max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
projects/mmdet3d_plugin/models/utils/dgcnn_attn.py
XiangTodayEatsWhat/detr3d
237
12783093
<reponame>XiangTodayEatsWhat/detr3d<filename>projects/mmdet3d_plugin/models/utils/dgcnn_attn.py import math import torch import torch.nn as nn from mmcv.cnn.bricks.registry import ATTENTION from mmcv.runner.base_module import BaseModule @ATTENTION.register_module() class DGCNNAttn(BaseModule): """A warpper for DGCNN-type self-attention. Args: embed_dims (int): The embedding dimension. num_heads (int): Parallel attention heads. Same as `nn.MultiheadAttention`. dropout (float):w A Dropout layer on attn_output_weights. Default: 0.. init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Default: None. """ def __init__(self, embed_dims, num_heads, dropout=0., init_cfg=None, **kwargs): super(DGCNNAttn, self).__init__(init_cfg) self.embed_dims = embed_dims self.num_heads = num_heads self.dropout = dropout self.conv1 = nn.Sequential(nn.Conv2d(self.embed_dims*2, self.embed_dims, kernel_size=1, bias=False), nn.BatchNorm2d(self.embed_dims), nn.ReLU(inplace=True)) self.conv2 = nn.Sequential(nn.Conv2d(self.embed_dims*2, self.embed_dims, kernel_size=1, bias=False), nn.BatchNorm2d(self.embed_dims), nn.ReLU(inplace=True)) self.K = kwargs['K'] self.dropout = nn.Dropout(dropout) def forward(self, query, key=None, value=None, residual=None, query_pos=None, key_pos=None, attn_mask=None, key_padding_mask=None, **kwargs): """Forward function for `DGCNN`. **kwargs allow passing a more general data flow when combining with other operations in `DGCNN`. Args: query (Tensor): The input query with shape [num_queries, bs, embed_dims]. Same in `nn.MultiheadAttention.forward`. residual (Tensor): This tensor, with the same shape as x, will be used for the residual link. If None, `x` will be used. Defaults to None. query_pos (Tensor): The positional encoding for query, with the same shape as `x`. If not None, it will be added to `x` before forward function. Defaults to None. Returns: Tensor: forwarded results with shape [num_queries, bs, embed_dims]. """ if residual is None: residual = query if query_pos is not None: query = query + query_pos query = query.permute(1, 0, 2) # [bs, num_queries, embed_dims] edge_feats = self.edge_feats(query, K=self.K) edge_feats1 = self.conv1(edge_feats) edge_feats1 = edge_feats1.max(dim=-1)[0] out = edge_feats1 edge_feats1 = self.edge_feats(edge_feats1.permute(0, 2, 1)) edge_feats2 = self.conv2(edge_feats1) edge_feats2 = edge_feats2.max(dim=-1)[0] out = out + edge_feats2 out = out.permute(2, 0, 1) return residual + self.dropout(out) def edge_feats(self, query, K=16): # (B, N, N) affinity = torch.cdist(query, query) # (B, N, K) _, topk = torch.topk(affinity, k=K, dim=2) B, N, C = query.size() idx_base = torch.arange(0, B, device=query.device).view(-1, 1, 1) * N idx = topk + idx_base idx = idx.view(-1) query = query.reshape(B*N, C) query_neighbor = query[idx, :].view(B, N, K, C) query = query.reshape(B, N, 1, C).repeat(1, 1, K, 1) out = torch.cat((query_neighbor, query), dim=-1).permute(0, 3, 1, 2).contiguous() return out
Lib/test/test_async.py
pyparallel/pyparallel
652
12783125
