0\x69\ \x1a\x63\x63\x63\x72\xfe\xfc\xf9\xe7\x32\x99\xcc\xc3\x0a\x41\x69\ \xfa\x27\x00\xea\x52\x13\x93\x5d\xb8\xae\x1b\xdb\xb3\xe7\xc3\x0f\ \x2a\xd5\xea\x92\x54\x2a\x85\x15\x35\xb1\xed\x28\x91\x48\x04\xd3\ \x34\xb1\xa3\x51\x42\x46\x08\x11\xa1\x5a\xad\x32\x30\x38\x48\xae\ \xa7\x87\xf1\xd2\x44\xe1\xb3\xab\x57\xdd\x60\x59\xe6\xe9\x8f\xbb\ \x47\x00\x51\x4a\x61\x18\x06\xc5\xe2\xc8\x1d\xef\xbc\xfb\xfe\x98\ \x6e\x18\x4b\x1a\x1a\x1a\x88\xc7\xe3\xc4\x62\x0e\xa6\x65\x62\xdb\ \x36\x4e\x34\x4a\x48\x37\x10\x11\xc6\xc7\xc7\xe9\xca\x75\xd3\xd5\ \x9d\xc3\xf7\x02\x62\xb1\x58\x5d\x47\x47\xf6\x5b\x00\x06\xc0\xe0\ \xd0\xd0\xc7\x28\x12\x3e\xdd\xd3\xfb\xd6\xe0\xe0\xd9\xdb\x1b\x1a\ \x1a\xb0\xa3\x36\x11\x33\x4c\xd8\x0c\x61\x86\x23\x58\xa6\x45\x38\ \x1c\x46\xd7\x34\x7c\x11\xc6\xc6\xc6\xe8\xec\x3c\x49\xa9\x34\x8e\ \xef\xfb\x44\x22\x61\xe6\xce\x9b\xd3\x3b\x3b\x93\xd9\x32\x0d\x28\ \x9c\x1d\x9e\x34\x92\x61\x34\xe5\x07\x06\xda\x5d\xd7\x0d\xcf\x9f\ \x37\x97\x88\x15\xc1\x34\xc3\x84\xc3\x61\x22\xa6\x89\x15\x89\x10\ \x32\x42\x68\x9a\x86\xe7\xfb\x14\x86\x0b\x74\x74\x74\xe2\xba\x1e\ \x22\x42\x6d\x6d\x2d\x89\x44\xbc\x35\x12\x09\xaf\x1c\x2e\x16\x99\ \x39\x63\xc6\x24\xc0\x34\x4d\x4e\x9c\xc8\x3e\xd2\xd2\xd2\xf2\x94\ \x1f\x04\xcc\x9d\x73\x19\x46\x48\xa7\xa9\xe9\x06\x6a\x62\x35\x48\ \x10\x20\x32\xf9\xf1\x69\x4a\xc3\x75\x5d\xfa\x06\xf2\x74\x76\x74\ \x22\x02\xa6\x69\x91\x48\xc4\x19\x3b\x7f\xee\xe9\xfc\x40\xff\x23\ \xfd\xf9\x3e\x2c\xcb\xba\x04\x78\xfd\xaf\x6f\xbc\xb5\x6d\xdb\xf6\ \x2f\x2a\xa5\x28\x97\xcb\x54\xdd\x2a\x55\xd7\xa5\x54\x2a\x51\xa9\ \x54\x58\xb1\xe2\x26\x36\x6e\x7c\x9c\x6b\x97\x5c\x83\x88\xd0\x79\ \xe2\x24\xa7\x4e\x75\x4d\x17\xb6\xa2\x26\x85\x42\xe1\xbb\x9e\xe7\ \x6e\x0e\x87\xc3\x2c\x5c\xb8\x10\xcb\xb2\x98\xd2\x3a\xdb\xb7\xbf\ \xdd\xf0\xca\xcb\xaf\x7c\xd4\xd7\xd7\x3f\x73\x0a\xe2\xfb\x3e\xbe\ \xef\x13\x04\x01\x82\x50\xae\x56\x29\x4f\x4c\xf0\x8d\x6f\xae\x63\ \xcd\x9a\xbb\x26\x9f\xff\x78\x0d\x20\x14\x8b\x23\xb7\xdf\xfa\xea\ \xab\xb3\xa9\x56\x1f\x62\x64\x64\x16\x83\x83\xbb\xc9\xe5\x1e\xa5\ \x54\xea\x52\x22\xc2\x8e\x9d\xcd\xa0\x14\x2d\xbb\x5a\x7e\xd5\xbc\ \x6b\xf7\x0f\xfd\xc0\x47\xd7\x75\x82\x20\x98\x86\x04\x41\x80\x04\ \xc2\x44\x79\x82\x4c\x7d\x86\x4d\x2f\x3c\x4b\x28\x64\x54\x0b\x85\ \xc2\xad\xb7\xfc\xec\xb1\xcd\xe4\xf3\x9f\xa2\xbb\x1b\x2a\x15\x04\ \x28\x88\x30\x02\xbf\x9d\xfc\x46\xde\x6f\x9e\x54\x50\x20\x8c\x8e\ \x8e\xd2\xd5\xdd\xfd\xe5\x23\x47\x8e\xfc\x72\x70\x60\xf0\x32\xcf\ \xf3\xd0\x75\x1d\xa5\xd4\xb4\x21\xc7\xc7\x27\x58\xfb\xa5\x35\xe7\ \xef\xfc\xc2\x1d\x9f\x09\x82\xe0\xe8\xe2\xeb\xae\xdf\x56\xf6\xfd\ \xbb\xe5\xa2\xd6\x4f\x03\x87\x81\x32\x3c\x38\xd9\xc1\x8e\x5d\x53\ \x2a\xd5\x45\x84\x73\x63\x17\x7c\xdf\xf7\x29\x97\xcb\x14\x8b\x45\ \x2a\x95\x6a\x93\xae\x6b\x77\x2a\x8d\xc6\x78\x6d\x7c\x74\xc1\x82\ \xcb\xff\x18\x4f\xd4\xfe\x57\xd3\x15\x86\x6e\xe0\x2c\xbe\x8a\x3e\ \x58\x7c\x1a\x1e\x38\x0b\x0d\x25\x78\x2f\x0c\x5b\x2c\xf0\xfe\x0f\ \xa4\xa4\xa5\x79\xe8\x4b\xcf\x5e\x00\x00\x00\x00\x49\x45\x4e\x44\ \xae\x42\x60\x82\ \x00\x00\x03\x34\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x01\x68\xf4\xcf\xf7\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x02\xd4\x49\x44\x41\x54\x38\ \xcb\x55\x92\x4f\x68\x5d\x65\x10\xc5\x7f\xdf\xbb\x37\xaf\x49\x48\ \xd5\x04\x23\x22\x22\x88\x85\x08\x12\x05\x0b\xa2\x0b\xc1\x8d\x90\ \x6c\x14\x04\xa1\xee\x94\x42\x15\x14\x22\xed\x56\x77\x6e\x0d\x82\ \x2b\x05\x97\xba\x15\xdd\x58\x10\x0a\x82\xab\x5a\x50\x2b\x41\x24\ \xb1\x31\x31\x79\x6d\xfe\xbc\x97\xfb\xde\xfd\xf7\xdd\xef\x7e\x33\ \xe3\xe2\x3e\x0a\xce\x76\xe6\x9c\x39\x67\xe6\xb8\x67\x77\xde\xe4\ \xa9\xfe\xe3\xb1\x57\xab\x6f\xbe\x9d\xdc\x48\x92\xb7\x0f\x3e\x5e\ \xa9\xde\x7b\x68\xe8\x66\xb7\x5e\x30\x7f\x98\xe3\x5e\xdb\xdb\x58\ \x3d\x8a\xc3\xdb\xdb\x61\x9f\x5c\x4b\x1c\x37\x57\xe1\xb8\x35\x1a\ \x85\xdf\x2b\xdc\xeb\x7b\x1b\x3c\x98\x9c\xbf\xb5\x1b\x0e\x7f\xda\ \x6a\xfe\xbe\x96\x02\x76\xa3\xbc\x49\xa1\xd5\xc5\x6c\x32\xde\x48\ \x7f\xa9\xb7\x18\xc4\x13\x10\x83\x3f\xab\x24\x1d\x1c\x0c\xa0\x56\ \x18\x04\xd8\x6b\x36\xdd\xfa\x3f\xef\xb3\x9c\x2e\xfe\x20\x26\x6b\ \xa7\x92\x91\x49\x4e\xa9\x35\x99\xe6\x8c\x64\x7c\x2e\x2d\xb5\xde\ \x3e\xf2\xc3\x0b\x07\xf1\x88\xa1\x64\xa8\x19\x00\x56\x44\x18\xc6\ \x26\xbd\xe5\xb7\xae\x57\xea\x3f\x20\x76\x0d\x0c\x28\x04\xee\x34\ \x70\x37\xe0\xf8\xf9\x19\x38\x89\x30\x8c\x39\x85\x2c\x50\x08\x8c\ \x05\xc4\xde\xe5\x91\x99\x2f\xdd\x2b\xbb\x97\x79\x2c\x5d\xe6\x9c\ \xeb\x7f\x5a\x5b\xb3\x91\x49\xfe\xdb\x71\x1c\x5d\x3a\x96\xd1\xce\ \x99\x4c\x48\x1f\x4d\x1f\xee\xcf\xb8\xb4\x19\x6b\xc1\x69\xcc\x28\ \xb4\xba\x38\xd1\x62\xbb\x52\x7f\xbd\xb1\xb0\x9e\x06\x6b\xab\x91\ \x8c\xd9\x6f\xef\x31\x94\x8c\x68\x42\x34\x21\x8f\xc5\x1a\x13\x59\ \x49\x8f\xe2\x30\x39\x8e\x23\x0e\xe2\x11\x5e\x43\xa7\x33\x2a\x8c\ \x22\x64\xf2\x75\x3a\x88\x27\x8c\xa5\xc0\x6b\xc0\xb0\xce\x85\x57\ \x38\x8b\x70\x1c\x9f\x48\xff\x6d\xef\x11\x25\x42\x04\x12\xa0\x35\ \x38\x8d\x70\x18\xa0\xd4\x6f\x12\x7d\x6b\x69\x91\x91\xbc\x48\x26\ \x1d\xed\xdd\x00\xbb\x4d\x67\xbd\xdf\x7b\x29\xa5\xd6\x0f\x19\xb6\ \xbb\x8c\xe5\x33\x4a\x85\x89\x40\x21\x05\xb3\xbd\xf3\x2c\xa7\xb8\ \x97\xef\xbc\xc3\x52\xf2\x00\x0b\xbd\x79\xfa\x6e\xe6\xaa\x73\xee\ \x93\x68\x32\xd7\x58\xc0\x6b\x83\xb7\x40\x63\x81\x5a\x1b\x2a\xf3\ \x75\xa5\xfe\xa3\x4a\xeb\xcd\xda\x1a\x82\xb5\x5d\x20\xe6\x7a\xb3\ \x5f\xf4\x70\x57\x5a\x8b\xd4\xd6\x90\x6b\x49\xa1\x35\x5e\xbb\x21\ \x41\x11\x13\x82\xb5\xf8\x29\x99\xd7\x66\x93\x68\xd7\xd2\xc6\xda\ \xcf\x83\xc4\x2b\x7e\x0a\x3c\x93\x9c\x4c\x26\xd4\xd6\xd0\x5a\xec\ \x2e\x03\x38\x1c\xd1\x04\x6b\x15\x1a\x85\x5a\xaf\x12\x2c\x71\xcf\ \xef\x5c\x6a\x22\xd2\xaf\xd5\x53\x6a\x4d\xae\x15\xb5\x79\xc4\xf4\ \x3e\xf8\x7e\x48\x1a\x85\x4a\xbb\xb0\x14\x0a\x5e\x4f\xd2\x41\x3c\ \xd9\x6f\xad\xbd\xd0\x5a\xa4\x25\x76\x92\x55\xf9\x5f\x99\x75\xe7\ \x2f\xa7\xff\x19\x0b\xe4\x02\xc1\xf6\x1d\xb7\x9f\x5b\x25\xe8\xaf\ \x44\x4b\x88\xd3\x47\x76\x9a\xbb\xd2\xe9\xe6\x52\x21\x8b\x90\x4d\ \xc1\xad\x09\x33\xee\xe9\x94\x42\xfe\xa0\xd2\x79\x6a\xfd\x0e\xaf\ \x6b\xb4\x06\x6a\x20\x40\x34\x08\xd6\x11\x14\xd2\xc9\x0f\x06\xf0\ \x3d\x73\xbd\x37\x98\xef\x49\x8a\x03\x7a\x04\xcc\xd6\x09\x06\xa5\ \x3c\x49\xa5\x97\xa9\xf4\x55\xbc\xae\xd0\x1a\xb4\xf6\x17\x6a\x3f\ \xd2\x73\x5f\x31\xeb\x76\x59\x48\x60\x29\x85\xc5\x94\xff\x00\xe1\ \x78\x1f\x4c\x73\x1c\xbc\x8b\x00\x00\x00\x00\x49\x45\x4e\x44\xae\ \x42\x60\x82\ \x00\x00\x07\x6a\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x18\x00\x00\x00\x18\x08\x06\x00\x00\x01\x97\x70\x0d\x6e\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x07\x0a\x49\x44\x41\x54\x48\ \xc7\x55\x95\x6b\x70\x5c\x65\x19\xc7\x7f\xef\x39\x67\xf7\x9c\xb3\ \x97\x64\x2f\xd9\x96\x4d\x43\x2f\x50\xc2\x08\xd2\x32\x50\x2d\x96\ \x62\x5b\x75\x10\x61\x04\x06\x54\x04\x01\xc5\xaa\x0c\x1f\x44\x40\ \x40\x1c\x9d\xd1\x51\x04\xf1\x02\x32\x38\xf5\xc2\x54\x07\x66\xb4\ \x53\x2e\x56\x40\x46\xa0\x97\x34\x09\xb1\x05\x94\xd2\x0b\xb4\x49\ \xda\x5c\x20\xc9\xe6\xb2\xd9\x26\xdb\xec\x66\xf7\xbc\xe7\x9c\xc7\ \x0f\x21\x01\x9e\x8f\xef\xcc\xfb\xfc\xde\xe7\x79\xfe\xff\xf7\x51\ \x22\x82\xef\xfb\xd4\xbc\xfa\x6a\x44\x84\xb7\x0e\x1e\x96\x6a\x6d\ \x56\x10\x11\x56\xac\x68\x95\x83\x87\x0f\x09\x5a\x6b\x3a\x3b\xbb\ \x1e\xd2\x5a\xa3\xea\xf5\x3a\x33\xd5\x8a\x1c\x7c\xeb\x30\xc6\x45\ \x6b\x2f\x11\xc7\x76\x58\xd2\xd2\xac\x78\x3f\x5b\xe3\xf8\x44\x71\ \x43\x77\x6f\x8f\x78\x9e\x27\xff\xd9\xbf\x5f\x0c\x80\xf6\x8e\xce\ \x29\x3f\xd0\x7b\xcf\x58\xbe\x82\x5d\xbb\x77\x13\xb1\xac\xf5\x06\ \x40\xdb\xee\x8e\x3f\xdd\x70\xdd\xcd\x5c\xbc\x6e\x23\xa9\x74\x4a\ \x7d\xc2\xdd\xfc\x2a\xbe\xef\xe3\xfb\x3e\x41\x10\x70\xe0\xc0\xc1\ \xa7\x7d\xdf\x47\x6b\x0d\xbe\xef\x2b\xad\x35\x7b\xda\xda\xa5\x30\ \x36\x2a\x5a\x6b\x11\x11\x0c\xa5\x94\x74\x76\x76\x4d\x2c\x5f\xb1\ \x94\xa6\x4c\x96\xce\xae\x2e\x86\x86\x46\x36\xab\x9e\xde\x5e\x12\ \x89\x84\x24\x12\x09\x44\x42\x0e\x1c\x38\x44\x53\x2e\xa3\xd4\xda\ \x4f\xae\x97\xa9\xa9\x29\x3c\xdf\x63\xcb\x96\xdf\x63\x98\x86\x71\ \xfe\xf9\xab\xc4\xb8\xff\x81\x9f\xa9\x6c\x36\x4b\xf3\xe2\x3c\x93\ \xc5\x22\x57\x2c\xf9\x41\xb8\xf8\xa5\x75\xa2\x44\x84\x20\x08\x10\ \x11\xa5\x94\x32\x80\xe0\xed\x77\x8e\x76\x55\x2a\xb3\xeb\xf2\x4b\ \x16\xd1\x7c\x5a\x33\xe5\xe9\xe9\x62\x26\x93\xc9\x85\x61\x80\xc1\ \xfb\xa1\x94\x12\xd3\x34\x83\x7f\xbd\xf8\x6f\x01\xb5\xee\xf4\xa5\ \xcd\xe4\xb2\x39\x22\x96\x05\x8a\xa6\xdd\x6d\x7b\x65\x70\xf0\xbd\ \x5b\x94\x88\x70\xe4\xed\x63\xf8\x81\x7e\xb4\x3c\x5d\xbe\xbd\xb9\ \x39\x4f\xb2\x21\x41\x2a\xd9\x88\x15\xb1\xe8\xee\xe9\x61\x78\xb8\ \x40\xbe\xf9\x34\xce\x6e\x6d\x55\x4a\x44\xb8\x68\xed\xa7\xa5\x30\ \x3a\x42\x10\x84\x3c\xf8\xe0\x2f\xb8\xe9\xa6\xeb\xd1\x5a\xd3\xb5\ \x6f\x1f\x5e\x5d\xd3\xd8\x98\x3c\x51\x3a\x59\x5a\x79\xc1\x05\x17\ \xa0\x44\x84\xc7\x1e\xfb\xc3\xf7\xfe\xfe\xb7\x6d\xbf\xd3\x5a\xa3\ \xb5\x26\x08\x43\x2a\x95\x19\x9e\xf9\xc7\x76\xea\xf5\xda\x2b\x77\ \x2d\xda\x72\x69\x8f\x37\xc8\x74\xad\x1c\x28\x11\x61\xe7\x2b\x6d\ \x78\xda\x53\x43\xc3\xc3\x0d\x6f\xbc\xf1\xc6\x3f\xdf\x7b\x6f\x68\ \x63\xe8\x07\x7c\xff\x9e\x3b\xbe\xd5\xbc\x24\xbf\x75\xf5\xa1\x6b\ \xa7\x99\xd0\x0d\x0c\x7b\x77\x2c\xcc\x6e\x7e\x66\x5a\x6b\xc6\xc7\ \xc7\xd7\xb6\xb5\x75\xec\xed\x1f\x18\xb8\x3b\x94\x70\xfe\x5c\x89\ \xc8\x07\x5d\x02\x2c\xa5\x14\x86\x61\x44\xde\x3c\x70\x68\x7f\x53\ \x2e\xbb\x21\x9e\x4c\xfc\x3a\xf0\x03\x29\x95\x4a\x57\x03\x0a\x58\ \xb8\x10\x07\x7c\xd3\x34\x79\xe9\xe5\x5d\x95\xf9\x4e\xd9\xd1\x28\ \x86\x61\x90\xcb\xe5\x76\x1c\x3f\xd1\x77\xfb\x87\x2f\x54\xe6\xda\ \xfb\xce\xc3\xe9\x74\x2a\xe2\xb8\x51\x62\xb1\x18\xae\xe3\xe2\xfb\ \x3e\xfb\x5f\x7f\x8d\xbe\xbe\x81\x47\x00\x0c\xa5\x14\x4a\x29\x66\ \x6b\xf5\x4b\x06\x07\xdf\xbd\x33\x95\x4e\x11\x8f\xc7\x49\xc6\xe3\ \x98\x86\xc1\x48\x61\x84\x6a\xa5\xc6\xa2\x45\xb9\xb9\x77\xbf\x73\ \xb4\x07\xa5\x14\xbd\xbd\x3d\x1d\x67\xb7\xb6\x12\x8f\xbb\xc4\x63\ \x71\x2c\x2b\x42\xad\x56\xa3\xa7\xf7\x38\x96\x19\xe1\xac\xd6\x33\ \xaf\x04\x30\x82\x50\x83\x04\xcf\xb6\xb6\x9e\x45\x3a\x9b\x22\x16\ \x8b\x61\x3b\x36\x4a\x29\x8e\x76\x1f\x23\x0c\x42\x12\x89\x44\xbd\ \x50\x28\xbc\x00\x60\x74\x1f\xed\xf9\xee\xb5\xd7\x5c\x77\xcd\xa6\ \x8d\x9f\xe3\xc6\xaf\xdd\x42\x32\x9e\xc4\x89\xda\x4c\x96\x26\x19\ \x1e\x2a\x90\xc9\x64\x39\x39\x35\xb9\xac\x58\x2c\x02\x60\x8c\x8d\ \x8e\x37\x64\x32\x19\x72\xb9\x1c\x03\x03\x03\x2c\x69\x59\xc1\xb6\ \x6d\xdb\x39\xd1\xd7\x47\x26\x9b\xc5\xf7\x75\x87\x52\xe6\xd8\x39\ \xe7\x7c\x6c\x4e\xa4\x3b\x77\xb7\xf1\x93\x1f\xff\x54\x82\x20\xc0\ \xf3\x3c\xb4\xf6\xf1\x74\x9d\xdb\x6e\xbb\x95\xcb\x2e\xbf\x94\x1f\ \x3a\x7f\x9c\x7d\xbd\x76\xc4\x2d\x87\x15\x66\x26\xcb\xd7\x19\x12\ \x86\xdc\x73\xef\x3d\xb1\x64\x32\x49\x32\x99\x24\x9d\x4e\x91\x49\ \x67\xf8\xcb\xd6\x27\xa8\xd5\x6a\x7f\x7e\xb5\x76\xc0\x1d\xf1\x27\ \x98\x39\x59\x86\x37\xab\x5f\x36\x08\x15\xc9\x44\xbc\xbe\xf9\xdb\ \x9b\xd5\x86\x4d\x1b\x36\x67\x73\x4d\x7e\x22\x99\xe4\xdc\xf3\xce\ \xad\x46\x22\x91\x5b\x8b\x7d\x63\xb7\xb2\x7f\x06\x5e\x98\xaa\x32\ \xa1\xaf\x5f\x70\xdc\x7c\x88\x08\x4a\x29\x00\x25\x22\x02\x60\x9a\ \x26\xc5\xe2\xe4\x17\x0e\x1d\x3a\xfc\xec\x4c\xa5\xe2\x66\xb3\x19\ \xb2\x4d\x59\x12\x89\x38\xa6\x61\xcc\x5a\xa6\xf5\xb8\xeb\xba\x8f\ \xc4\x62\xb1\x01\x80\x30\x14\x40\x88\x44\x22\x7c\x04\x20\x22\x16\ \x70\x9a\x52\xaa\x00\x04\xf3\xc9\xfb\xfa\x07\xee\x3f\x7a\xac\xe7\ \x47\xa9\xc6\x06\x12\x89\x04\xf1\x78\x8c\xa8\x1d\xc1\x75\x5d\x12\ \xb1\x38\xb6\x6d\x63\x18\x06\xe5\x72\x59\x4e\x9d\x3a\xf5\x70\x3e\ \x9f\xbf\x5b\x21\x28\xc3\xfc\x08\x40\x7d\x50\xc4\x5c\x15\x5a\xeb\ \xe4\xbe\x7d\xaf\xbd\x5a\xf7\xbc\x55\xd9\x6c\x16\x37\xe6\x10\x8f\ \xc7\xb0\x6d\x1b\xc7\x71\x88\xc7\x62\x44\xac\x08\x22\x82\xe7\x79\ \x8c\x8e\x8d\x31\x30\x38\x48\xb5\x32\x5b\xfc\xcc\xa6\x8d\x17\xba\ \xae\xf3\xee\x87\xdd\x23\x80\x28\xa5\xb0\x2c\x8b\x52\xe9\xe4\x65\ \x2f\xbd\xbc\xb3\x6c\x5a\xd6\xaa\x96\x96\x16\x52\xa9\x14\xc9\x64\ \x02\xc7\x75\x88\xc7\xe3\x24\x62\x31\x22\xa6\x85\x88\x50\xad\x56\ \xe9\x1b\xe8\xa7\xaf\x7f\x80\xc0\x0f\x49\x26\x93\x4d\xdd\xdd\x3d\ \xdf\x04\xb0\x00\xc6\xc6\xc7\x3f\x44\x91\xe8\xbb\x83\x43\xcf\x8f\ \x8d\x4d\x7c\xbe\xa5\xa5\x85\x78\x2c\x8e\xed\x44\x89\x3a\x11\x9c\ \xa8\x8d\xeb\xb8\x44\xa3\x51\x4c\xc3\x20\x10\xa1\x5c\x2e\xd3\xdb\ \x7b\x9c\x4a\xa5\x4a\x10\x04\xd8\x76\x94\x65\xcb\x97\x0e\x2d\xc9\ \xe7\xb7\x2e\x00\x8a\x13\x93\x73\x46\xb2\xac\x35\x85\xd1\xd1\x2e\ \xad\x75\x74\xc5\xf2\x65\xd8\xae\x8d\xe3\x44\x89\x46\xa3\xd8\x8e\ \x83\x6b\xdb\x44\xac\x08\x86\x61\xe0\x07\x01\xc5\xc9\x22\xdd\xdd\ \xbd\x68\xed\x23\x22\x34\x36\x36\x92\x4e\xa7\x3a\x6c\x3b\xba\x61\ \xb2\x54\x62\xf1\xa2\x45\x73\x00\xc7\x71\x38\x76\xac\xe7\xbe\xf6\ \xf6\xf6\x07\x83\x30\x64\xd9\xd2\xd3\xb1\x22\x26\x6b\xd6\x5c\x48\ \x43\xb2\x01\x09\x43\x44\xe6\x16\x9f\xa1\x0c\xb4\xd6\x0c\x8f\x16\ \xe8\xed\xee\x45\x04\x1c\xc7\x25\x9d\x4e\x51\x3e\x35\xfd\x50\x61\ \x74\xe4\xbe\x91\xc2\x30\xae\xeb\x7e\x00\x78\xfa\xa9\x67\x9e\xdf\ \xb1\xe3\xb9\x2f\x2a\xa5\xa8\xd5\x6a\x78\xda\xc3\xd3\x9a\x4a\xa5\ \x42\xbd\x5e\x67\xfd\xfa\x8b\x79\xe0\x81\x9f\xb3\x7a\xd5\x79\x88\ \x08\xbd\xc7\x8e\x73\xe2\x44\xdf\x42\x62\x37\xe6\x50\x2c\x16\xbf\ \xe3\xfb\xfa\xf1\x68\x34\xca\xca\x95\x2b\x71\x5d\x97\x79\xad\xf3\ \xdc\x73\x2f\xb6\x3c\xf9\xc4\x93\xff\x1d\x1e\x1e\x59\x3c\x0f\x09\ \x82\x80\x20\x08\x08\xc3\x10\x41\xa8\x79\x1e\xb5\xd9\x59\xbe\xfe\ \x8d\x1b\xb9\xea\xaa\x2b\xe7\xbe\xff\x54\x03\x20\xec\xb0\x3b\x7e\ \x39\x90\x1c\xdf\x3c\x19\x4c\xe7\x4e\xfa\x65\xa6\xc2\xf2\x54\xc1\ \x2f\xde\x3b\x1b\xd4\xb6\x2a\x11\x61\xd7\xee\x36\x50\x8a\xf6\x3d\ \xed\xbf\x6d\xdb\xb3\xf7\xae\x20\x0c\x30\x4d\x93\x30\x0c\x17\x20\ \x61\x18\x22\xa1\x30\x5b\x9b\x25\xdf\x9c\xe7\x91\x47\x7f\x43\x24\ \x62\x79\xc5\x62\xf1\xb3\x77\xe6\xb7\x74\x0e\xea\x11\x26\x83\xe9\ \x39\xb1\xeb\x10\x26\x7c\x98\x0e\xb6\xcf\xad\x91\x9d\x6d\x73\x0a\ \x0a\x85\xa9\xa9\x29\xfa\xfa\xfb\xbf\x7a\xe4\xc8\x91\x5f\x8d\x8d\ \x8e\x9d\xee\xfb\x3e\xa6\x69\xa2\x94\x5a\x30\x64\xb5\x3a\xcb\x35\ \x5f\xba\xea\xd4\xe5\x57\x5c\xf6\xa9\x30\x0c\xdf\x5e\x5d\xbb\xa1\ \x8e\x27\x51\x94\x02\x2d\x30\x54\x87\xfe\x3a\x04\xdc\x3c\x57\xc1\ \xae\x3d\xf3\x2a\x35\x45\x84\xe9\xf2\x4c\x10\x04\x01\xb5\x5a\x8d\ \x52\xa9\x44\xbd\xee\xad\x31\x4d\xe3\x72\x65\xd0\x9a\x6a\x4c\x4d\ \x9d\x79\xe6\x19\x7f\x4d\xa5\x1b\xff\x67\x98\x0a\xcb\xb4\xf8\x78\ \xdf\xb5\x30\xe2\x5d\xcd\x84\xfe\x0a\xe5\xc0\xa4\x2e\xcf\x12\x55\ \x4f\x61\x1b\xfc\x1f\x0b\x03\xc8\x05\x59\x65\x3b\x42\x00\x00\x00\ \x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x00\xc5\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x90\x00\x00\x00\x90\x08\x06\x00\x00\x00\xe7\x46\xe2\xb8\ \x00\x00\x00\x04\x73\x42\x49\x54\x08\x08\x08\x08\x7c\x08\x64\x88\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\x00\x00\x0e\xc4\ \x01\x95\x2b\x0e\x1b\x00\x00\x00\x67\x49\x44\x41\x54\x78\x9c\xed\ \xc1\x31\x01\x00\x00\x00\xc2\xa0\xf5\x4f\xed\x69\x09\xa0\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x06\ \x44\x9f\x00\x01\xc3\xcd\x96\xea\x00\x00\x00\x00\x49\x45\x4e\x44\ \xae\x42\x60\x82\ \x00\x00\x02\x7a\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x00\x1f\xf3\xff\x61\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x00\x07\x74\x49\x4d\x45\x07\ \xdd\x06\x0d\x08\x1d\x33\x51\xf1\xd4\x9e\x00\x00\x02\x07\x49\x44\ \x41\x54\x38\xcb\x65\x91\x3d\x6b\x14\x41\x18\xc7\x7f\x73\xb7\x2c\ \x6c\x0c\xb9\x20\xa6\x0d\x58\x45\x90\x88\x1f\x40\xb1\x12\x2e\x8d\ \x82\x5f\x41\x08\x58\x05\xb4\xb5\x0c\xd8\x09\xa2\x20\x08\x7e\x88\ \x58\x05\xac\x04\xfb\x08\x56\x42\x40\x48\x9d\xdc\xe5\xf6\x66\xe7\ \x75\x67\xc7\xe2\x19\x72\x07\x0e\xfc\x18\x06\xe6\xff\x32\xcf\xa8\ \x9c\x1f\x00\xb7\x81\x09\x70\x0b\xa8\xf7\x40\x1d\x42\x7a\x02\xe1\ \x21\x78\xc0\xfe\x82\xee\x07\x74\x9f\x41\x9f\x83\x41\xf0\xa8\x9c\ \x1f\x17\x83\x4d\xa0\x7e\x0d\xea\x18\xfa\x46\x84\xae\xe0\x01\x0b\ \x18\x0b\xe6\x2d\x98\xf7\x72\x0e\xa8\x9c\x0f\x80\x49\x0d\xf5\x09\ \xa8\x29\xf4\xe5\x72\x57\x76\x0f\x44\x20\xac\x19\x9a\x53\x70\xcf\ \x21\x84\x11\xd4\x00\x1f\xa1\x9f\x4a\xad\x05\x70\x05\x5c\x96\x7d\ \x06\x5c\x03\xcb\x62\xda\x01\x66\x9a\xb3\x79\x17\x42\x8f\xca\xf9\ \xd9\x3e\x54\x67\x90\xc6\x92\xb8\x28\xe8\x92\x9e\x80\x5c\x48\x80\ \x23\xa5\x88\x31\xa4\x10\xb8\x5f\x41\x38\x84\x38\x96\x6a\x4b\x60\ \x5e\x12\x6d\xa9\x9e\x91\xa5\x80\x9e\x10\x32\xd6\x82\x31\x8c\xbd\ \xe7\x55\x05\x66\x2a\xce\xb6\x18\x2c\xcb\x84\x03\x30\xb0\xbe\x62\ \x14\x71\xd7\x09\xd6\xf2\xa8\x02\xbd\xfb\xff\xe0\x62\x11\xe7\x1b\ \x71\xce\x10\x23\x78\x0f\xc6\xc0\x72\x09\xc6\xb0\x5b\x49\x62\xcf\ \xea\xdb\xe2\xda\xbb\x57\xe2\x94\xa0\xef\xb9\x69\x50\x0c\x18\xc1\ \xf2\x02\xda\x32\x34\x49\xcf\x39\x93\x33\x37\x0c\x83\xa4\x5b\x0b\ \x5a\x43\xdb\x0a\x5d\xc7\xc5\x08\xda\x53\x99\x7a\x4b\x4a\x96\x18\ \x13\x21\x48\x5a\x4a\xab\xda\x5a\xc3\xf5\x35\xcc\x66\x42\xdb\x82\ \xb5\xfc\x54\x29\xb1\xef\x1c\x67\x31\x32\xee\x7b\x49\x04\x50\x4a\ \xf6\x94\xc0\x39\xa9\x7c\x79\x09\x57\x57\xb0\x58\x40\x08\xa4\xba\ \xe6\x5e\x65\x0c\xbf\xad\xe5\x93\x73\x1c\xc5\x28\xc9\xc3\xb0\x12\ \xf7\xbd\xbc\xb5\x6d\x61\x3e\x17\xb1\xf7\x30\x1a\xf1\xa1\x69\x38\ \x57\xb3\x19\x68\x4d\xdd\x75\x9c\x58\xcb\x34\x04\x11\xae\xd7\xb7\ \x56\x0c\xb4\x96\x33\xf0\x6d\x63\x83\x17\x77\xee\x90\xaa\x61\x80\ \x61\x20\xc4\xc8\x81\x73\x1c\x19\xc3\xb1\x73\x6c\x7a\x0f\x21\x48\ \x7d\x6b\x85\x18\xd1\x4a\xf1\xa6\x69\xf8\xb2\xb5\x05\xdb\xdb\xa0\ \xe6\x73\xf9\x96\xb6\x95\x7a\x6d\xcb\x5d\xad\x79\xa9\x35\x4f\xad\ \x65\xcf\x7b\x88\x91\x3f\x29\xf1\x7d\x3c\xe6\x6b\xd3\xf0\x77\x32\ \x81\x9d\x1d\xe1\x1f\x3c\x20\x6c\x94\x65\x65\x77\x27\x00\x00\x00\ \x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x06\xc9\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x90\x00\x00\x00\x90\x08\x02\x00\x00\x00\x68\x24\x75\xef\ \x00\x00\x00\x03\x73\x42\x49\x54\x08\x08\x08\xdb\xe1\x4f\xe0\x00\ \x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\x00\x00\x0e\xc4\x01\ \x95\x2b\x0e\x1b\x00\x00\x06\x6c\x49\x44\x41\x54\x78\x9c\xed\x9d\ \x3b\x7a\xd3\x40\x14\x46\xc7\x7c\x2e\x48\x9f\x02\x0a\x16\x91\x2d\ \x50\xb2\x04\x52\x7a\x5b\xa4\xcc\x16\x52\x66\x09\x64\x11\x14\x2e\ \x48\xef\x52\x14\x0a\xf2\x58\x96\x34\x8f\xfb\xfa\xe7\x7a\x4e\x05\ \xc4\x1e\x8b\x39\x3e\x1e\x7b\x90\xc5\xee\xd7\xdf\x2f\x21\x84\xc3\ \xfd\x31\x60\xf0\x78\xf7\x66\x7d\x08\x73\x9e\x4f\x0f\xd6\x87\xf0\ \xc1\xd3\xfb\xd7\xfd\xf4\xab\x80\xa1\x6d\x9c\x1d\x40\x6d\xb6\x8c\ \x82\x42\x08\xbb\x61\x18\xa6\xdf\x8c\x20\x68\x1b\x01\xd1\x66\x5b\ \xd8\xcc\xce\x7e\xed\x16\x08\xda\x6e\xbc\xb6\x99\xaa\x10\xc2\xe1\ \xfe\xb8\x1b\x86\x61\xf1\x67\xd3\x2d\xc4\x8f\x2b\x0f\x43\x6d\xfa\ \x85\x6d\xe8\x58\x28\xec\xfa\x9e\x08\xda\x6e\xa4\xb6\x35\x55\xe1\ \xbf\x85\x8f\xc2\xb6\x6f\x1a\xdf\x01\x01\x65\x6d\x3a\x85\x65\xce\ \x7f\xa2\xb0\xeb\x11\x11\xb4\x39\xab\x2d\xa9\x2a\x44\xd3\x7e\x2e\ \x2c\xf3\x9e\xb3\xfb\x9b\xa3\xa0\x4d\xae\xb0\x8a\x09\x2f\x28\xec\ \xfa\x91\x10\xb4\x35\x5a\x5b\xbe\xaa\x70\x39\xcf\x17\x85\x95\x0e\ \x74\x3d\x9c\x2d\x42\xda\x78\x0b\x23\xce\x70\x65\x61\xd7\x47\x80\ \xa0\x0d\xbc\xb6\x0a\x55\xe1\x6a\x62\x3f\x6d\xff\xb8\xe8\x68\xea\ \x0e\x88\x1d\x9c\xad\xbf\x09\xc6\xc9\x61\x28\x2c\xc6\xbc\xb6\x38\ \xaf\xe7\xd3\x83\x79\x6d\x44\x4f\xd7\x33\xb9\x20\xec\x70\x7f\x24\ \x3e\x8c\x89\xb6\x45\x37\x86\x2f\x92\x42\xaf\x37\xcc\x85\xc5\xa8\ \x69\x4b\xfa\x50\xd6\xc6\xa5\x6a\x71\xea\x96\x85\xd1\x23\x9b\x10\ \xd5\x56\xe4\x40\x41\x9b\xc2\x2a\x2e\x58\x58\x0c\xbb\xb6\xea\x79\ \x17\xd2\xc6\xae\x6a\x6d\xae\x56\x85\x31\x46\x36\xc1\xa2\x8d\x65\ \xae\x19\xb5\x29\xbf\x37\x56\x2a\x2c\xa6\x5a\x1b\x7b\x16\x44\x6d\ \x72\xaa\x36\x26\x67\x4b\x98\x44\x64\x13\x45\xda\x44\x17\x9e\x0a\ \x6d\x86\x9f\x38\x0d\x0a\x8b\x49\x6a\x53\x7b\x6b\x97\xa9\x4d\x41\ \xd5\xf6\x93\x38\x21\x4c\x34\xb2\x89\x45\x6d\x26\x1f\x9e\x36\xb4\ \x81\xec\xe3\x18\x17\x16\x33\x69\x33\xdf\x9e\x98\x69\xd3\x54\x95\ \x5c\x23\xe6\x7b\x89\x15\x43\xf0\x02\xf2\x44\x0e\xff\xb5\x7d\xff\ \xf3\xc3\xfa\x40\x2e\x48\x0b\xd3\x07\x61\xf7\xf6\xf1\xee\x4d\x3f\ \xf4\x9c\x36\xb2\x5e\x12\x75\x56\xb2\x18\xc3\x3d\x40\xf3\x17\xe4\ \x6d\x80\xd6\xb0\x6b\x94\xb5\xd9\xaa\xca\x5c\x7a\x72\x85\xe9\x47\ \x36\xa1\xa0\x0d\xbc\xaa\x18\xe8\xc2\x62\x84\xb4\x81\xa8\xca\x7f\ \x67\x57\x20\xcc\x30\xb2\x09\x46\x6d\x20\xaa\x4a\x69\xa6\xb0\x18\ \xa2\x36\x34\x55\x45\x1f\x9c\xca\x84\x21\x44\x36\x51\xa1\x0d\x4d\ \x55\x05\x4d\x16\x16\x93\xa9\x0d\x56\x55\xe9\xbe\x44\xb1\x30\xa8\ \xc8\x26\x36\xb4\xc1\xaa\xaa\xa3\xf9\xc2\x62\x66\xda\xf0\x55\x55\ \x6c\xfb\xd5\x6c\x4d\x21\x9c\x33\xba\x01\xc2\xce\x96\x1c\xae\x0a\ \x0b\x2d\x54\x35\x51\xf7\xbc\xaf\x14\x06\xb8\x92\x35\xa4\x8a\x82\ \x87\xc2\x5a\x54\x55\xbd\xac\xd4\x0b\x43\x88\xac\x45\x55\x44\x5a\ \x2d\xac\x69\x55\x94\x77\x6d\x24\x61\x26\x91\x35\xad\x8a\x4e\x4b\ \x85\xf9\x50\x45\xfc\x50\x44\x15\xa6\x13\x99\x0f\x55\x2c\xa0\x17\ \xe6\x4c\x15\x7d\xcf\x81\x41\x98\x50\x64\xce\x54\x71\x81\x58\x98\ \x57\x55\x2c\x5b\x7a\x7b\xa6\xd9\x79\x41\x3b\x7f\x0f\x8d\xd7\x6f\ \x2f\x87\x13\xc3\x38\xbb\x9f\x9f\x7f\x33\x0c\xe3\x1a\xfa\x6e\xf2\ \x58\x05\xcb\x38\x6c\x27\x92\x3a\xde\x23\xe7\x7a\x89\x66\x19\x87\ \x47\x98\x63\x5b\x74\x78\x7d\x73\x9e\xaa\xed\x58\x1b\x4e\x64\x0c\ \xc2\x1c\x7b\xa2\xc3\x6e\x9a\xf9\xcb\x10\x8e\xe5\x81\x44\x46\x15\ \xe6\xd8\x10\x1d\x09\xc7\xfc\x5f\x37\x72\xac\x10\x21\x32\x92\x30\ \xc7\x6e\xe8\x08\xd9\x15\xf9\x42\x9f\x63\x91\xe6\x91\xd5\x0b\x73\ \x6c\x85\x8e\x9c\x57\xa9\xaf\xcc\x3a\xd6\x69\x1b\x59\xa5\x30\xc7\ \x3e\xe8\x88\x1a\x15\xfc\x52\xba\x63\xa9\x86\x91\xd5\x08\x73\x6c\ \x82\x8e\xb4\x4b\xd9\xcb\x3e\x38\x56\x6b\x15\x59\xb1\x30\xc7\x0e\ \xe8\x28\x58\x14\xbf\xb0\x8a\x63\xc1\x26\x91\x95\x09\x73\x3c\xfb\ \x74\x74\xfc\x69\x5c\xba\xc8\xb1\x66\xfd\xc8\x0a\x84\x39\x9e\x77\ \x3a\x6a\xe6\x94\x2e\x0e\xe6\x58\xb6\x72\x64\xb9\x67\x4d\x71\x9d\ \x39\xd4\x21\xd2\x4f\x73\x6b\x0c\xc4\x33\x7f\x5b\x44\xed\x15\x28\ \x6b\x0d\xe3\x5a\x81\xfa\x4a\x46\x27\x2d\xac\xdb\x52\x80\xff\x6d\ \x7d\xd7\x96\x44\x27\xb2\x84\xb0\xee\x49\x01\xa9\xad\xa9\x2e\x2f\ \x89\x42\x64\x5b\xc2\xba\x21\x05\x64\xff\x79\xa5\x2b\x4c\x22\x1d\ \xd9\xaa\xb0\xee\x46\x01\x8d\x53\x04\xba\xc8\x24\xa2\x91\x2d\x0b\ \xeb\x56\x14\xd0\x3b\xcd\xad\xeb\x4c\x22\x17\xd9\x82\xb0\xee\x43\ \x01\xed\x53\xb5\xbb\xd4\x24\x42\x91\xcd\x85\x75\x13\x0a\xd8\x7c\ \xdd\xa8\xab\x4d\x22\x11\xd9\x85\xb0\xee\x40\x01\xcb\xaf\xcc\x76\ \xc1\x49\xd8\x23\x3b\x0b\xeb\xb3\xaf\x80\xfd\x65\x1f\xba\xe6\x24\ \xbc\x91\x7d\x08\xeb\xf3\xae\x00\xca\xa5\x8b\xba\xec\x24\x8c\x91\ \x7d\x0a\x7d\xc6\x55\xe0\x72\xb6\xfb\xf9\xf9\x37\xcb\x44\x33\x5e\ \x94\xf4\xf5\xdb\x0b\xd7\x50\x74\x18\xaf\x03\xc9\xf2\xf7\xda\xa3\ \xd9\x82\xe2\xf9\xf4\xf0\xf4\xce\x39\x1a\x7d\x90\x7e\x22\xe9\x32\ \x12\x2f\xef\x4f\xef\x5f\x21\x2e\xd2\xec\x2c\x2f\xf0\x95\xb8\x17\ \x76\x46\x41\x15\x3d\x32\xaa\x30\x1f\x79\x81\x57\x15\x73\xeb\x85\ \xe9\xab\x22\x46\x46\x12\xd6\x74\x5e\x0d\x55\x15\x73\x8b\x85\x99\ \xab\xa2\x44\x56\x2f\xac\xc5\xbc\xcc\x55\xd1\xb9\x95\xc2\xd0\x54\ \x55\x47\x56\x29\xac\xa1\xbc\xd0\x54\x11\x51\xba\x8a\x80\x15\xc8\ \xb6\xea\x9e\xf4\x35\xc2\xf0\xf3\x9a\x3c\x3d\xde\xbd\x39\xbb\x7a\ \x81\xb7\x35\x6c\x31\x29\xae\xff\xab\x86\x9d\x8a\x95\xac\x58\x18\ \x6c\x5e\x49\x1f\xb0\xda\x8a\xf0\x50\x58\x91\x03\x34\x6d\xa5\x91\ \x95\x09\x43\xcb\xab\x7a\xde\xd1\xb4\xe5\xd3\x6a\x61\x2c\x73\x0d\ \xa2\xad\x28\xb2\x02\x61\x20\x79\xb1\xcf\x2f\x88\xb6\x4c\x5a\x2a\ \x4c\x74\x4e\x6d\xb5\xe5\x47\x96\x2b\xcc\x36\x2f\xb5\x79\xc4\xaf\ \x0d\xbd\x30\x93\xb9\x33\xd1\x96\x19\x59\x96\x30\x93\xbc\xcc\x9f\ \xe6\xa3\xb6\xef\x7f\x6c\x8f\x62\x0e\xdc\x5e\xe2\x78\xf2\x9e\xb9\ \x2d\x13\x72\xc2\x48\x17\xa6\x99\xd7\xe1\xfe\xf8\x1a\xde\x02\xcc\ \x5a\xf2\x7c\x7a\x08\xe1\x18\xac\x97\xf0\x18\x94\x35\x6c\xf1\xe5\ \xdb\x50\xdb\xec\x41\xc7\xc3\x53\xd0\x96\x5c\xc9\x12\xc2\x14\x0e\ \x31\xb9\xd2\x2a\x6b\xdb\x78\x20\x35\x6d\x1b\x58\x16\x56\xb4\x87\ \xa6\xa0\x2d\x73\x70\x69\x6d\xdb\x91\x6d\x09\x93\x3b\xa6\xea\x53\ \x50\x84\xb4\x55\x0c\x68\x55\x9b\x76\x61\xf4\x93\xcb\x03\xab\x36\ \xe2\x20\x42\xda\x36\x22\x5b\x15\xc6\x7e\x10\x2c\xaa\x62\x88\xda\ \x18\x33\xd5\xac\x4d\xa3\x30\x76\x55\x31\x15\xda\x84\x16\x42\x5e\ \x6d\x6b\x91\x2d\x0b\xe3\x7a\x54\x51\x55\x31\x99\xda\x14\xde\x6a\ \x4a\xd7\x26\x55\x98\x9a\xaa\x98\x0d\x6d\xca\x1f\xe6\x58\xb4\x2d\ \x46\xb6\x20\x8c\xf8\x30\x26\xaa\x62\x66\xa7\x49\x19\x6e\x97\x48\ \xd4\xc6\xb9\x97\x78\xb8\x3f\x9a\xdb\x9a\x61\xbe\xb9\x15\x68\xd3\ \x72\x2d\x7b\x5e\x58\xdd\xd3\x01\xcd\xd3\x04\xc8\x9e\x64\xe0\xab\ \x6d\x37\x0c\x43\xfc\xfb\xd2\x11\x85\xde\xac\x4b\x80\xa0\x6d\x84\ \x32\xc9\x17\x85\x15\x0d\x04\x5b\xd5\x1a\x3e\x6a\xbb\x28\x2c\x73\ \x08\x85\xcf\x55\xd2\x20\x68\x1b\x29\x9d\xf3\x73\x61\x39\xf7\x6c\ \xae\xaa\x35\xda\xad\xed\x5c\xd8\xf6\x7d\x94\x3f\x02\x6b\x82\xa0\ \x6d\x24\x47\xc1\x3e\x79\x53\x37\x55\xad\xd1\x56\x6d\x1f\x85\x2d\ \xde\xc8\x70\xb7\xc2\x0a\x04\x6d\x23\x6b\x46\xf6\x8b\x3f\x73\x5f\ \xd5\x1a\xf8\xb5\xed\x86\x61\x88\xff\xd4\x5c\x15\xce\xf7\xef\x10\ \xb4\x8d\xc4\x82\x76\xbf\xfe\x7e\x19\x7f\x65\xae\x6a\x04\x47\xd8\ \x08\x9a\xb6\x7f\x3b\xcf\xca\x48\x61\xee\x5b\x97\x00\x00\x00\x00\ \x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x03\xef\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x10\x00\x00\x00\x10\x08\x06\x00\x00\x01\x68\xf4\xcf\xf7\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x03\x8f\x49\x44\x41\x54\x38\ \xcb\x3d\x91\xdf\x4f\x5b\x75\x00\xc5\xcf\xf7\x7e\x2f\xb4\xbd\xb7\ \xdc\x76\x8c\xfe\x80\x5b\xe4\x87\x73\xcc\x84\x8c\x9f\x0d\x83\x25\ \x2e\x6e\x3e\x8c\x44\xb3\x64\x66\x21\x6a\x62\x8c\xba\x68\xa6\x0f\ \xea\x93\x0f\x26\x8b\x0f\xc6\x7f\xc0\x44\x97\xc5\x2c\x53\x5f\xdc\ \xe2\xa3\xc8\xa0\xb0\x1f\x22\x14\xc1\x6d\x08\x6d\x2d\x90\x51\xda\ \x4b\x27\x3f\xd6\x52\xee\xbd\x50\x7a\xbf\xbd\x5f\x1f\x10\x5e\x4f\ \xce\x39\xf9\xe4\x1c\xca\x18\x43\x4f\x4f\xdf\x23\xc4\xe2\x09\x30\ \xc6\x38\xb1\x2c\x0b\x00\x20\xe6\xb6\xf2\x7c\xf9\xc9\x0a\x08\x63\ \x0c\xdb\xdb\x7a\x6f\xb1\x54\x9c\x30\x0c\x03\x88\x8c\xde\x43\xb8\ \xbb\x8f\xf7\xf6\xbe\xc4\x1f\x8c\xff\x0e\x58\x96\x85\x72\xb9\x8c\ \x8c\xa6\xfd\x64\x59\x16\xc0\x18\xc3\xf4\xcc\x43\x5e\x2e\x97\xf9\ \x48\x64\xcc\xa4\xe1\x70\x8f\xd6\x15\xee\x54\xa2\xd1\x28\x8e\x54\ \x7b\x2b\x71\xee\xec\x79\xb3\xed\x64\x37\x9f\x8b\xcd\x9b\x1b\xcf\ \x36\xf7\x23\x96\x65\x29\x8c\x31\xcc\xfc\xf5\x68\x28\x91\x4c\xf2\ \x7c\x61\x8b\xdb\xb6\xcd\x4d\xd3\xac\x21\xa9\x95\x34\x04\x41\x40\ \x3c\x9e\xe4\x27\x4e\x1c\x43\xd0\x1f\x00\x07\xc7\xfd\x07\xe3\xe8\ \xec\x6c\xbf\x86\xef\xbe\xbd\xfe\x59\x7b\x5b\x98\x07\x82\xf5\xfc\ \xe2\xeb\x03\x5c\xd7\x75\x3e\x7a\xf7\x1e\x1f\x1e\x89\xb4\x65\xff\ \x7d\x0a\x32\x3c\x3c\x06\x70\xe0\xe7\x5b\xb7\x22\xa9\xe5\xd4\x39\ \xc3\x30\x71\xe3\x87\x6b\xde\x50\x5d\xa8\x20\xcb\xf2\x3e\xc3\xff\ \x1c\xd0\xb4\xec\xab\xd3\x33\x0f\xe7\x0d\xd3\xec\x38\xd0\x0e\x0c\ \x4e\x9b\x73\x8c\xdd\xbd\xcf\x57\x32\x69\x5e\x2e\x97\xb9\xb6\xaa\ \x4d\x70\xce\x21\x02\x00\xa5\xb4\xf8\xeb\xe0\x90\xd5\xd2\xf2\x02\ \x8e\x56\x1f\x85\x6d\x73\xc4\x13\xc9\xde\xbd\xa2\x75\x41\xd4\x56\ \xb3\x58\x5b\x5f\xbf\xd1\xdc\xd4\x24\x2a\x1e\x05\x2e\xa7\x13\x8f\ \x67\x67\xe1\x74\x38\xd0\xd4\xd4\x10\x11\x76\x4c\xb3\xc6\xd0\xf5\ \x77\x1a\x9b\x1b\xa0\x54\x29\xd0\x75\x1d\x6b\x6b\x1b\xa8\xac\xac\ \x7c\xf3\xf1\xdf\xb3\x26\xe9\xeb\x3d\xc3\xd7\x37\x36\x90\xcb\xe7\ \x30\x15\x1d\xc7\xc2\xe2\x22\x82\xc1\x20\x37\x4c\x5d\x68\x6d\x6d\ \x85\xf0\xd1\xc7\x57\xfa\x8e\x78\xbd\x68\xa8\x7f\x0e\xfd\xe7\x5f\ \x83\xa2\x28\x30\x77\x8c\xe7\x5d\x2e\x17\x00\x40\xf0\xf9\x7c\x93\ \xef\xbd\xff\xee\x8b\xb5\x75\xb5\x7b\xaa\xaa\x22\x12\x19\x4b\x29\ \x8a\xb2\x1c\xee\xea\x86\x57\xf1\xec\x3f\x0e\x00\x9c\x73\x00\xa0\ \x84\x10\x4e\x08\xb1\x4b\xa5\x52\xf3\x64\xf4\xcf\x39\x87\xc3\x21\ \xf9\x03\x35\xf0\x7a\xbd\x90\x5d\x92\xb5\xbb\xbb\x7b\xdd\xed\x96\ \x3f\xa1\x54\xb4\x38\xb7\x0f\x0b\x08\x00\x0a\x80\x51\x4a\xb1\xb0\ \xb0\xf8\xf9\x93\xe5\xd4\xd7\x75\x75\xb5\x50\x3c\x55\x90\xdd\x32\ \x14\xb7\x82\x4a\xb1\x02\x7b\xa5\x22\xe6\x62\x71\x80\xe3\xc7\x8e\ \xf6\x93\x57\x0e\x09\x00\x80\x31\xe6\x9f\x98\x8c\xfe\x51\x51\xe1\ \x38\xe6\xf3\xd7\x40\x92\x9c\xa8\xaa\xaa\x82\xec\x92\x40\x29\x45\ \x2e\x9f\x43\x2c\xfe\x0f\xac\x92\x05\x8f\xc7\xb3\x13\x0c\x04\xde\ \x12\xe7\x63\x09\x08\x44\x00\x21\xe4\xed\x8c\x96\xb9\x19\x0a\x85\ \x20\x49\x4e\xb8\x24\x17\xdc\x6e\x37\x24\xa7\x0b\x84\x10\xa4\xd3\ \x69\x24\x17\x96\x40\x29\x85\x3f\xe0\x5b\x57\xd5\xba\x16\x4a\xe9\ \x96\x98\xcf\xe5\x4e\xdd\xbe\xfd\xcb\x37\x53\x53\xd3\x5d\x82\x40\ \x50\xab\xd6\xe2\x8d\x81\x01\x5c\xba\x74\x11\x94\x52\x94\x4a\x25\ \xc4\x12\x09\x68\x99\x55\x54\x57\x57\x83\x08\x18\x5a\x5d\xd5\xfa\ \x4d\xd3\x40\x30\x18\x84\x90\xcf\x17\xb6\x0c\xdd\x14\x08\x00\x66\ \x31\x2c\x25\x97\x70\xf5\xea\x97\x50\xd5\x46\x74\x74\xf6\xe0\xb7\ \x3b\x77\xa0\x6f\x1b\x08\xd5\xab\x00\xe1\xdf\xeb\xba\xde\xaf\xaa\ \x21\xb4\x1c\x3f\x0e\x49\x92\x40\x46\x22\x63\x10\x45\x11\xb1\xb9\ \xc4\x85\xc1\xc1\xc1\x9b\xf9\x7c\xde\x23\x08\xc2\xc1\x26\x28\x14\ \x0a\xf8\xe0\xc3\xcb\x38\xfb\xca\x99\x2f\x4c\x73\xe7\x2b\x59\x96\ \xd1\xd4\xd0\x08\x49\x92\x20\x08\x02\xc8\xc8\xf0\x28\x00\x80\x08\ \x84\x1a\xe6\x4e\x59\xd7\x0d\x64\xb3\xd9\xe6\xcd\xcd\x67\x97\x19\ \xb3\x5e\xf6\xfb\xfd\x4f\x4f\x9f\x3e\xf5\xa9\xc7\xab\xa4\x82\x81\ \x00\xfc\x3e\x3f\x6c\xdb\x3e\x1c\xfe\x3f\x11\x5f\xc4\xbb\xcd\x16\ \x27\xa0\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x07\x22\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x90\x00\x00\x00\x90\x08\x06\x00\x00\x00\xe7\x46\xe2\xb8\ \x00\x00\x00\x04\x73\x42\x49\x54\x08\x08\x08\x08\x7c\x08\x64\x88\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\x00\x00\x0e\xc4\ \x01\x95\x2b\x0e\x1b\x00\x00\x06\xc4\x49\x44\x41\x54\x78\x9c\xed\ \x9d\xbb\x71\x1b\x31\x14\x45\xb1\x1e\x05\x6a\x80\x33\x4a\xdc\x04\ \x4b\x70\xe8\x12\x14\xb3\x2c\xc5\x2a\xc1\xa1\x4b\x50\x13\x4e\x38\ \xa3\x06\x94\xd1\x81\x06\x36\x04\xee\x2e\x7e\xef\x73\x1f\xf6\x9d\ \x50\x23\xed\x82\x78\x87\x97\x58\x40\x00\x97\x97\xf7\xa7\x5b\x08\ \x21\x5c\x4e\xd7\x25\x18\xe4\xf9\xf1\xed\xa6\xdd\x86\x51\x5e\x3f\ \xce\x26\xfb\xfe\xe5\xfd\xe9\xb6\x44\x81\x22\x2e\x92\x3c\xd6\x04\ \x4a\x9d\x59\xf2\x1f\x44\x5c\x24\x39\xac\x08\xb4\xe6\xc9\xa6\x40\ \x11\x17\x89\x1f\x74\x81\xb6\xfc\xb8\x9c\xae\xcb\x52\xfa\xa5\xf4\ \x97\xa9\x1b\x26\x81\x05\x91\x50\x05\xaa\x71\xa2\x5a\xa0\xf4\x8f\ \x46\x1b\xa6\x01\xb2\x48\x68\x02\xd5\xb8\x10\x3d\xf8\xd2\xf0\x5a\ \x89\xd2\x0b\x58\x03\x51\x24\x14\x81\x7a\xea\xdf\x2d\x50\x7e\x21\ \x6b\x20\x89\xa4\x2d\x50\x6b\xdd\xd3\x9a\xdf\x35\xbc\x47\xa2\xfc\ \xa2\x96\x40\x10\x49\x4b\x20\x8a\x5a\x93\x09\xb4\x76\x71\x4b\x68\ \x8a\x24\x2d\xd0\x48\x8d\xf3\xfa\xae\x36\x7c\x54\xa2\xb5\x1b\x59\ \x41\x43\x24\x29\x81\x38\xea\xca\x26\xd0\xd6\x0d\xad\x20\x29\x12\ \xb7\x40\x54\xf5\x5c\xab\xe5\xb7\xda\x5f\xec\xe5\xe5\xfd\xe9\x46\ \x29\xa4\x14\xda\x03\x5b\x0a\x24\xfa\xfe\x81\xf3\xe2\x29\x96\x16\ \x6d\xf3\xf4\x79\xfd\x38\x2f\x08\x83\xed\x5a\x38\xa4\xd9\xaa\xdb\ \xa6\x40\x97\xd3\xf5\x6e\xa1\x95\x02\x64\x91\xf6\x24\x89\x89\x84\ \x2c\x92\x46\xd2\x8b\x25\x50\x0e\x92\x48\x2d\x52\x20\x8a\xc4\x2d\ \xce\x5e\x8d\x76\x05\xe2\x4a\xa1\x14\x4d\x91\x46\x24\x40\x10\x09\ \x61\x6c\xa9\x96\x40\x39\x92\x22\x51\x16\x5d\x43\x24\x49\x71\x4a\ \xf5\x28\x0a\x24\x91\x42\x29\x9c\x22\x71\x16\x59\x42\x24\x84\xc4\ \xc9\x81\x49\xa0\x1c\x4a\x91\x34\xe6\x74\x28\xef\xa9\x25\x4e\x4d\ \xdf\x57\x09\x24\x9d\x42\x29\x23\x22\x21\x2c\x4f\x8c\xb4\x01\x31\ \x71\x72\x60\x13\x28\xa7\x45\x24\xa4\x27\xa4\x1e\x91\x10\xc4\xa9\ \x7d\xc3\x56\x0b\xa4\x99\x42\x29\x7b\x22\x21\x89\x93\x53\x23\x12\ \x42\xff\xb6\x62\x26\x81\x72\x52\x91\x90\xc5\xc9\x59\x13\x09\x4d\ \x9c\x96\xe1\xc2\xea\x5a\x18\xc5\x85\xa5\x40\xeb\xfc\x5a\xa2\x48\ \x3f\xfe\xfc\xd4\x6e\xca\x10\x4d\x02\xa1\x62\x6d\xe1\xf3\xf9\xf1\ \xed\x86\x9a\x9a\xad\x21\xd1\xfc\x11\x86\x32\x16\xca\x41\x98\x19\ \x2e\x81\xdc\xb6\x5e\xcc\x8e\x81\xb6\x40\x14\x09\xa9\x2d\x7b\xf4\ \x0c\x51\xba\x04\x42\x4d\xa1\x14\x04\x91\xac\x88\x33\xc2\x74\x09\ \x94\xa3\x21\x92\x45\x71\x7a\x1f\x90\xba\x05\xb2\x90\x42\x29\x12\ \x22\x59\x14\x67\x94\xe9\x13\x28\x87\x43\x24\xeb\xe2\x8c\x4c\xcf\ \x0c\x09\x64\x2d\x85\x52\x28\x44\xb2\x2e\x0e\x05\x87\x4b\xa0\x9c\ \x1e\x91\x66\x12\x67\x74\x72\x78\x58\x20\xcb\x29\x94\x52\x23\xd2\ \x4c\xe2\x50\x71\xf8\x04\xca\x59\x13\x69\x56\x71\x28\x96\xa6\x48\ \x96\x32\x10\xd7\xc8\x46\xb1\xb6\x3c\xa2\x85\x27\xd0\x0a\xb3\x26\ \x4e\x0a\xd5\x9b\x9e\x4c\xa0\x19\xc6\x42\x47\x10\x87\x1a\x4f\xa0\ \x70\x3c\x71\x28\x87\x1c\xa4\x02\x59\x4b\xa1\xa3\x89\xc3\xc1\x21\ \x13\xe8\xc8\xe2\x50\x3f\xf0\x90\x0b\x84\x9c\x42\x47\x16\x87\x8b\ \x43\x24\x90\x8b\xf3\x09\xc7\x74\x0b\x8b\x40\x28\x29\xe4\xe2\xf0\ \x33\x65\x02\xb9\x38\xf7\x70\x4d\xf6\xb2\x09\xa4\x91\x42\x2e\x8e\ \x3c\x53\x24\x90\x8b\xb3\x0f\xe7\x52\xd3\x03\x67\xe7\xff\xfe\x6e\ \x7f\xdf\x93\x75\x7e\x7f\xff\x15\x42\x38\xb3\x5d\xdf\xd4\xae\xce\ \x59\xe1\x5a\xb8\x8d\xb5\xe5\xbc\x3e\xfb\xc6\x42\x5f\xd5\x2e\xc3\ \xfd\x26\xe6\xbc\x3e\xab\x40\x2e\x8f\x1e\x52\x52\x8a\x6c\x6d\x76\ \x91\xca\x58\x4d\x21\x36\x81\x5c\x1a\x3d\x24\x65\x14\x3b\x5c\xc1\ \x85\x2a\x63\x31\x85\x58\x04\x72\x59\xf4\x90\x96\x50\xf4\x78\x17\ \x17\xab\x8c\xb5\x14\x22\x17\xc8\x25\xd1\x43\x43\x3e\xf1\x03\xa6\ \x5c\xb0\x32\x96\x52\x88\x54\x20\x97\x43\x0f\x2d\xe9\x54\x8e\xb8\ \x73\xd1\xca\x58\x49\x21\x32\x81\x5c\x0a\x3d\x34\x65\x53\x3b\x64\ \xd3\x85\x2b\x63\x21\x85\x48\x04\x72\x19\xf4\xd0\x96\x4c\xf5\x98\ \x5f\x17\xaf\x8c\xb6\x20\x25\x86\x05\x72\x09\xf4\x40\x90\x4b\xfd\ \xa0\x71\x17\xb0\x0c\x82\x28\x5b\x0c\x09\xe4\xc5\xd7\x03\x45\x2a\ \xf5\x04\x0a\xc1\x45\xac\x01\x45\x98\x9c\x6e\x81\xbc\xe8\x7a\x20\ \xc9\x04\x91\x40\x21\xb8\x90\x35\x20\x89\x13\xe9\xda\x95\xc1\xbd\ \x8b\xc0\xb1\x83\x6f\xeb\x71\x86\x98\x62\x67\xea\xd1\x40\xfa\x04\ \x68\x1e\x03\x71\x8f\x55\x7c\x2c\x54\x06\xe9\x53\xa3\x49\x20\x97\ \x67\x5e\x44\x1f\xe3\x5d\x24\x7d\x50\x52\xa8\x5a\x20\x97\x66\x5e\ \x54\x96\x32\x5c\x28\x7d\x10\x52\xa8\x4a\x20\x97\x65\x5e\x54\xff\ \x9d\xc3\xc5\xd2\x47\x3b\x85\x8a\x02\xb9\x24\xf3\x02\xf1\x2f\xad\ \x2e\x98\x3e\x9a\x29\xb4\x2b\x90\xcb\x31\x2f\x50\xdb\x7a\x5c\x34\ \x7d\xb4\x52\x68\x53\x20\x97\x62\x5e\x20\xb7\x36\xbb\x70\xfa\x68\ \xa4\xd0\xaa\x40\x2e\xc3\xbc\x40\x1f\xef\xe2\xe2\xe9\x23\x9d\x42\ \x77\x02\xb9\x04\xf3\x62\xe2\x88\x3b\x17\x50\x1f\xc9\x14\xfa\x22\ \x90\x17\x7f\x5e\x4c\x1d\xf3\xeb\x22\xea\x23\x95\x42\xff\x04\xf2\ \xa2\xcf\x8b\xc9\xaf\x3a\x70\x21\xf5\x91\x48\xa1\x6f\x21\x78\xb1\ \x67\x86\x5b\xa2\xe5\xf9\xf1\xed\xc6\x59\x60\x89\x6f\x2d\xfc\xfc\ \x4e\x2c\x9b\x48\x7c\x9f\x1a\x67\xff\x3c\x58\x97\xc7\x32\xaf\x1f\ \xe7\xe5\x47\xe0\xef\x23\xce\x1a\xfb\xc6\x42\x05\xa4\x3f\xd2\x5f\ \xde\x9f\x6e\xe6\xbe\x74\xd7\xd3\xe7\x9e\x19\xc7\x82\x9e\x40\x02\ \x20\x88\xc3\x95\x42\x2c\x02\x79\xfa\x7c\x82\x20\x0e\x37\x9e\x40\ \x0c\xa0\x8a\xc3\x91\x42\xe4\x02\x1d\x39\x7d\x50\xc5\xe1\xc4\x13\ \x88\x00\x4b\xe2\x50\xa7\x10\xa9\x40\x47\x4b\x1f\x4b\xe2\x70\xe1\ \x09\xd4\x81\x75\x71\x28\x53\x88\x4c\xa0\x23\xa4\x8f\x75\x71\x38\ \x80\x39\xa5\x15\x9d\xd9\xe4\xa1\x7a\xc3\x93\x08\x34\x6b\xfa\xa4\ \xd2\x3c\x3f\xbe\xdd\xb4\x0f\x32\x40\xc4\xc7\x40\x2b\xec\xa5\x4d\ \x94\x68\x86\x44\xa2\x18\x0b\x0d\x0b\x34\x53\xfa\xb4\x48\x31\x93\ \x48\x23\x78\x02\x85\x31\x09\xac\x8b\x34\x9a\x42\x43\x02\x59\x4f\ \x1f\xca\xa2\x5b\x17\xa9\x97\x43\x26\x10\x67\x91\x2d\x8a\x34\x92\ \x42\xdd\x02\x59\x4c\x1f\xc9\xa2\x5a\x14\xa9\x87\x43\x24\x90\x66\ \x11\xad\x88\xd4\x9b\x42\x5d\x02\x59\x49\x1f\xa4\xa2\x59\x11\xa9\ \x95\x29\x13\x08\xb9\x48\xc8\x22\xf5\xa4\x50\xb3\x40\xc8\xe9\x83\ \x58\x94\x2d\xfe\xcf\x6a\xf3\x6f\xeb\xe1\xc4\xfc\x5a\x58\xdc\xf3\ \x64\x49\x1e\x64\x5a\x03\xa2\x49\x20\xb4\xf4\x49\xe3\xd6\xe2\x5a\ \xd5\xeb\xc7\x79\xb9\x9c\xae\x0b\xd7\x96\x1b\x09\x4c\x8e\x81\xf6\ \x3a\x1c\x79\x8c\x11\x59\x6b\x5b\x7c\x4d\x08\x6f\xd2\x96\xb1\x50\ \xb5\x40\x08\x2f\xac\xe5\x9d\x8a\x28\x52\x4d\x5b\x90\x44\xaa\xc1\ \x44\x02\x8d\x44\x3c\x82\x48\x3d\xf7\xd6\x16\xa9\x36\x85\xaa\x04\ \xd2\x7a\x11\x94\x63\x03\x0d\x91\x28\xee\xa5\x2d\x52\x09\xc8\x04\ \xe2\x1c\x54\x4a\x88\xc4\x71\x6d\x0d\x91\x6a\x52\xa8\x28\x90\x64\ \x83\x25\x9f\x46\x38\x44\x92\x48\x37\xb4\x44\x82\x48\x20\xcd\xc7\ \x58\x0a\x91\x34\xc6\x57\x52\x22\x95\x52\x68\x57\x20\xee\xc6\x21\ \xcd\x7f\xf4\x88\x84\xf0\x84\xa7\x9d\x48\x2a\x09\x84\x24\x4e\x4e\ \x8d\x48\x08\xe2\xe4\x70\x8a\xb4\x97\x42\x9b\x1d\xc1\xd1\x10\x0e\ \x71\x24\x67\x9f\x11\xc5\xd9\x82\xba\x7e\x5b\xb5\x13\x59\x0b\xb3\ \x3e\x5d\x1f\x82\x2d\x79\x42\xa0\xef\xf3\x2d\x21\x57\x6f\x40\x65\ \xaf\x84\x34\xd2\xeb\x5f\xd6\x44\x8a\x50\xd4\x74\xad\x9e\x2c\x02\ \x69\x3c\x8e\x4b\x73\x54\x91\xf2\xda\xde\x75\xc2\xc8\x0d\x34\x3e\ \xa6\xb4\x57\xe0\x8f\x26\x12\x8b\x40\x08\xf3\x38\xda\x1c\x49\xa4\ \xb4\xde\x5f\x5e\x74\xeb\xc5\x10\x06\xc6\x28\x02\x45\x8e\x20\xd2\ \xb0\x40\x08\xe2\x44\xd0\x04\x8a\xcc\x2e\x52\x74\xe0\xdf\x8b\xac\ \xf9\x43\x24\x71\x22\xa8\x02\x45\x66\x15\xa9\x49\x20\x44\x71\x22\ \xe8\x02\x45\x66\x14\xe9\x72\xba\x2e\xbb\xd3\xdf\xc8\xe2\x44\xac\ \x08\x14\x99\x49\xa4\x4d\x81\x2c\x88\x13\xb1\x26\x50\x64\x16\x91\ \x96\xf4\x07\x96\xc4\x89\x58\x15\x28\x62\x5d\xa4\xbf\xa8\xcc\xde\ \x47\x76\xb8\xb3\xea\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\ \x82\ " qt_resource_name = "\ \x00\x09\ \x0c\x78\x54\x88\ \x00\x6e\ \x00\x65\x00\x77\x00\x50\x00\x72\x00\x65\x00\x66\x00\x69\x00\x78\ \x00\x06\ \x07\x03\x7d\xc3\ \x00\x69\ \x00\x6d\x00\x61\x00\x67\x00\x65\x00\x73\ \x00\x0e\ \x0a\x51\x2d\xe7\ \x00\x69\ \x00\x64\x00\x65\x00\x6e\x00\x74\x00\x69\x00\x74\x00\x69\x00\x65\x00\x73\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x09\ \x09\x6b\xb7\xc7\ \x00\x69\ \x00\x6e\x00\x62\x00\x6f\x00\x78\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0b\ \x0a\xd0\x22\xa7\ \x00\x72\ \x00\x65\x00\x64\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x08\ \x0c\x57\x58\x67\ \x00\x73\ \x00\x65\x00\x6e\x00\x74\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x10\ \x0c\xc3\x45\x27\ \x00\x71\ \x00\x69\x00\x64\x00\x65\x00\x6e\x00\x74\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x5f\x00\x78\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0d\ \x02\xe8\x12\x87\ \x00\x62\ \x00\x6c\x00\x61\x00\x63\x00\x6b\x00\x6c\x00\x69\x00\x73\x00\x74\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x08\ \x0c\x47\x58\x67\ \x00\x73\ \x00\x65\x00\x6e\x00\x64\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0f\ \x05\x46\x9a\xc7\ \x00\x61\ \x00\x64\x00\x64\x00\x72\x00\x65\x00\x73\x00\x73\x00\x62\x00\x6f\x00\x6f\x00\x6b\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x11\ \x07\x34\x2d\xc7\ \x00\x6e\ \x00\x65\x00\x74\x00\x77\x00\x6f\x00\x72\x00\x6b\x00\x73\x00\x74\x00\x61\x00\x74\x00\x75\x00\x73\x00\x2e\x00\x70\x00\x6e\x00\x67\ \ \x00\x18\ \x02\x47\xd6\x47\ \x00\x63\ \x00\x61\x00\x6e\x00\x2d\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2d\x00\x32\x00\x34\x00\x70\x00\x78\x00\x2d\x00\x79\x00\x65\x00\x6c\ \x00\x6c\x00\x6f\x00\x77\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x11\ \x02\xa0\x44\xa7\ \x00\x73\ \x00\x75\x00\x62\x00\x73\x00\x63\x00\x72\x00\x69\x00\x70\x00\x74\x00\x69\x00\x6f\x00\x6e\x00\x73\x00\x2e\x00\x70\x00\x6e\x00\x67\ \ \x00\x0e\ \x09\x39\xff\x47\ \x00\x71\ \x00\x69\x00\x64\x00\x65\x00\x6e\x00\x74\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x11\ \x05\x89\x73\x07\ \x00\x63\ \x00\x61\x00\x6e\x00\x2d\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2d\x00\x32\x00\x34\x00\x70\x00\x78\x00\x2e\x00\x70\x00\x6e\x00\x67\ \ \x00\x15\ \x0c\xfc\x45\x87\ \x00\x63\ \x00\x61\x00\x6e\x00\x2d\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2d\x00\x32\x00\x34\x00\x70\x00\x78\x00\x2d\x00\x72\x00\x65\x00\x64\ \x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0d\ \x07\x76\xdf\x07\ \x00\x67\ \x00\x72\x00\x65\x00\x65\x00\x6e\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x17\ \x00\xd3\x62\xc7\ \x00\x63\ \x00\x61\x00\x6e\x00\x2d\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2d\x00\x32\x00\x34\x00\x70\x00\x78\x00\x2d\x00\x67\x00\x72\x00\x65\ \x00\x65\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x11\ \x02\x8c\x5e\x67\ \x00\x6e\ \x00\x6f\x00\x5f\x00\x69\x00\x64\x00\x65\x00\x6e\x00\x74\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x73\x00\x2e\x00\x70\x00\x6e\x00\x67\ \ \x00\x0e\ \x02\x47\x93\x47\ \x00\x79\ \x00\x65\x00\x6c\x00\x6c\x00\x6f\x00\x77\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x12\ \x03\xf4\x2e\xc7\ \x00\x71\ \x00\x69\x00\x64\x00\x65\x00\x6e\x00\x74\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x5f\x00\x74\x00\x77\x00\x6f\x00\x2e\x00\x70\x00\x6e\ \x00\x67\ \x00\x11\ \x03\x89\x73\x27\ \x00\x63\ \x00\x61\x00\x6e\x00\x2d\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2d\x00\x31\x00\x36\x00\x70\x00\x78\x00\x2e\x00\x70\x00\x6e\x00\x67\ \ \x00\x14\ \x07\x12\xd0\xa7\ \x00\x71\ \x00\x69\x00\x64\x00\x65\x00\x6e\x00\x74\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x5f\x00\x74\x00\x77\x00\x6f\x00\x5f\x00\x78\x00\x2e\ \x00\x70\x00\x6e\x00\x67\ " qt_resource_struct = "\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x18\x00\x02\x00\x00\x00\x15\x00\x00\x00\x03\ \x00\x00\x02\x36\x00\x00\x00\x00\x00\x01\x00\x00\x3f\x80\ \x00\x00\x02\x92\x00\x00\x00\x00\x00\x01\x00\x00\x47\xb7\ \x00\x00\x01\x3e\x00\x00\x00\x00\x00\x01\x00\x00\x1d\x49\ \x00\x00\x02\x6a\x00\x00\x00\x00\x00\x01\x00\x00\x46\xee\ \x00\x00\x01\x74\x00\x00\x00\x00\x00\x01\x00\x00\x24\xaf\ \x00\x00\x00\xbc\x00\x00\x00\x00\x00\x01\x00\x00\x11\xfc\ \x00\x00\x02\xde\x00\x00\x00\x00\x00\x01\x00\x00\x51\x02\ \x00\x00\x02\xb4\x00\x00\x00\x00\x00\x01\x00\x00\x4a\x35\ \x00\x00\x00\xf2\x00\x00\x00\x00\x00\x01\x00\x00\x18\x2b\ \x00\x00\x01\xbe\x00\x00\x00\x00\x00\x01\x00\x00\x2d\x9f\ \x00\x00\x03\x06\x00\x00\x00\x00\x00\x01\x00\x00\x54\xf5\ \x00\x00\x01\x16\x00\x00\x00\x00\x00\x01\x00\x00\x1a\xd0\ \x00\x00\x02\x16\x00\x00\x00\x00\x00\x01\x00\x00\x3c\x48\ \x00\x00\x01\x9c\x00\x00\x00\x00\x00\x01\x00\x00\x27\x2a\ \x00\x00\x00\x4c\x00\x00\x00\x00\x00\x01\x00\x00\x03\x6a\ \x00\x00\x00\x2a\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x00\x64\x00\x00\x00\x00\x00\x01\x00\x00\x06\x1d\ \x00\x00\x00\xdc\x00\x00\x00\x00\x00\x01\x00\x00\x14\xf0\ \x00\x00\x00\x80\x00\x00\x00\x00\x00\x01\x00\x00\x08\xed\ \x00\x00\x00\x96\x00\x00\x00\x00\x00\x01\x00\x00\x0b\x15\ \x00\x00\x01\xe6\x00\x00\x00\x00\x00\x01\x00\x00\x34\xdf\ " def qInitResources(): QtCore.qRegisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
mmaction/models/localizers/utils/__init__.py
HypnosXC/mmaction2
648
12785789
from .post_processing import post_processing __all__ = ['post_processing']
SymbolExtractorAndRenamer/lldb/packages/Python/lldbsuite/test/sample_test/TestSampleTest.py
Polidea/SiriusObfuscator
427
12785793
<reponame>Polidea/SiriusObfuscator """ Describe the purpose of the test class here. """ from __future__ import print_function import os import time import re import lldb import lldbsuite.test.lldbutil as lldbutil from lldbsuite.test.lldbtest import * class RenameThisSampleTestTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) # If your test case doesn't stress debug info, the # set this to true. That way it won't be run once for # each debug info format. NO_DEBUG_INFO_TESTCASE = True def test_sample_rename_this(self): """There can be many tests in a test case - describe this test here.""" self.build() self.sample_test() def setUp(self): # Call super's setUp(). TestBase.setUp(self) def sample_test(self): """You might use the test implementation in several ways, say so here.""" exe = os.path.join(os.getcwd(), "a.out") # Create a target by the debugger. target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) # Now create a breakpoint in main.c at the source matching # "Set a breakpoint here" breakpoint = target.BreakpointCreateBySourceRegex( "Set a breakpoint here", lldb.SBFileSpec("main.c")) self.assertTrue(breakpoint and breakpoint.GetNumLocations() >= 1, VALID_BREAKPOINT) error = lldb.SBError() # This is the launch info. If you want to launch with arguments or # environment variables, add them using SetArguments or # SetEnvironmentEntries launch_info = lldb.SBLaunchInfo(None) process = target.Launch(launch_info, error) self.assertTrue(process, PROCESS_IS_VALID) # Did we hit our breakpoint? from lldbsuite.test.lldbutil import get_threads_stopped_at_breakpoint threads = get_threads_stopped_at_breakpoint(process, breakpoint) self.assertTrue( len(threads) == 1, "There should be a thread stopped at our breakpoint") # The hit count for the breakpoint should be 1. self.assertTrue(breakpoint.GetHitCount() == 1) frame = threads[0].GetFrameAtIndex(0) test_var = frame.FindVariable("test_var") self.assertTrue(test_var.GetError().Success(), "Failed to fetch test_var") test_value = test_var.GetValueAsUnsigned() self.assertEqual(test_value, 10, "Got the right value for test_var")
keras/downstream_tasks/config.py
joeranbosma/ModelsGenesis
574
12785813
import os import shutil import csv import random class bms_config: arch = 'Vnet' # data data = '/mnt/dataset/shared/zongwei/BraTS' csv = "data/bms" deltr = 30 input_rows = 64 input_cols = 64 input_deps = 32 crop_rows = 100 crop_cols = 100 crop_deps = 50 # model optimizer = 'adam' lr = 1e-3 patience = 30 verbose = 1 batch_size = 16 workers = 1 max_queue_size = workers * 1 nb_epoch = 10000 def __init__(self, args): self.exp_name = self.arch + '-' + args.suffix if args.data is not None: self.data = args.data if args.suffix == 'random': self.weights = None elif args.suffix == 'genesis': self.weights = 'pretrained_weights/Genesis_Chest_CT.h5' elif args.suffix == 'genesis-autoencoder': self.weights = 'pretrained_weights/Genesis_Chest_CT-autoencoder.h5' elif args.suffix == 'genesis-nonlinear': self.weights = 'pretrained_weights/Genesis_Chest_CT-nonlinear.h5' elif args.suffix == 'genesis-localshuffling': self.weights = 'pretrained_weights/Genesis_Chest_CT-localshuffling.h5' elif args.suffix == 'genesis-outpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-outpainting.h5' elif args.suffix == 'genesis-inpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-inpainting.h5' elif args.suffix == 'denoisy': self.weights = 'pretrained_weights/denoisy.h5' elif args.suffix == 'patchshuffling': self.weights = 'pretrained_weights/patchshuffling.h5' elif args.suffix == 'hg': self.weights = 'pretrained_weights/hg.h5' else: raise train_ids = self._load_csv(os.path.join(self.csv, "fold_1.csv")) + self._load_csv(os.path.join(self.csv, "fold_2.csv")) random.Random(4).shuffle(train_ids) self.validation_ids = train_ids[:len(train_ids) // 8] self.train_ids = train_ids[len(train_ids) // 8:] self.test_ids = self._load_csv(os.path.join(self.csv, "fold_3.csv")) self.num_train = len(self.train_ids) self.num_validation = len(self.validation_ids) self.num_test = len(self.test_ids) # logs self.model_path = os.path.join("models/bms", "run_"+str(args.run)) if not os.path.exists(self.model_path): os.makedirs(self.model_path) self.logs_path = os.path.join(self.model_path, "logs") if not os.path.exists(self.logs_path): os.makedirs(self.logs_path) def _load_csv(self, foldfile=None): assert foldfile is not None patient_ids = [] with open(foldfile, 'r') as f: reader = csv.reader(f, lineterminator='\n') patient_ids.extend(reader) for i, item in enumerate(patient_ids): patient_ids[i] = item[0] return patient_ids def display(self): """Display Configuration values.""" print("\nConfigurations:") for a in dir(self): if not a.startswith("__") and not callable(getattr(self, a)) and not '_ids' in a: print("{:30} {}".format(a, getattr(self, a))) print("\n") class ecc_config: arch = 'Vnet' # data data = '/mnt/dfs/zongwei/Academic/MICCAI2020/Genesis_PE/dataset/augdata/VOIR' csv = "data/ecc" clip_min = -1000 clip_max = 1000 input_rows = 64 input_cols = 64 input_deps = 64 # model optimizer = 'adam' lr = 1e-3 patience = 38 verbose = 1 batch_size = 24 workers = 1 max_queue_size = workers * 1 nb_epoch = 10000 num_classes = 1 verbose = 1 def __init__(self, args=None): self.exp_name = self.arch + '-' + args.suffix + '-cv-' + str(args.cv) if args.data is not None: self.data = args.data if args.suffix == 'random': self.weights = None elif args.suffix == 'genesis': self.weights = 'pretrained_weights/Genesis_Chest_CT.h5' elif args.suffix == 'genesis-autoencoder': self.weights = 'pretrained_weights/Genesis_Chest_CT-autoencoder.h5' elif args.suffix == 'genesis-nonlinear': self.weights = 'pretrained_weights/Genesis_Chest_CT-nonlinear.h5' elif args.suffix == 'genesis-localshuffling': self.weights = 'pretrained_weights/Genesis_Chest_CT-localshuffling.h5' elif args.suffix == 'genesis-outpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-outpainting.h5' elif args.suffix == 'genesis-inpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-inpainting.h5' elif args.suffix == 'denoisy': self.weights = 'pretrained_weights/denoisy.h5' elif args.suffix == 'patchshuffling': self.weights = 'pretrained_weights/patchshuffling.h5' elif args.suffix == 'hg': self.weights = 'pretrained_weights/hg.h5' else: raise # logs assert args.subsetting is not None self.model_path = os.path.join("models/ecc", "run_"+str(args.run), args.subsetting) if not os.path.exists(self.model_path): os.makedirs(self.model_path) self.logs_path = os.path.join(self.model_path, "logs") if not os.path.exists(self.logs_path): os.makedirs(self.logs_path) self.patch_csv_path = 'Patch-20mm-cv-'+str(args.cv)+'-features_output_2_iter-100000.csv' self.candidate_csv_path = 'Candidate-20mm-cv-'+str(args.cv)+'-features_output_2_iter-100000.csv' self.csv_froc = 'features_output_2_iter-100000.csv' def display(self): print("Configurations") for a in dir(self): if not a.startswith("__") and not callable(getattr(self,a)): print("{:30} {}".format(a,getattr(self,a))) #print("\n") class ncc_config: arch = 'Vnet' # data data = '/mnt/dataset/shared/zongwei/LUNA16/LUNA16_FPR_32x32x32' train_fold=[0,1,2,3,4] valid_fold=[5,6] test_fold=[7,8,9] hu_min = -1000 hu_max = 1000 input_rows = 64 input_cols = 64 input_deps = 32 # model optimizer = 'adam' lr = 1e-3 patience = 10 verbose = 1 batch_size = 24 workers = 1 max_queue_size = workers * 1 nb_epoch = 10000 num_classes = 1 verbose = 1 def __init__(self, args=None): self.exp_name = self.arch + '-' + args.suffix if args.data is not None: self.data = args.data if args.suffix == 'random': self.weights = None elif args.suffix == 'genesis': self.weights = 'pretrained_weights/Genesis_Chest_CT.h5' elif args.suffix == 'genesis-autoencoder': self.weights = 'pretrained_weights/Genesis_Chest_CT-autoencoder.h5' elif args.suffix == 'genesis-nonlinear': self.weights = 'pretrained_weights/Genesis_Chest_CT-nonlinear.h5' elif args.suffix == 'genesis-localshuffling': self.weights = 'pretrained_weights/Genesis_Chest_CT-localshuffling.h5' elif args.suffix == 'genesis-outpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-outpainting.h5' elif args.suffix == 'genesis-inpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-inpainting.h5' elif args.suffix == 'denoisy': self.weights = 'pretrained_weights/denoisy.h5' elif args.suffix == 'patchshuffling': self.weights = 'pretrained_weights/patchshuffling.h5' elif args.suffix == 'hg': self.weights = 'pretrained_weights/hg.h5' else: raise # logs self.model_path = os.path.join("models/ncc", "run_"+str(args.run)) if not os.path.exists(self.model_path): os.makedirs(self.model_path) self.logs_path = os.path.join(self.model_path, "logs") if not os.path.exists(self.logs_path): os.makedirs(self.logs_path) def display(self): print("Configurations") for a in dir(self): if not a.startswith("__") and not callable(getattr(self,a)): print("{:30} {}".format(a,getattr(self,a))) #print("\n") class ncs_config: arch = 'Vnet' # data data = '/mnt/dataset/shared/zongwei/LIDC' input_rows = 64 input_cols = 64 input_deps = 32 # model optimizer = 'adam' lr = 1e-3 patience = 50 verbose = 1 batch_size = 16 workers = 1 max_queue_size = workers * 1 nb_epoch = 10000 def __init__(self, args): self.exp_name = self.arch + '-' + args.suffix if args.data is not None: self.data = args.data if args.suffix == 'random': self.weights = None elif args.suffix == 'genesis': self.weights = 'pretrained_weights/Genesis_Chest_CT.h5' elif args.suffix == 'genesis-autoencoder': self.weights = 'pretrained_weights/Genesis_Chest_CT-autoencoder.h5' elif args.suffix == 'genesis-nonlinear': self.weights = 'pretrained_weights/Genesis_Chest_CT-nonlinear.h5' elif args.suffix == 'genesis-localshuffling': self.weights = 'pretrained_weights/Genesis_Chest_CT-localshuffling.h5' elif args.suffix == 'genesis-outpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-outpainting.h5' elif args.suffix == 'genesis-inpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-inpainting.h5' elif args.suffix == 'denoisy': self.weights = 'pretrained_weights/denoisy.h5' elif args.suffix == 'patchshuffling': self.weights = 'pretrained_weights/patchshuffling.h5' elif args.suffix == 'hg': self.weights = 'pretrained_weights/hg.h5' else: raise # logs self.model_path = os.path.join("models/ncs", "run_"+str(args.run)) if not os.path.exists(self.model_path): os.makedirs(self.model_path) self.logs_path = os.path.join(self.model_path, "logs") if not os.path.exists(self.logs_path): os.makedirs(self.logs_path) def display(self): """Display Configuration values.""" print("\nConfigurations:") for a in dir(self): if not a.startswith("__") and not callable(getattr(self, a)): print("{:30} {}".format(a, getattr(self, a))) print("\n") class lcs_config: arch = 'Vnet' # data data = '/mnt/dfs/zongwei/Academic/MICCAI2019/Data/LiTS/3D_LiTS_NPY_256x256xZ' nii = '/mnt/dataset/shared/zongwei/LiTS/Tr' obj = 'liver' train_idx = [n for n in range(0, 100)] valid_idx = [n for n in range(100, 115)] test_idx = [n for n in range(115, 130)] num_train = len(train_idx) num_valid = len(valid_idx) num_test = len(test_idx) hu_max = 1000 hu_min = -1000 input_rows = 64 input_cols = 64 input_deps = 32 # model optimizer = 'adam' lr = 1e-2 patience = 20 verbose = 1 batch_size = 16 workers = 1 max_queue_size = workers * 1 nb_epoch = 10000 def __init__(self, args): self.exp_name = self.arch + '-' + args.suffix if args.data is not None: self.data = args.data if args.suffix == 'random': self.weights = None elif args.suffix == 'genesis': self.weights = 'pretrained_weights/Genesis_Chest_CT.h5' elif args.suffix == 'genesis-autoencoder': self.weights = 'pretrained_weights/Genesis_Chest_CT-autoencoder.h5' elif args.suffix == 'genesis-nonlinear': self.weights = 'pretrained_weights/Genesis_Chest_CT-nonlinear.h5' elif args.suffix == 'genesis-localshuffling': self.weights = 'pretrained_weights/Genesis_Chest_CT-localshuffling.h5' elif args.suffix == 'genesis-outpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-outpainting.h5' elif args.suffix == 'genesis-inpainting': self.weights = 'pretrained_weights/Genesis_Chest_CT-inpainting.h5' elif args.suffix == 'denoisy': self.weights = 'pretrained_weights/denoisy.h5' elif args.suffix == 'patchshuffling': self.weights = 'pretrained_weights/patchshuffling.h5' elif args.suffix == 'hg': self.weights = 'pretrained_weights/hg.h5' else: raise # logs self.model_path = os.path.join("models/lcs", "run_"+str(args.run)) if not os.path.exists(self.model_path): os.makedirs(self.model_path) self.logs_path = os.path.join(self.model_path, "logs") if not os.path.exists(self.logs_path): os.makedirs(self.logs_path) def display(self): """Display Configuration values.""" print("\nConfigurations:") for a in dir(self): if not a.startswith("__") and not callable(getattr(self, a)) and not '_idx' in a: print("{:30} {}".format(a, getattr(self, a))) print("\n")
genomepy/annotation/__init__.py
vanheeringen-lab/genomepy
146
12785816
<reponame>vanheeringen-lab/genomepy<gh_stars>100-1000 """Annotation class, modules & related functions""" import os import re from pathlib import Path from typing import Iterable, Optional, Union import numpy as np import pandas as pd from loguru import logger from genomepy.annotation.mygene import map_genes as _map_genes from genomepy.annotation.mygene import query_mygene from genomepy.annotation.sanitize import sanitize as _sanitize from genomepy.annotation.utils import _check_property, _parse_annot, read_annot from genomepy.providers import map_locations from genomepy.utils import get_genomes_dir __all__ = ["Annotation", "query_mygene", "filter_regex"] class Annotation: """ Manipulate genes and whole gene annotations with pandas dataframes. Parameters ---------- genome : str Genome name. name : str, optional Name of annotation file. If name is not specified the default annotation for the genome is used. genomes_dir : str, optional Genomes installation directory. Returns ------- object attributes & methods to manipulate gene annotations """ # import methods map_genes = _map_genes sanitize = _sanitize # lazy attributes (loaded when called) # listed here for code autocompletion bed: pd.DataFrame = None "Dataframe with BED format annotation" gtf: pd.DataFrame = None "Dataframe with GTF format annotation" named_gtf: pd.DataFrame = None "Dataframe with GTF format annotation, with gene_name as index" genome_contigs: list = None "Contigs found in the genome fasta" annotation_contigs: list = None "Contigs found in the gene annotation BED" def __init__(self, genome: str, name: str = None, genomes_dir: str = None): self.genome = genome self.genome_dir = os.path.join(get_genomes_dir(genomes_dir), genome) if not os.path.exists(self.genome_dir): raise ValueError(f"Genome {self.genome} not found!") # annotation file provided if name: suffixes = Path(name).suffixes[-2:] if ".bed" in suffixes or ".BED" in suffixes: self.annotation_bed_file = name elif ".gtf" in suffixes or ".GTF" in suffixes: self.annotation_gtf_file = name else: raise NotImplementedError( "Only (gzipped) bed and gtf files are supported at the moment!" ) else: # annotation files self.annotation_gtf_file = _get_file( self.genome_dir, f"{self.genome}.annotation.gtf" ) self.annotation_bed_file = _get_file( self.genome_dir, f"{self.genome}.annotation.bed" ) # genome files self.readme_file = _get_file(self.genome_dir, "README.txt", False) self.genome_file = _get_file(self.genome_dir, f"{self.genome}.fa", False) self.index_file = _get_file(self.genome_dir, f"{self.genome}.fa.fai", False) self.sizes_file = _get_file(self.genome_dir, f"{self.genome}.fa.sizes", False) # lazy attributes def __getattribute__(self, name): val = super(Annotation, self).__getattribute__(name) if val is not None: return val # if the attribute is None/empty, check if it is a lazy attribute if name == "bed": _check_property(self.annotation_bed_file, f"{self.genome}.annotation.bed") val = read_annot(self.annotation_bed_file) setattr(self, name, val) elif name == "gtf": _check_property(self.annotation_gtf_file, f"{self.genome}.annotation.gtf") val = read_annot(self.annotation_gtf_file) setattr(self, name, val) elif name == "named_gtf": df = self.gtf[self.gtf.attribute.str.contains("gene_name")] names = [] for row in df.attribute: name = str(row).split("gene_name")[1].split(";")[0] names.append(name.replace('"', "").replace(" ", "")) df = df.assign(gene_name=names) val = df.set_index("gene_name") setattr(self, name, val) elif name == "genome_contigs": _check_property(self.sizes_file, f"{self.genome}.fa.sizes") val = list( set(pd.read_csv(self.sizes_file, sep="\t", header=None, dtype=str)[0]) ) setattr(self, name, val) elif name == "annotation_contigs": val = list(set(self.bed.chrom)) setattr(self, name, val) return val # lazily update attributes if upstream attribute is updated def __setattr__(self, name, value): if name == "bed": self.annotation_contigs = None # noqa elif name == "gtf": self.named_gtf = None # noqa elif name == "sizes_file": self.genome_contigs = None # noqa super(Annotation, self).__setattr__(name, value) def genes(self, annot: str = "bed") -> list: """ Retrieve gene names from an annotation. For BED files, names are taken from the 'name' columns. For GTF files, names are taken from the 'gene_name' field in the attribute column, if available. Parameters ---------- annot : str, optional Annotation file type: 'bed' or 'gtf' (default: "bed") Returns ------- list gene names """ if annot.lower() == "bed": return list(set(self.bed.name)) return list(set(self.named_gtf.index)) def gene_coords(self, genes: Iterable[str], annot: str = "bed") -> pd.DataFrame: """ Retrieve gene locations. Parameters ---------- genes : Iterable List of gene names as found in the given annotation file type annot : str, optional Annotation file type: 'bed' or 'gtf' (default: "bed") Returns ------- pandas.DataFrame gene annotation """ gene_list = list(genes) if annot.lower() == "bed": df = self.bed.set_index("name") gene_info = df[["chrom", "start", "end", "strand"]] else: df = self.named_gtf # 1 row per gene df = ( df.groupby(["gene_name", "seqname", "strand"]) .agg({"start": np.min, "end": np.max}) .reset_index(level=["seqname", "strand"]) ) gene_info = df[["seqname", "start", "end", "strand"]] gene_info = gene_info.reindex(gene_list).dropna() pct = int(100 * len(set(gene_info.index)) / len(gene_list)) if pct < 90: logger.warning( (f"Only {pct}% of genes was found. " if pct else "No genes found. ") + "A list of all gene names can be found with `Annotation.genes()`" ) if annot.lower() == "bed": return gene_info.reset_index()[["chrom", "start", "end", "name", "strand"]] else: return gene_info.reset_index()[ ["seqname", "start", "end", "gene_name", "strand"] ] def map_locations( self, annot: Union[str, pd.DataFrame], to: str, drop=True ) -> Union[None, pd.DataFrame]: """ Map chromosome mapping from one assembly to another. Uses the NCBI assembly reports to find contigs. Drops missing contigs. Parameters ---------- annot : str or pd.Dataframe annotation to map: "bed", "gtf" or a pandas dataframe. to: str target provider (UCSC, Ensembl or NCBI) drop: bool, optional if True, replace the chromosome column. If False, add a 2nd chromosome column. Returns ------- pandas.DataFrame chromosome mapping. """ genomes_dir = os.path.dirname(self.genome_dir) mapping = map_locations(self.genome, to, genomes_dir) if mapping is None: return df = _parse_annot(self, annot) index_name = df.index.name if not set([index_name] + df.columns.to_list()) & {"chrom", "seqname"}: raise ValueError( "Location mapping requires a column named 'chrom' or 'seqname'." ) # join mapping on chromosome column and return with original index is_indexed = df.index.to_list() != list(range(df.shape[0])) if is_indexed: df = df.reset_index(level=index_name) index_col = "chrom" if "chrom" in df.columns else "seqname" df = df.set_index(index_col) df = mapping.join(df, how="inner") df = df.reset_index(drop=drop) df.columns = [index_col] + df.columns.to_list()[1:] if is_indexed: df = df.set_index(index_name if index_name else "index") return df def filter_regex( self, annot: Union[str, pd.DataFrame], regex: Optional[str] = ".*", invert_match: Optional[bool] = False, column: Union[str, int] = 0, ) -> pd.DataFrame: """ Filter a dataframe by any column using regex. Parameters ---------- annot : str or pd.Dataframe annotation to filter: "bed", "gtf" or a pandas dataframe regex : str regex string to match invert_match : bool, optional keep contigs NOT matching the regex string column: str or int, optional column name or number to filter (default: 1st, contig name) Returns ------- pd.DataFrame filtered dataframe """ df = _parse_annot(self, annot) return filter_regex(df, regex, invert_match, column) def _get_file(genome_dir: str, fname: str, warn_missing: Optional[bool] = True): """ Returns the filepath to a single (gzipped) file in the genome_dir with matching ext. """ fpath = os.path.join(genome_dir, fname) if os.path.exists(fpath): return fpath if os.path.exists(f"{fpath}.gz"): return f"{fpath}.gz" if warn_missing: logger.warning( f"Could not find '{fname}(.gz)' in directory {genome_dir}. " "Methods using this file won't work!" ) return def filter_regex( df: pd.DataFrame, regex: str, invert_match: Optional[bool] = False, column: Union[str, int] = 0, ) -> pd.DataFrame: """ Filter a pandas dataframe by a column (default: 1st, contig name). Parameters ---------- df: pd.Dataframe annotation to filter (a pandas dataframe) regex : str regex string to match invert_match : bool, optional keep contigs NOT matching the regex string column: str or int, optional column name or number to filter (default: 1st, contig name) Returns ------- pd.DataFrame filtered dataframe """ if column not in df.columns: if isinstance(column, int): column = df.columns[column] else: raise ValueError( f"Column '{column}' not found in annotation columns {list(df.columns)}" ) pattern = re.compile(regex) filter_func = df[column].map(lambda x: bool(pattern.match(x)) is not invert_match) return df[filter_func]
mango-python/bdgenomics/mango/test/notebook_test.py
heuermh/mango
120
12785846
<reponame>heuermh/mango # # Licensed to Big Data Genomics (BDG) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The BDG licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from bdgenomics.mango.test import SparkTestCase from bdgenomics.adam.adamContext import ADAMContext class NotebookTest(SparkTestCase): def test_example(self): # these variables are read into mango-python.py spark = self.ss testMode = True alignmentFile = self.exampleFile("chr17.7500000-7515000.sam") variantFile = self.exampleFile("snv.chr17.7502100-7502500.vcf") genotypeFile = self.exampleFile("genodata.v3.vcf") featureFile = self.exampleFile("chr17.582500-594500.bed") # this file is converted from ipynb in make test testFile = self.exampleFile("notebooks/mango-pileup.py") exec(open(testFile).read()) def test_coverage_example(self): # these variables are read into mango-python.py spark = self.ss testMode = True alignmentFile = self.exampleFile("chr17.7500000-7515000.sam") # this file is converted from mango-python.coverage.ipynb in the Makefile testCoverageFile = self.exampleFile("notebooks/mango-python-coverage.py") exec(open(testCoverageFile).read()) def test_alignment_example(self): # these variables are read into mango-python.py spark = self.ss testMode = True alignmentFile = self.exampleFile("chr17.7500000-7515000.sam") # this file is converted from mango-python-alignment.ipynb in the Makefile testAlignmentFile = self.exampleFile("notebooks/mango-python-alignment.py") exec(open(testAlignmentFile).read()) def test_variants_example(self): # these variables are read into mango-python.py spark = self.ss testMode = True vcfFile = self.exampleFile("genodata.v3.vcf") # this file is converted from mango-python-alignment.ipynb in the Makefile testVariantFile = self.exampleFile("notebooks/mango-python-variants.py") exec(open(testVariantFile).read())
exercises/ja/exc_03_16_02.py
Jette16/spacy-course
2,085
12785876
<filename>exercises/ja/exc_03_16_02.py import spacy nlp = spacy.load("ja_core_news_sm") text = ( "チックフィレイはジョージア州カレッジパークに本社を置く、" "チキンサンドを専門とするアメリカのファストフードレストランチェーンです。" ) # parserを無効化 with ____.____(____): # テキストを処理する doc = ____ # docの固有表現を表示 print(____)