import os import sys import atexit import unittest import tempfile import async import _async import socket from socket import ( AF_INET, SOCK_STREAM, ) def tcpsock(): return socket.socket(AF_INET, SOCK_STREAM) CHARGEN = [ r""" !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefg""", r"""!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgh""", r""""#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghi""", r"""#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghij""", r"""$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijk""", ] QOTD = 'An apple a day keeps the doctor away.\r\n' ECHO_HOST = ('echo.snakebite.net', 7) QOTD_HOST = ('qotd.snakebite.net', 17) DISCARD_HOST = ('discard.snakebite.net', 9) DAYTIME_HOST = ('daytime.snakebite.net', 13) CHARGEN_HOST = ('chargen.snakebite.net', 19) SERVICES_IP = socket.getaddrinfo(*ECHO_HOST)[0][4][0] ECHO_IP = (SERVICES_IP, 7) DISCARD_IP = (SERVICES_IP, 9) DAYTIME_IP = (SERVICES_IP, 13) CHARGEN_IP = (SERVICES_IP, 19) NO_CB = None NO_EB = None HOST = '1192.168.3.11' ADDR = (HOST, 0) TEMPDIR = None def rmtempdir(): if TEMPDIR: TEMPDIR.cleanup() def tempfile(): if not TEMPDIR: TEMPDIR = tempfile.TemporaryDirectory() assert os.path.isdir(TEMPDIR) atexit.register(rmtempdir) assert os.path.isdir(TEMPDIR) f = tempfile.NamedTemporaryFile(dir=TEMPDIR, delete=False) assert os.path.isfile(f) return f def tempfilename(): f = tempfile() f.close() return f.name class TestBasic(unittest.TestCase): def test_calling_run_with_no_events_fails(self): self.assertRaises(AsyncRunCalledWithoutEventsError, _async.run_once) class TestSubmitWork(unittest.TestCase): def test_submit_simple_work(self): def f(i): return i * 2 def cb(r): _async.call_from_main_thread( self.assertEqual, (r, 4), ) _async.submit_work(f, 2, None, cb, None) _async.run() def test_value_error_in_callback(self): def f(): return laksjdflaskjdflsakjdfsalkjdf _async.submit_work(f, None, None, None, None) self.assertRaises(NameError, _async.run) def test_value_error_in_callback_then_run(self): def f(): return laksjdflaskjdflsakjdfsalkjdf _async.submit_work(f, None, None, None, None) self.assertRaises(NameError, _async.run) _async.run() def test_multiple_value_errors_in_callback_then_run(self): def f(): return laksjdflaskjdflsakjdfsalkjdf _async.submit_work(f, None, None, None, None) _async.submit_work(f, None, None, None, None) self.assertRaises(NameError, _async.run) self.assertRaises(NameError, _async.run) _async.run() def test_call_from_main_thread(self): d = {} def f(i): _async.call_from_main_thread_and_wait( d.__setitem__, ('foo', i*2), ) return _async.call_from_main_thread_and_wait( d.__getitem__, 'foo' ) def cb(r): _async.call_from_main_thread( self.assertEqual, (r, 4), ) _async.submit_work(f, 2, None, cb, None) _async.run() def test_call_from_main_thread_decorator(self): @async.call_from_main_thread def f(): self.assertFalse(_async.is_parallel_thread) _async.submit_work(f, None, None, None, None) _async.run() def test_submit_simple_work_errback_invoked(self): def f(): return laksjdflaskjdflsakjdfsalkjdf def test_e(et, ev, eb): try: f() except NameError as e2: self.assertEqual(et, e2.__class__) self.assertEqual(ev, e2.args[0]) self.assertEqual(eb.__class__, e2.__traceback__.__class__) else: self.assertEqual(0, 1) def cb(r): _async.call_from_main_thread(self.assertEqual, (0, 1)) def eb(e): _async.call_from_main_thread_and_wait(test_e, e) _async.submit_work(f, None, None, cb, eb) _async.run() class TestSubmitFileIO(unittest.TestCase): def test_write(self): n = tempfilename() f = open(n, 'w') _async.submit_io(f.write, b'foo', None, None, None) _async.run() f.close() with open(n, 'w') as f: self.assertEqual(f.read(), b'foo') def test_read(self): @async.call_from_main_thread def cb(d): self.assertEqual(d, b'foo') n = tempfilename() with open(n, 'w') as f: f.write(b'foo') f = open(n, 'r') _async.submit_io(f.read, None, None, cb, None) _async.run() class TestConnectSocketIO(unittest.TestCase): def test_backlog(self): sock = tcpsock() port = sock.bind(ADDR) sock.listen(100) self.assertEqual(sock.backlog, 100) sock.close() def test_connect(self): @async.call_from_main_thread def cb(): self.assertEqual(1, 1) sock = tcpsock() _async.connect(sock, DISCARD_IP, 1, None, cb, NO_EB) _async.run() def test_connect_with_data(self): @async.call_from_main_thread def cb(sock): self.assertEqual(1, 1) sock = tcpsock() _async.connect(sock, DISCARD_IP, 1, b'buf', cb, NO_EB) _async.run() def test_connect_with_data(self): @async.call_from_main_thread def cb(sock): self.assertEqual(1, 1) sock = tcpsock() _async.connect(sock, DISCARD_IP, 1, b'buf', cb, NO_EB) _async.run() def test_connect_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, QOTD) def read_cb(sock, data): _check(data) def connect_cb(sock): _async.recv(sock, read_cb, NO_EB) sock = tcpsock() _async.connect(sock, QOTD_IP, 1, None, connect_cb, NO_EB) _async.run() def test_connect_with_data_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, b'hello') def read_cb(sock, data): _check(data) def connect_cb(sock): _async.recv(sock, read_cb, NO_EB) sock = tcpsock() _async.connect(sock, ECHO_IP, 1, b'hello', connect_cb, NO_EB) _async.run() def test_connect_then_send_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, b'hello') def read_cb(sock, data): _check(data) def connect_cb(sock): _async.recv(sock, read_cb, NO_EB) _async.send(sock, b'hello', NO_CB, NO_EB) sock = tcpsock() _async.connect(sock, ECHO_IP, 1, None, connect_cb, NO_EB) _async.run() def test_recv_before_connect_with_data_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, b'hello') def read_cb(sock, data): _check(data) sock = tcpsock() _async.recv(sock, read_cb, NO_EB) _async.connect(sock, ECHO_IP, 1, b'hello', NO_CB, NO_EB) _async.run() def test_recv_before_connect_then_send_then_recv(self): @async.call_from_main_thread def _check(data): self.assertEqual(data, b'hello') def read_cb(sock, data): _check(data) def connect_cb(sock): _async.send(sock, b'hello', NO_CB, NO_EB) sock = tcpsock() _async.recv(sock, read_cb, NO_EB) _async.connect(sock, ECHO_IP, 1, None, connect_cb, NO_EB) _async.run() class TestAcceptSocketIO(unittest.TestCase): def test_accept(self): @async.call_from_main_thread def new_connection(sock, data): self.assertEqual(data, b'hello') sock = tcpsock() port = sock.bind(ADDR) addr = sock.getsockname() sock.listen(1) _async.accept(sock, new_connection, NO_EB) client = tcpsock() _async.connect(client, addr, 1, b'hello', NO_CB, NO_EB) _async.run() sock.close() def test_accept_backlog2(self): counter = 0 @async.call_from_main_thread def new_connection(sock, data): self.assertEqual(data, b'hello') counter += 1 sock = tcpsock() port = sock.bind(ADDR) addr = sock.getsockname() sock.listen(2) _async.accept(sock, new_connection, NO_EB) client = tcpsock() _async.connect(client, addr, 2, b'hello', NO_CB, NO_EB) _async.run() self.assertEqual(counter, 2) if __name__ == '__main__': unittest.main() # vim:set ts=8 sw=4 sts=4 tw=78 et:
5 - unit testing/vehicle_info_test.py
mickeybeurskens/betterpython
523
12783179
import unittest from vehicle_info_after import VehicleInfo class TestVehicleInfoMethods(unittest.TestCase): pass # def test_compute_tax_non_electric(self): # v = VehicleInfo("BMW", False, 10000) # self.assertEqual(v.compute_tax(), 500) # def test_compute_tax_electric(self): # v = VehicleInfo("BMW", True, 10000) # self.assertEqual(v.compute_tax(), 200) # def test_compute_tax_exemption(self): # v = VehicleInfo("BMW", False, 10000) # self.assertEqual(v.compute_tax(5000), 250) # def test_compute_tax_exemption_negative(self): # v = VehicleInfo("BMW", False, 10000) # self.assertRaises(ValueError, v.compute_tax, -5000) # def test_compute_tax_exemption_high(self): # v = VehicleInfo("BMW", False, 10000) # self.assertEqual(v.compute_tax(20000), 0) # def test_can_lease_false(self): # v = VehicleInfo("BMW", False, 10000) # self.assertEqual(v.can_lease(5000), False) # def test_can_lease_true(self): # v = VehicleInfo("BMW", False, 10000) # self.assertEqual(v.can_lease(15000), True) # def test_can_lease_negative_income(self): # v = VehicleInfo("BMW", False, 10000) # self.assertRaises(ValueError, v.can_lease, -5000) # run the actual unittests unittest.main()