lexos/managers/file_manager.py
WheatonCS/Lexos
107
12785878
<gh_stars>100-1000 import io import os import shutil import zipfile from os import makedirs from os.path import join as pathjoin from typing import List, Tuple, Dict import numpy as np import pandas as pd from flask import request, send_file import lexos.helpers.constants as constants import lexos.helpers.general_functions as general_functions import lexos.managers.session_manager as session_manager from lexos.managers.lexos_file import LexosFile class FileManager: def __init__(self): """Class for object to hold info about user's files & choices in Lexos. Each user will have their own unique instance of the FileManager. A major data attribute of this class is a dictionary holding the LexosFile objects, each representing an uploaded file to be used in Lexos. The key for the dictionary is the unique ID of the file, with the value being the corresponding LexosFile object. """ self._files = {} self.next_id = 0 makedirs(pathjoin(session_manager.session_folder(), constants.FILE_CONTENTS_FOLDER)) @property def files(self) -> Dict[int, LexosFile]: """A property for private attribute: _files. :return: a dict map file id to lexos_files. """ return self._files def add_file(self, original_filename: str, file_name: str, file_string: str) -> int: """Adds a file to the FileManager. The new file identifies with the next ID to be used. :param original_filename: the original file name of the uploaded file. :param file_name: the file name we store. :param file_string: the string contents of the text. :return: the id of the newly added file. """ # solve the problem that there is file with the same name exist_clone_file = True while exist_clone_file: exist_clone_file = False for file in list(self.files.values()): if file.name == file_name: file_name = 'copy of ' + file_name original_filename = 'copy of ' + original_filename exist_clone_file = True break new_file = LexosFile( original_filename, file_name, file_string, self.next_id) self.files[new_file.id] = new_file self.next_id += 1 self.files[new_file.id].set_name(file_name) # Set the document label return new_file.id def delete_files(self, file_ids: List[int]): """Deletes all the files that have id in IDs. :param file_ids: an array containing all the id of the files that need to be deleted. """ for file_id in file_ids: file_id = int(file_id) # in case that the id is not int self.files[file_id].clean_and_delete() del self.files[file_id] # Delete the entry def get_active_files(self) -> List[LexosFile]: """Creates a list of all the active files in FileManager. :return: a list of LexosFile objects. """ active_files = [] for l_file in list(self.files.values()): if l_file.active: active_files.append(l_file) return active_files def delete_active_files(self) -> List[int]: """Deletes every active file. These active files are deleted by calling the delete method on the LexosFile object before removing it from the dictionary. :return: list of deleted file_ids. """ file_ids = [] for file_id, l_file in list(self.files.items()): if l_file.active: file_ids.append(file_id) l_file.clean_and_delete() del self.files[file_id] # Delete the entry return file_ids def disable_all(self): """Disables every file in the file manager.""" for l_file in list(self.files.values()): l_file.disable() def enable_all(self): """Enables every file in the file manager.""" for l_file in list(self.files.values()): l_file.enable() def get_previews_of_active(self) -> List[Tuple[int, str, str, str]]: """Creates a formatted list of previews from every active file. Each preview on this formatted list of previews is made from every individual active file located in the file manager. :return: a formatted list with an entry (tuple) for every active file, containing the preview information (the file id, name, label and preview). """ previews = [] for l_file in self.files.values(): if l_file.active: previews.append( (l_file.id, l_file.name, l_file.label, l_file.get_preview()) ) # TODO: figure out this should be l_file.label or l_file.class_label return previews def get_previews_of_inactive(self) -> List[Tuple[int, str, str, str]]: """Creates a formatted list of previews from every inactive file. Each preview on this formatted list of previews is made from every individual inactive file located in the file manager. :return: a formatted list with an entry (tuple) for every inactive file, containing the preview information (the file id, name, label and preview). """ previews = [] for l_file in list(self.files.values()): if not l_file.active: previews.append( (l_file.id, l_file.name, l_file.class_label, l_file.get_preview()) ) return previews def get_content_of_active_with_id(self) -> Dict[int, str]: """Helper method to get_matrix. :return: get all the file content from the file_manager """ return {file.id: file.load_contents() for file in self.get_active_files()} def toggle_file(self, file_id: int): """Toggles the active status of the given file. :param file_id: the id of the file to be toggled. """ l_file = self.files[file_id] if l_file.active: l_file.disable() else: l_file.enable() def enable_files(self, file_ids: List[int]): """Enables a list of Lexos files. :param file_ids: list of fileIDs selected in the UI. """ for file_id in file_ids: file_id = int(file_id) l_file = self.files[file_id] l_file.enable() def disable_files(self, file_ids: List[int]): """Disables a list of Lexos files. :param file_ids: list of fileIDs selected in the UI. """ for file_id in file_ids: file_id = int(file_id) l_file = self.files[file_id] l_file.disable() def classify_active_files(self): """Applies a class label (from request.data) to every active file.""" # TODO: probably should not get request form here class_label = request.data for l_file in list(self.files.values()): if l_file.active: l_file.set_class_label(class_label) def add_upload_file(self, raw_file_string: bytes, file_name: str): """Detects (and applies) the encoding type of the file's contents. Since chardet runs slow, initially detects (only) MIN_ENCODING_DETECT chars; if that fails, chardet entire file for a fuller test :param raw_file_string: the file you want to detect the encoding :param file_name: name of the file """ decoded_file_string = general_functions.decode_bytes( raw_bytes=raw_file_string) # Line encodings: # \n Unix, OS X # \r Mac OS 9 # \r\n Win. CR+LF # The following block converts everything to '\n' # "\r\n" -> '\n' if "\r\n" in decoded_file_string[:constants.MIN_NEWLINE_DETECT]: decoded_file_string = decoded_file_string.replace('\r', '') # '\r' -> '\n' if '\r' in decoded_file_string[:constants.MIN_NEWLINE_DETECT]: decoded_file_string = decoded_file_string.replace('\r', '\n') # Add the file to the FileManager self.add_file(file_name, file_name, decoded_file_string) def handle_upload_workspace(self): """Handles the session when you upload a workspace (.lexos) file.""" # save .lexos file save_path = os.path.join(constants.UPLOAD_FOLDER, constants.WORKSPACE_DIR) save_file = os.path.join(save_path, str(self.next_id) + '.zip') try: os.makedirs(save_path) except FileExistsError: pass f = open(save_file, 'wb') f.write(request.data) f.close() # clean the session folder shutil.rmtree(session_manager.session_folder()) # extract the zip upload_session_path = os.path.join( constants.UPLOAD_FOLDER, str( self.next_id) + '_upload_work_space_folder') with zipfile.ZipFile(save_file) as zf: zf.extractall(upload_session_path) general_functions.copy_dir(upload_session_path, session_manager.session_folder()) # remove temp shutil.rmtree(save_path) shutil.rmtree(upload_session_path) try: # if there is no file content folder make one. # this dir will be lost during download(zip) if your original file # content folder does not contain anything. os.makedirs(os.path.join(session_manager.session_folder(), constants.FILE_CONTENTS_FOLDER)) except FileExistsError: pass def update_workspace(self): """Updates the whole work space.""" # update the savepath of each file for l_file in list(self.files.values()): l_file.save_path = pathjoin( session_manager.session_folder(), constants.FILE_CONTENTS_FOLDER, str(l_file.id) + '.txt') # update the session session_manager.load() def scrub_files(self, saving_changes: bool) -> \ List[Tuple[int, str, str, str]]: """Scrubs active files & creates a formatted preview list w/ results. :param saving_changes: a boolean saying whether or not to save the changes made. :return: a formatted list with an entry (tuple) for every active file, containing the preview information (the file id, label, class label, and scrubbed contents preview). """ previews = [] for l_file in list(self.files.values()): if l_file.active: previews.append( (l_file.id, l_file.label, l_file.class_label, l_file.scrub_contents(saving_changes))) return previews def cut_files(self, saving_changes: bool) -> \ List[Tuple[int, str, str, str]]: """Cuts active files & creates a formatted preview list w/ the results. :param saving_changes: a boolean saying whether or not to save the changes made. :return: a formatted list with an entry (tuple) for every active file, containing the preview information (the file id, label, class label, and cut contents preview). """ active_files = [] for l_file in list(self.files.values()): if l_file.active: active_files.append(l_file) previews = [] for l_file in active_files: l_file.active = False children_file_contents = l_file.cut_contents() num_cut_files = len(children_file_contents) l_file.save_cut_options(parent_id=None) if saving_changes: for i, file_string in enumerate(children_file_contents): original_filename = l_file.name zeros = len(str(num_cut_files)) - len(str(i + 1)) doc_label = l_file.label + '_' + ('0' * zeros) + str(i + 1) file_id = self.add_file( original_filename, doc_label + '.txt', file_string) self.files[file_id].set_scrub_options_from(parent=l_file) self.files[file_id].save_cut_options(parent_id=l_file.id) self.files[file_id].set_name(doc_label) self.files[file_id].set_class_label( class_label=l_file.class_label) else: for i, file_string in enumerate(children_file_contents): previews.append( (l_file.id, l_file.name, l_file.label + '_' + str(i + 1), general_functions.make_preview_from(file_string))) if saving_changes: previews = self.get_previews_of_active() return previews def zip_active_files(self, zip_file_name: str): """Sends a zip file of files containing contents of the active files. :param zip_file_name: Name to assign to the zipped file. :return: zipped archive to send to the user, created with Flask's send_file. """ # TODO: make send file happen in interface zip_stream = io.BytesIO() zip_file = zipfile.ZipFile(file=zip_stream, mode='w') for l_file in list(self.files.values()): if l_file.active: # Make sure the filename has an extension l_file_name = l_file.name if not l_file_name.endswith('.txt'): l_file_name = l_file_name + '.txt' zip_file.write( l_file.save_path, arcname=l_file_name, compress_type=zipfile.ZIP_STORED) zip_file.close() zip_stream.seek(0) return send_file( zip_stream, attachment_filename=zip_file_name, as_attachment=True) def zip_workspace(self) -> str: """Sends a zip file containing a pickle file of session & its folder. :return: the path of the zipped workspace """ # TODO: move this to matrix model # initialize the save path save_path = os.path.join( constants.UPLOAD_FOLDER, constants.WORKSPACE_DIR) rounded_next_id = str(self.next_id % 10000) # take the last 4 digit workspace_file_path = os.path.join( constants.UPLOAD_FOLDER, rounded_next_id + '_' + constants.WORKSPACE_FILENAME) # remove unnecessary content in the workspace try: shutil.rmtree( os.path.join( session_manager.session_folder(), constants.RESULTS_FOLDER)) # attempt to remove result folder(CSV matrix that kind of crap) except FileNotFoundError: pass # move session folder to work space folder try: # try to remove previous workspace in order to resolve conflict os.remove(workspace_file_path) except FileNotFoundError: pass try: # empty the save path in order to resolve conflict shutil.rmtree(save_path) except FileNotFoundError: pass general_functions.copy_dir(session_manager.session_folder(), save_path) # save session in the work space folder session_manager.save(save_path) # zip the dir zip_file = zipfile.ZipFile(workspace_file_path, 'w') general_functions.zip_dir(save_path, zip_file) zip_file.close() # remove the original dir shutil.rmtree(save_path) return workspace_file_path def check_actives_tags(self) -> Tuple[bool, bool, bool]: """Checks the tags of the active files for DOE/XML/HTML/SGML tags. :return: three booleans, the first signifying the presence of any type of tags, the secondKeyWord the presence of DOE tags, the third signifying the presence of gutenberg tags/boilerplate. """ found_tags = False found_doe = False found_gutenberg = False for l_file in list(self.files.values()): if not l_file.active: continue # with the looping, do not do the rest of current loop if l_file.doc_type == 'doe': found_doe = True found_tags = True if l_file.has_tags: found_tags = True if l_file.is_gutenberg: found_gutenberg = True if found_doe and found_tags: break return found_tags, found_doe, found_gutenberg def update_label(self, file_id: int, file_label: str): """Sets the file label of the file denoted to the supplied file label. Files are denoted by the given id. :param file_id: the id of the file for which to change the label. :param file_label: the label to set the file to. """ self.files[file_id] = file_label def get_active_labels_with_id(self) -> Dict[int, str]: """Gets labels of all active files in dictionary{file_id: file_label}. :return: a dictionary of the currently active files' labels. """ return {l_file.id: l_file.label for l_file in self.files.values() if l_file.active} def get_class_division_map(self) -> pd.DataFrame: """Gets the class division map to help with topword analysis. :return: a pandas data frame where: - the data is the division map with boolean values that indicate which class each file belongs to. - the index is the class labels. - the column is the file id. """ # active files labels and classes. active_files = self.get_active_files() file_ids = [file.id for file in active_files] class_labels = {file.class_label for file in active_files} # initialize values and get class division map. label_length = len(file_ids) class_length = len(class_labels) class_division_map = pd.DataFrame( data=np.zeros((class_length, label_length), dtype=bool), index=class_labels, columns=file_ids) # set correct boolean value for each file. for file in active_files: class_division_map[file.id][file.class_label] = True # Set file with no class to Untitled. class_division_map.index = \ ["Untitled" if class_label == "" else class_label for class_label in class_division_map.index] return class_division_map def get_previews_of_all(self) -> List[dict]: """Creates a formatted list of previews from every file. Each preview on this formatted list of previews is made from every individual file located in the file manager. For use in the Select screen. :return: a list of dictionaries with preview information for every file. """ previews = [] for l_file in list(self.files.values()): values = { "id": l_file.id, "filename": l_file.name, "label": l_file.label, "class": l_file.class_label, "source": l_file.original_source_filename, "preview": l_file.get_preview(), "state": l_file.active} previews.append(values) return previews def delete_all_file(self): """Deletes every active file. This is done by calling the delete method on the LexosFile object before removing it from the dictionary. """ for file_id, l_file in list(self.files.items()): l_file.clean_and_delete() del self.files[file_id] # Delete the entry
Python3/547.py
rakhi2001/ecom7
854
12785886
__________________________________________________________________________________________________ sample 192 ms submission class Solution: def findCircleNum(self, M: List[List[int]]) -> int: seen = set() def visit_all_friends(i: int): for friend_idx,is_friend in enumerate(M[i]): if is_friend and friend_idx not in seen: seen.add(friend_idx) visit_all_friends(friend_idx) count = 0 for ridx in range(len(M)): if ridx not in seen: visit_all_friends(ridx) count += 1 return count __________________________________________________________________________________________________ sample 13172 kb submission class Solution: def findCircleNum(self, M: List[List[int]]) -> int: def dfs1(r, c, circle): frds = [r, c] f_s = {r, c} i = 0 while i < len(frds): j = frds[i] for k in range(len(M)): if M[j][k] == 1 and k not in f_s: f_s.add(k) frds.append(k) i = i + 1 for i in f_s: for j in f_s: M[i][j] = circle circle = 1 for i in range(len(M)): for j in range(len(M[0])): if M[i][j] == 1: circle = circle + 1 dfs1(i, j, circle) break return circle - 1 __________________________________________________________________________________________________
lambeq/text2diagram/spiders_reader.py
CQCL/lambeq
131
12785935
# Copyright 2021, 2022 Cambridge Quantum Computing Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['SpidersReader', 'bag_of_words_reader', 'spiders_reader'] from discopy import Word from discopy.rigid import Diagram, Spider from lambeq.core.types import AtomicType from lambeq.core.utils import SentenceType, tokenised_sentence_type_check from lambeq.text2diagram.base import Reader S = AtomicType.SENTENCE class SpidersReader(Reader): """A reader that combines words using a spider.""" def sentence2diagram(self, sentence: SentenceType, tokenised: bool = False) -> Diagram: if tokenised: if not tokenised_sentence_type_check(sentence): raise ValueError('`tokenised` set to `True`, but variable ' '`sentence` does not have type `list[str]`.') else: if not isinstance(sentence, str): raise ValueError('`tokenised` set to `False`, but variable ' '`sentence` does not have type `str`.') sentence = sentence.split() words = [Word(word, S) for word in sentence] diagram = Diagram.tensor(*words) >> Spider(len(words), 1, S) return diagram spiders_reader = SpidersReader() bag_of_words_reader = spiders_reader
RecoJets/JetAnalyzers/test/DijetRatioPlotExample_cfg.py
ckamtsikis/cmssw
852
12785992
<gh_stars>100-1000 # PYTHON configuration file. # Description: Example of dijet ratio plot # with corrected and uncorrected jets # Author: <NAME> # Date: 22 - November - 2009 import FWCore.ParameterSet.Config as cms process = cms.Process("Ana") process.load("FWCore.MessageService.MessageLogger_cfi") ############# Set the number of events ############# process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1000) ) ############# Define the source file ############### process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( '/store/mc/Summer09/QCDFlat_Pt15to3000/GEN-SIM-RECO/MC_31X_V9_7TeV-v1/0000/FABD2A94-C0D3-DE11-B6FD-00237DA13C2E.root') ) process.source.inputCommands = cms.untracked.vstring("keep *","drop *_MEtoEDMConverter_*_*") ############# Include the jet corrections ########## process.load("JetMETCorrections.Configuration.L2L3Corrections_Summer09_7TeV_ReReco332_cff") # set the record's IOV. Must be defined once. Choose ANY correction service. # process.prefer("L2L3JetCorrectorAK5Calo") ############# User analyzer (calo jets) ## process.DijetRatioCaloJets = cms.EDAnalyzer("DijetRatioCaloJets", # Uncorrected CaloJets UnCorrectedJets = cms.string('ak5CaloJets'), # Corrected CaloJets CorrectedJets = cms.string('L2L3CorJetAK5Calo'), # Name of the output ROOT file containing the histograms HistoFileName = cms.untracked.string('DijetRatioCaloJets.root') ) ############# User analyzer (PF jets) ## process.DijetRatioPFJets = cms.EDAnalyzer("DijetRatioPFJets", # Uncorrected PFJets UnCorrectedJets = cms.string('ak5PFJets'), # Corrected PFJets CorrectedJets = cms.string('L2L3CorJetAK5PF'), # Name of the output ROOT file containing the histograms HistoFileName = cms.untracked.string('DijetRatioPFJets.root') ) ############# User analyzer (gen jets) ## # ak5GenJets are NOT there: First load the needed modules process.load("RecoJets.Configuration.GenJetParticles_cff") process.load("RecoJets.JetProducers.ak5GenJets_cfi") process.DijetRatioGenJets = cms.EDAnalyzer("DijetRatioGenJets", # Uncorrected GenJets UnCorrectedJets = cms.string('ak5GenJets'), # Corrected GenJets == Uncorrected GenJets CorrectedJets = cms.string('ak5GenJets'), # Name of the output ROOT file containing the histograms HistoFileName = cms.untracked.string('DijetRatioGenJets.root') ) ############# Path ########################### process.p = cms.Path(process.L2L3CorJetAK5Calo * process.DijetRatioCaloJets) process.p2 = cms.Path(process.L2L3CorJetAK5PF * process.DijetRatioPFJets) process.p3 = cms.Path(process.genParticlesForJets * process.ak5GenJets * process.DijetRatioGenJets) ############# Format MessageLogger ################# process.MessageLogger.cerr.FwkReport.reportEvery = 10
test/swift_project_test.py
Dan2552/SourceKittenSubl
163
12786018
from src import swift_project from helpers import path_helper import unittest class TestSourceKitten(unittest.TestCase): # Test with a simple project directory # (i.e. without xcodeproj) def test_source_files_simple_project(self): project_directory = path_helper.monkey_example_directory() output = swift_project.source_files(project_directory) expectation = [ project_directory + "/Banana.swift", project_directory + "/Monkey.swift" ] self.assertEqual(sorted(list(output)), sorted(expectation))
lib/exaproxy/icap/parser.py
oriolarcas/exaproxy
124
12786041
<reponame>oriolarcas/exaproxy #!/usr/bin/env python # encoding: utf-8 from .request import ICAPRequestFactory from .response import ICAPResponseFactory from .header import ICAPResponseHeaderFactory class ICAPParser (object): ICAPResponseHeaderFactory = ICAPResponseHeaderFactory ICAPRequestFactory = ICAPRequestFactory ICAPResponseFactory = ICAPResponseFactory VERSIONS = ('ICAP/1.0',) METHODS = ('REQMOD', 'OPTIONS') HEADERS = ('cache-control', 'connection', 'date', 'trailer', 'upgrade', 'via', 'authorization','allow','from','host','referer','user-agent', 'preview', 'encapsulated','proxy-authenticate','proxy-authorization', 'istag') def __init__ (self, configuration): self.configuration = configuration self.header_factory = self.ICAPResponseHeaderFactory(configuration) self.request_factory = self.ICAPRequestFactory(configuration) self.response_factory = self.ICAPResponseFactory(configuration) def parseRequestLine (self, request_line): request_parts = request_line.split() if request_line else [] if len(request_parts) == 3: method, url, version = request_parts method = method.upper() version = version.upper() else: method, url, version = None, None, None return method, url, version def parseResponseLine (self, response_line): response_parts = response_line.split(' ', 2) if response_line else [] if len(response_parts) == 3: version, code, status = response_parts if code.isdigit(): code = int(code) else: version, code, status = None, None, None else: version, code, status = None, None, None return version, code, status def readHeaders (self, request_lines): headers = {} for line in request_lines: if not line: break if ':' not in line: headers = None break key, value = line.split(':', 1) key = key.lower().strip() value = value.strip() if key in self.HEADERS or key.startswith('x-'): headers[key] = value if key == 'pragma' and ':' in value: pkey, pvalue = value.split(':', 1) pkey = pkey.lower().strip() pvalue = pvalue.strip() headers.setdefault(key, {})[pkey] = pvalue return headers def parseRequest (self, icap_string, http_string): request_lines = (p for ss in icap_string.split('\r\n') for p in ss.split('\n')) try: request_line = request_lines.next() except StopIteration: request_line = None method, url, version = self.parseRequestLine(request_line) if method in self.METHODS and version in self.VERSIONS: headers = self.readHeaders(request_lines) site_name = url.rsplit(',',1)[-1] if ',' in url else 'default' headers['x-customer-name'] = site_name else: headers = None offsets = self.getOffsets(headers) if headers is not None else [] length, complete = self.getBodyLength(offsets) if set(('res-hdr', 'res-body')).intersection(dict(offsets)): headers = None return self.request_factory.create(method, url, version, headers, icap_string, http_string, offsets, length, complete) if headers else None def getOffsets (self, headers): encapsulated_line = headers.get('encapsulated', '') parts = (p.strip() for p in encapsulated_line.split(',') if '=' in p) pairs = (p.split('=',1) for p in parts) offsets = ((k,int(v)) for (k,v) in pairs if v.isdigit()) return sorted(offsets, lambda (_,a), (__,b): 1 if a >= b else -1) def getBodyLength (self, offsets): final, offset = offsets[-1] if offsets else ('null-body', 0) return offset, final == 'null-body' def splitResponseParts (self, offsets, body_string): final, offset = offsets[-1] if offsets else (None, None) if final != 'null-body': offsets = offsets + [('null-body', len(body_string))] names = [name for name,offset in offsets] positions = [offset for name,offset in offsets] blocks = ((positions[i], positions[i+1]) for i in xrange(len(positions)-1)) strings = (body_string[start:end] for start,end in blocks) return dict(zip(names, strings)) def parseResponseHeader (self, header_string): response_lines = (p for ss in header_string.split('\r\n') for p in ss.split('\n')) try: response_line = response_lines.next() except StopIteration: response_line = None version, code, status = self.parseResponseLine(response_line) if version in self.VERSIONS: headers = self.readHeaders(response_lines) headers['server'] = 'EXA Proxy 1.0' else: headers = {} offsets = self.getOffsets(headers) if headers is not None else [] length, complete = self.getBodyLength(offsets) return self.header_factory.create(version, code, status, headers, header_string, offsets, length, complete) def continueResponse (self, response_header, body_string): version, code, status = response_header.info headers = response_header.headers header_string = response_header.header_string # split the body string into components parts = self.splitResponseParts(response_header.offsets, body_string) response_string = parts.get('res-hdr', '') request_string = parts.get('req-hdr', '') if request_string.startswith('CONNECT'): intercept_string, new_request_string = self.splitResponse(request_string) if headers.get('x-intercept', '') != 'active' and not new_request_string: intercept_string = None else: request_string = new_request_string else: intercept_string = None body_string = parts.get('res-body', None) if response_string else parts.get('req-body', None) return self.response_factory.create(version, code, status, headers, header_string, request_string, response_string, body_string, intercept_string) def splitResponse (self, response_string): for delimiter in ('\n\n', '\r\n\r\n'): if delimiter in response_string: header_string, subheader_string = response_string.split(delimiter, 1) break else: header_string, subheader_string = response_string, '' return header_string, subheader_string
applications/camera_calibration/scripts/derive_jacobians.py
lingbo-yu/camera_calibration
474
12786043
import math import sys import time from sympy import * from sympy.solvers.solveset import nonlinsolve from optimizer_builder import * # ### Math functions ### # Simple model for the fractional-part function used for bilinear interpolation # which leaves the function un-evaluated. Ignores the discontinuities when # computing the derivative. They do not matter. class frac(Function): # Returns the first derivative of the function. # A simple model for the function within the range between two discontinuities is: # f(x) = x - c, with a constant c. So f'(x) = 1. def fdiff(self, argindex=1): if argindex == 1: return S.One else: raise ArgumentIndexError(self, argindex) def UnitQuaternionRotatePoint(q, pt): t2 = q[0] * q[1] t3 = q[0] * q[2] t4 = q[0] * q[3] t5 = -q[1] * q[1] t6 = q[1] * q[2] t7 = q[1] * q[3] t8 = -q[2] * q[2] t9 = q[2] * q[3] t1 = -q[3] * q[3] return Matrix([[2 * ((t8 + t1) * pt[0] + (t6 - t4) * pt[1] + (t3 + t7) * pt[2]) + pt[0]], [2 * ((t4 + t6) * pt[0] + (t5 + t1) * pt[1] + (t9 - t2) * pt[2]) + pt[1]], [2 * ((t7 - t3) * pt[0] + (t2 + t9) * pt[1] + (t5 + t8) * pt[2]) + pt[2]]]) # Transformation is a 7-vector [quaternion, translation]. def TransformPoint(transformation, point): point_out = UnitQuaternionRotatePoint(transformation, point) point_out[0] += transformation[4]; point_out[1] += transformation[5]; point_out[2] += transformation[6]; return point_out # Both transformations are 7-vectors [quaternion, translation]. def RigTransformPoint(camera_tr_rig, rig_tr_global, global_point): point_rig = UnitQuaternionRotatePoint(rig_tr_global, global_point) point_rig[0] += rig_tr_global[4]; point_rig[1] += rig_tr_global[5]; point_rig[2] += rig_tr_global[6]; point_out = UnitQuaternionRotatePoint(camera_tr_rig, point_rig) point_out[0] += camera_tr_rig[4]; point_out[1] += camera_tr_rig[5]; point_out[2] += camera_tr_rig[6]; return point_out # 3-Vector dot product: def DotProduct3(vector1, vector2): return vector1[0] * vector2[0] + vector1[1] * vector2[1] + vector1[2] * vector2[2] def CubicHermiteSpline(p0, p1, p2, p3, x): a = (0.5) * (-p0 + (3.0) * p1 - (3.0) * p2 + p3) b = (0.5) * ((2.0) * p0 - (5.0) * p1 + (4.0) * p2 - p3) c = (0.5) * (-p0 + p2) d = p1 return d + x * (c + x * (b + x * a)) def EvalUniformCubicBSpline(a, b, c, d, x): # x must be in [3, 4[. # i == 3 x_for_d = x - 3 d_factor = 1./6. * x_for_d * x_for_d * x_for_d # i == 2 c_factor = -1./2.*x*x*x + 5*x*x - 16*x + 50./3. # i == 1 b_factor = 1./2.*x*x*x - 11./2.*x*x + (39./2.)*x - 131./6. # i == 0 a_factor = -1./6. * (x - 4) * (x - 4) * (x - 4) return a_factor * a + b_factor * b + c_factor * c + d_factor * d def NoncentralGenericBicubicModelUnprojection( l00, l01, l02, l03, l10, l11, l12, l13, l20, l21, l22, l23, l30, l31, l32, l33, #camera_intrinsics frac_x, frac_y): f0 = CubicHermiteSpline(l00, l01, l02, l03, frac_x) f1 = CubicHermiteSpline(l10, l11, l12, l13, frac_x) f2 = CubicHermiteSpline(l20, l21, l22, l23, frac_x) f3 = CubicHermiteSpline(l30, l31, l32, l33, frac_x) unprojection = CubicHermiteSpline(f0, f1, f2, f3, frac_y); direction = Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) direction = direction.normalized() return Matrix([[direction[0]], [direction[1]], [direction[2]], [unprojection[3]], [unprojection[4]], [unprojection[5]]]) def NoncentralGenericBSplineModelUnprojection( l00, l01, l02, l03, l10, l11, l12, l13, l20, l21, l22, l23, l30, l31, l32, l33, #camera_intrinsics frac_x, frac_y): f0 = EvalUniformCubicBSpline(l00, l01, l02, l03, frac_x) f1 = EvalUniformCubicBSpline(l10, l11, l12, l13, frac_x) f2 = EvalUniformCubicBSpline(l20, l21, l22, l23, frac_x) f3 = EvalUniformCubicBSpline(l30, l31, l32, l33, frac_x) unprojection = EvalUniformCubicBSpline(f0, f1, f2, f3, frac_y); direction = Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) direction = direction.normalized() return Matrix([[direction[0]], [direction[1]], [direction[2]], [unprojection[3]], [unprojection[4]], [unprojection[5]]]) def CentralGenericBicubicModelUnprojection( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, #camera_intrinsics frac_x, frac_y): f0 = CubicHermiteSpline(p00, p01, p02, p03, frac_x) f1 = CubicHermiteSpline(p10, p11, p12, p13, frac_x) f2 = CubicHermiteSpline(p20, p21, p22, p23, frac_x) f3 = CubicHermiteSpline(p30, p31, p32, p33, frac_x) unprojection = CubicHermiteSpline(f0, f1, f2, f3, frac_y); unprojection = unprojection.normalized() return Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) def CentralGenericBicubicModelFittingProblemError( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, #camera_intrinsics frac_x, frac_y, measurement_x, measurement_y, measurement_z): # Interpolation data points: # col # p00 p01 p02 p03 # row p10 p11 p12 p13 # p20 p21 p22 p23 # p30 p31 p32 p33 f0 = CubicHermiteSpline(p00, p01, p02, p03, frac_x) f1 = CubicHermiteSpline(p10, p11, p12, p13, frac_x) f2 = CubicHermiteSpline(p20, p21, p22, p23, frac_x) f3 = CubicHermiteSpline(p30, p31, p32, p33, frac_x) unprojection = CubicHermiteSpline(f0, f1, f2, f3, frac_y); unprojection = unprojection.normalized() return Matrix([[unprojection[0] - measurement_x], [unprojection[1] - measurement_y], [unprojection[2] - measurement_z]]) def CentralGenericBSplineModelUnprojection( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, #camera_intrinsics frac_x, frac_y): a = EvalUniformCubicBSpline(p00, p01, p02, p03, frac_x) b = EvalUniformCubicBSpline(p10, p11, p12, p13, frac_x) c = EvalUniformCubicBSpline(p20, p21, p22, p23, frac_x) d = EvalUniformCubicBSpline(p30, p31, p32, p33, frac_x) unprojection = EvalUniformCubicBSpline(a, b, c, d, frac_y) unprojection = unprojection.normalized() return Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) def CentralGenericBSplineModelFittingProblemError( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, #camera_intrinsics frac_x, frac_y, measurement_x, measurement_y, measurement_z): a = EvalUniformCubicBSpline(p00, p01, p02, p03, frac_x) b = EvalUniformCubicBSpline(p10, p11, p12, p13, frac_x) c = EvalUniformCubicBSpline(p20, p21, p22, p23, frac_x) d = EvalUniformCubicBSpline(p30, p31, p32, p33, frac_x) unprojection = EvalUniformCubicBSpline(a, b, c, d, frac_y) unprojection = unprojection.normalized() return Matrix([[unprojection[0] - measurement_x], [unprojection[1] - measurement_y], [unprojection[2] - measurement_z]]) def CentralGenericBilinearModelUnprojection( p00, p01, p10, p11, #camera_intrinsics frac_x, frac_y): unprojection = ((1 - frac_x) * (1 - frac_y) * p00 + ( frac_x) * (1 - frac_y) * p01 + (1 - frac_x) * ( frac_y) * p10 + ( frac_x) * ( frac_y) * p11) unprojection = unprojection.normalized() return Matrix([[unprojection[0]], [unprojection[1]], [unprojection[2]]]) def CentralGenericBilinearModelFittingProblemError( p00, p01, p10, p11, #camera_intrinsics frac_x, frac_y, measurement_x, measurement_y, measurement_z): unprojection = ((1 - frac_x) * (1 - frac_y) * p00 + ( frac_x) * (1 - frac_y) * p01 + (1 - frac_x) * ( frac_y) * p10 + ( frac_x) * ( frac_y) * p11) unprojection = unprojection.normalized() return Matrix([[unprojection[0] - measurement_x], [unprojection[1] - measurement_y], [unprojection[2] - measurement_z]]) def ConvertDirectionToLocalUpdate(base_direction, target_direction, tangent1, tangent2): factor = 1 / DotProduct3(base_direction, target_direction) offset = (factor * target_direction) - base_direction return Matrix([[DotProduct3(tangent1, offset)], [DotProduct3(tangent2, offset)]]) # For quaternion layout: (w, x, y, z). def QuaternionMultiplication(z, w): return Matrix([[z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3]], [z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2]], [z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1]], [z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0]]]) # For quaternion layout: (w, x, y, z). def QuaternionLocalUpdate(delta, q): norm_delta = sqrt(delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]) sin_delta_by_delta = sin(norm_delta) / norm_delta delta_q = Matrix([[cos(norm_delta)], [sin_delta_by_delta * delta[0]], [sin_delta_by_delta * delta[1]], [sin_delta_by_delta * delta[2]]]) return QuaternionMultiplication(delta_q, q) def ComputeTangentsForLine_ForSmallAbsX(direction): other_vector = Matrix([[1], [0], [0]]) t1 = direction.cross(other_vector).normalized() t2 = direction.cross(t1) return t1.col_join(t2) def ComputeTangentsForLine_ForLargeAbsX(direction): other_vector = Matrix([[0], [1], [0]]) t1 = direction.cross(other_vector).normalized() t2 = direction.cross(t1) return t1.col_join(t2) def DirectionBorderRegularization(outer, inner1, inner2): proj = inner1.dot(inner2) * inner1; mirror = proj + (proj - inner2); return mirror - outer def CentralThinPrismFisheyeProjection( px, py, pz, fx, fy, cx, cy, k1, k2, k3, k4, p1, p2, sx1, sy1, fisheye_case): nx = px / pz ny = py / pz r = sqrt(nx * nx + ny * ny) if fisheye_case: theta_by_r = atan(r) / r fisheye_x = theta_by_r * nx fisheye_y = theta_by_r * ny else: fisheye_x = nx fisheye_y = ny x2 = fisheye_x * fisheye_x xy = fisheye_x * fisheye_y y2 = fisheye_y * fisheye_y r2 = x2 + y2 r4 = r2 * r2 r6 = r4 * r2 r8 = r6 * r2 radial = k1 * r2 + k2 * r4 + k3 * r6 + k4 * r8 dx = 2 * p1 * xy + p2 * (r2 + 2 * x2) + sx1 * r2 dy = 2 * p2 * xy + p1 * (r2 + 2 * y2) + sy1 * r2 distorted_x = fisheye_x + radial * fisheye_x + dx distorted_y = fisheye_y + radial * fisheye_y + dy return Matrix([[fx * distorted_x + cx], [fy * distorted_y + cy]]) def CentralOpenCVProjection( px, py, pz, fx, fy, cx, cy, k1, k2, k3, k4, k5, k6, p1, p2): nx = px / pz ny = py / pz x2 = nx * nx xy = nx * ny y2 = ny * ny r2 = x2 + y2 r4 = r2 * r2 r6 = r4 * r2 radial = (1 + k1 * r2 + k2 * r4 + k3 * r6) / (1 + k4 * r2 + k5 * r4 + k6 * r6) dx = 2 * p1 * xy + p2 * (r2 + 2 * x2) dy = 2 * p2 * xy + p1 * (r2 + 2 * y2) distorted_x = nx * radial + dx distorted_y = ny * radial + dy return Matrix([[fx * distorted_x + cx], [fy * distorted_y + cy]]) def CentralRadialProjection( spline_resolution, spline_param0, spline_param1, spline_param2, spline_param3, fx, fy, cx, cy, p1, p2, sx1, sy1, lx, ly, lz): local_point = Matrix([[lx], [ly], [lz]]) # Radial part original_angle = acos(local_point.normalized()[2]); pos_in_spline = 1. + (spline_resolution - 3.) / (math.pi / 2) * original_angle; # chunk = std::max(1, std::min(spline_resolution() - 3, static_cast<int>(pos_in_spline))); fraction = frac(pos_in_spline) # - chunk; radial_factor = EvalUniformCubicBSpline( spline_param0, spline_param1, spline_param2, spline_param3, fraction + 3.); # Parametric part nx = lx / lz ny = ly / lz x2 = nx * nx xy = nx * ny y2 = ny * ny r2 = x2 + y2 dx = 2 * p1 * xy + p2 * (r2 + 2 * x2) + sx1 * r2 dy = 2 * p2 * xy + p1 * (r2 + 2 * y2) + sy1 * r2 distorted_x = nx + radial_factor * nx + dx distorted_y = ny + radial_factor * ny + dy return Matrix([[fx * distorted_x + cx], [fy * distorted_y + cy]]) if __name__ == '__main__': p00 = Matrix(3, 1, lambda i,j:Symbol('p00_%d' % (i), real=True)) p01 = Matrix(3, 1, lambda i,j:Symbol('p01_%d' % (i), real=True)) p02 = Matrix(3, 1, lambda i,j:Symbol('p02_%d' % (i), real=True)) p03 = Matrix(3, 1, lambda i,j:Symbol('p03_%d' % (i), real=True)) p10 = Matrix(3, 1, lambda i,j:Symbol('p10_%d' % (i), real=True)) p11 = Matrix(3, 1, lambda i,j:Symbol('p11_%d' % (i), real=True)) p12 = Matrix(3, 1, lambda i,j:Symbol('p12_%d' % (i), real=True)) p13 = Matrix(3, 1, lambda i,j:Symbol('p13_%d' % (i), real=True)) p20 = Matrix(3, 1, lambda i,j:Symbol('p20_%d' % (i), real=True)) p21 = Matrix(3, 1, lambda i,j:Symbol('p21_%d' % (i), real=True)) p22 = Matrix(3, 1, lambda i,j:Symbol('p22_%d' % (i), real=True)) p23 = Matrix(3, 1, lambda i,j:Symbol('p23_%d' % (i), real=True)) p30 = Matrix(3, 1, lambda i,j:Symbol('p30_%d' % (i), real=True)) p31 = Matrix(3, 1, lambda i,j:Symbol('p31_%d' % (i), real=True)) p32 = Matrix(3, 1, lambda i,j:Symbol('p32_%d' % (i), real=True)) p33 = Matrix(3, 1, lambda i,j:Symbol('p33_%d' % (i), real=True)) l00 = Matrix(6, 1, lambda i,j:Symbol('l00_%d' % (i), real=True)) l01 = Matrix(6, 1, lambda i,j:Symbol('l01_%d' % (i), real=True)) l02 = Matrix(6, 1, lambda i,j:Symbol('l02_%d' % (i), real=True)) l03 = Matrix(6, 1, lambda i,j:Symbol('l03_%d' % (i), real=True)) l10 = Matrix(6, 1, lambda i,j:Symbol('l10_%d' % (i), real=True)) l11 = Matrix(6, 1, lambda i,j:Symbol('l11_%d' % (i), real=True)) l12 = Matrix(6, 1, lambda i,j:Symbol('l12_%d' % (i), real=True)) l13 = Matrix(6, 1, lambda i,j:Symbol('l13_%d' % (i), real=True)) l20 = Matrix(6, 1, lambda i,j:Symbol('l20_%d' % (i), real=True)) l21 = Matrix(6, 1, lambda i,j:Symbol('l21_%d' % (i), real=True)) l22 = Matrix(6, 1, lambda i,j:Symbol('l22_%d' % (i), real=True)) l23 = Matrix(6, 1, lambda i,j:Symbol('l23_%d' % (i), real=True)) l30 = Matrix(6, 1, lambda i,j:Symbol('l30_%d' % (i), real=True)) l31 = Matrix(6, 1, lambda i,j:Symbol('l31_%d' % (i), real=True)) l32 = Matrix(6, 1, lambda i,j:Symbol('l32_%d' % (i), real=True)) l33 = Matrix(6, 1, lambda i,j:Symbol('l33_%d' % (i), real=True)) frac_x = Symbol("frac_x", real=True) frac_y = Symbol("frac_y", real=True) measurement_x = Symbol("measurement_x", real=True) measurement_y = Symbol("measurement_y", real=True) measurement_z = Symbol("measurement_z", real=True) # For pose and geometry optimization: # Local point Jacobian wrt. image_tr_global, pattern_point image_tr_global = Matrix(7, 1, lambda i,j:Symbol('itg_%d' % (i), real=True)) pattern_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = image_tr_global.col_join(pattern_point) functions = [lambda variables : TransformPoint(variables.extract([0, 1, 2, 3, 4, 5, 6], [0]), variables.extract([7, 8, 9], [0]))] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=True, simplify_residual=False) # For rig pose and geometry optimization: # Local point Jacobian wrt. camera_tr_rig, rig_tr_global, pattern_point camera_tr_rig = Matrix(7, 1, lambda i,j:Symbol('ctr_%d' % (i), real=True)) rig_tr_global = Matrix(7, 1, lambda i,j:Symbol('rtg_%d' % (i), real=True)) pattern_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = rig_tr_global.col_join(camera_tr_rig).col_join(pattern_point) functions = [lambda variables : RigTransformPoint( variables.extract([7, 8, 9, 10, 11, 12, 13], [0]), variables.extract([0, 1, 2, 3, 4, 5, 6], [0]), variables.extract([14, 15, 16], [0]))] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=True, simplify_residual=False) # Tangents Jacobian wrt. direction: direction = Matrix(3, 1, lambda i,j:Symbol('dir_%d' % (i), real=True)) OptimizerBuilder([lambda variables : ComputeTangentsForLine_ForSmallAbsX(variables)], direction, direction, simplify_function_jacobian=[True], simplify_jacobian=True, simplify_residual=True) OptimizerBuilder([lambda variables : ComputeTangentsForLine_ForLargeAbsX(variables)], direction, direction, simplify_function_jacobian=[True], simplify_jacobian=True, simplify_residual=True) # Jacobian for CentralGenericBilinear unprojection wrt. pixel x, y # (CentralGenericBilinear_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : CentralGenericBilinearModelUnprojection( p00, p01, p10, p11, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # CentralGenericBilinearDirectionCostFunction_ComputeResidualAndJacobian(): # Residual: grid.InterpolateBilinearVector(model->PixelCornerConvToGridPoint(x + 0.5f, y + 0.5f)) - measurement # Variables are p00 .. p33 parameters = p00.col_join( p01.col_join( p10.col_join( p11))) functions = [lambda variables : CentralGenericBilinearModelFittingProblemError( variables.extract([0, 1, 2], [0]), variables.extract([3, 4, 5], [0]), variables.extract([6, 7, 8], [0]), variables.extract([9, 10, 11], [0]), frac_x, frac_y, measurement_x, measurement_y, measurement_z)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # CentralGenericBSplineDirectionCostFunction_ComputeResidualAndJacobian(): # Residual: grid.InterpolateBSplineVector(model->PixelCornerConvToGridPoint(x + 0.5f, y + 0.5f)) - measurement # Variables are p00 .. p33 parameters = p00.col_join( p01.col_join( p02.col_join( p03.col_join( p10.col_join( p11.col_join( p12.col_join( p13.col_join( p20.col_join( p21.col_join( p22.col_join( p23.col_join( p30.col_join( p31.col_join( p32.col_join( p33))))))))))))))) functions = [lambda variables : CentralGenericBSplineModelFittingProblemError( variables.extract([0, 1, 2], [0]), variables.extract([3, 4, 5], [0]), variables.extract([6, 7, 8], [0]), variables.extract([9, 10, 11], [0]), variables.extract([12, 13, 14], [0]), variables.extract([15, 16, 17], [0]), variables.extract([18, 19, 20], [0]), variables.extract([21, 22, 23], [0]), variables.extract([24, 25, 26], [0]), variables.extract([27, 28, 29], [0]), variables.extract([30, 31, 32], [0]), variables.extract([33, 34, 35], [0]), variables.extract([36, 37, 38], [0]), variables.extract([39, 40, 41], [0]), variables.extract([42, 43, 44], [0]), variables.extract([45, 46, 47], [0]), frac_x, frac_y, measurement_x, measurement_y, measurement_z)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for CentralGenericBSpline unprojection wrt. pixel x, y # (CentralGenericBSpline_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : CentralGenericBSplineModelUnprojection( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for direction grid border regularization: outer = Matrix(3, 1, lambda i,j:Symbol('o_%d' % (i), real=True)) inner1 = Matrix(3, 1, lambda i,j:Symbol('i1_%d' % (i), real=True)) inner2 = Matrix(3, 1, lambda i,j:Symbol('i2_%d' % (i), real=True)) parameters = outer.col_join(inner1.col_join(inner2)) OptimizerBuilder([lambda variables : DirectionBorderRegularization( variables.extract([0, 1, 2], [0]), variables.extract([3, 4, 5], [0]), variables.extract([6, 7, 8], [0]))], parameters, parameters, simplify_function_jacobian=[True], simplify_jacobian=True, simplify_residual=True) # Derive Jacobian of local update to quaternions (as in ceres) # TODO: This only works if replacing subs() by limit() in optimizer_builder's # ComputeValueAndJacobian(). However, it seems that this gave wrong results in other cases ... q = Matrix(4, 1, lambda i,j:Symbol('q_%d' % (i), real=True)) delta_q = Matrix(3, 1, lambda i,j:Symbol('dq_%d' % (i), real=True)) OptimizerBuilder([lambda variables : QuaternionLocalUpdate(variables, q)], delta_q, Matrix([[0], [0], [0]]), simplify_function_jacobian=[True], simplify_jacobian=True, simplify_residual=True) # Derivation of LocalUpdateJacobianWrtDirection(): target_direction = Matrix(3, 1, lambda i,j:Symbol('t_%d' % (i), real=True)) base_direction = Matrix(3, 1, lambda i,j:Symbol('d_%d' % (i), real=True)) tangent1 = Matrix(3, 1, lambda i,j:Symbol('t1_%d' % (i), real=True)) tangent2 = Matrix(3, 1, lambda i,j:Symbol('t2_%d' % (i), real=True)) parameters = target_direction parameter_values = base_direction # Taking Jacobian at base_direction functions = [lambda target_dir : ConvertDirectionToLocalUpdate(base_direction, target_dir, tangent1, tangent2)] OptimizerBuilder(functions, parameters, parameter_values, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for NoncentralGenericBicubic unprojection wrt. pixel x, y # (NoncentralGenericBicubic_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : NoncentralGenericBicubicModelUnprojection( l00, l01, l02, l03, l10, l11, l12, l13, l20, l21, l22, l23, l30, l31, l32, l33, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for CentralGenericBicubic unprojection wrt. pixel x, y # (CentralGenericBicubic_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : CentralGenericBicubicModelUnprojection( p00, p01, p02, p03, p10, p11, p12, p13, p20, p21, p22, p23, p30, p31, p32, p33, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # CentralGenericBicubicDirectionCostFunction_ComputeResidualAndJacobian(): # Residual: grid.InterpolateBicubicVector(model->PixelCornerConvToGridPoint(x + 0.5f, y + 0.5f)) - measurement # Variables are p00 .. p33 parameters = p00.col_join( p01.col_join( p02.col_join( p03.col_join( p10.col_join( p11.col_join( p12.col_join( p13.col_join( p20.col_join( p21.col_join( p22.col_join( p23.col_join( p30.col_join( p31.col_join( p32.col_join( p33))))))))))))))) functions = [lambda variables : CentralGenericBicubicModelFittingProblemError( variables.extract([0, 1, 2], [0]), variables.extract([3, 4, 5], [0]), variables.extract([6, 7, 8], [0]), variables.extract([9, 10, 11], [0]), variables.extract([12, 13, 14], [0]), variables.extract([15, 16, 17], [0]), variables.extract([18, 19, 20], [0]), variables.extract([21, 22, 23], [0]), variables.extract([24, 25, 26], [0]), variables.extract([27, 28, 29], [0]), variables.extract([30, 31, 32], [0]), variables.extract([33, 34, 35], [0]), variables.extract([36, 37, 38], [0]), variables.extract([39, 40, 41], [0]), variables.extract([42, 43, 44], [0]), variables.extract([45, 46, 47], [0]), frac_x, frac_y, measurement_x, measurement_y, measurement_z)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for NoncentralGenericBSpline unprojection wrt. pixel x, y # (NoncentralGenericBicubic_UnprojectFromPixelCornerConv_ComputeResidualAndJacobian()): parameters = Matrix([[frac_x], [frac_y]]) functions = [lambda variables : NoncentralGenericBSplineModelUnprojection( l00, l01, l02, l03, l10, l11, l12, l13, l20, l21, l22, l23, l30, l31, l32, l33, variables[0], variables[1])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for CentralThinPrismFisheyeModel::ProjectPointToPixelCornerConv() wrt. the 12 camera model parameters. fx = Symbol("fx", real=True) fy = Symbol("fy", real=True) cx = Symbol("cx", real=True) cy = Symbol("cy", real=True) k1 = Symbol("k1", real=True) k2 = Symbol("k2", real=True) k3 = Symbol("k3", real=True) k4 = Symbol("k4", real=True) p1 = Symbol("p1", real=True) p2 = Symbol("p2", real=True) sx1 = Symbol("sx1", real=True) sy1 = Symbol("sy1", real=True) local_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = Matrix([[fx], [fy], [cx], [cy], [k1], [k2], [k3], [k4], [p1], [p2], [sx1], [sy1]]) print('Fisheye case:') functions = [lambda variables : CentralThinPrismFisheyeProjection( local_point[0], local_point[1], local_point[2], variables[0], variables[1], variables[2], variables[3], variables[4], variables[5], variables[6], variables[7], variables[8], variables[9], variables[10], variables[11], True)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) print('Non-fisheye case:') functions = [lambda variables : CentralThinPrismFisheyeProjection( local_point[0], local_point[1], local_point[2], variables[0], variables[1], variables[2], variables[3], variables[4], variables[5], variables[6], variables[7], variables[8], variables[9], variables[10], variables[11], False)] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian for CentralOpenCVModel::ProjectPointToPixelCornerConv() wrt. the 12 camera model parameters. fx = Symbol("fx", real=True) fy = Symbol("fy", real=True) cx = Symbol("cx", real=True) cy = Symbol("cy", real=True) k1 = Symbol("k1", real=True) k2 = Symbol("k2", real=True) k3 = Symbol("k3", real=True) k4 = Symbol("k4", real=True) k5 = Symbol("k5", real=True) k6 = Symbol("k6", real=True) p1 = Symbol("p1", real=True) p2 = Symbol("p2", real=True) local_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = Matrix([[fx], [fy], [cx], [cy], [k1], [k2], [k3], [k4], [k5], [k6], [p1], [p2]]) functions = [lambda variables : CentralOpenCVProjection( local_point[0], local_point[1], local_point[2], variables[0], variables[1], variables[2], variables[3], variables[4], variables[5], variables[6], variables[7], variables[8], variables[9], variables[10], variables[11])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian of CentralRadialModel::Project() wrt. the local point. fx = Symbol("fx", real=True) fy = Symbol("fy", real=True) cx = Symbol("cx", real=True) cy = Symbol("cy", real=True) p1 = Symbol("p1", real=True) p2 = Symbol("p2", real=True) sx1 = Symbol("sx1", real=True) sy1 = Symbol("sy1", real=True) spline_resolution = Symbol("spline_resolution", real=True) spline_param0 = Symbol("spline_param0", real=True) spline_param1 = Symbol("spline_param1", real=True) spline_param2 = Symbol("spline_param2", real=True) spline_param3 = Symbol("spline_param3", real=True) local_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = Matrix([[local_point[0]], [local_point[1]], [local_point[2]]]) functions = [lambda variables : CentralRadialProjection( spline_resolution, spline_param0, spline_param1, spline_param2, spline_param3, fx, fy, cx, cy, p1, p2, sx1, sy1, variables[0], variables[1], variables[2])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False) # Jacobian of CentralRadialModel::Project() wrt. the camera model parameters. fx = Symbol("fx", real=True) fy = Symbol("fy", real=True) cx = Symbol("cx", real=True) cy = Symbol("cy", real=True) p1 = Symbol("p1", real=True) p2 = Symbol("p2", real=True) sx1 = Symbol("sx1", real=True) sy1 = Symbol("sy1", real=True) spline_resolution = Symbol("spline_resolution", real=True) spline_param0 = Symbol("spline_param0", real=True) spline_param1 = Symbol("spline_param1", real=True) spline_param2 = Symbol("spline_param2", real=True) spline_param3 = Symbol("spline_param3", real=True) local_point = Matrix(3, 1, lambda i,j:Symbol('p_%d' % (i), real=True)) parameters = Matrix([[fx], [fy], [cx], [cy], [p1], [p2], [sx1], [sy1], [spline_param0], [spline_param1], [spline_param2], [spline_param3]]) functions = [lambda variables : CentralRadialProjection( spline_resolution, variables[8], variables[9], variables[10], variables[11], variables[0], variables[1], variables[2], variables[3], variables[4], variables[5], variables[6], variables[7], local_point[0], local_point[1], local_point[2])] OptimizerBuilder(functions, parameters, parameters, simplify_function_jacobian=[False], simplify_jacobian=False, simplify_residual=False)
benchmarks/pydy_pendulum.py
Midnighter/symengine.py
133
12786053
<gh_stars>100-1000 import os import time import sys sys.path = ["../sympy", "../pydy", "../symengine.py"] + sys.path import sympy import symengine import pydy from sympy.physics.mechanics.models import n_link_pendulum_on_cart print(sympy.__file__) print(symengine.__file__) print(pydy.__file__) if (len(sys.argv) > 1): n = int(sys.argv[1]) else: n = 4 start = time.time() sys = n_link_pendulum_on_cart(n, cart_force=False) end = time.time() print("%s s" % (end-start)) #print(sys.eom_method.mass_matrix)
fssim_rqt_plugins/rqt_fssim_track_editor/src/rqt_fssim_track_editor/cone_editor.py
AhmedOsamaAgha/fssim
200
12786063
# AMZ-Driverless # Copyright (c) 2018 Authors: # - <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import scipy.io as sio from qt_gui.plugin import Plugin from PyQt5.QtWidgets import QWidget, QGraphicsScene, QGraphicsView, QGraphicsLineItem from PyQt5 import QtGui, QtCore from PyQt5.QtGui import QColor, QPen, QBrush from PyQt5.QtCore import * from track import * from snapshot_handler import * class TrackViewScene(QGraphicsScene): cur_scale = 1.0 _px_per_m = 10 enable_editing = False def __init__(self, context, cone_view): super(TrackViewScene, self).__init__() self._context = context self.cone_view = cone_view # type: QGraphicsView self._map_height = cone_view.frameGeometry().height() self._map_width = cone_view.frameGeometry().width() self._landmarks = [] self._car_diameter = 5.0 self._cone_diameter = self.m_to_px(0.5) self.cone_view.setDragMode(1) self._mode = Mode.DRAW self._grid_alpha = 255 self._grid_m = 5 self._draw_grid(self._grid_alpha, self._grid_m) self.mousePressEvent = self.on_mouse_down # self.mouseMoveEvent = self.on_mouse_move self.track = Track() self.snapshots = SnapshotHandler() self.model_path = "" self.tracks_path = "" self.draw_rect([0, 0], 0.5, 0.5) def set_cone_diameter(self, size): self._cone_diameter = self.m_to_px(size) def interpolate(self, circular = True): self.track.interpolate(circular) self.update_all() def generate_skipdpad(self, widget): self.track.generate_skidpad(widget) self.update_all() def generate_acceleration(self, widget): self.track.generate_acceleration(widget) self.update_all() def draw_entire_track(self): self.draw_track(self.track.middle) self.draw_cones(self.track.cones_right, self.track.get_color(Type.RIGHT)) self.draw_cones(self.track.cones_orange, self.track.get_color(Type.ORANGE)) self.draw_cones(self.track.cones_left, self.track.get_color(Type.LEFT)) self.draw_big_cones(self.track.cones_orange_big, self.track.get_color(Type.ORANGE)) self.draw_tk_device(self.track.tk_device) self.draw_cones(self.track.cones, self.track.get_color(Type.UNKNOWN)) self.draw_lines(self.track.control_points) self.draw_axes(self.track.starting_pose_front_wing) def draw_snapshot(self): self.clear() self.update_grid(self._grid_alpha, self._grid_m) self.draw_cones(self.snapshots.cones) def draw_snapshot_i(self, i): self.snapshots.load_snap_from_list(i) self.draw_snapshot() def change_enabled(self, enabled): if enabled: self.enable_editing = True self.cone_view.setDragMode(0) else: self.enable_editing = False self.cone_view.setDragMode(1) def update_grid(self, alpha=20, grid_size=5, draw_track=True): self._map_height = self.cone_view.frameGeometry().height() self._map_width = self.cone_view.frameGeometry().width() self.clear() self._draw_grid(alpha, grid_size) if draw_track: self.draw_entire_track() def update_all(self): self.clear() self.update_grid(self._grid_alpha, self._grid_m) self.draw_entire_track() def show_event(self, event): self.cone_view.fitInView(self.sceneRect(), Qt.KeepAspectRatio) def change_view(self, i): if i == 2: self.draw_snapshot() elif i == 0: self.update_all() def add_land_mark(self, x, y): pen = QPen(QColor(100, 200, 0), 0.5, Qt.SolidLine, Qt.RoundCap) def clearTrack(self): self.track.clear() self.update_grid(self._grid_alpha, self._grid_m, False) ##################################### ## GETTERS & SETTERS ##################################### def set_px_per_m(self, val): self._px_per_m = val def set_mode(self, mode): self._mode = mode def set_cone_add_side(self, side): self._side = side ##################################### ## EVENT HANDLERS ##################################### def wheelEvent(self, event): if event.delta() > 0: factor = 1.2 if self.cur_scale < 100: self.cur_scale = self.cur_scale * factor else: factor = 0.8 if self.cur_scale > 0.1: self.cur_scale = self.cur_scale * factor if self.cur_scale > 0.1 and self.cur_scale < 10: self.cone_view.scale(factor, factor) self.update_grid(self._grid_alpha, self._grid_m) def on_mousewheel(self, event): pass def handle_btn_export(self, name, yaml, mat): path = self.tracks_path + "/" + name if yaml: self.track.export_to_yaml(self.tracks_path, name) if mat: self.track.export_to_mat(self.tracks_path, name) self.export_model(path, name) def export_model(self, path, name): root = etree.Element("model") etree.SubElement(root, "name").text = "track" etree.SubElement(root, "version").text = "1.0" etree.SubElement(root, "sdf", version="1.4").text = name + ".sdf" etree.SubElement(root, "description").text = "random track" tree = etree.ElementTree(root) tree.write(self.model_path + "/track/model.config", pretty_print=True, xml_declaration=True, encoding='UTF-8') root = etree.Element("sdf", version="1.4") model = etree.SubElement(root, "model", name="some track") for i in range(0, self.track.get_size(Type.RIGHT)): include = etree.SubElement(model, "include") etree.SubElement(include, "uri").text = "model://fssim_gazebo/models/cone_blue" etree.SubElement(include, "pose").text = self.track.get_cone_pos(Type.RIGHT, i) etree.SubElement(include, "name").text = "cone_right" for i in range(0, self.track.get_size(Type.LEFT)): include = etree.SubElement(model, "include") etree.SubElement(include, "uri").text = "model://fssim_gazebo/models/cone_yellow" etree.SubElement(include, "pose").text = self.track.get_cone_pos(Type.LEFT, i) etree.SubElement(include, "name").text = "cone_left" for i in range(0, self.track.get_size(Type.ORANGE)): include = etree.SubElement(model, "include") etree.SubElement(include, "uri").text = "model://fssim_gazebo/models/cone_orange" etree.SubElement(include, "pose").text = self.track.get_cone_pos(Type.ORANGE, i) etree.SubElement(include, "name").text = "cone_orange" for i in range(0, self.track.get_size(Type.ORANGE_BIG)): include = etree.SubElement(model, "include") etree.SubElement(include, "uri").text = "model://fssim_gazebo/models/cone_orange_big" etree.SubElement(include, "pose").text = self.track.get_cone_pos(Type.ORANGE_BIG, i) etree.SubElement(include, "name").text = "cone_orange_big" for i in range(0, self.track.get_size(Type.TK_DEVICE)): include = etree.SubElement(model, "include") etree.SubElement(include, "uri").text = "model://fssim_gazebo/models/time_keeping" etree.SubElement(include, "pose").text = self.track.get_cone_pos(Type.TK_DEVICE, i) etree.SubElement(include, "name").text = "tk_device_" + str(i) tree = etree.ElementTree(root) gazebo_models = self.model_path + "/track/" + name tree.write(gazebo_models + ".sdf", pretty_print=True, xml_declaration=True, encoding='UTF-8') self.track.export_to_yaml(self.model_path + "/track/tracks_yaml", name,create_dir=False) print "[INFO] Saving track to: ",gazebo_models + ".sdf" def handle_btn_import(self, path,outside,inside,center): if path.endswith('.bag'): self.track.load_track_from_bag(path,outside,inside,center) self.update_all() else: print "[ERROR] Wrong file extension. Only ROSBAG supported" def on_mouse_up(self, event): pass def on_mouse_move(self, event): print event def on_mouse_down(self, event): if not self.enable_editing: return scene_point = event.scenePos() point = np.array([(scene_point.x()), (scene_point.y())]) point = self.get_m_from_px(point) if self._mode == Mode.DRAW: if self.track.add_point_on_middle_line(point): point_from = (self.track.get_control_point(-2)) point_to = (self.track.get_control_point(-1)) self.draw_line(point_from, point_to) self.draw_rect(point_to, 0.5, 0.5) elif self._mode == Mode.EDIT and self.track.computed_cones: if self._side == Type.RIGHT: self.track.cones_right = np.vstack([self.track.cones_right, point]) elif self._side == Type.LEFT: self.track.cones_left = np.vstack([self.track.cones_left, point]) self.update_all() elif self._mode == Mode.ERASE: counter = 0 dist_min = 100.0 index = 0 for p in self.track.cones_left: dist = np.linalg.norm(p - point) if dist < dist_min: dist_min = dist index = counter counter = counter + 1 if dist_min < 0.5: self.track.cones_left = np.delete(self.track.cones_left, index, 0) counter = 0 dist_min = 100.0 index = 0 for p in self.track.cones_right: dist = np.linalg.norm(p - point) if dist < dist_min: dist_min = dist index = counter counter = counter + 1 if dist_min < 0.5: self.track.cones_right = np.delete(self.track.cones_right, index, 0) self.update_all() ##################################### ## DRAWING FUNCTIONS ##################################### def _draw_axes(self): pos_from = self.get_px_pos_from_m([0, 0]) pos_to = self.get_px_pos_from_m([5, 0]) grid_lines = QPen(QColor(255, 0, 0)) grid_lines.setWidth(5) self.addLine(pos_from[0], pos_from[1], pos_to[0], pos_to[1], grid_lines) pos_to = self.get_px_pos_from_m([0, 5]) grid_lines = QPen(QColor(0, 0, 255)) grid_lines.setWidth(5) self.addLine(pos_from[0], pos_from[1], pos_to[0], pos_to[1], grid_lines) def draw_axes(self, pos): heading = pos[2] x = pos[0] y = pos[1] length = 2.5 xy = [x,y] xy_to = [x + length * np.cos(heading), y + length * np.sin(heading)] pos_from = self.get_px_pos_from_m(xy) pos_to = self.get_px_pos_from_m(xy_to) self.addLine(pos_from[0], pos_from[1], pos_to[0], pos_to[1], QPen(QColor(255, 0, 0))) heading = heading + np.pi / 2.0 xy_to = [x + length * np.cos(heading), y + length * np.sin(heading)] pos_from = self.get_px_pos_from_m(xy) pos_to = self.get_px_pos_from_m(xy_to) self.addLine(pos_from[0], pos_from[1], pos_to[0], pos_to[1], QPen(QColor(0, 0, 255))) def _draw_grid(self, alpha, grid_size): self._grid_alpha = alpha self._grid_m = grid_size self._draw_axes() max_x = 200 max_y = 200 grid_lines = QPen(QColor(105, 105, 105, alpha)) for x in range(0, max_x, grid_size): pos_from = self.get_px_pos_from_m([x, -max_y]) pos_to = self.get_px_pos_from_m([x, max_y]) self.addLine(pos_from[0], pos_from[1], pos_to[0], pos_to[1], grid_lines) pos_from = self.get_px_pos_from_m([max_x, x]) pos_to = self.get_px_pos_from_m([-max_x, x]) self.addLine(pos_from[0], pos_from[1], pos_to[0], pos_to[1], grid_lines) pos_from = self.get_px_pos_from_m([-x, -max_y]) pos_to = self.get_px_pos_from_m([-x, max_y]) self.addLine(pos_from[0], pos_from[1], pos_to[0], pos_to[1], grid_lines) pos_from = self.get_px_pos_from_m([max_x, -x]) pos_to = self.get_px_pos_from_m([-max_x, -x]) self.addLine(pos_from[0], pos_from[1], pos_to[0], pos_to[1], grid_lines) def _draw_cone(self, x, y, diameter=10, color=QColor(100, 200, 0)): point = self.get_px_pos_from_m([x, y]) cone_pen = QPen(color, 2, Qt.SolidLine, Qt.RoundCap) cone_ellipse = self.addEllipse(point[0] - diameter / 2, point[1] - diameter / 2, diameter, diameter, cone_pen) def draw_line(self, start, end, color=QColor(0, 0, 100)): cone_pen = QPen(color, 2, Qt.DashLine, Qt.RoundCap) start = self.get_px_pos_from_m(start) end = self.get_px_pos_from_m(end) self.addLine(start[0], start[1], end[0], end[1], cone_pen) def draw_rect(self, pos, width, height, color=QColor(0, 0, 100)): cone_pen = QPen(color, 2, Qt.SolidLine, Qt.RoundCap) width = self.m_to_px(width) height = self.m_to_px(height) start = self.get_px_pos_from_m(pos) start[0] = start[0] - width / 2.0 start[1] = start[1] - height / 2.0 self.addRect(start[0], start[1], width, height, cone_pen) def draw_track(self, track, color=QColor(100, 200, 0)): for i, row in enumerate(track): if i != 0: self.draw_line(track[i - 1], track[i], color=color) def draw_cones(self, track, color=QColor(100, 200, 0)): for x, y in track: self._draw_cone(x, y, diameter=self._cone_diameter, color=color) def draw_big_cones(self, track, color=QColor(100, 200, 0)): for x, y in track: self._draw_cone(x, y, diameter=self._cone_diameter * 2.0, color=color) def draw_tk_device(self, track, color=QColor(255, 0, 0)): for x, y in track: self._draw_cone(x, y, diameter=self._cone_diameter * 2.0, color=color) def draw_lines(self, lines, color=QColor(0, 0, 100)): size = len(lines) if size < 3: return for i in range(1, size): last = lines[i - 1, :] pos = lines[i, :] self.draw_line(last, pos, color) self.draw_rect(pos, 0.5, 0.5) ##################################### ## CONVERTERS ##################################### def m_to_px(self, x): return x * self._px_per_m def px_to_m(self, px, py): return [self.px_to_m(px), self.px_to_m(py)] def px_to_m(self, px): return px / self._px_per_m def get_px_pos_from_m(self, p): p_augmented = np.array([p[0], -p[1], 1]) p_res = np.dot(self.get_transform_px_to_m(), p_augmented) return np.array([p_res[0, 0], p_res[0, 1]]) def get_m_from_px(self, p): p_augmented = np.array([p[0], p[1], 1]) p_res = np.dot(np.linalg.inv(self.get_transform_px_to_m()), p_augmented) return np.array([p_res[0, 0], -p_res[0, 1]]) def get_transform_px_to_m(self): # Inv = np.matrix([[1, 0], [0, -1]]) angle = 3.0 / 2.0 * np.pi c = np.cos(angle) s = np.sin(angle) Rot = np.matrix([[c, -s], [s, c]]) Multip = np.matrix([[self._px_per_m, 0], [0, self._px_per_m]]) InvRot = Multip * Rot trans = [self._map_width / 2.0, self._map_height / 2.0] T = np.matrix([[InvRot[0, 0], InvRot[0, 1], trans[0]], [InvRot[1, 0], InvRot[1, 1], trans[1]], [0, 0, 1]]) return T
concepts/numberRangeDouble.py