src/azure-cli/azure/cli/command_modules/lab/_params.py
YuanyuanNi/azure-cli
3,287
12783203
<filename>src/azure-cli/azure/cli/command_modules/lab/_params.py # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.command_modules.lab.validators import validate_artifacts, validate_template_id from azure.cli.core.util import get_json_object def load_arguments(self, _): with self.argument_context('lab custom-image create') as c: c.argument('name', options_list=['--name', '-n']) with self.argument_context('lab vm create') as c: c.argument('name', options_list=['--name', '-n']) # Authentication related arguments for arg_name in ['admin_username', 'admin_password', 'authentication_type', 'ssh_key', 'generate_ssh_keys', 'saved_secret']: c.argument(arg_name, arg_group='Authentication') c.argument('generate_ssh_keys', action='store_true') # Add Artifacts from json object c.argument('artifacts', type=get_json_object) # Image related arguments c.ignore('os_type', 'gallery_image_reference', 'custom_image_id') # Network related arguments for arg_name in ['ip_configuration', 'subnet', 'vnet_name']: c.argument(arg_name, arg_group='Network') c.ignore('lab_subnet_name', 'lab_virtual_network_id', 'disallow_public_ip_address', 'network_interface') # Creating VM in the different location then lab is an officially unsupported scenario c.ignore('location') c.argument('allow_claim', action='store_true') with self.argument_context('lab vm list') as c: for arg_name in ['filters', 'all', 'claimable', 'environment']: c.argument(arg_name, arg_group='Filter') for arg_name in ['all', 'claimable']: c.argument(arg_name, action='store_true') with self.argument_context('lab vm claim') as c: c.argument('name', options_list=['--name', '-n'], id_part='child_name_1') c.argument('lab_name', id_part='name') with self.argument_context('lab vm apply-artifacts') as c: c.argument('artifacts', type=get_json_object, validator=validate_artifacts) c.argument('name', options_list=['--name', '-n']) with self.argument_context('lab formula') as c: c.argument('name', options_list=['--name', '-n']) with self.argument_context('lab secret') as c: from azure.mgmt.devtestlabs.models import Secret c.argument('name', options_list=['--name', '-n']) c.argument('secret', options_list=['--value'], type=lambda x: Secret(value=x)) c.ignore('user_name') with self.argument_context('lab formula export-artifacts') as c: # Exporting artifacts does not need expand filter c.ignore('expand') with self.argument_context('lab environment') as c: c.argument('name', options_list=['--name', '-n']) c.ignore('user_name') with self.argument_context('lab environment create') as c: c.argument('arm_template', validator=validate_template_id) c.argument('parameters', type=get_json_object) with self.argument_context('lab arm-template') as c: c.argument('name', options_list=['--name', '-n']) with self.argument_context('lab arm-template show') as c: c.argument('export_parameters', action='store_true')
modules/src/dictionary.py
rampreeth/JARVIS-on-Messenger
1,465
12783212