sixtysecondrevit/dynamoPython
114
12786070
<gh_stars>100-1000 """ PYTHON RANGE: DOUBLE APPROACH """ __author__ = '<NAME> - <EMAIL>' __twitter__ = '@solamour' __version__ = '1.0.0' # DEFINITION: # Custom definition to build a function similar to our DesignScript # float range def floatRange( start, end, step ): for number in xrange( end ): yield start start += step # SYNTAX: floatRange( [start], stop[, step ] ) # Start = Starting number of the sequence [Open] # Stop = Generate numbers up to, but not including this number [Closed] # Step = Difference between each number in the sequence. In order to pair # with our DesignScript variant, we need to run this as: ( 1.0 / end) # NOTES: # If we wish to use floating values (Doubles) we have to specify, hence # in our step value we use 1.0 instead of 1. IF we used 1 (An integer) # we would simply return a list of zeroes # The input ports start = IN[0] # A number such as 0 (int) stop = IN[1] # A number such as 10 (int) # A divisor calculation that changes our ints to floats step = ( 1.0 / stop ) # The output port - In this case a list comprehension OUT = [ value for value in floatRange( start, stop + 1, step ) ]
vilya/models/elastic/searcher.py
mubashshirjamal/code
1,582
12786115
<filename>vilya/models/elastic/searcher.py # -*- coding: utf-8 -*- from vilya.libs.search import code_client class SearchEngine(object): c = code_client if not c.head(): c.put('') @classmethod def check_result(cls, result): if result and not result.get('error'): return True return False @classmethod def decode(cls, json_raw, parse_names): dic = json_raw if not cls.check_result(dic): return [] decoded = [] for e in dic['hits']['hits']: d = e['_source'] values = [] for parse_name in parse_names: values.append(d.get(parse_name)) decoded.append(values) return decoded @classmethod def get_count(cls, result): if cls.check_result(result): return result['hits']['total'] return 0 @classmethod def query_all(cls, index_type, from_=0, size=0): data = { 'from': from_, 'size': size, 'query': { 'match_all': {} } } result = cls.c.get('%s/_search' % index_type, data=data) return result @classmethod def query_by_field(cls, index_type, field_dict, from_=0, size=0): data = { 'from': from_, 'size': size, 'query': { "term": field_dict, }, } result = cls.c.get('%s/_search' % index_type, data=data) return result @classmethod def search_a_phrase(cls, index_type, phrase, from_=0, size=20, filter_data=None, sort_data=None, highlight_data=None, facets_data=None): data = { 'from': from_, 'size': size, "query": { "query_string": { "query": phrase } }, } if highlight_data: data['highlight'] = highlight_data if filter_data: filtered_query_data = { "filtered": { "query": data['query'], "filter": filter_data, } } data['query'] = filtered_query_data if sort_data: data['sort'] = sort_data if facets_data: data['facets'] = facets_data result = cls.c.get('%s/_search' % index_type, data=data) return result
supersqlite/third_party/_apsw/tools/docmissing.py
plasticity-admin/supersqlite
1,520
12786148
<reponame>plasticity-admin/supersqlite<filename>supersqlite/third_party/_apsw/tools/docmissing.py # python # # See the accompanying LICENSE file. # # Find things that haven't been documented and should be or have been # but don't exist. import glob, sys import apsw retval=0 classes={} for filename in glob.glob("doc/*.rst"): for line in open(filename, "rtU"): line=line.strip().split() if len(line)>=2: if line[0]==".." and line[1] in ("method::", "automethod::", "attribute::"): funcname=line[2].split("(")[0].strip() if "." in funcname: klass, funcname=funcname.split(".",1) else: klass="apsw" if klass not in classes: classes[klass]=[] classes[klass].append(funcname) # ok, so we know what was documented. Now lets see what exists con=apsw.Connection(":memory:") cur=con.cursor() cur.execute("create table x(y); insert into x values(x'<PASSWORD>');select * from x") blob=con.blobopen("main", "x", "y", con.last_insert_rowid(), 0) vfs=apsw.VFS("aname", "") vfsfile=apsw.VFSFile("", ":memory:", [apsw.SQLITE_OPEN_MAIN_DB|apsw.SQLITE_OPEN_CREATE|apsw.SQLITE_OPEN_READWRITE, 0]) # virtual tables aren't real - just check their size hasn't changed assert len(classes['VTModule'])==2 del classes['VTModule'] assert len(classes['VTTable'])==13 del classes['VTTable'] assert len(classes['VTCursor'])==6 del classes['VTCursor'] for name, obj in ( ('Connection', con), ('Cursor', cur), ('blob', blob), ('VFS', vfs), ('VFSFile', vfsfile), ('apsw', apsw), ): if name not in classes: retval=1 print "class", name,"not found" continue for c in classes[name]: if not hasattr(obj, c): # it is legit for these to be missing from code (currently because code is broken) if (name+"."+c) in ("apsw.async_control", "apsw.async_initialize", "apsw.async_run", "apsw.async_shutdown"): continue retval=1 print "%s.%s in documentation but not object" % (name, c) for c in dir(obj): if c.startswith("__"): continue if name=="apsw": # ignore constants and modules if type(getattr(apsw, c)) in (type(3), type(sys)): continue # ignore debugging thingies if c.startswith("test_") or c in ("faultdict", "_fini"): continue # ignore the exceptions if isinstance(getattr(apsw, c), type) and issubclass(getattr(apsw,c), Exception): continue # ignore classes !!! if c in ("Connection", "VFS", "VFSFile", "zeroblob", "Shell", "URIFilename"): continue # ignore mappings !!! if c.startswith("mapping_"): continue if c not in classes[name]: if "%s.%s" % (name, c) not in ("Cursor.next",): retval=1 print "%s.%s on object but not in documentation" % (name, c) sys.exit(retval)
exercises/es/test_03_14_03.py
Jette16/spacy-course
2,085
12786194
<reponame>Jette16/spacy-course def test(): assert ( "patterns = list(nlp.pipe(people))" in __solution__ ), "¿Estás usando nlp.pipe envuelto en una lista?" __msg__.good( "¡Buen trabajo! Ahora continuemos con un ejemplo práctico que usa nlp.pipe " "para procesar documentos con metadatos adicionales." )
py/jpy/ci/appveyor/dump-dlls.py
devinrsmith/deephaven-core
210
12786219
import psutil, os p = psutil.Process(os.getpid()) for dll in p.memory_maps(): print(dll.path)
challenges/4.C.Absolute_Value/lesson_tests.py
pradeepsaiu/python-coding-challenges
141
12786231
import unittest from main import * class AbsoluteValueTests(unittest.TestCase): def test_main(self): self.assertIsInstance(absolute_value, int) self.assertEqual(absolute_value, 42)
randopt/samplers.py
seba-1511/randopt
115
12786260
<gh_stars>100-1000 #!/usr/bin/env python import random import math from . import RANDOPT_RNG """ Here we implement the sampling strategies. """ class Sampler(object): """ Base class for all samplers. Note: This class should not be directly instanciated. """ def __init__(self, *args, **kwargs): self.rng = random.Random() RANDOPT_RNG.random() # Change initial random state self.rng.setstate(RANDOPT_RNG.getstate()) def sample(self): raise NotImplementedError('sample() has not been implemented.') def seed(self, seed_val): self.rng.seed(seed_val) def get_state(self): return self.rng.getstate() def set_state(self, state): self.rng.setstate(state) class Constant(Sampler): def __init__(self, value): super(Constant, self).__init__() self.value = value def sample(self): return self.value class Choice(Sampler): """ Samples a value from a given list according to the provided sampler. Parameters: * items - (list) itemsm to be sampled. * sampler - (Sampler) Sampler used to select an item based on its index. Return type: n/a Example: TODO. """ def __init__(self, items, sampler=None): """sampler is any of the available samplers, used to sample element's index from the list.""" if sampler is None: sampler = Uniform() self.sampler = sampler self.items = items self.rng = self.sampler.rng def sample(self): i = self.sampler.sample() * len(self.items) i = int(math.floor(i)) return self.items[i] class Truncated(Sampler): """ Given a sampler, clips the distribution between low and high. If None, not truncated. Parameters: * sampler - (Sampler) Sampler to be truncated. * low - (float) minimum value to be sampled. Default: None * high - (float) maximum value to be sampled. Default: None Return type: n/a Example: sampler = Gaussian(0.0, 0.1) truncated = Truncated(sampler, -0.1, 0.1) """ def __init__(self, sampler=None, low=None, high=None): if sampler is None: sampler = Uniform() self.sampler = sampler self.min = low self.max = high self.rng = self.sampler.rng def sample(self): val = self.sampler.sample() if self.min is not None and val < self.min: val = self.min if self.max is not None and val > self.max: val = self.max return val class Uniform(Sampler): ''' Generates a randomly sampled value from low to high with equal probability. Parameters: * low - (float) minimum value. * high - (float) maximum value. * dtype - (string) data type. Default: float Return type: n/a Example: randopt.Uniform(low=-1.0, high=1.0, dtype='float') ''' def __init__(self, low=0.0, high=1.0, dtype='float'): super(Uniform, self).__init__() self.low = low self.high = high self.dtype = dtype def sample(self): res = self.rng.uniform(self.low, self.high) if 'fl' in self.dtype: return res return int(res) class Gaussian(Sampler): ''' Generates a randomly sampled value with specified mean and std based on a Gaussian distribution. Parameters: * mean - (float) mean of Gaussian. Default: 0.0 * std - (float) standard deviation of Gaussian. Default: 1.0 * dtype - (string) data type. Default: float Return type: n/a Example: randopt.Gaussian(mean=0.0, std=1.0, dtype='float') ''' def __init__(self, mean=0.0, std=1.0, dtype='float'): super(Gaussian, self).__init__() self.mean = mean self.std = std self.dtype = dtype def sample(self): res = self.rng.gauss(self.mean, self.std) if 'fl' in self.dtype: return res return int(res) class Normal(Gaussian): pass class LognormVariate(Sampler): ''' Generates a randomly sampled value with specified mean and std based on a Log normal distribution. Parameters: * mean - (float) mean of Lognormal. Default: 0.0 * std - (float) standard deviation of Lognormal. Default: 1.0 * dtype - (string) data type. Default: float Return type: n/a Example: randopt.LognormVariate(mean=0.0, std=1.0, dtype='float') ''' def __init__(self, mean=0.0, std=1.0, dtype='float'): super(LognormVariate, self).__init__() self.mean = mean self.std = std self.dtype = dtype def sample(self): res = self.rng.lognormvariate(self.mean, self.std) if 'fl' in self.dtype: return res return int(res) class BetaVariate(Sampler): ''' Generates a randomly sampled value with specified mean and std based on a Beta distribution. Parameters: * alpha - (float) alpha of beta distribution. * beta - (float) beta of beta distribution. * dtype - (string) data type. Default: float Return type: n/a Example: randopt.BetaVariate(alpha=1,beta=1,dtype='float') ''' def __init__(self, alpha, beta, dtype='float'): super(BetaVariate, self).__init__() self.alpha = alpha self.beta = beta self.dtype = dtype def sample(self): res = self.rng.betavariate(self.alpha, self.beta) if 'fl' in self.dtype: return res return int(res) class ExpoVariate(Sampler): ''' Generates a randomly sampled value with lambda based on an exponential distribution. Parameters: * lam - (float) lambda of exponential distribution (one divided by desired mean). * dtype - (string) data type. Default: float Return type: n/a Example: randopt.ExpoVariate(lam=1, dtype='float') ''' def __init__(self, lam, dtype='float'): super(ExpoVariate, self).__init__() self.lam = lam self.dtype = dtype def sample(self): res = self.rng.expovariate(self.lam) if 'fl' in self.dtype: return res return int(res) class WeibullVariate(Sampler): ''' Generates a randomly sampled value with specified mean and std based on a Weibull distribution. Parameters: * alpha - (float) alpha of Weibull distribution (scale parameter). * beta - (float) beta of Weibull distribution (shape parameter). * dtype - (string) data type. Default: float Return type: n/a Example: randopt.WeibullVariate(alpha=1,beta=1,dtype='float') ''' def __init__(self, alpha, beta, dtype='float'): super(WeibullVariate, self).__init__() self.alpha = alpha self.beta = beta self.dtype = dtype def sample(self): res = self.rng.weibullvariate(self.alpha, self.beta) if 'fl' in self.dtype: return res return int(res) class ParetoVariate(Sampler): ''' Generates a randomly sampled value with alpha based on the Pareto distribution. Parameters: * alpha - (float) alpha of Pareto distribution (shape parameter). * dtype - (string) data type. Default: float Return type: n/a Example: randopt.ParetoVariate(alpha=1,dtype='float') ''' def __init__(self, alpha, dtype='float'): super(ParetoVariate, self).__init__() self.alpha = alpha self.dtype = dtype def sample(self): res = self.rng.paretovariate(self.alpha) if 'fl' in self.dtype: return res return int(res)
sdk/anomalydetector/azure-ai-anomalydetector/azure/ai/anomalydetector/models/_models.py
rsdoherty/azure-sdk-for-python
2,728
12786272
<filename>sdk/anomalydetector/azure-ai-anomalydetector/azure/ai/anomalydetector/models/_models.py # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.core.exceptions import HttpResponseError import msrest.serialization class AlignPolicy(msrest.serialization.Model): """AlignPolicy. :param align_mode: An optional field, indicates how we align different variables into the same time-range which is required by the model.{Inner, Outer}. Possible values include: "Inner", "Outer". :type align_mode: str or ~azure.ai.anomalydetector.models.AlignMode :param fill_na_method: An optional field, indicates how missed values will be filled with. Can not be set to NotFill, when alignMode is Outer.{Previous, Subsequent, Linear, Zero, Fix, NotFill}. Possible values include: "Previous", "Subsequent", "Linear", "Zero", "Pad", "NotFill". :type fill_na_method: str or ~azure.ai.anomalydetector.models.FillNAMethod :param padding_value: optional field, only be useful if FillNAMethod is set to Pad. :type padding_value: int """ _attribute_map = { 'align_mode': {'key': 'alignMode', 'type': 'str'}, 'fill_na_method': {'key': 'fillNAMethod', 'type': 'str'}, 'padding_value': {'key': 'paddingValue', 'type': 'int'}, } def __init__( self, **kwargs ): super(AlignPolicy, self).__init__(**kwargs) self.align_mode = kwargs.get('align_mode', None) self.fill_na_method = kwargs.get('fill_na_method', None) self.padding_value = kwargs.get('padding_value', None) class AnomalyContributor(msrest.serialization.Model): """AnomalyContributor. :param contribution_score: The higher the contribution score is, the more likely the variable to be the root cause of a anomaly. :type contribution_score: float :param variable: Variable name of a contributor. :type variable: str """ _validation = { 'contribution_score': {'maximum': 2, 'minimum': 0}, } _attribute_map = { 'contribution_score': {'key': 'contributionScore', 'type': 'float'}, 'variable': {'key': 'variable', 'type': 'str'}, } def __init__( self, **kwargs ): super(AnomalyContributor, self).__init__(**kwargs) self.contribution_score = kwargs.get('contribution_score', None) self.variable = kwargs.get('variable', None) class AnomalyDetectorError(msrest.serialization.Model): """Error information returned by the API. :param code: The error code. Possible values include: "InvalidCustomInterval", "BadArgument", "InvalidGranularity", "InvalidPeriod", "InvalidModelArgument", "InvalidSeries", "InvalidJsonFormat", "RequiredGranularity", "RequiredSeries". :type code: str or ~azure.ai.anomalydetector.models.AnomalyDetectorErrorCodes :param message: A message explaining the error reported by the service. :type message: str """ _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, **kwargs ): super(AnomalyDetectorError, self).__init__(**kwargs) self.code = kwargs.get('code', None) self.message = kwargs.get('message', None) class AnomalyState(msrest.serialization.Model): """AnomalyState. All required parameters must be populated in order to send to Azure. :param timestamp: Required. timestamp. :type timestamp: ~datetime.datetime :param value: :type value: ~azure.ai.anomalydetector.models.AnomalyValue :param errors: Error message when inference this timestamp. :type errors: list[~azure.ai.anomalydetector.models.ErrorResponse] """ _validation = { 'timestamp': {'required': True}, } _attribute_map = { 'timestamp': {'key': 'timestamp', 'type': 'iso-8601'}, 'value': {'key': 'value', 'type': 'AnomalyValue'}, 'errors': {'key': 'errors', 'type': '[ErrorResponse]'}, } def __init__( self, **kwargs ): super(AnomalyState, self).__init__(**kwargs) self.timestamp = kwargs['timestamp'] self.value = kwargs.get('value', None) self.errors = kwargs.get('errors', None) class AnomalyValue(msrest.serialization.Model): """AnomalyValue. All required parameters must be populated in order to send to Azure. :param contributors: If current timestamp is an anomaly, contributors will show potential root cause for thus anomaly. Contributors can help us understand why current timestamp has been detected as an anomaly. :type contributors: list[~azure.ai.anomalydetector.models.AnomalyContributor] :param is_anomaly: Required. To indicate whether current timestamp is anomaly or not. :type is_anomaly: bool :param severity: Required. anomaly score of the current timestamp, the more significant an anomaly is, the higher the score will be. :type severity: float :param score: anomaly score of the current timestamp, the more significant an anomaly is, the higher the score will be, score measures global significance. :type score: float """ _validation = { 'is_anomaly': {'required': True}, 'severity': {'required': True, 'maximum': 1, 'minimum': 0}, 'score': {'maximum': 2, 'minimum': 0}, } _attribute_map = { 'contributors': {'key': 'contributors', 'type': '[AnomalyContributor]'}, 'is_anomaly': {'key': 'isAnomaly', 'type': 'bool'}, 'severity': {'key': 'severity', 'type': 'float'}, 'score': {'key': 'score', 'type': 'float'}, } def __init__( self, **kwargs ): super(AnomalyValue, self).__init__(**kwargs) self.contributors = kwargs.get('contributors', None) self.is_anomaly = kwargs['is_anomaly'] self.severity = kwargs['severity'] self.score = kwargs.get('score', None) class ChangePointDetectRequest(msrest.serialization.Model): """ChangePointDetectRequest. All required parameters must be populated in order to send to Azure. :param series: Required. Time series data points. Points should be sorted by timestamp in ascending order to match the change point detection result. :type series: list[~azure.ai.anomalydetector.models.TimeSeriesPoint] :param granularity: Required. Can only be one of yearly, monthly, weekly, daily, hourly, minutely or secondly. Granularity is used for verify whether input series is valid. Possible values include: "yearly", "monthly", "weekly", "daily", "hourly", "minutely", "secondly", "microsecond", "none". :type granularity: str or ~azure.ai.anomalydetector.models.TimeGranularity :param custom_interval: Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as {"granularity":"minutely", "customInterval":5}. :type custom_interval: int :param period: Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. :type period: int :param stable_trend_window: Optional argument, advanced model parameter, a default stableTrendWindow will be used in detection. :type stable_trend_window: int :param threshold: Optional argument, advanced model parameter, between 0.0-1.0, the lower the value is, the larger the trend error will be which means less change point will be accepted. :type threshold: float """ _validation = { 'series': {'required': True}, 'granularity': {'required': True}, } _attribute_map = { 'series': {'key': 'series', 'type': '[TimeSeriesPoint]'}, 'granularity': {'key': 'granularity', 'type': 'str'}, 'custom_interval': {'key': 'customInterval', 'type': 'int'}, 'period': {'key': 'period', 'type': 'int'}, 'stable_trend_window': {'key': 'stableTrendWindow', 'type': 'int'}, 'threshold': {'key': 'threshold', 'type': 'float'}, } def __init__( self, **kwargs ): super(ChangePointDetectRequest, self).__init__(**kwargs) self.series = kwargs['series'] self.granularity = kwargs['granularity'] self.custom_interval = kwargs.get('custom_interval', None) self.period = kwargs.get('period', None) self.stable_trend_window = kwargs.get('stable_trend_window', None) self.threshold = kwargs.get('threshold', None) class ChangePointDetectResponse(msrest.serialization.Model): """ChangePointDetectResponse. Variables are only populated by the server, and will be ignored when sending a request. :ivar period: Frequency extracted from the series, zero means no recurrent pattern has been found. :vartype period: int :param is_change_point: isChangePoint contains change point properties for each input point. True means an anomaly either negative or positive has been detected. The index of the array is consistent with the input series. :type is_change_point: list[bool] :param confidence_scores: the change point confidence of each point. :type confidence_scores: list[float] """ _validation = { 'period': {'readonly': True}, } _attribute_map = { 'period': {'key': 'period', 'type': 'int'}, 'is_change_point': {'key': 'isChangePoint', 'type': '[bool]'}, 'confidence_scores': {'key': 'confidenceScores', 'type': '[float]'}, } def __init__( self, **kwargs ): super(ChangePointDetectResponse, self).__init__(**kwargs) self.period = None self.is_change_point = kwargs.get('is_change_point', None) self.confidence_scores = kwargs.get('confidence_scores', None) class DetectionRequest(msrest.serialization.Model): """Request to submit a detection. All required parameters must be populated in order to send to Azure. :param source: Required. source file link of the input variables, each variable will be a csv with two columns, the first column will be timestamp, the second column will be value.Besides these variable csv files, a extra meta.json can be included in th zip file if you would like to rename a variable.Be default, the file name of the variable will be used as the variable name. The variables used in detection should be consistent with variables in the model used for detection. :type source: str :param start_time: Required. A require field, start time of data be used for detection, should be date-time. :type start_time: ~datetime.datetime :param end_time: Required. A require field, end time of data be used for detection, should be date-time. :type end_time: ~datetime.datetime """ _validation = { 'source': {'required': True}, 'start_time': {'required': True}, 'end_time': {'required': True}, } _attribute_map = { 'source': {'key': 'source', 'type': 'str'}, 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, 'end_time': {'key': 'endTime', 'type': 'iso-8601'}, } def __init__( self, **kwargs ): super(DetectionRequest, self).__init__(**kwargs) self.source = kwargs['source'] self.start_time = kwargs['start_time'] self.end_time = kwargs['end_time'] class DetectionResult(msrest.serialization.Model): """Anomaly Response of one detection corresponds to a resultId. All required parameters must be populated in order to send to Azure. :param result_id: Required. :type result_id: str :param summary: Required. Multivariate anomaly detection status. :type summary: ~azure.ai.anomalydetector.models.DetectionResultSummary :param results: Required. anomaly status of each timestamp. :type results: list[~azure.ai.anomalydetector.models.AnomalyState] """ _validation = { 'result_id': {'required': True}, 'summary': {'required': True}, 'results': {'required': True}, } _attribute_map = { 'result_id': {'key': 'resultId', 'type': 'str'}, 'summary': {'key': 'summary', 'type': 'DetectionResultSummary'}, 'results': {'key': 'results', 'type': '[AnomalyState]'}, } def __init__( self, **kwargs ): super(DetectionResult, self).__init__(**kwargs) self.result_id = kwargs['result_id'] self.summary = kwargs['summary'] self.results = kwargs['results'] class DetectionResultSummary(msrest.serialization.Model): """DetectionResultSummary. All required parameters must be populated in order to send to Azure. :param status: Required. Multivariate anomaly detection status. Possible values include: "CREATED", "RUNNING", "READY", "FAILED". :type status: str or ~azure.ai.anomalydetector.models.DetectionStatus :param errors: Error message when creating or training model fails. :type errors: list[~azure.ai.anomalydetector.models.ErrorResponse] :param variable_states: :type variable_states: list[~azure.ai.anomalydetector.models.VariableState] :param setup_info: Required. Request when creating the model. :type setup_info: ~azure.ai.anomalydetector.models.DetectionRequest """ _validation = { 'status': {'required': True}, 'setup_info': {'required': True}, } _attribute_map = { 'status': {'key': 'status', 'type': 'str'}, 'errors': {'key': 'errors', 'type': '[ErrorResponse]'}, 'variable_states': {'key': 'variableStates', 'type': '[VariableState]'}, 'setup_info': {'key': 'setupInfo', 'type': 'DetectionRequest'}, } def __init__( self, **kwargs ): super(DetectionResultSummary, self).__init__(**kwargs) self.status = kwargs['status'] self.errors = kwargs.get('errors', None) self.variable_states = kwargs.get('variable_states', None) self.setup_info = kwargs['setup_info'] class DetectRequest(msrest.serialization.Model): """DetectRequest. All required parameters must be populated in order to send to Azure. :param series: Required. Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned. :type series: list[~azure.ai.anomalydetector.models.TimeSeriesPoint] :param granularity: Optional argument, can be one of yearly, monthly, weekly, daily, hourly, minutely, secondly, microsecond or none. If granularity is not present, it will be none by default. If granularity is none, the timestamp property in time series point can be absent. Possible values include: "yearly", "monthly", "weekly", "daily", "hourly", "minutely", "secondly", "microsecond", "none". :type granularity: str or ~azure.ai.anomalydetector.models.TimeGranularity :param custom_interval: Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as {"granularity":"minutely", "customInterval":5}. :type custom_interval: int :param period: Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. :type period: int :param max_anomaly_ratio: Optional argument, advanced model parameter, max anomaly ratio in a time series. :type max_anomaly_ratio: float :param sensitivity: Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted. :type sensitivity: int """ _validation = { 'series': {'required': True}, } _attribute_map = { 'series': {'key': 'series', 'type': '[TimeSeriesPoint]'}, 'granularity': {'key': 'granularity', 'type': 'str'}, 'custom_interval': {'key': 'customInterval', 'type': 'int'}, 'period': {'key': 'period', 'type': 'int'}, 'max_anomaly_ratio': {'key': 'maxAnomalyRatio', 'type': 'float'}, 'sensitivity': {'key': 'sensitivity', 'type': 'int'}, } def __init__( self, **kwargs ): super(DetectRequest, self).__init__(**kwargs) self.series = kwargs['series'] self.granularity = kwargs.get('granularity', None) self.custom_interval = kwargs.get('custom_interval', None) self.period = kwargs.get('period', None) self.max_anomaly_ratio = kwargs.get('max_anomaly_ratio', None) self.sensitivity = kwargs.get('sensitivity', None) class DiagnosticsInfo(msrest.serialization.Model): """DiagnosticsInfo. :param model_state: :type model_state: ~azure.ai.anomalydetector.models.ModelState :param variable_states: :type variable_states: list[~azure.ai.anomalydetector.models.VariableState] """ _attribute_map = { 'model_state': {'key': 'modelState', 'type': 'ModelState'}, 'variable_states': {'key': 'variableStates', 'type': '[VariableState]'}, } def __init__( self, **kwargs ): super(DiagnosticsInfo, self).__init__(**kwargs) self.model_state = kwargs.get('model_state', None) self.variable_states = kwargs.get('variable_states', None) class EntireDetectResponse(msrest.serialization.Model): """EntireDetectResponse. All required parameters must be populated in order to send to Azure. :param period: Required. Frequency extracted from the series, zero means no recurrent pattern has been found. :type period: int :param expected_values: Required. ExpectedValues contain expected value for each input point. The index of the array is consistent with the input series. :type expected_values: list[float] :param upper_margins: Required. UpperMargins contain upper margin of each input point. UpperMargin is used to calculate upperBoundary, which equals to expectedValue + (100 - marginScale)*upperMargin. Anomalies in response can be filtered by upperBoundary and lowerBoundary. By adjusting marginScale value, less significant anomalies can be filtered in client side. The index of the array is consistent with the input series. :type upper_margins: list[float] :param lower_margins: Required. LowerMargins contain lower margin of each input point. LowerMargin is used to calculate lowerBoundary, which equals to expectedValue - (100 - marginScale)*lowerMargin. Points between the boundary can be marked as normal ones in client side. The index of the array is consistent with the input series. :type lower_margins: list[float] :param is_anomaly: Required. IsAnomaly contains anomaly properties for each input point. True means an anomaly either negative or positive has been detected. The index of the array is consistent with the input series. :type is_anomaly: list[bool] :param is_negative_anomaly: Required. IsNegativeAnomaly contains anomaly status in negative direction for each input point. True means a negative anomaly has been detected. A negative anomaly means the point is detected as an anomaly and its real value is smaller than the expected one. The index of the array is consistent with the input series. :type is_negative_anomaly: list[bool] :param is_positive_anomaly: Required. IsPositiveAnomaly contain anomaly status in positive direction for each input point. True means a positive anomaly has been detected. A positive anomaly means the point is detected as an anomaly and its real value is larger than the expected one. The index of the array is consistent with the input series. :type is_positive_anomaly: list[bool] """ _validation = { 'period': {'required': True}, 'expected_values': {'required': True}, 'upper_margins': {'required': True}, 'lower_margins': {'required': True}, 'is_anomaly': {'required': True}, 'is_negative_anomaly': {'required': True}, 'is_positive_anomaly': {'required': True}, } _attribute_map = { 'period': {'key': 'period', 'type': 'int'}, 'expected_values': {'key': 'expectedValues', 'type': '[float]'}, 'upper_margins': {'key': 'upperMargins', 'type': '[float]'}, 'lower_margins': {'key': 'lowerMargins', 'type': '[float]'}, 'is_anomaly': {'key': 'isAnomaly', 'type': '[bool]'}, 'is_negative_anomaly': {'key': 'isNegativeAnomaly', 'type': '[bool]'}, 'is_positive_anomaly': {'key': 'isPositiveAnomaly', 'type': '[bool]'}, } def __init__( self, **kwargs ): super(EntireDetectResponse, self).__init__(**kwargs) self.period = kwargs['period'] self.expected_values = kwargs['expected_values'] self.upper_margins = kwargs['upper_margins'] self.lower_margins = kwargs['lower_margins'] self.is_anomaly = kwargs['is_anomaly'] self.is_negative_anomaly = kwargs['is_negative_anomaly'] self.is_positive_anomaly = kwargs['is_positive_anomaly'] class ErrorResponse(msrest.serialization.Model): """ErrorResponse. All required parameters must be populated in order to send to Azure. :param code: Required. The error Code. :type code: str :param message: Required. A message explaining the error reported by the service. :type message: str """ _validation = { 'code': {'required': True}, 'message': {'required': True}, } _attribute_map = { 'code': {'key': 'code', 'type': 'str'}, 'message': {'key': 'message', 'type': 'str'}, } def __init__( self, **kwargs ): super(ErrorResponse, self).__init__(**kwargs) self.code = kwargs['code'] self.message = kwargs['message'] class LastDetectResponse(msrest.serialization.Model): """LastDetectResponse. All required parameters must be populated in order to send to Azure. :param period: Required. Frequency extracted from the series, zero means no recurrent pattern has been found. :type period: int :param suggested_window: Required. Suggested input series points needed for detecting the latest point. :type suggested_window: int :param expected_value: Required. Expected value of the latest point. :type expected_value: float :param upper_margin: Required. Upper margin of the latest point. UpperMargin is used to calculate upperBoundary, which equals to expectedValue + (100 - marginScale)*upperMargin. If the value of latest point is between upperBoundary and lowerBoundary, it should be treated as normal value. By adjusting marginScale value, anomaly status of latest point can be changed. :type upper_margin: float :param lower_margin: Required. Lower margin of the latest point. LowerMargin is used to calculate lowerBoundary, which equals to expectedValue - (100 - marginScale)*lowerMargin. :type lower_margin: float :param is_anomaly: Required. Anomaly status of the latest point, true means the latest point is an anomaly either in negative direction or positive direction. :type is_anomaly: bool :param is_negative_anomaly: Required. Anomaly status in negative direction of the latest point. True means the latest point is an anomaly and its real value is smaller than the expected one. :type is_negative_anomaly: bool :param is_positive_anomaly: Required. Anomaly status in positive direction of the latest point. True means the latest point is an anomaly and its real value is larger than the expected one. :type is_positive_anomaly: bool """ _validation = { 'period': {'required': True}, 'suggested_window': {'required': True}, 'expected_value': {'required': True}, 'upper_margin': {'required': True}, 'lower_margin': {'required': True}, 'is_anomaly': {'required': True}, 'is_negative_anomaly': {'required': True}, 'is_positive_anomaly': {'required': True}, } _attribute_map = { 'period': {'key': 'period', 'type': 'int'}, 'suggested_window': {'key': 'suggestedWindow', 'type': 'int'}, 'expected_value': {'key': 'expectedValue', 'type': 'float'}, 'upper_margin': {'key': 'upperMargin', 'type': 'float'}, 'lower_margin': {'key': 'lowerMargin', 'type': 'float'}, 'is_anomaly': {'key': 'isAnomaly', 'type': 'bool'}, 'is_negative_anomaly': {'key': 'isNegativeAnomaly', 'type': 'bool'}, 'is_positive_anomaly': {'key': 'isPositiveAnomaly', 'type': 'bool'}, } def __init__( self, **kwargs ): super(LastDetectResponse, self).__init__(**kwargs) self.period = kwargs['period'] self.suggested_window = kwargs['suggested_window'] self.expected_value = kwargs['expected_value'] self.upper_margin = kwargs['upper_margin'] self.lower_margin = kwargs['lower_margin'] self.is_anomaly = kwargs['is_anomaly'] self.is_negative_anomaly = kwargs['is_negative_anomaly'] self.is_positive_anomaly = kwargs['is_positive_anomaly'] class Model(msrest.serialization.Model): """Response of get model. All required parameters must be populated in order to send to Azure. :param model_id: Required. Model identifier. :type model_id: str :param created_time: Required. Date and time (UTC) when the model was created. :type created_time: ~datetime.datetime :param last_updated_time: Required. Date and time (UTC) when the model was last updated. :type last_updated_time: ~datetime.datetime :param model_info: Training Status of the model. :type model_info: ~azure.ai.anomalydetector.models.ModelInfo """ _validation = { 'model_id': {'required': True}, 'created_time': {'required': True}, 'last_updated_time': {'required': True}, } _attribute_map = { 'model_id': {'key': 'modelId', 'type': 'str'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'last_updated_time': {'key': 'lastUpdatedTime', 'type': 'iso-8601'}, 'model_info': {'key': 'modelInfo', 'type': 'ModelInfo'}, } def __init__( self, **kwargs ): super(Model, self).__init__(**kwargs) self.model_id = kwargs['model_id'] self.created_time = kwargs['created_time'] self.last_updated_time = kwargs['last_updated_time'] self.model_info = kwargs.get('model_info', None) class ModelInfo(msrest.serialization.Model): """Train result of a model including status, errors and diagnose info for model and variables. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param sliding_window: An optional field, indicates how many history points will be used to determine the anomaly score of one subsequent point. :type sliding_window: int :param align_policy: An optional field, since those multivariate need to be aligned in the same timestamp before starting the detection. :type align_policy: ~azure.ai.anomalydetector.models.AlignPolicy :param source: Required. source file link of the input variables, each variable will be a csv with two columns, the first column will be timestamp, the second column will be value.Besides these variable csv files, an extra meta.json can be included in th zip file if you would like to rename a variable.Be default, the file name of the variable will be used as the variable name. :type source: str :param start_time: Required. require field, start time of data be used for generating multivariate anomaly detection model, should be data-time. :type start_time: ~datetime.datetime :param end_time: Required. require field, end time of data be used for generating multivariate anomaly detection model, should be data-time. :type end_time: ~datetime.datetime :param display_name: optional field, name of the model. :type display_name: str :ivar status: Model training status. Possible values include: "CREATED", "RUNNING", "READY", "FAILED". :vartype status: str or ~azure.ai.anomalydetector.models.ModelStatus :ivar errors: Error message when fails to create a model. :vartype errors: list[~azure.ai.anomalydetector.models.ErrorResponse] :ivar diagnostics_info: Used for deep analysis model and variables. :vartype diagnostics_info: ~azure.ai.anomalydetector.models.DiagnosticsInfo """ _validation = { 'source': {'required': True}, 'start_time': {'required': True}, 'end_time': {'required': True}, 'display_name': {'max_length': 24, 'min_length': 0}, 'status': {'readonly': True}, 'errors': {'readonly': True}, 'diagnostics_info': {'readonly': True}, } _attribute_map = { 'sliding_window': {'key': 'slidingWindow', 'type': 'int'}, 'align_policy': {'key': 'alignPolicy', 'type': 'AlignPolicy'}, 'source': {'key': 'source', 'type': 'str'}, 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, 'end_time': {'key': 'endTime', 'type': 'iso-8601'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'status': {'key': 'status', 'type': 'str'}, 'errors': {'key': 'errors', 'type': '[ErrorResponse]'}, 'diagnostics_info': {'key': 'diagnosticsInfo', 'type': 'DiagnosticsInfo'}, } def __init__( self, **kwargs ): super(ModelInfo, self).__init__(**kwargs) self.sliding_window = kwargs.get('sliding_window', None) self.align_policy = kwargs.get('align_policy', None) self.source = kwargs['source'] self.start_time = kwargs['start_time'] self.end_time = kwargs['end_time'] self.display_name = kwargs.get('display_name', None) self.status = None self.errors = None self.diagnostics_info = None class ModelList(msrest.serialization.Model): """Response to the list models operation. All required parameters must be populated in order to send to Azure. :param models: Required. List of models. :type models: list[~azure.ai.anomalydetector.models.ModelSnapshot] :param current_count: Required. Current count of trained multivariate models. :type current_count: int :param max_count: Required. Max number of models that can be trained for this subscription. :type max_count: int :param next_link: next link to fetch more models. :type next_link: str """ _validation = { 'models': {'required': True}, 'current_count': {'required': True}, 'max_count': {'required': True}, } _attribute_map = { 'models': {'key': 'models', 'type': '[ModelSnapshot]'}, 'current_count': {'key': 'currentCount', 'type': 'int'}, 'max_count': {'key': 'maxCount', 'type': 'int'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(ModelList, self).__init__(**kwargs) self.models = kwargs['models'] self.current_count = kwargs['current_count'] self.max_count = kwargs['max_count'] self.next_link = kwargs.get('next_link', None) class ModelSnapshot(msrest.serialization.Model): """ModelSnapshot. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param model_id: Required. Model identifier. :type model_id: str :param created_time: Required. Date and time (UTC) when the model was created. :type created_time: ~datetime.datetime :param last_updated_time: Required. Date and time (UTC) when the model was last updated. :type last_updated_time: ~datetime.datetime :ivar status: Required. Model training status. Possible values include: "CREATED", "RUNNING", "READY", "FAILED". :vartype status: str or ~azure.ai.anomalydetector.models.ModelStatus :param display_name: :type display_name: str :param variables_count: Required. Count of variables. :type variables_count: int """ _validation = { 'model_id': {'required': True}, 'created_time': {'required': True}, 'last_updated_time': {'required': True}, 'status': {'required': True, 'readonly': True}, 'variables_count': {'required': True}, } _attribute_map = { 'model_id': {'key': 'modelId', 'type': 'str'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'last_updated_time': {'key': 'lastUpdatedTime', 'type': 'iso-8601'}, 'status': {'key': 'status', 'type': 'str'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'variables_count': {'key': 'variablesCount', 'type': 'int'}, } def __init__( self, **kwargs ): super(ModelSnapshot, self).__init__(**kwargs) self.model_id = kwargs['model_id'] self.created_time = kwargs['created_time'] self.last_updated_time = kwargs['last_updated_time'] self.status = None self.display_name = kwargs.get('display_name', None) self.variables_count = kwargs['variables_count'] class ModelState(msrest.serialization.Model): """ModelState. :param epoch_ids: Epoch id. :type epoch_ids: list[int] :param train_losses: :type train_losses: list[float] :param validation_losses: :type validation_losses: list[float] :param latencies_in_seconds: :type latencies_in_seconds: list[float] """ _attribute_map = { 'epoch_ids': {'key': 'epochIds', 'type': '[int]'}, 'train_losses': {'key': 'trainLosses', 'type': '[float]'}, 'validation_losses': {'key': 'validationLosses', 'type': '[float]'}, 'latencies_in_seconds': {'key': 'latenciesInSeconds', 'type': '[float]'}, } def __init__( self, **kwargs ): super(ModelState, self).__init__(**kwargs) self.epoch_ids = kwargs.get('epoch_ids', None) self.train_losses = kwargs.get('train_losses', None) self.validation_losses = kwargs.get('validation_losses', None) self.latencies_in_seconds = kwargs.get('latencies_in_seconds', None) class TimeSeriesPoint(msrest.serialization.Model): """TimeSeriesPoint. All required parameters must be populated in order to send to Azure. :param timestamp: Optional argument, timestamp of a data point (ISO8601 format). :type timestamp: ~datetime.datetime :param value: Required. The measurement of that point, should be float. :type value: float """ _validation = { 'value': {'required': True}, } _attribute_map = { 'timestamp': {'key': 'timestamp', 'type': 'iso-8601'}, 'value': {'key': 'value', 'type': 'float'}, } def __init__( self, **kwargs ): super(TimeSeriesPoint, self).__init__(**kwargs) self.timestamp = kwargs.get('timestamp', None) self.value = kwargs['value'] class VariableState(msrest.serialization.Model): """VariableState. :param variable: Variable name. :type variable: str :param filled_na_ratio: Merged NA ratio of a variable. :type filled_na_ratio: float :param effective_count: Effective time-series points count. :type effective_count: int :param start_time: Start time of a variable. :type start_time: ~datetime.datetime :param end_time: End time of a variable. :type end_time: ~datetime.datetime :param errors: Error message when parse variable. :type errors: list[~azure.ai.anomalydetector.models.ErrorResponse] """ _validation = { 'filled_na_ratio': {'maximum': 1, 'minimum': 0}, } _attribute_map = { 'variable': {'key': 'variable', 'type': 'str'}, 'filled_na_ratio': {'key': 'filledNARatio', 'type': 'float'}, 'effective_count': {'key': 'effectiveCount', 'type': 'int'}, 'start_time': {'key': 'startTime', 'type': 'iso-8601'}, 'end_time': {'key': 'endTime', 'type': 'iso-8601'}, 'errors': {'key': 'errors', 'type': '[ErrorResponse]'}, } def __init__( self, **kwargs ): super(VariableState, self).__init__(**kwargs) self.variable = kwargs.get('variable', None) self.filled_na_ratio = kwargs.get('filled_na_ratio', None) self.effective_count = kwargs.get('effective_count', None) self.start_time = kwargs.get('start_time', None) self.end_time = kwargs.get('end_time', None) self.errors = kwargs.get('errors', None)
qaforum/utils.py
UREDDY616/IIITVforum
117
12786308
<gh_stars>100-1000 import pytz from datetime import datetime from django.utils import timezone from math import log # uses a version of reddit score algorithm # https://medium.com/hacking-and-gonzo/how-reddit-ranking-algorithms-work-ef111e33d0d9#.aef67efq1 def question_score(question): creation_date = question.pub_date score = question.total_points answers_positive_points = list( question.answer_set.all().values_list( 'answervote__value', flat=True)).count(True) answers_negative_points = list( question.answer_set.all().values_list( 'answervote__value', flat=True)).count(False) score = score * 2 + answers_positive_points - answers_negative_points reference_date = pytz.timezone( timezone.get_default_timezone_name()).localize(datetime(1970, 1, 1)) difference = creation_date - reference_date difference_seconds = difference.days * 86400 + difference.seconds +\ (float(difference.microseconds) / 1000000) order = log(max(abs(score), 1), 10) sign = 1 if score > 0 else -1 if score < 0 else 0 seconds = difference_seconds - 1134028003 return round(sign * order + seconds / 45000, 7)
examples/graph_prediction/general_gnn.py
JonaBecher/spektral
2,145
12786322
""" This example implements the model from the paper > [Design Space for Graph Neural Networks](https://arxiv.org/abs/2011.08843)<br> > <NAME>, <NAME>, <NAME> using the PROTEINS dataset. The configuration at the top of the file is the best one identified in the paper, and should work well for many different datasets without changes. Note: the results reported in the paper are averaged over 3 random repetitions with an 80/20 split. """ import numpy as np import tensorflow as tf from tensorflow.keras.losses import CategoricalCrossentropy from tensorflow.keras.metrics import categorical_accuracy from tensorflow.keras.optimizers import Adam from spektral.data import DisjointLoader from spektral.datasets import TUDataset from spektral.models import GeneralGNN physical_devices = tf.config.list_physical_devices("GPU") if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) ################################################################################ # Config ################################################################################ batch_size = 32 learning_rate = 0.01 epochs = 400 ################################################################################ # Load data ################################################################################ data = TUDataset("PROTEINS") # Train/test split np.random.shuffle(data) split = int(0.8 * len(data)) data_tr, data_te = data[:split], data[split:] # Data loaders loader_tr = DisjointLoader(data_tr, batch_size=batch_size, epochs=epochs) loader_te = DisjointLoader(data_te, batch_size=batch_size) ################################################################################ # Build model ################################################################################ model = GeneralGNN(data.n_labels, activation="softmax") optimizer = Adam(learning_rate) loss_fn = CategoricalCrossentropy() ################################################################################ # Fit model ################################################################################ @tf.function(input_signature=loader_tr.tf_signature(), experimental_relax_shapes=True) def train_step(inputs, target): with tf.GradientTape() as tape: predictions = model(inputs, training=True) loss = loss_fn(target, predictions) + sum(model.losses) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) acc = tf.reduce_mean(categorical_accuracy(target, predictions)) return loss, acc def evaluate(loader): output = [] step = 0 while step < loader.steps_per_epoch: step += 1 inputs, target = loader.__next__() pred = model(inputs, training=False) outs = ( loss_fn(target, pred), tf.reduce_mean(categorical_accuracy(target, pred)), len(target), # Keep track of batch size ) output.append(outs) if step == loader.steps_per_epoch: output = np.array(output) return np.average(output[:, :-1], 0, weights=output[:, -1]) epoch = step = 0 results = [] for batch in loader_tr: step += 1 loss, acc = train_step(*batch) results.append((loss, acc)) if step == loader_tr.steps_per_epoch: step = 0 epoch += 1 results_te = evaluate(loader_te) print( "Ep. {} - Loss: {:.3f} - Acc: {:.3f} - Test loss: {:.3f} - Test acc: {:.3f}".format( epoch, *np.mean(results, 0), *results_te ) ) results = [] ################################################################################ # Evaluate model ################################################################################ results_te = evaluate(loader_te) print("Final results - Loss: {:.3f} - Acc: {:.3f}".format(*results_te))
Chapter01/19_iterator_example.py
add54/ADMIN_SYS_PYTHON
116
12786329
<filename>Chapter01/19_iterator_example.py<gh_stars>100-1000 numbers = [10, 20, 30, 40] numbers_iter = iter(numbers) print(next(numbers_iter)) print(next(numbers_iter)) print(numbers_iter.__next__()) print(numbers_iter.__next__()) next(numbers_iter)
src/app/conf/static.py
denkasyanov/education-backend
151
12786362
<filename>src/app/conf/static.py import os.path from app.conf.boilerplate import BASE_DIR from app.conf.environ import env STATIC_URL = env('STATIC_URL', default='/static/') STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles')
tests/environment/test_custom_environment_provider.py
TheCodingLand/pyctuator
118
12786367
<gh_stars>100-1000 from typing import Dict from pyctuator.environment.custom_environment_provider import CustomEnvironmentProvider from pyctuator.environment.environment_provider import PropertyValue def test_custom_environment_provider() -> None: def produce_env() -> Dict: return { "a": "s1", "b": { "secret": "ha ha", "c": 625, }, "d": { "e": True, "f": "hello", "g": { "h": 123, "i": "abcde" } } } provider = CustomEnvironmentProvider("custom", produce_env) properties_source = provider.get_properties_source() assert properties_source.name == "custom" assert properties_source.properties == { "a": PropertyValue(value="s1"), "b.secret": PropertyValue(value="******"), "b.c": PropertyValue(value=625), "d.e": PropertyValue(value=True), "d.f": PropertyValue(value="hello"), "d.g.h": PropertyValue(value=123), "d.g.i": PropertyValue(value="abcde"), }
akshare/economic/macro_china_hk.py
J-Z-Z/akshare
721
12786375
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2021/12/6 15:21 Desc: 中国-香港-宏观指标 https://data.eastmoney.com/cjsj/foreign_8_0.html """ import pandas as pd import requests from akshare.utils import demjson def macro_china_hk_cpi() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-消费者物价指数 https://data.eastmoney.com/cjsj/foreign_8_0.html :return: 消费者物价指数 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "0", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def macro_china_hk_cpi_ratio() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_8_1.html :return: 消费者物价指数年率 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "1", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def macro_china_hk_rate_of_unemployment() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-失业率 https://data.eastmoney.com/cjsj/foreign_8_2.html :return: 失业率 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "2", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def macro_china_hk_gbp() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-香港 GDP https://data.eastmoney.com/cjsj/foreign_8_3.html :return: 香港 GDP :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "3", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) / 100 temp_df['现值'] = pd.to_numeric(temp_df['现值']) / 100 temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def macro_china_hk_gbp_ratio() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-香港 GDP 同比 https://data.eastmoney.com/cjsj/foreign_8_4.html :return: 香港 GDP 同比 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "4", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def macro_china_hk_building_volume() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-香港楼宇买卖合约数量 https://data.eastmoney.com/cjsj/foreign_8_5.html :return: 香港楼宇买卖合约数量 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "5", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def macro_china_hk_building_amount() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-香港楼宇买卖合约成交金额 https://data.eastmoney.com/cjsj/foreign_8_6.html :return: 香港楼宇买卖合约成交金额 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "6", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) / 100 temp_df['现值'] = pd.to_numeric(temp_df['现值']) / 100 temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def macro_china_hk_trade_diff_ratio() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-香港商品贸易差额年率 https://data.eastmoney.com/cjsj/foreign_8_7.html :return: 香港商品贸易差额年率 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "7", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def macro_china_hk_ppi() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-香港制造业 PPI 年率 https://data.eastmoney.com/cjsj/foreign_8_8.html :return: 香港制造业 PPI 年率 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "8", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df if __name__ == "__main__": macro_china_hk_cpi_df = macro_china_hk_cpi() print(macro_china_hk_cpi_df) macro_china_hk_cpi_ratio_df = macro_china_hk_cpi_ratio() print(macro_china_hk_cpi_ratio_df) macro_china_hk_rate_of_unemployment_df = macro_china_hk_rate_of_unemployment() print(macro_china_hk_rate_of_unemployment_df) macro_china_hk_gbp_df = macro_china_hk_gbp() print(macro_china_hk_gbp_df) macro_china_hk_gbp_ratio_df = macro_china_hk_gbp_ratio() print(macro_china_hk_gbp_ratio_df) marco_china_hk_building_volume_df = macro_china_hk_building_volume() print(marco_china_hk_building_volume_df) macro_china_hk_building_amount_df = macro_china_hk_building_amount() print(macro_china_hk_building_amount_df) macro_china_hk_trade_diff_ratio_df = macro_china_hk_trade_diff_ratio() print(macro_china_hk_trade_diff_ratio_df) macro_china_hk_ppi_df = macro_china_hk_ppi() print(macro_china_hk_ppi_df)
chainercv/functions/ps_roi_max_align_2d.py
beam2d/chainercv
1,600
12786392
# Modified work: # ----------------------------------------------------------------------------- # Copyright (c) 2019 Preferred Infrastructure, Inc. # Copyright (c) 2019 Preferred Networks, Inc. # ----------------------------------------------------------------------------- # Original work: # ----------------------------------------------------------------------------- # Copyright (c) 2015 by Contributors # \file roi_pooling.cu # \brief roi pooling operator # \author <NAME>, <NAME>, <NAME> # \changed to roi_align by <NAME> # \file roi_align.cu # \roi align operator described in Mask RCNN # ----------------------------------------------------------------------------- from __future__ import division import numbers import numpy as np import six from chainer.backends import cuda from chainer import function from chainer.utils import type_check from chainercv.functions.ps_roi_average_align_2d \ import _GET_BILINEAR_INTERP_KERNEL from chainercv.functions.ps_roi_average_align_2d \ import _get_bilinear_interp_params from chainercv.functions.ps_roi_average_align_2d import _get_bounds from chainercv.functions.ps_roi_average_align_2d import _pair from chainercv.functions.ps_roi_average_pooling_2d import _outsize class PSROIMaxAlign2D(function.Function): def __init__( self, outsize, spatial_scale, group_size, sampling_ratio=None ): out_c, out_h, out_w = _outsize(outsize) if out_c is not None and \ not (isinstance(out_c, numbers.Integral) and out_c > 0): raise TypeError( 'outsize[0] must be positive integer: {}, {}' .format(type(out_c), out_c)) if not (isinstance(out_h, numbers.Integral) and out_h > 0): raise TypeError( 'outsize[1] must be positive integer: {}, {}' .format(type(out_h), out_h)) if not (isinstance(out_w, numbers.Integral) and out_w > 0): raise TypeError( 'outsize[2] must be positive integer: {}, {}' .format(type(out_w), out_w)) if isinstance(spatial_scale, numbers.Integral): spatial_scale = float(spatial_scale) if not (isinstance(spatial_scale, numbers.Real) and spatial_scale > 0): raise TypeError( 'spatial_scale must be a positive float number: {}, {}' .format(type(spatial_scale), spatial_scale)) if not (isinstance(group_size, numbers.Integral) and group_size > 0): raise TypeError( 'group_size must be positive integer: {}, {}' .format(type(group_size), group_size)) sampling_ratio = _pair(sampling_ratio) if not all((isinstance(s, numbers.Integral) and s >= 1) or s is None for s in sampling_ratio): raise TypeError( 'sampling_ratio must be integer >= 1 or a pair of it: {}' .format(sampling_ratio)) self.out_c, self.out_h, self.out_w = out_c, out_h, out_w self.spatial_scale = spatial_scale self.group_size = group_size self.sampling_ratio = sampling_ratio def check_type_forward(self, in_types): type_check.expect(in_types.size() == 3) x_type, roi_type, roi_index_type = in_types type_check.expect( x_type.dtype == np.float32, x_type.ndim == 4, roi_type.dtype == np.float32, roi_type.ndim == 2, roi_type.shape[1] == 4, roi_index_type.dtype == np.int32, roi_index_type.ndim == 1, roi_type.shape[0] == roi_index_type.shape[0] ) def forward_cpu(self, inputs): self.retain_inputs((1, 2)) self._bottom_data_shape = inputs[0].shape bottom_data, bottom_rois, bottom_roi_indices = inputs channel, height, width = bottom_data.shape[1:] if self.out_c is None: if channel % (self.group_size * self.group_size) != 0: raise ValueError( 'input channel must be divided by group_size * group_size:' '{} % {} != 0' .format(channel, self.group_size * self.group_size)) out_c = channel // (self.group_size * self.group_size) else: if channel != self.out_c * self.group_size * self.group_size: raise ValueError( 'input channel must be equal to ' 'outsize[0] * group_size * group_size: {} != {}' .format(channel, self.out_c * self.group_size * self.group_size)) out_c = self.out_c n_roi = bottom_rois.shape[0] top_data = np.empty( (n_roi, out_c, self.out_h, self.out_w), dtype=np.float32) self.argmax_data = np.empty(top_data.shape, dtype=np.int32) group_size = self.group_size pooled_width, pooled_height \ = self.out_w, self.out_h spatial_scale = self.spatial_scale for i in six.moves.range(top_data.size): n, ctop, ph, pw = np.unravel_index(i, top_data.shape) roi_batch_ind = bottom_roi_indices[n] roi_start_h = bottom_rois[n, 0] * spatial_scale roi_start_w = bottom_rois[n, 1] * spatial_scale roi_end_h = bottom_rois[n, 2] * spatial_scale roi_end_w = bottom_rois[n, 3] * spatial_scale roi_height = max(roi_end_h - roi_start_h, 0.1) roi_width = max(roi_end_w - roi_start_w, 0.1) bin_size_h = roi_height / pooled_height bin_size_w = roi_width / pooled_width gh = int(np.floor(ph * group_size / pooled_height)) gw = int(np.floor(pw * group_size / pooled_width)) gh = min(max(gh, 0), group_size - 1) gw = min(max(gw, 0), group_size - 1) c = (ctop * group_size + gh) * group_size + gw if self.sampling_ratio[0] is None: roi_bin_grid_h = int(np.ceil(roi_height / pooled_height)) else: roi_bin_grid_h = self.sampling_ratio[0] if self.sampling_ratio[1] is None: roi_bin_grid_w = int(np.ceil(roi_width / pooled_width)) else: roi_bin_grid_w = self.sampling_ratio[1] maxval = - np.inf maxidx = -1 for iy in six.moves.range(roi_bin_grid_h): y = roi_start_h + ph * bin_size_h + \ (iy + .5) * bin_size_h / roi_bin_grid_h y, y_low, y_high = _get_bounds(y, height) if y is None or y_low is None or y_high is None: continue for ix in six.moves.range(roi_bin_grid_w): x = roi_start_w + pw * bin_size_w + \ (ix + .5) * bin_size_w / roi_bin_grid_w x, x_low, x_high = _get_bounds(x, width) if x is None or x_low is None or x_high is None: continue # bilinear interpolation {{ w1, w2, w3, w4 = _get_bilinear_interp_params( y, x, y_low, x_low, y_high, x_high) tmpval = 0.0 isvalid = False bottom_index = iy * roi_bin_grid_w + ix if w1 > 0 and y_low >= 0 and x_low >= 0: v1 = bottom_data[roi_batch_ind, c, y_low, x_low] tmpval += w1 * v1 isvalid = True if w2 > 0 and y_low >= 0 and x_high <= width - 1: v2 = bottom_data[roi_batch_ind, c, y_low, x_high] tmpval += w2 * v2 isvalid = True if w3 > 0 and y_high <= height - 1 and x_low >= 0: v3 = bottom_data[roi_batch_ind, c, y_high, x_low] tmpval += w3 * v3 isvalid = True if w4 > 0 and y_high <= height - 1 and x_high <= width - 1: v4 = bottom_data[roi_batch_ind, c, y_high, x_high] tmpval += w4 * v4 isvalid = True if isvalid and tmpval > maxval: maxval = tmpval maxidx = bottom_index # }} top_data[n, ctop, ph, pw] = maxval self.argmax_data[n, ctop, ph, pw] = maxidx return top_data, def forward_gpu(self, inputs): self.retain_inputs((1, 2)) self._bottom_data_shape = inputs[0].shape bottom_data, bottom_rois, bottom_roi_indices = inputs channel, height, width = bottom_data.shape[1:] if self.out_c is None: if channel % (self.group_size * self.group_size) != 0: raise ValueError( 'input channel must be divided by group_size * group_size:' '{} % {} != 0' .format(channel, self.group_size * self.group_size)) out_c = channel // (self.group_size * self.group_size) else: if channel != self.out_c * self.group_size * self.group_size: raise ValueError( 'input channel must be equal to ' 'outsize[0] * group_size * group_size: {} != {}' .format(channel, self.out_c * self.group_size * self.group_size)) out_c = self.out_c n_roi = bottom_rois.shape[0] top_data = cuda.cupy.empty( (n_roi, out_c, self.out_h, self.out_w), dtype=np.float32) self.argmax_data = cuda.cupy.empty(top_data.shape, np.int32) if self.sampling_ratio[0] is None: sampling_ratio_h = 0 else: sampling_ratio_h = self.sampling_ratio[0] if self.sampling_ratio[1] is None: sampling_ratio_w = 0 else: sampling_ratio_w = self.sampling_ratio[1] cuda.elementwise( ''' raw T bottom_data, raw T bottom_rois, raw int32 bottom_roi_indices, T spatial_scale, int32 channel, int32 height, int32 width, int32 pooled_dim, int32 pooled_height, int32 pooled_width, int32 group_size, int32 sampling_ratio_h, int32 sampling_ratio_w ''', 'T top_data, int32 argmax_data', ''' // pos in output filter int ph = (i / pooled_width) % pooled_height; int pw = i % pooled_width; int ctop = (i / pooled_width / pooled_height) % pooled_dim; int n = i / pooled_width / pooled_height / pooled_dim; int roi_batch_ind = bottom_roi_indices[n]; T roi_start_h = bottom_rois[n * 4 + 0] * spatial_scale; T roi_start_w = bottom_rois[n * 4 + 1] * spatial_scale; T roi_end_h = bottom_rois[n * 4 + 2] * spatial_scale; T roi_end_w = bottom_rois[n * 4 + 3] * spatial_scale; // Force too small ROIs to be 1x1 T roi_height = max(roi_end_h - roi_start_h, 0.1); T roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0 // Compute w and h at bottom T bin_size_h = roi_height / static_cast<T>(pooled_height); T bin_size_w = roi_width / static_cast<T>(pooled_width); // Compute c at bottom int gh = floor( static_cast<T>(ph) * group_size / pooled_height); int gw = floor( static_cast<T>(pw) * group_size / pooled_width); gh = min(max(gh, 0), group_size - 1); gw = min(max(gw, 0), group_size - 1); int c = (ctop * group_size + gh) * group_size + gw; int bottom_data_offset = (roi_batch_ind * channel + c) * height * width; // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sampling_ratio_h > 0) ? sampling_ratio_h : ceil(roi_height / pooled_height); // e.g. = 2 int roi_bin_grid_w = (sampling_ratio_w > 0) ? sampling_ratio_w : ceil(roi_width / pooled_width); T maxval = - (T) (1.0 / 0.0); int maxidx = -1; for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g. iy = 0, 1 { T y = roi_start_h + ph * bin_size_h + static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); // e.g. 0.5, 1.5 int y_low, y_high; bool y_ret = get_bounds(y, height, y_low, y_high); if (!y_ret) continue; for (int ix = 0; ix < roi_bin_grid_w; ix++) { T x = roi_start_w + pw * bin_size_w + static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w); int x_low, x_high; bool x_ret = get_bounds(x, width, x_low, x_high); if (!x_ret) continue; // bilinear_interpolation {{ T w1, w2, w3, w4; get_bilinear_interp_params( y, x, y_low, x_low, y_high, x_high, w1, w2, w3, w4); T tmpval = 0.; bool isvalid = false; int bottom_index = iy * roi_bin_grid_w + ix; if (w1 > 0 && y_low >= 0 && x_low >= 0) { T v1 = bottom_data[ bottom_data_offset + y_low * width + x_low]; tmpval += w1 * v1; isvalid = true; } if (w2 > 0 && y_low >= 0 && x_high <= width - 1) { T v2 = bottom_data[ bottom_data_offset + y_low * width + x_high]; tmpval += w2 * v2; isvalid = true; } if (w3 > 0 && y_high <= height - 1 && x_low >= 0) { T v3 = bottom_data[ bottom_data_offset + y_high * width + x_low]; tmpval += w3 * v3; isvalid = true; } if (w4 > 0 && y_high <= height - 1 && x_high <= width - 1) { T v4 = bottom_data[ bottom_data_offset + y_high * width + x_high]; tmpval += w4 * v4; isvalid = true; } // }} if (isvalid && tmpval > maxval) { maxval = tmpval; maxidx = bottom_index; } } } top_data = maxval; argmax_data = maxidx; ''', 'ps_roi_max_align_2d_fwd', preamble=_GET_BILINEAR_INTERP_KERNEL, )(bottom_data, bottom_rois, bottom_roi_indices, self.spatial_scale, channel, height, width, out_c, self.out_h, self.out_w, self.group_size, sampling_ratio_h, sampling_ratio_w, top_data, self.argmax_data) return top_data, def backward_cpu(self, inputs, gy): _, bottom_rois, bottom_roi_indices = inputs height, width = self._bottom_data_shape[2:] bottom_diff = np.zeros(self._bottom_data_shape, np.float32) spatial_scale = self.spatial_scale pooled_height = self.out_h pooled_width = self.out_w group_size = self.group_size top_diff = gy[0] for i in six.moves.range(top_diff.size): n, ctop, ph, pw = np.unravel_index(i, top_diff.shape) roi_batch_ind = bottom_roi_indices[n] roi_start_h = bottom_rois[n, 0] * spatial_scale roi_start_w = bottom_rois[n, 1] * spatial_scale roi_end_h = bottom_rois[n, 2] * spatial_scale roi_end_w = bottom_rois[n, 3] * spatial_scale roi_height = max(roi_end_h - roi_start_h, 0.1) roi_width = max(roi_end_w - roi_start_w, 0.1) bin_size_h = roi_height / pooled_height bin_size_w = roi_width / pooled_width gh = int(np.floor(float(ph) * group_size / pooled_height)) gw = int(np.floor(float(pw) * group_size / pooled_width)) gh = min(max(gh, 0), group_size - 1) gw = min(max(gw, 0), group_size - 1) c = (ctop * group_size + gh) * group_size + gw top_diff_this_bin = top_diff[n, ctop, ph, pw] maxidx = self.argmax_data[n, ctop, ph, pw] if maxidx != -1: if self.sampling_ratio[0] is None: roi_bin_grid_h = int(np.ceil(roi_height / pooled_height)) else: roi_bin_grid_h = self.sampling_ratio[0] if self.sampling_ratio[1] is None: roi_bin_grid_w = int(np.ceil(roi_width / pooled_width)) else: roi_bin_grid_w = self.sampling_ratio[1] iy = int(maxidx / roi_bin_grid_w) ix = maxidx % roi_bin_grid_w y = roi_start_h + ph * bin_size_h + \ (iy + .5) * bin_size_h / roi_bin_grid_h x = roi_start_w + pw * bin_size_w + \ (ix + .5) * bin_size_w / roi_bin_grid_w y, y_low, y_high = _get_bounds(y, height) if y is None or y_low is None or y_high is None: continue x, x_low, x_high = _get_bounds(x, width) if x is None or x_low is None or x_high is None: continue # bilinear_interpolation_gradient {{ w1, w2, w3, w4 = _get_bilinear_interp_params( y, x, y_low, x_low, y_high, x_high) if w1 > 0 and y_low >= 0 and x_low >= 0: g1 = top_diff_this_bin * w1 bottom_diff[roi_batch_ind, c, y_low, x_low] += g1 if w2 > 0 and y_low >= 0 and x_high <= width - 1: g2 = top_diff_this_bin * w2 bottom_diff[roi_batch_ind, c, y_low, x_high] += g2 if w3 > 0 and y_high <= height - 1 and x_low >= 0: g3 = top_diff_this_bin * w3 bottom_diff[roi_batch_ind, c, y_high, x_low] += g3 if w4 > 0 and y_high <= height - 1 and x_high <= width - 1: g4 = top_diff_this_bin * w4 bottom_diff[roi_batch_ind, c, y_high, x_high] += g4 # }} return bottom_diff, None, None def backward_gpu(self, inputs, gy): _, bottom_rois, bottom_roi_indices = inputs channel, height, width = self._bottom_data_shape[1:] out_c, out_h, out_w = gy[0].shape[1:] bottom_diff = cuda.cupy.zeros(self._bottom_data_shape, np.float32) if self.sampling_ratio[0] is None: sampling_ratio_h = 0 else: sampling_ratio_h = self.sampling_ratio[0] if self.sampling_ratio[1] is None: sampling_ratio_w = 0 else: sampling_ratio_w = self.sampling_ratio[1] cuda.elementwise( ''' raw T top_diff, raw int32 argmax_data, raw T bottom_rois, raw int32 bottom_roi_indices, T spatial_scale, int32 channel, int32 height, int32 width, int32 pooled_dim, int32 pooled_height, int32 pooled_width, int32 group_size, int32 sampling_ratio_h, int32 sampling_ratio_w ''', 'raw T bottom_diff', ''' // (n, c, h, w) coords in bottom data int pw = i % pooled_width; int ph = (i / pooled_width) % pooled_height; int ctop = (i / pooled_width / pooled_height) % pooled_dim; int n = i / pooled_width / pooled_height / pooled_dim; // Do not using rounding; this implementation detail is critical int roi_batch_ind = bottom_roi_indices[n]; T roi_start_h = bottom_rois[n * 4 + 0] * spatial_scale; T roi_start_w = bottom_rois[n * 4 + 1] * spatial_scale; T roi_end_h = bottom_rois[n * 4 + 2] * spatial_scale; T roi_end_w = bottom_rois[n * 4 + 3] * spatial_scale; // Force too small ROIs to be 1x1 T roi_height = max(roi_end_h - roi_start_h, 0.1); T roi_width = max(roi_end_w - roi_start_w, 0.1); // avoid 0 // Compute w and h at bottom T bin_size_h = roi_height / static_cast<T>(pooled_height); T bin_size_w = roi_width / static_cast<T>(pooled_width); // Compute c at bottom int gh = floor( static_cast<T>(ph) * group_size / pooled_height); int gw = floor( static_cast<T>(pw) * group_size / pooled_width); gh = min(max(gh, 0), group_size - 1); gw = min(max(gw, 0), group_size - 1); int c = (ctop * group_size + gh) * group_size + gw; int bottom_diff_offset = (roi_batch_ind * channel + c) * height * width; int top_offset = (n * pooled_dim + ctop) * pooled_height * pooled_width; T top_diff_this_bin = top_diff[top_offset + ph * pooled_width + pw]; int maxidx = argmax_data[top_offset + ph * pooled_width + pw]; if (maxidx != -1) { // We use roi_bin_grid to sample the grid and mimic integral int roi_bin_grid_h = (sampling_ratio_h > 0) ? sampling_ratio_h : ceil(roi_height / pooled_height); // e.g. = 2 int roi_bin_grid_w = (sampling_ratio_w > 0) ? sampling_ratio_w : ceil(roi_width / pooled_width); int iy = maxidx / roi_bin_grid_w; int ix = maxidx % roi_bin_grid_w; T y = roi_start_h + ph * bin_size_h + static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); // e.g. 0.5, 1.5 T x = roi_start_w + pw * bin_size_w + static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w); int y_low, y_high; bool y_ret = get_bounds(y, height, y_low, y_high); if (!y_ret) continue; int x_low, x_high; bool x_ret = get_bounds(x, width, x_low, x_high); if (!x_ret) continue; // bilinear_interpolation_gradient {{ T w1, w2, w3, w4; get_bilinear_interp_params( y, x, y_low, x_low, y_high, x_high, w1, w2, w3, w4); if (w1 > 0 && y_low >= 0 && x_low >= 0) { T g1 = top_diff_this_bin * w1; atomicAdd(&bottom_diff[ bottom_diff_offset + y_low * width + x_low], g1); } if (w2 > 0 && y_low >= 0 && x_high <= width - 1) { T g2 = top_diff_this_bin * w2; atomicAdd(&bottom_diff[ bottom_diff_offset + y_low * width + x_high], g2); } if (w3 > 0 && y_high <= height - 1 && x_low >= 0) { T g3 = top_diff_this_bin * w3; atomicAdd(&bottom_diff[ bottom_diff_offset + y_high * width + x_low], g3); } if (w4 > 0 && y_high <= height - 1 && x_high <= width - 1) { T g4 = top_diff_this_bin * w4; atomicAdd(&bottom_diff[ bottom_diff_offset + y_high * width + x_high], g4); } // }} } ''', 'ps_roi_max_align_2d_bwd', preamble=_GET_BILINEAR_INTERP_KERNEL, )(gy[0], self.argmax_data, bottom_rois, bottom_roi_indices, self.spatial_scale, channel, height, width, out_c, out_h, out_w, self.group_size, sampling_ratio_h, sampling_ratio_w, bottom_diff, size=gy[0].size) return bottom_diff, None, None def ps_roi_max_align_2d( x, rois, roi_indices, outsize, spatial_scale, group_size, sampling_ratio=None ): """Position Sensitive Region of Interest (ROI) Max align function. This function computes position sensitive max value of input spatial patch with the given region of interests. Each ROI is splitted into :math:`(group\_size, group\_size)` regions, and position sensitive values in each region is computed. Args: x (~chainer.Variable): Input variable. The shape is expected to be 4 dimentional: (n: batch, c: channel, h, height, w: width). rois (array): Input roi. The shape is expected to be :math:`(R, 4)`, and each datum is set as below: (y_min, x_min, y_max, x_max). The dtype is :obj:`numpy.float32`. roi_indices (array): Input roi indices. The shape is expected to be :math:`(R, )`. The dtype is :obj:`numpy.int32`. outsize ((int, int, int) or (int, int) or int): Expected output size after pooled: (channel, height, width) or (height, width) or outsize. ``outsize=o`` and ``outsize=(o, o)`` are equivalent. Channel parameter is used to assert the input shape. spatial_scale (float): Scale of the roi is resized. group_size (int): Position sensitive group size. sampling_ratio ((int, int) or int): Sampling step for the alignment. It must be an integer over :math:`1` or :obj:`None`, and the value is automatically decided when :obj:`None` is passed. Use of different ratio in height and width axis is also supported by passing tuple of int as ``(sampling_ratio_h, sampling_ratio_w)``. ``sampling_ratio=s`` and ``sampling_ratio=(s, s)`` are equivalent. Returns: ~chainer.Variable: Output variable. See the original paper proposing PSROIPooling: `R-FCN <https://arxiv.org/abs/1605.06409>`_. See the original paper proposing ROIAlign: `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_. """ return PSROIMaxAlign2D( outsize, spatial_scale, group_size, sampling_ratio)(x, rois, roi_indices)
draw_bar.py
IndexFziQ/nn4nlp-concepts
440
12786471
# import libraries import matplotlib matplotlib.use('Agg') import pandas as pd import matplotlib.pyplot as plt import argparse from collections import defaultdict #%matplotlib inline # set font plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.sans-serif'] = 'Helvetica' # set the style of the axes and the text color plt.rcParams['axes.edgecolor']='#333F4B' plt.rcParams['axes.linewidth']=0.8 plt.rcParams['xtick.color']='#333F4B' plt.rcParams['ytick.color']='#333F4B' plt.rcParams['text.color']='#333F4B' parser = argparse.ArgumentParser(description='Draw Bar') parser.add_argument('--tsv', default='input.tsv', help='input file separted by \'\\t\' ') parser.add_argument('--fig', default='out.png', help='the output figure') parser.add_argument('--title', default='Concept Count in All Papers', help='the title of the graph') parser.add_argument('--colored_concepts', default=None, nargs='+', help='An interleaved list of filenames containing concept tags (e.g. first.txt red second.txt purple)') args = parser.parse_args() concept_colors = defaultdict(lambda: '#007ACC') if args.colored_concepts: for i in range(0, len(args.colored_concepts), 2): print(f"opening {args.colored_concepts[i]} as {args.colored_concepts[i+1]}") with open(args.colored_concepts[i], 'r') as f: for line in f: line = line.strip() concept_colors[line] = args.colored_concepts[i+1] print(f'concept_colors[{line}] = {args.colored_concepts[i+1]}') tsv_file = args.tsv fig_file = args.fig fin = open(tsv_file,"r") cpt_list = [] val_list = [] for line in fin: line = line.strip() cpt, val = line.split("\t") val_list.append(int(val)) cpt_list.append(cpt) fin.close() percentages = pd.Series(val_list, index=cpt_list) df = pd.DataFrame({'percentage' : percentages}) df = df.sort_values(by='percentage') color_list = [concept_colors[x] for x in df.index] # we first need a numeric placeholder for the y axis my_range=list(range(1,len(df.index)+1)) fig, ax = plt.subplots(figsize=(10,25)) # create lines and dots for each bar plt.hlines(y=my_range, xmin=0, xmax=df['percentage'], colors=color_list, alpha=0.5, linewidth=5) # plt.plot(df['percentage'], my_range, "o", markersize=5, colors=color_list, alpha=0.6) # set labels ax.set_xlabel(args.title, fontsize=15, fontweight='black', color = '#333F4B') ax.xaxis.set_label_position('top') ax.xaxis.tick_top() #ax.set_ylabel('') # set axis ax.tick_params(axis='both', which='major', labelsize=12) plt.yticks(my_range, df.index) # add an horizonal label for the y axis #fig.text(-0.23, 0.86, 'Concept Coverage (Fulltext)', fontsize=15, fontweight='black', color = '#333F4B') # change the style of the axis spines ax.spines['bottom'].set_color('none') ax.spines['right'].set_color('none') ax.spines['left'].set_smart_bounds(True) ax.spines['top'].set_smart_bounds(True) ''' # set the spines position ax.spines['bottom'].set_position(('axes', -0.04)) ax.spines['left'].set_position(('axes', 0.015)) ''' plt.savefig(fig_file, dpi=300, bbox_inches='tight')
test/nose_test.py
fakeNetflix/uber-repo-doubles
150
12786510
<gh_stars>100-1000 import unittest from nose.plugins import PluginTester from doubles.nose import NoseIntegration from doubles.instance_double import InstanceDouble from doubles.targets.expectation_target import expect def test_nose_plugin(): class TestNosePlugin(PluginTester, unittest.TestCase): activate = '--with-doubles' plugins = [NoseIntegration()] def test_expect(self): assert 'MockExpectationError' in self.output assert 'FAILED (failures=1)' in self.output assert 'Ran 2 tests' in self.output def makeSuite(self): class TestCase(unittest.TestCase): def runTest(self): subject = InstanceDouble('doubles.testing.User') expect(subject).instance_method def test2(self): pass return [TestCase('runTest'), TestCase('test2')] result = unittest.TestResult() TestNosePlugin('test_expect')(result) assert result.wasSuccessful()
python/ql/test/experimental/query-tests/Security/CWE-117/LogInjectionGood.py
madhurimamandal/codeql
4,036
12786544
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ @Desc :Log Injection """ from flask import Flask from flask import request import logging logging.basicConfig(level=logging.DEBUG) app = Flask(__name__) @app.route('/good1') def good1(): name = request.args.get('name') name = name.replace('\r\n','').replace('\n','') logging.info('User name: ' + name) # Good return 'good1' if __name__ == '__main__': app.debug = True handler = logging.FileHandler('log') app.logger.addHandler(handler) app.run()
ckanext/example_theme/v14_more_custom_css/plugin.py
okfde/ckankrzn
2,805
12786621
<gh_stars>1000+ ../v13_custom_css/plugin.py
pybinding/greens.py
lise1020/pybinding
159
12786624
"""Green's function computation and related methods Deprecated: use the chebyshev module instead """ import warnings from . import chebyshev from .support.deprecated import LoudDeprecationWarning __all__ = ['Greens', 'kpm', 'kpm_cuda'] Greens = chebyshev.KPM def kpm(*args, **kwargs): warnings.warn("Use pb.kpm() instead", LoudDeprecationWarning, stacklevel=2) return chebyshev.kpm(*args, **kwargs) def kpm_cuda(*args, **kwargs): warnings.warn("Use pb.kpm_cuda() instead", LoudDeprecationWarning, stacklevel=2) return chebyshev.kpm_cuda(*args, **kwargs)
src/debugpy/_vendored/pydevd/tests_python/resources/_debugger_case_source_mapping_and_reference.py
r3m0t/debugpy
695
12786625
def full_function(): # Note that this function is not called, it's there just to make the mapping explicit. a = 1 # map to cEll1, line 2 b = 2 # map to cEll1, line 3 c = 3 # map to cEll2, line 2 d = 4 # map to cEll2, line 3 def create_code(): cell1_code = compile(''' # line 1 a = 1 # line 2 b = 2 # line 3 ''', '<cEll1>', 'exec') cell2_code = compile('''# line 1 c = 3 # line 2 d = 4 # line 3 ''', '<cEll2>', 'exec') # Set up the source in linecache. Python doesn't have a public API for # this, so we have to hack around it, similar to what IPython does. import linecache import time code = ''' # line 1 a = 1 # line 2 b = 2 # line 3 ''' linecache.cache['<cEll1>'] = ( len(code), time.time(), [line + '\n' for line in code.splitlines()], '<cEll1>', ) code = '''# line 1 c = 3 # line 2 d = 4 # line 3 ''' linecache.cache['<cEll2>'] = ( len(code), time.time(), [line + '\n' for line in code.splitlines()], '<cEll2>', ) return {'cEll1': cell1_code, 'cEll2': cell2_code} if __name__ == '__main__': code = create_code() exec(code['cEll1']) exec(code['cEll1']) exec(code['cEll2']) exec(code['cEll2']) print('TEST SUCEEDED')
wrappers/tensorflow/example5 - denoise.py
NobuoTsukamoto/librealsense
6,457
12786662
<reponame>NobuoTsukamoto/librealsense import pyrealsense2 as rs import numpy as np import cv2 from tensorflow import keras import time, sys # Configure depth and color streams pipeline = rs.pipeline() config = rs.config() config.enable_stream(rs.stream.depth, 848, 480, rs.format.z16, 30) config.enable_stream(rs.stream.infrared, 1, 848, 480, rs.format.y8, 30) # 1 for left frame # Start streaming pipeline.start(config) channels = 2 cropped_w, cropped_h = 480, 480 test_model_name = "" if (len(sys.argv) > 1): test_model_name = str(sys.argv[1]) t1 = time.perf_counter() model = keras.models.load_model(test_model_name) t2 = time.perf_counter() print('model loading : ', t2 - t1, 'seconds') def predict(noisy_image, ir_image): t1 = time.perf_counter() ir_image = np.array(ir_image).astype("uint16") cropped_ir , cropped_noisy = [], [] width, height = 848, 480 w, h = cropped_w, cropped_h for col_i in range(0, width, w): for row_i in range(0, height, h): cropped_ir.append(ir_image[row_i:row_i+h, col_i:col_i+w]) cropped_noisy.append(noisy_image[row_i:row_i+h, col_i:col_i+w]) # fill with zero to get size 480x480 for both images fill = np.zeros((h, w - cropped_ir[-1].shape[1]), dtype="uint16") cropped_ir[-1] = np.hstack((cropped_ir[-1], fill)) cropped_noisy[-1] = np.hstack((cropped_noisy[-1], fill)) t2 = time.perf_counter() print('image cropping : ', t2 - t1, 'seconds') cropped_image_offsets = [(0,0), (0,480)] whole_image = np.zeros((height, width, channels), dtype="float32") for i in range(len(cropped_ir)): t1 = time.perf_counter() noisy_images_plt = cropped_noisy[i].reshape(1, cropped_w, cropped_h, 1) ir_images_plt = cropped_ir[i].reshape(1, cropped_w, cropped_h, 1) im_and_ir = np.stack((noisy_images_plt, ir_images_plt), axis=3) im_and_ir = im_and_ir.reshape(1, cropped_w, cropped_h, channels) img = np.array(im_and_ir) # Parse numbers as floats img = img.astype('float32') # Normalize data : remove average then devide by standard deviation img = img / 65535 sample = img row, col = cropped_image_offsets[i] t2 = time.perf_counter() print('image channeling : ', t2 - t1, 'seconds') t1 = time.perf_counter() denoised_image = model.predict(sample) t2 = time.perf_counter() print('prediction only : ', t2 - t1, 'seconds') row_end = row + cropped_h col_end = col + cropped_w denoised_row = cropped_h denoised_col = cropped_w if row + cropped_h >= height: row_end = height - 1 denoised_row = abs(row - row_end) if col + cropped_w >= width: col_end = width - 1 denoised_col = abs(col - col_end) # combine tested images whole_image[row:row_end, col:col_end] = denoised_image[:, 0:denoised_row, 0:denoised_col, :] return whole_image[:, :, 0] #============================================================================================================= def convert_image(i): m = np.min(i) M = np.max(i) i = np.divide(i, np.array([M - m], dtype=np.float)).astype(np.float) i = (i - m).astype(np.float) i8 = (i * 255.0).astype(np.uint8) if i8.ndim == 3: i8 = cv2.cvtColor(i8, cv2.COLOR_BGRA2GRAY) i8 = cv2.equalizeHist(i8) colorized = cv2.applyColorMap(i8, cv2.COLORMAP_JET) colorized[i8 == int(m)] = 0 font = cv2.FONT_HERSHEY_SIMPLEX m = float("{:.2f}".format(m)) M = float("{:.2f}".format(M)) colorized = cv2.putText(colorized, str(m) + " .. " + str(M) + "[m]", (20, 50), font, 1, (255, 255, 255), 2, cv2.LINE_AA) return colorized try: c = rs.colorizer() while True: print("==============================================================") t0 = time.perf_counter() # Wait for a coherent pair of frames: depth and ir t1 = time.perf_counter() frames = pipeline.wait_for_frames() depth_frame = frames.get_depth_frame() ir_frame = frames.get_infrared_frame() t2 = time.perf_counter() print('getting depth + ir frames : ', t2 - t1, 'seconds') if not depth_frame or not ir_frame: continue # Convert images to numpy arrays t1 = time.perf_counter() depth_image = np.asanyarray(depth_frame.get_data()) ir_image = np.asanyarray(ir_frame.get_data()) t2 = time.perf_counter() print('convert frames to numpy arrays : ', t2 - t1, 'seconds') t1 = time.perf_counter() predicted_image = predict(depth_image, ir_image) t2 = time.perf_counter() print('processing + prediction : ', t2 - t1, 'seconds') # Stack both images horizontally # depth_image = convert_image(depth_image) t1 = time.perf_counter() depth_image = np.asanyarray(c.process(depth_frame).get_data()) predicted_image = convert_image(predicted_image) red = depth_image[:, :, 2].copy() blue = depth_image[:, :, 0].copy() depth_image[:, :, 0] = red depth_image[:, :, 2] = blue images = np.hstack((depth_image, predicted_image)) # Show images cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE) cv2.imshow('RealSense', images) cv2.waitKey(1) t2 = time.perf_counter() print('show image : ', t2 - t1, 'seconds') print('TOTAL TIME : ', t2 - t0, 'seconds') finally: # Stop streaming pipeline.stop()
test/test_jump.py
mind-owner/Cyberbrain
2,440
12786673
from cyberbrain import Binding, InitialValue, Symbol def test_jump(tracer, check_golden_file): a = [] b = "b" c = "c" tracer.start() if a: # POP_JUMP_IF_FALSE pass # JUMP_FORWARD else: x = 1 if not a: # POP_JUMP_IF_TRUE x = 2 x = a != b != c # JUMP_IF_FALSE_OR_POP x = a == b or c # JUMP_IF_TRUE_OR_POP # TODO: Test JUMP_ABSOLUTE. This requires loop instructions to be Implemented. tracer.stop()
experiments/ukf_baseball.py
VladPodilnyk/Kalman-and-Bayesian-Filters-in-Python
12,315
12786680
<gh_stars>1000+ # -*- coding: utf-8 -*- """ Created on Sun Feb 8 09:55:24 2015 @author: rlabbe """ from math import radians, sin, cos, sqrt, exp, atan2, radians from numpy import array, asarray from numpy.random import randn import numpy as np import math import matplotlib.pyplot as plt from filterpy.kalman import UnscentedKalmanFilter as UKF from filterpy.common import runge_kutta4 class BaseballPath(object): def __init__(self, x0, y0, launch_angle_deg, velocity_ms, noise=(1.0,1.0)): """ Create 2D baseball path object (x = distance from start point in ground plane, y=height above ground) x0,y0 initial position launch_angle_deg angle ball is travelling respective to ground plane velocity_ms speeed of ball in meters/second noise amount of noise to add to each position in (x,y) """ omega = radians(launch_angle_deg) self.v_x = velocity_ms * cos(omega) self.v_y = velocity_ms * sin(omega) self.x = x0 self.y = y0 self.noise = noise def drag_force(self, velocity): """ Returns the force on a baseball due to air drag at the specified velocity. Units are SI """ B_m = 0.0039 + 0.0058 / (1. + exp((velocity-35.)/5.)) return B_m * velocity def update(self, dt, vel_wind=0.): """ compute the ball position based on the specified time step and wind velocity. Returns (x,y) position tuple """ # Euler equations for x and y self.x += self.v_x*dt self.y += self.v_y*dt # force due to air drag v_x_wind = self.v_x - vel_wind v = sqrt(v_x_wind**2 + self.v_y**2) F = self.drag_force(v) # Euler's equations for velocity self.v_x = self.v_x - F*v_x_wind*dt self.v_y = self.v_y - 9.81*dt - F*self.v_y*dt return (self.x, self.y) radar_pos = (100,0) omega = 45. def radar_sense(baseball, noise_rng, noise_brg): x, y = baseball.x, baseball.y rx, ry = radar_pos[0], radar_pos[1] rng = ((x-rx)**2 + (y-ry)**2) ** .5 bearing = atan2(y-ry, x-rx) rng += randn() * noise_rng bearing += radians(randn() * noise_brg) return (rng, bearing) ball = BaseballPath(x0=0, y0=1, launch_angle_deg=45, velocity_ms=60, noise=[0,0]) ''' xs = [] ys = [] dt = 0.05 y = 1 while y > 0: x,y = ball.update(dt) xs.append(x) ys.append(y) plt.plot(xs, ys) plt.axis('equal') plt.show() ''' dt = 1/30. def hx(x): global radar_pos dx = radar_pos[0] - x[0] dy = radar_pos[1] - x[2] rng = (dx*dx + dy*dy)**.5 bearing = atan2(-dy, -dx) #print(x) #print('hx:', rng, np.degrees(bearing)) return array([rng, bearing]) def fx(x, dt): fx.ball.x = x[0] fx.ball.y = x[2] fx.ball.vx = x[1] fx.ball.vy = x[3] N = 10 ball_dt = dt/float(N) for i in range(N): fx.ball.update(ball_dt) #print('fx', fx.ball.x, fx.ball.v_x, fx.ball.y, fx.ball.v_y) return array([fx.ball.x, fx.ball.v_x, fx.ball.y, fx.ball.v_y]) fx.ball = BaseballPath(x0=0, y0=1, launch_angle_deg=45, velocity_ms=60, noise=[0,0]) y = 1. x = 0. theta = 35. # launch angle v0 = 50. ball = BaseballPath(x0=x, y0=y, launch_angle_deg=theta, velocity_ms=v0, noise=[.3,.3]) kf = UKF(dim_x=4, dim_z=2, dt=dt, hx=hx, fx=fx, kappa=0) #kf.R *= r kf.R[0,0] = 0.1 kf.R[1,1] = radians(0.2) omega = radians(omega) vx = cos(omega) * v0 vy = sin(omega) * v0 kf.x = array([x, vx, y, vy]) kf.R*= 0.01 #kf.R[1,1] = 0.01 kf.P *= 10 f1 = kf t = 0 xs = [] ys = [] while y > 0: t += dt x,y = ball.update(dt) z = radar_sense(ball, 0, 0) #print('z', z) #print('ball', ball.x, ball.v_x, ball.y, ball.v_y) f1.predict() f1.update(z) xs.append(f1.x[0]) ys.append(f1.x[2]) f1.predict() p1 = plt.scatter(x, y, color='r', marker='o', s=75, alpha=0.5) p2, = plt.plot (xs, ys, lw=2, marker='o') #p3, = plt.plot (xs2, ys2, lw=4) #plt.legend([p1,p2, p3], # ['Measurements', 'Kalman filter(R=0.5)', 'Kalman filter(R=10)'], # loc='best', scatterpoints=1) plt.show()
scaffold/generators/common.py
CaravelKit/saas-base
189
12786683
<reponame>CaravelKit/saas-base<filename>scaffold/generators/common.py # Functions used all the generators import os # Check if file and path exist, if not, create them. Then rewrite file or add content at the # beginning, commenting the existing part. def create_write_file(file_path, new_content, rewrite = False, comment_start = '<!--', comment_end = '-->', ignore_existing_files = False): file_param = 'r+' if os.path.exists(file_path): if ignore_existing_files: # Ignore existing file and return print('Ignore: ', file_path) return else: file_param = 'w+' if not os.path.exists(os.path.dirname(file_path)): try: os.makedirs(os.path.dirname(file_path)) except OSError as exc: if exc.errno != errno.EEXIST: raise Exception('Path cannot be created, please try again.') with open(file_path, file_param) as output_file: if not rewrite: output_file.seek(0) content = output_file.read() content = content.replace(comment_start, '').replace(comment_end, '') content = comment_start + content content += comment_end content = new_content + content else: content = new_content output_file.seek(0) output_file.truncate() output_file.write(content) output_file.close()
toollib/__init__.py
atpuxiner/toollib
113
12786744
<filename>toollib/__init__.py """ @author axiner @version v1.0.0 @created 2021/12/12 13:14 @abstract This is a tool library. @description @history """ from pathlib import Path here = Path(__file__).absolute().parent __version__ = '2022.05.11'
tests/test_regression.py
weninc/bitshuffle-1
162
12786746
""" Test that data encoded with earlier versions can still be decoded correctly. """ from __future__ import absolute_import, division, print_function import pathlib import unittest import numpy as np import h5py TEST_DATA_DIR = pathlib.Path(__file__).parent / "data" OUT_FILE_TEMPLATE = "regression_%s.h5" VERSIONS = [ "0.1.3", ] class TestAll(unittest.TestCase): def test_regression(self): for version in VERSIONS: file_name = TEST_DATA_DIR / (OUT_FILE_TEMPLATE % version) f = h5py.File(file_name, "r") g_orig = f["origional"] g_comp = f["compressed"] for dset_name in g_comp.keys(): self.assertTrue(np.all(g_comp[dset_name][:] == g_orig[dset_name][:])) if __name__ == "__main__": unittest.main()
tests/test_config.py
isidentical/unimport
147
12786750
<reponame>isidentical/unimport import re from pathlib import Path from unittest import TestCase from unimport import constants as C from unimport import utils from unimport.config import Config, DefaultConfig TEST_DIR = Path(__file__).parent / "configs" pyproject = TEST_DIR / "pyproject.toml" setup_cfg = TEST_DIR / "setup.cfg" no_unimport_pyproject = TEST_DIR / "no_unimport" / "pyproject.toml" no_unimport_setup_cfg = TEST_DIR / "no_unimport" / "setup.cfg" class ConfigTestCase(TestCase): include = "test|test2|tests.py" exclude = "__init__.py|tests/" sources = [Path("path1"), Path("path2")] def test_toml_parse(self): config = Config(config_file=pyproject).parse() self.assertEqual(self.include, config.include) self.assertEqual(self.exclude, config.exclude) self.assertEqual(self.sources, config.sources) self.assertTrue(config.gitignore) self.assertTrue(config.requirements) self.assertFalse(config.remove) self.assertTrue(config.diff) self.assertTrue(config.ignore_init) def test_cfg_parse(self): config = Config(config_file=setup_cfg).parse() self.assertEqual(self.include, config.include) self.assertEqual(self.exclude, config.exclude) self.assertEqual(self.sources, config.sources) self.assertTrue(config.gitignore) self.assertTrue(config.requirements) self.assertFalse(config.remove) self.assertTrue(config.diff) self.assertTrue(config.ignore_init) def test_cfg_merge(self): config = Config(config_file=setup_cfg).parse() console_configuration = { "include": "tests|env", "remove": True, "diff": False, "include_star_import": True, } gitignore_exclude = utils.get_exclude_list_from_gitignore() exclude = "|".join( [config.exclude] + gitignore_exclude + [C.INIT_FILE_IGNORE_REGEX] ) config = config.merge(**console_configuration) self.assertEqual("tests|env", config.include) self.assertEqual(exclude, config.exclude) self.assertEqual(self.sources, config.sources) self.assertTrue(config.gitignore) self.assertTrue(config.requirements) self.assertTrue(config.remove) self.assertFalse(config.diff) self.assertTrue(config.ignore_init) class DefaultCommandTestCase(TestCase): def setUp(self): self.config = DefaultConfig() def test_there_is_no_command(self): self.assertEqual( self.config.merge(there_is_no_command=True), self.config.merge() ) def test_same_with_default_config(self): self.assertEqual( self.config.merge(exclude=self.config.exclude).exclude, self.config.merge().exclude, ) def test_check(self): self.assertTrue(self.config.merge().check) self.assertTrue(self.config.merge(check=True).check) self.assertTrue(self.config.merge(gitignore=True).check) self.assertFalse(self.config.merge(diff=True).check) self.assertFalse(self.config.merge(remove=True).check) self.assertFalse(self.config.merge(permission=True).check) def test_diff(self): self.assertFalse(self.config.merge().diff) self.assertFalse(self.config.merge(remove=True).diff) self.assertTrue(self.config.merge(diff=True).diff) self.assertTrue(self.config.merge(permission=True).diff) class TomlCommandTestCase(TestCase): def setUp(self): self.config = Config(pyproject).parse() self.exclude = "__init__.py|tests/" def test_same_with_toml_config(self): self.assertEqual( self.config.merge(exclude=self.exclude).exclude, self.config.merge().exclude, ) def test_check(self): self.assertTrue(self.config.merge(check=True).check) self.assertTrue(self.config.merge(diff=False).check) self.assertTrue(self.config.merge(diff=False, permission=False).check) self.assertFalse(self.config.merge().check) self.assertFalse(self.config.merge(gitignore=True).check) self.assertFalse(self.config.merge(diff=True).check) self.assertFalse(self.config.merge(remove=True).check) self.assertFalse(self.config.merge(permission=True).check) class NoUnimportSectionTestCase(TestCase): def setUp(self): self.default_config = DefaultConfig() def test_toml_parse(self): config = Config(config_file=no_unimport_pyproject).parse() self.assertEqual(self.default_config.include, config.include) self.assertEqual(self.default_config.exclude, config.exclude) self.assertEqual(self.default_config.sources, config.sources) self.assertFalse(config.gitignore) self.assertFalse(config.requirements) self.assertFalse(config.remove) self.assertFalse(config.diff) self.assertFalse(config.ignore_init) def test_cfg_parse(self): config = Config(config_file=no_unimport_setup_cfg).parse() self.assertEqual(self.default_config.include, config.include) self.assertEqual(self.default_config.exclude, config.exclude) self.assertEqual(self.default_config.sources, config.sources) self.assertFalse(config.gitignore) self.assertFalse(config.requirements) self.assertFalse(config.remove) self.assertFalse(config.diff) self.assertFalse(config.ignore_init) def test_cfg_merge(self): config = Config(config_file=no_unimport_setup_cfg).parse() console_configuration = { "include": "tests|env", "remove": True, "diff": False, "include_star_import": True, } config = config.merge(**console_configuration) self.assertEqual("tests|env", config.include) self.assertEqual(self.default_config.exclude, config.exclude) self.assertEqual(self.default_config.sources, config.sources) self.assertTrue(config.remove) self.assertTrue(config.include_star_import) self.assertFalse(config.gitignore) self.assertFalse(config.requirements) self.assertFalse(config.diff) class InitFileIgnoreRegexTestCase(TestCase): exclude_regex = re.compile(C.INIT_FILE_IGNORE_REGEX) def test_match(self): self.assertIsNotNone(self.exclude_regex.search("path/to/__init__.py")) self.assertIsNotNone(self.exclude_regex.search("to/__init__.py")) self.assertIsNotNone(self.exclude_regex.search("__init__.py")) def test_not_match(self): self.assertIsNone(self.exclude_regex.search("path/to/_init_.py")) self.assertIsNone( self.exclude_regex.search("path/to/__init__/test.py") ) self.assertIsNone(self.exclude_regex.search("__init__")) self.assertIsNone(self.exclude_regex.search("__init__py")) self.assertIsNone(self.exclude_regex.search("__init__bpy"))
ghostwriter/rolodex/migrations/0013_projectsubtask_marked_complete.py
bbhunter/Ghostwriter
601
12786759
# Generated by Django 3.0.10 on 2021-02-11 21:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rolodex', '0012_auto_20210211_1853'), ] operations = [ migrations.AddField( model_name='projectsubtask', name='marked_complete', field=models.DateField(blank=True, help_text='Date the task was marked complete', null=True, verbose_name='Marked Complete'), ), ]
public-engines/iris-h2o-automl/marvin_iris_h2o_automl/training/metrics_evaluator.py
guialba/incubator-marvin
101
12786771
#!/usr/bin/env python # coding=utf-8 """MetricsEvaluator engine action. Use this module to add the project main code. """ from .._compatibility import six from .._logging import get_logger from marvin_python_toolbox.engine_base import EngineBaseTraining from ..model_serializer import ModelSerializer __all__ = ['MetricsEvaluator'] logger = get_logger('metrics_evaluator') class MetricsEvaluator(ModelSerializer, EngineBaseTraining): def __init__(self, **kwargs): super(MetricsEvaluator, self).__init__(**kwargs) def execute(self, params, **kwargs): import h2o from sklearn import metrics # h2o.init() y_test = self.marvin_dataset['test_X']['Species'] self.marvin_dataset['test_X'].drop(columns='Species', inplace=True) teste = h2o.H2OFrame.from_python(self.marvin_dataset['test_X']) preds = self.marvin_model.predict(teste).as_data_frame()['predict'].values self.marvin_metrics = metrics.accuracy_score(y_test, preds)
pyscf/x2c/test/test_x2c_grad.py
robert-anderson/pyscf
501
12786788
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce import unittest import numpy import scipy.linalg from pyscf import lib from pyscf import gto from pyscf.x2c import sfx2c1e from pyscf.x2c import sfx2c1e_grad def _sqrt0(a): w, v = scipy.linalg.eigh(a) return numpy.dot(v*numpy.sqrt(w), v.conj().T) def _invsqrt0(a): w, v = scipy.linalg.eigh(a) return numpy.dot(v/numpy.sqrt(w), v.conj().T) def _sqrt1(a0, a1): '''Solving first order of x^2 = a''' w, v = scipy.linalg.eigh(a0) w = numpy.sqrt(w) a1 = reduce(numpy.dot, (v.conj().T, a1, v)) x1 = a1 / (w[:,None] + w) x1 = reduce(numpy.dot, (v, x1, v.conj().T)) return x1 def _invsqrt1(a0, a1): '''Solving first order of x^2 = a^{-1}''' w, v = scipy.linalg.eigh(a0) w = 1./numpy.sqrt(w) a1 = -reduce(numpy.dot, (v.conj().T, a1, v)) x1 = numpy.einsum('i,ij,j->ij', w**2, a1, w**2) / (w[:,None] + w) x1 = reduce(numpy.dot, (v, x1, v.conj().T)) return x1 def get_R(mol): s0 = mol.intor('int1e_ovlp') t0 = mol.intor('int1e_kin') s0sqrt = _sqrt0(s0) s0invsqrt = _invsqrt0(s0) x0 = get_x0(mol) c = lib.param.LIGHT_SPEED stild = s0 + reduce(numpy.dot, (x0.T, t0*(.5/c**2), x0)) R = _invsqrt0(reduce(numpy.dot, (s0invsqrt, stild, s0invsqrt))) R = reduce(numpy.dot, (s0invsqrt, R, s0sqrt)) return R def get_r1(mol, atm_id, pos): # See JCP 135 084114, Eq (34) c = lib.param.LIGHT_SPEED aoslices = mol.aoslice_by_atom() ish0, ish1, p0, p1 = aoslices[atm_id] s0 = mol.intor('int1e_ovlp') t0 = mol.intor('int1e_kin') s1all = mol.intor('int1e_ipovlp', comp=3) t1all = mol.intor('int1e_ipkin', comp=3) s1 = numpy.zeros_like(s0) t1 = numpy.zeros_like(t0) s1[p0:p1,:] =-s1all[pos][p0:p1] s1[:,p0:p1] -= s1all[pos][p0:p1].T t1[p0:p1,:] =-t1all[pos][p0:p1] t1[:,p0:p1] -= t1all[pos][p0:p1].T x0 = get_x0(mol) x1 = get_x1(mol, atm_id)[pos] sa0 = s0 + reduce(numpy.dot, (x0.T, t0*(.5/c**2), x0)) sa1 = s1 + reduce(numpy.dot, (x0.T, t1*(.5/c**2), x0)) sa1+= reduce(numpy.dot, (x1.T, t0*(.5/c**2), x0)) sa1+= reduce(numpy.dot, (x0.T, t0*(.5/c**2), x1)) s0_sqrt = _sqrt0(s0) s0_invsqrt = _invsqrt0(s0) s1_sqrt = _sqrt1(s0, s1) s1_invsqrt = _invsqrt1(s0, s1) R0_part = reduce(numpy.dot, (s0_invsqrt, sa0, s0_invsqrt)) R1_part = (reduce(numpy.dot, (s0_invsqrt, sa1, s0_invsqrt)) + reduce(numpy.dot, (s1_invsqrt, sa0, s0_invsqrt)) + reduce(numpy.dot, (s0_invsqrt, sa0, s1_invsqrt))) R1 = reduce(numpy.dot, (s0_invsqrt, _invsqrt1(R0_part, R1_part), s0_sqrt)) R1 += reduce(numpy.dot, (s1_invsqrt, _invsqrt0(R0_part), s0_sqrt)) R1 += reduce(numpy.dot, (s0_invsqrt, _invsqrt0(R0_part), s1_sqrt)) return R1 def get_h0_s0(mol): s = mol.intor_symmetric('int1e_ovlp') t = mol.intor_symmetric('int1e_kin') v = mol.intor_symmetric('int1e_nuc') w = mol.intor_symmetric('int1e_pnucp') nao = s.shape[0] n2 = nao * 2 h = numpy.zeros((n2,n2), dtype=v.dtype) m = numpy.zeros((n2,n2), dtype=v.dtype) c = lib.param.LIGHT_SPEED h[:nao,:nao] = v h[:nao,nao:] = t h[nao:,:nao] = t h[nao:,nao:] = w * (.25/c**2) - t m[:nao,:nao] = s m[nao:,nao:] = t * (.5/c**2) return h, m def get_h1_s1(mol, ia): aoslices = mol.aoslice_by_atom() ish0, ish1, p0, p1 = aoslices[0] nao = mol.nao_nr() s1 = mol.intor('int1e_ipovlp', comp=3) t1 = mol.intor('int1e_ipkin', comp=3) v1 = mol.intor('int1e_ipnuc', comp=3) w1 = mol.intor('int1e_ipspnucsp', comp=12).reshape(3,4,nao,nao)[:,3] with mol.with_rinv_origin(mol.atom_coord(ia)): rinv1 = -8*mol.intor('int1e_iprinv', comp=3) prinvp1 = -8*mol.intor('int1e_ipsprinvsp', comp=12).reshape(3,4,nao,nao)[:,3] n2 = nao * 2 h = numpy.zeros((3,n2,n2), dtype=v1.dtype) m = numpy.zeros((3,n2,n2), dtype=v1.dtype) rinv1[:,p0:p1,:] -= v1[:,p0:p1] rinv1 = rinv1 + rinv1.transpose(0,2,1).conj() prinvp1[:,p0:p1,:] -= w1[:,p0:p1] prinvp1 = prinvp1 + prinvp1.transpose(0,2,1).conj() s1ao = numpy.zeros_like(s1) t1ao = numpy.zeros_like(t1) s1ao[:,p0:p1,:] = -s1[:,p0:p1] s1ao[:,:,p0:p1]+= -s1[:,p0:p1].transpose(0,2,1) t1ao[:,p0:p1,:] = -t1[:,p0:p1] t1ao[:,:,p0:p1]+= -t1[:,p0:p1].transpose(0,2,1) c = lib.param.LIGHT_SPEED h[:,:nao,:nao] = rinv1 h[:,:nao,nao:] = t1ao h[:,nao:,:nao] = t1ao h[:,nao:,nao:] = prinvp1 * (.25/c**2) - t1ao m[:,:nao,:nao] = s1ao m[:,nao:,nao:] = t1ao * (.5/c**2) return h, m def get_x0(mol): c = lib.param.LIGHT_SPEED h0, s0 = get_h0_s0(mol) e, c = scipy.linalg.eigh(h0, s0) nao = mol.nao_nr() cl = c[:nao,nao:] cs = c[nao:,nao:] x0 = scipy.linalg.solve(cl.T, cs.T).T return x0 def get_x1(mol, ia): h0, s0 = get_h0_s0(mol) h1, s1 = get_h1_s1(mol, ia) e0, c0 = scipy.linalg.eigh(h0, s0) nao = mol.nao_nr() cl0 = c0[:nao,nao:] cs0 = c0[nao:,nao:] x0 = scipy.linalg.solve(cl0.T, cs0.T).T h1 = numpy.einsum('pi,xpq,qj->xij', c0.conj(), h1, c0[:,nao:]) s1 = numpy.einsum('pi,xpq,qj->xij', c0.conj(), s1, c0[:,nao:]) epi = e0[:,None] - e0[nao:] degen_mask = abs(epi) < 1e-7 epi[degen_mask] = 1e200 c1 = (h1 - s1 * e0[nao:]) / -epi c1[:,degen_mask] = -.5 * s1[:,degen_mask] c1 = numpy.einsum('pq,xqi->xpi', c0, c1) cl1 = c1[:,:nao] cs1 = c1[:,nao:] x1 = [scipy.linalg.solve(cl0.T, (cs1[i] - x0.dot(cl1[i])).T).T for i in range(3)] return numpy.asarray(x1) mol1 = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) mol2 = gto.M( verbose = 0, atom = [["O" , (0. , 0. ,-0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) mol = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0. )], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) class KnownValues(unittest.TestCase): def test_x1(self): with lib.light_speed(10) as c: x_1 = get_x0(mol1) x_2 = get_x0(mol2) x1_ref = (x_1 - x_2) / 0.0002 * lib.param.BOHR x1t = get_x1(mol, 0) self.assertAlmostEqual(abs(x1t[2]-x1_ref).max(), 0, 7) x0 = get_x0(mol) h0, s0 = get_h0_s0(mol) e0, c0 = scipy.linalg.eigh(h0, s0) get_h1_etc = sfx2c1e_grad._gen_first_order_quantities(mol, e0, c0, x0) x1 = get_h1_etc(0)[4] self.assertAlmostEqual(abs(x1-x1t).max(), 0, 9) def test_R1(self): with lib.light_speed(10) as c: R_1 = get_R(mol1) R_2 = get_R(mol2) R1_ref = (R_1 - R_2) / 0.0002 * lib.param.BOHR R1t = get_r1(mol, 0, 2) self.assertAlmostEqual(abs(R1t-R1_ref).max(), 0, 7) x0 = get_x0(mol) h0, s0 = get_h0_s0(mol) e0, c0 = scipy.linalg.eigh(h0, s0) get_h1_etc = sfx2c1e_grad._gen_first_order_quantities(mol, e0, c0, x0) R1 = get_h1_etc(0)[6][2] self.assertAlmostEqual(abs(R1-R1t).max(), 0, 9) def test_hfw(self): with lib.light_speed(10) as c: x2c_1 = sfx2c1e.SpinFreeX2C(mol1) x2c_2 = sfx2c1e.SpinFreeX2C(mol2) x2cobj = sfx2c1e.SpinFreeX2C(mol) fh_ref = (x2c_1.get_hcore() - x2c_2.get_hcore()) / 0.0002 * lib.param.BOHR fh = x2cobj.hcore_deriv_generator(deriv=1) self.assertAlmostEqual(abs(fh(0)[2] - fh_ref).max(), 0, 7) x2c_1.xuncontract = 0 x2c_2.xuncontract = 0 x2cobj.xuncontract =0 fh_ref = (x2c_1.get_hcore() - x2c_2.get_hcore()) / 0.0002 * lib.param.BOHR fh = x2cobj.hcore_deriv_generator(deriv=1) self.assertAlmostEqual(abs(fh(0)[2] - fh_ref).max(), 0, 7) x2c_1.xuncontract = 1 x2c_2.xuncontract = 1 x2cobj.xuncontract =1 x2c_1.approx = 'ATOM1E' x2c_2.approx = 'ATOM1E' x2cobj.approx = 'ATOM1E' fh_ref = (x2c_1.get_hcore() - x2c_2.get_hcore()) / 0.0002 * lib.param.BOHR fh = x2cobj.hcore_deriv_generator(deriv=1) self.assertAlmostEqual(abs(fh(0)[2] - fh_ref).max(), 0, 7) if __name__ == "__main__": print("Full Tests for sfx2c1e gradients") unittest.main()
vdb/extensions/arm.py
wisdark/vivisect
716
12786801
<reponame>wisdark/vivisect<gh_stars>100-1000 import envi import envi.cli as e_cli import envi.common as e_common import envi.archs.arm.regs as e_arm_regs import envi.archs.thumb16.disasm as e_thumb def armdis(db, line): ''' Disassemble arm instructions from the given address. Usage: armdis <addr_exp> ''' disasmobj = e_arm.ArmDisasm() armthumdis(db, line, disasmobj) def thumbdis(db, line): ''' Disassemble thumb instructions from the given address. Usage: thumbdis <addr_exp> ''' disasmobj = e_thumb.ThumbDisasm() armthumdis(db, line, disasmobj) def armthumbdis(db, line, disasmobj): ''' Core of disassmbly, for code-reuse. Only difference is the object actually doing the disassembly. ''' t = db.getTrace() argv = e_cli.splitargs(line) size = 20 argc = len(argv) if argc == 0: addr = t.getProgramCounter() else: addr = t.parseExpression(argv[0]) if argc > 1: size = t.parseExpression(argv[1]) bytez = t.readMemory(addr, size) offset = 0 db.vprint("Dissassembly:") while offset < size: va = addr + offset op = disasmobj.disasm(bytez, offset, va) obytez = bytez[offset:offset+len(op)] db.canvas.addVaText('0x%.8x' % va, va=va) db.canvas.addText(": %s " % e_common.hexify(obytez).ljust(17)) op.render(db.canvas) db.canvas.addText("\n") offset += len(op) def togglethumb(db, line): ''' Toggle Thumb Mode ''' t = db.getTrace() cur_t = t.getRegister(e_arm_regs.REG_T) new_t = not cur_t arch = (envi.ARCH_ARMV7, envi.ARCH_THUMB)[new_t] t.setRegister(e_arm_regs.REG_T, new_t) db.canvas.addText("Toggled Thumb Mode: %r\n" % new_t) def vdbExtension(vdb, trace): vdb.addCmdAlias('db', 'mem -F bytes') vdb.addCmdAlias('dw', 'mem -F u_int_16') vdb.addCmdAlias('dd', 'mem -F u_int_32') vdb.addCmdAlias('dq', 'mem -F u_int_64') vdb.addCmdAlias('dr', 'mem -F "Deref View"') vdb.addCmdAlias('ds', 'mem -F "Symbols View"') vdb.registerCmdExtension(armdis) vdb.registerCmdExtension(thumbdis) vdb.registerCmdExtension(togglethumb)
xmodaler/engine/rl_trainer.py
YehLi/xmodaler
830
12786804
# Copyright 2021 JD.com, Inc., JD AI """ @author: <NAME> @contact: <EMAIL> """ import time import copy import torch from .defaults import DefaultTrainer from xmodaler.scorer import build_scorer from xmodaler.config import kfg from xmodaler.losses import build_rl_losses import xmodaler.utils.comm as comm from .build import ENGINE_REGISTRY __all__ = ['RLTrainer'] @ENGINE_REGISTRY.register() class RLTrainer(DefaultTrainer): def __init__(self, cfg): super(RLTrainer, self).__init__(cfg) self.scorer = self.build_scorer(cfg) self.losses = build_rl_losses(cfg) @classmethod def build_scorer(cls, cfg): return build_scorer(cfg) def run_step(self): start = time.perf_counter() try: data = next(self._train_data_loader_iter) except StopIteration: self._train_data_loader_iter = iter(self.train_data_loader) data = next(self._train_data_loader_iter) data_time = time.perf_counter() - start data = comm.unwrap_model(self.model).preprocess_batch(data) self.model.eval() with torch.no_grad(): bs_data = copy.copy(data) bs_outputs_dict = self.model(bs_data, use_beam_search=False, output_sents=False) bs_rewards = self.scorer(bs_outputs_dict) self.model.train() data[kfg.DECODE_BY_SAMPLE] = True outputs_dict = self.model(data, use_beam_search=False, output_sents=False) rewards = self.scorer(outputs_dict) rewards = torch.from_numpy(rewards[kfg.REWARDS] - bs_rewards[kfg.REWARDS]).float().cuda() outputs_dict.update({ kfg.REWARDS: rewards }) losses_dict = {} for loss in self.losses: loss_dict = loss(outputs_dict) losses_dict.update(loss_dict) losses = sum(losses_dict.values()) self.optimizer.zero_grad() losses.backward() bs_rewards.pop(kfg.REWARDS) losses_dict.update(bs_rewards) self._write_metrics(losses_dict, data_time) self.optimizer.step()
manifold_flow/flows/flow.py
selflein/manifold-flow
199
12786819
<reponame>selflein/manifold-flow import logging from manifold_flow.utils.various import product from manifold_flow import distributions from manifold_flow.flows import BaseFlow logger = logging.getLogger(__name__) class Flow(BaseFlow): """ Ambient normalizing flow (AF) """ def __init__(self, data_dim, transform): super(Flow, self).__init__() self.data_dim = data_dim self.latent_dim = data_dim self.total_data_dim = product(data_dim) self.total_latent_dim = product(self.latent_dim) self.latent_distribution = distributions.StandardNormal((self.total_latent_dim,)) self.transform = transform self._report_model_parameters() def forward(self, x, context=None): """ Transforms data point to latent space, evaluates log likelihood """ # Encode u, log_det = self._encode(x, context=context) # Decode x = self.decode(u, context=context) # Log prob log_prob = self.latent_distribution._log_prob(u, context=None) log_prob = log_prob + log_det return x, log_prob, u def encode(self, x, context=None): """ Encodes data point to latent space """ u, _ = self._encode(x, context=context) return u def decode(self, u, context=None): """ Encodes data point to latent space """ x, _ = self.transform.inverse(u, context=context) return x def log_prob(self, x, context=None): """ Evaluates log likelihood """ # Encode u, log_det = self._encode(x, context) # Log prob log_prob = self.latent_distribution._log_prob(u, context=None) log_prob = log_prob + log_det return log_prob def sample(self, u=None, n=1, context=None): """ Generates samples from model """ if u is None: u = self.latent_distribution.sample(n, context=None) x = self.decode(u, context=context) return x def _encode(self, x, context=None): u, log_det = self.transform(x, context=context) return u, log_det
glue/algorithms/square.py
glensc/glue
514
12786832
import copy class SquareAlgorithmNode(object): def __init__(self, x=0, y=0, width=0, height=0, used=False, down=None, right=None): """Node constructor. :param x: X coordinate. :param y: Y coordinate. :param width: Image width. :param height: Image height. :param used: Flag to determine if the node is used. :param down: Down :class:`~Node`. :param right Right :class:`~Node`. """ self.x = x self.y = y self.width = width self.height = height self.used = used self.right = right self.down = down def find(self, node, width, height): """Find a node to allocate this image size (width, height). :param node: Node to search in. :param width: Pixels to grow down (width). :param height: Pixels to grow down (height). """ if node.used: return self.find(node.right, width, height) or self.find(node.down, width, height) elif node.width >= width and node.height >= height: return node return None def grow(self, width, height): """ Grow the canvas to the most appropriate direction. :param width: Pixels to grow down (width). :param height: Pixels to grow down (height). """ can_grow_d = width <= self.width can_grow_r = height <= self.height should_grow_r = can_grow_r and self.height >= (self.width + width) should_grow_d = can_grow_d and self.width >= (self.height + height) if should_grow_r: return self.grow_right(width, height) elif should_grow_d: return self.grow_down(width, height) elif can_grow_r: return self.grow_right(width, height) elif can_grow_d: return self.grow_down(width, height) return None def grow_right(self, width, height): """Grow the canvas to the right. :param width: Pixels to grow down (width). :param height: Pixels to grow down (height). """ old_self = copy.copy(self) self.used = True self.x = self.y = 0 self.width += width self.down = old_self self.right = SquareAlgorithmNode(x=old_self.width, y=0, width=width, height=self.height) node = self.find(self, width, height) if node: return self.split(node, width, height) return None def grow_down(self, width, height): """Grow the canvas down. :param width: Pixels to grow down (width). :param height: Pixels to grow down (height). """ old_self = copy.copy(self) self.used = True self.x = self.y = 0 self.height += height self.right = old_self self.down = SquareAlgorithmNode(x=0, y=old_self.height, width=self.width, height=height) node = self.find(self, width, height) if node: return self.split(node, width, height) return None def split(self, node, width, height): """Split the node to allocate a new one of this size. :param node: Node to be splitted. :param width: New node width. :param height: New node height. """ node.used = True node.down = SquareAlgorithmNode(x=node.x, y=node.y + height, width=node.width, height=node.height - height) node.right = SquareAlgorithmNode(x=node.x + width, y=node.y, width=node.width - width, height=height) return node class SquareAlgorithm(object): def process(self, sprite): root = SquareAlgorithmNode(width=sprite.images[0].absolute_width, height=sprite.images[0].absolute_height) # Loot all over the images creating a binary tree for image in sprite.images: node = root.find(root, image.absolute_width, image.absolute_height) if node: # Use this node node = root.split(node, image.absolute_width, image.absolute_height) else: # Grow the canvas node = root.grow(image.absolute_width, image.absolute_height) image.x = node.x image.y = node.y
Greedy/045. Jump Game II.py
beckswu/Leetcode
138
12786861
class Solution: def jump(self, nums): """ :type nums: List[int] :rtype: int """ n = len(nums) if n<2: return 0 step, reach, next = 0, 0, 0 for i, v in enumerate(nums): if i == reach: reach = max(next, i+v) step += 1 if reach >= n-1: break next = nums[reach] + reach else: next = max(next, i+v) return step class Solution: def jump(self, nums): n = len(nums) step, end, next = 0, 0, 0 for i, v in enumerate(nums[:-1]): next = max(next, i + v) if i == end: step += 1 end = next return step class Solution: # @param {integer[]} nums # @return {integer} def jump(self, nums): n, start, end, step = len(nums), 0, 0, 0 while end < n - 1: step += 1 maxend = end + 1 for i in range(start, end + 1): if i + nums[i] >= n - 1: return step maxend = max(maxend, i + nums[i]) start, end = end + 1, maxend return step class Solution: # @param {integer[]} nums # @return {integer} def jump(self, nums): n, cur_max, next_max, steps = len(nums), 0, 0, 0 for i in range(n): if i>cur_max: steps+=1 cur_max=next_max if cur_max>=n:break next_max=max(next_max,nums[i]+i) return steps class Solution: def jump(self, nums: List[int]) -> int: if len(nums) <= 1: return 0 l, r = 0, nums[0] times = 1 while r < len(nums) - 1: times += 1 nxt = max(i + nums[i] for i in range(l, r + 1)) l, r = r, nxt return times
examples/eventTester.py
tgolsson/appJar
666
12786863
<filename>examples/eventTester.py import sys sys.path.append("../") from appJar import gui def press(btn): print("default:", btn) if btn == "writing": app.setTextArea("t1", "some writing") elif btn == "writing2": app.setTextArea("t2", "some writing") elif btn == "get": print(app.getTextArea("t1")) elif btn == "get2": print(app.getTextArea("t2")) elif btn == "log": app.logTextArea("t1") elif btn == "log2": app.logTextArea("t2") elif btn == "check": print(app.textAreaChanged("t1")) elif btn == "check2": print(app.textAreaChanged("t2")) def sub(btn): print("submit ", btn) def chng(btn): print("change ", btn) if btn in ["t1", "t2"]: print(app.getTextArea(btn)) app=gui("Event Tester") app.addLabel("l1", "click me", 0, 0) app.setLabelChangeFunction("l1", press) app.addLabel("l2", "click me", 0, 1) app.setLabelSubmitFunction("l2", press) app.addEntry("e1", 1, 0, 2) app.setEntrySubmitFunction("e1", sub) app.setEntryChangeFunction("e1", chng) app.addTextArea("t1", 2, 0) app.setTextAreaSubmitFunction("t1", sub) app.setTextAreaChangeFunction("t1", chng) app.addScrolledTextArea("t2", 2, 1) app.setTextAreaSubmitFunction("t2", sub) app.setTextAreaChangeFunction("t2", chng) app.addButton("writing", press, 3, 0) app.addButton("writing2", press, 3, 1) app.addButton("get", press, 4, 0) app.addButton("get2", press, 4, 1) app.addButton("log", press, 5, 0) app.addButton("log2", press, 5, 1) app.addButton("check", press, 6, 0) app.addButton("check2", press, 6, 1) app.go()
pymagnitude/third_party/allennlp/tests/data/token_indexers/dep_label_indexer_test.py
tpeng/magnitude
1,520
12786878
<gh_stars>1000+ # pylint: disable=no-self-use,invalid-name from __future__ import absolute_import from collections import defaultdict from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Token, Vocabulary from allennlp.data.token_indexers import DepLabelIndexer from allennlp.data.tokenizers.word_splitter import SpacyWordSplitter class TestDepLabelIndexer(AllenNlpTestCase): def setUp(self): super(TestDepLabelIndexer, self).setUp() self.tokenizer = SpacyWordSplitter(parse=True) def test_count_vocab_items_uses_pos_tags(self): tokens = self.tokenizer.split_words(u"This is a sentence.") tokens = [Token(u"<S>")] + [t for t in tokens] + [Token(u"</S>")] indexer = DepLabelIndexer() counter = defaultdict(lambda: defaultdict(int)) for token in tokens: indexer.count_vocab_items(token, counter) assert counter[u"dep_labels"] == {u"ROOT": 1, u"nsubj": 1, u"det": 1, u"NONE": 2, u"attr": 1, u"punct": 1} def test_tokens_to_indices_uses_pos_tags(self): tokens = self.tokenizer.split_words(u"This is a sentence.") tokens = [t for t in tokens] + [Token(u"</S>")] vocab = Vocabulary() root_index = vocab.add_token_to_namespace(u'ROOT', namespace=u'dep_labels') none_index = vocab.add_token_to_namespace(u'NONE', namespace=u'dep_labels') indexer = DepLabelIndexer() assert indexer.tokens_to_indices([tokens[1]], vocab, u"tokens1") == {u"tokens1": [root_index]} assert indexer.tokens_to_indices([tokens[-1]], vocab, u"tokens-1") == {u"tokens-1": [none_index]} def test_padding_functions(self): indexer = DepLabelIndexer() assert indexer.get_padding_token() == 0 assert indexer.get_padding_lengths(0) == {} def test_as_array_produces_token_sequence(self): indexer = DepLabelIndexer() padded_tokens = indexer.pad_token_sequence({u'key': [1, 2, 3, 4, 5]}, {u'key': 10}, {}) assert padded_tokens == {u'key': [1, 2, 3, 4, 5, 0, 0, 0, 0, 0]}
examples/layout_form.py
pzahemszky/guizero
320
12786913
from guizero import App, Text, TextBox, Combo, PushButton, Box app = App() Text(app, text="My form") form = Box(app, width="fill", layout="grid") form.border = True Text(form, text="Title", grid=[0,0], align="right") TextBox(form, grid=[1,0]) Text(form, text="Name", grid=[0,1], align="right") TextBox(form, grid=[1,1]) Text(form, text="Age", grid=[0,2], align="right") TextBox(form, grid=[1,2]) buttons = Box(app, width="fill", align="bottom") PushButton(buttons, text="Ok", align="left") PushButton(buttons, text="Cancel", align="left") app.display()
api/tests/unit/telemetry/test_unit_telemetry_serializers.py
mevinbabuc/flagsmith
1,259
12786937
<reponame>mevinbabuc/flagsmith<filename>api/tests/unit/telemetry/test_unit_telemetry_serializers.py from unittest import mock from django.test import override_settings from telemetry.serializers import TelemetrySerializer from tests.unit.telemetry.helpers import get_example_telemetry_data @override_settings(INFLUXDB_TOKEN="<PASSWORD>") @mock.patch("telemetry.serializers.get_ip_address_from_request") @mock.patch("telemetry.serializers.InfluxDBWrapper") def test_telemetry_serializer_save(MockInfluxDBWrapper, mock_get_ip_address): # Given data = get_example_telemetry_data() serializer = TelemetrySerializer(data=data, context={"request": mock.MagicMock()}) mock_wrapper = mock.MagicMock() MockInfluxDBWrapper.return_value = mock_wrapper ip_address = "127.0.0.1" mock_get_ip_address.return_value = ip_address # When serializer.is_valid() # must be called to access validated data serializer.save() # Then mock_wrapper.add_data_point.assert_called_once_with( "heartbeat", 1, tags={**data, "ip_address": ip_address} ) mock_wrapper.write.assert_called_once()
fetch_cord/computer/gpu/Gpu_interface.py
TabulateJarl8/FetchCord
286
12786938
# from __future__ import annotations from abc import ABCMeta, abstractmethod from typing import List, TypeVar, Dict from ..Peripheral_interface import Peripherical_interface class Gpu_interface(Peripherical_interface, metaclass=ABCMeta): _vendor: str _model: str @property def vendor(self) -> str: return self._vendor @vendor.setter def vendor(self, value: str): self._vendor = value @property def model(self) -> str: return self._model @model.setter @abstractmethod def model(self, value: str): raise NotImplementedError @property def temp(self) -> float: try: self._temp = self.get_temp() except NotImplementedError as e: try: raise e finally: e = None del e else: return self._temp @temp.setter def temp(self, value: float): self._temp = value def __init__(self, os, vendor, model): super().__init__(os) self.vendor = vendor self.model = model @abstractmethod def get_temp(self) -> float: raise NotImplementedError GpuType = TypeVar("GpuType", bound="Gpu_interface") def get_gpuid(gpu_ids: Dict[str, str], gpus: List[GpuType]): vendors = [] for i in range(len(gpus)): if gpus[i].vendor not in vendors: vendors.append(gpus[i].vendor) gpuvendor = "".join(vendors).lower() if gpuvendor in gpu_ids: return gpu_ids[gpuvendor] else: print("Unknown GPU, contact us on github to resolve this.") return "unknown"
WebMirror/management/rss_parser_funcs/feed_parse_extractCgtranslationsMe.py
fake-name/ReadableWebProxy
193
12786940
<filename>WebMirror/management/rss_parser_funcs/feed_parse_extractCgtranslationsMe.py def extractCgtranslationsMe(item): ''' Parser for 'cgtranslations.me' ''' if 'Manga' in item['tags']: return None vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None if ('Gifting (Fanfic)' in item['tags'] and 'LN Chapters' in item['tags']) or \ item['tags'] == ['Gifting (Fanfic)']: return buildReleaseMessageWithType(item, 'Gifting this World with Wonderful Blessings!', vol, chp, frag=frag, postfix=postfix) if 'Gifting (Fanfic)' in item['tags'] and 'explosion' in item['tags']: return buildReleaseMessageWithType(item, 'Kono Subarashii Sekai ni Bakuen wo!', vol, chp, frag=frag, postfix=postfix) if ('KonoSuba' in item['tags'] and 'LN Chapters' in item['tags']): return buildReleaseMessageWithType(item, 'KonoSuba', vol, chp, frag=frag, postfix=postfix) return False
probe/modules/antivirus/eset/eset_file_security.py
krisshol/bach-kmno
248
12786944
<filename>probe/modules/antivirus/eset/eset_file_security.py # # Copyright (c) 2013-2018 Quarkslab. # This file is part of IRMA project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License in the top-level directory # of this distribution and at: # # http://www.apache.org/licenses/LICENSE-2.0 # # No part of the project, including this file, may be copied, # modified, propagated, or distributed except according to the # terms contained in the LICENSE file. import logging import re from pathlib import Path from datetime import datetime from modules.antivirus.base import AntivirusUnix log = logging.getLogger(__name__) class EsetFileSecurity(AntivirusUnix): name = "ESET File Security (Linux)" # ================================== # Constructor and destructor stuff # ================================== def __init__(self, *args, **kwargs): # class super class constructor super().__init__(*args, **kwargs) # Modify retun codes (see --help for details) self._scan_retcodes[self.ScanResult.INFECTED] = lambda x: x in [1, 50] self._scan_retcodes[self.ScanResult.ERROR] = lambda x: x in [100] # scan tool variables self.scan_args = ( "--clean-mode=NONE", # do not remove infected files "--no-log-all" # do not log clean files ) self.scan_patterns = [ re.compile('name="(?P<file>.*)", threat="(?P<name>.*)", ' 'action=.*', re.IGNORECASE), ] self.scan_path = Path("/opt/eset/esets/sbin/esets_scan") # ========================================== # Antivirus methods (need to be overriden) # ========================================== def get_version(self): """return the version of the antivirus""" return self._run_and_parse( '--version', regexp='(?P<version>\d+(\.\d+)+)', group='version') def get_database(self): """return list of files in the database""" search_paths = [ Path('/var/opt/eset/esets/lib/'), ] database_patterns = [ '*.dat', # determined using strace on linux ] return self.locate(database_patterns, search_paths, syspath=False) def get_virus_database_version(self): """Return the Virus Database version""" fdata = Path("/var/opt/eset/esets/lib/data/data.txt") data = fdata.read_text() matches = re.search('VerFileETAG_update\.eset\.com=(?P<version>.*)', data, re.IGNORECASE) if not matches: raise RuntimeError( "Cannot read dbversion in {}".format(fdata.absolute())) version = matches.group('version').strip() matches = re.search('LastUpdate=(?P<date>\d*)', data, re.IGNORECASE) if not matches: raise RuntimeError( "Cannot read db date in {}".format(fdata.absolute())) date = matches.group('date').strip() date = datetime.fromtimestamp(int(date)).strftime('%Y-%m-%d') return version + ' (' + date + ')'
examples/Plot_FibonacciLines.py
Physicworld/pyjuque
343
12787019
import os import sys curr_path = os.path.abspath(__file__) root_path = os.path.abspath( os.path.join(curr_path, os.path.pardir, os.path.pardir)) sys.path.append(root_path) from pyjuque.Exchanges.CcxtExchange import CcxtExchange from pyjuque.Plotting import PlotData import plotly.graph_objs as go def horizontal_line(start_time, end_time, value, color=None): return go.layout.Shape( type="line", x0=start_time, y0=value, x1=end_time, y1=value, line=dict(color=color) ) def Main(): exchange = CcxtExchange('binance') symbol = "BTC/USDT" interval = "4h" df = exchange.getOHLCVHistory(symbol, interval, 8000) start_time = df['time'][0] end_time = df['time'][len(df)-1] price_min = df['close'].min() price_max = df['close'].max() diff = price_max - price_min level1 = price_max - 0.236 * diff level2 = price_max - 0.382 * diff level3 = price_max - 0.618 * diff lines = [] lines.append(horizontal_line( start_time, end_time, price_max, color="rgba(255, 0, 0, 255)")) lines.append(horizontal_line( start_time, end_time, level1, color="rgba(255, 255, 0, 255)")) lines.append(horizontal_line( start_time, end_time, level2, color="rgba(0, 255, 0, 255)")) lines.append(horizontal_line( start_time, end_time, level3, color="rgba(0, 255, 255, 255)")) lines.append(horizontal_line( start_time, end_time, price_min, color="rgba(0, 0, 255, 255)")) PlotData(df, add_candles=False, plot_shapes=lines, plot_title="fib_levels_"+symbol.replace('/', '').lower() + "_" + interval, show_plot=True) if __name__ == '__main__': Main()