<reponame>rampreeth/JARVIS-on-Messenger import os import requests import requests_cache import config from templates.text import TextTemplate WORDS_API_KEY = os.environ.get('WORDS_API_KEY', config.WORDS_API_KEY) def process(input, entities): output = {} try: word = entities['word'][0]['value'] with requests_cache.enabled('dictionary_cache', backend='sqlite', expire_after=86400): r = requests.get('https://wordsapiv1.p.mashape.com/words/' + word + '/definitions', headers={ 'X-Mashape-Key': WORDS_API_KEY }) data = r.json() output['input'] = input output['output'] = TextTemplate( 'Definition of ' + word + ':\n' + data['definitions'][0]['definition']).get_message() output['success'] = True except: error_message = 'I couldn\'t find that definition.' error_message += '\nPlease ask me something else, like:' error_message += '\n - define comfort' error_message += '\n - cloud definition' error_message += '\n - what does an accolade mean?' output['error_msg'] = TextTemplate(error_message).get_message() output['success'] = False return output
packages/syft/src/syft/proto/core/auth/signed_message_pb2.py
vishalbelsare/PySyft
8,428
12783243
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: proto/core/auth/signed_message.proto """Generated protocol buffer code.""" # third party from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() # third party from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 # syft absolute from syft.proto.core.common import ( common_object_pb2 as proto_dot_core_dot_common_dot_common__object__pb2, ) DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile( b'\n$proto/core/auth/signed_message.proto\x12\x0esyft.core.auth\x1a%proto/core/common/common_object.proto\x1a\x1bgoogle/protobuf/empty.proto"\x80\x01\n\rSignedMessage\x12%\n\x06msg_id\x18\x01 \x01(\x0b\x32\x15.syft.core.common.UID\x12\x10\n\x08obj_type\x18\x02 \x01(\t\x12\x11\n\tsignature\x18\x03 \x01(\x0c\x12\x12\n\nverify_key\x18\x04 \x01(\x0c\x12\x0f\n\x07message\x18\x05 \x01(\x0c"\x1f\n\tVerifyKey\x12\x12\n\nverify_key\x18\x01 \x01(\x0c"0\n\tVerifyAll\x12#\n\x03\x61ll\x18\x01 \x01(\x0b\x32\x16.google.protobuf.Emptyb\x06proto3' ) _SIGNEDMESSAGE = DESCRIPTOR.message_types_by_name["SignedMessage"] _VERIFYKEY = DESCRIPTOR.message_types_by_name["VerifyKey"] _VERIFYALL = DESCRIPTOR.message_types_by_name["VerifyAll"] SignedMessage = _reflection.GeneratedProtocolMessageType( "SignedMessage", (_message.Message,), { "DESCRIPTOR": _SIGNEDMESSAGE, "__module__": "proto.core.auth.signed_message_pb2" # @@protoc_insertion_point(class_scope:syft.core.auth.SignedMessage) }, ) _sym_db.RegisterMessage(SignedMessage) VerifyKey = _reflection.GeneratedProtocolMessageType( "VerifyKey", (_message.Message,), { "DESCRIPTOR": _VERIFYKEY, "__module__": "proto.core.auth.signed_message_pb2" # @@protoc_insertion_point(class_scope:syft.core.auth.VerifyKey) }, ) _sym_db.RegisterMessage(VerifyKey) VerifyAll = _reflection.GeneratedProtocolMessageType( "VerifyAll", (_message.Message,), { "DESCRIPTOR": _VERIFYALL, "__module__": "proto.core.auth.signed_message_pb2" # @@protoc_insertion_point(class_scope:syft.core.auth.VerifyAll) }, ) _sym_db.RegisterMessage(VerifyAll) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _SIGNEDMESSAGE._serialized_start = 125 _SIGNEDMESSAGE._serialized_end = 253 _VERIFYKEY._serialized_start = 255 _VERIFYKEY._serialized_end = 286 _VERIFYALL._serialized_start = 288 _VERIFYALL._serialized_end = 336 # @@protoc_insertion_point(module_scope)
Models/regressionTemplateTF/model.py
UTS-AnimalLogicAcademy/nuke-ML-server
123
12783247
# Copyright (c) 2020 Foundry. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import print_function import sys import os import time import scipy.misc import numpy as np import cv2 import tensorflow as tf tf.compat.v1.disable_eager_execution() # For TF 2.x compatibility from models.baseModel import BaseModel from models.common.model_builder import baseline_model from models.common.util import print_, get_ckpt_list, linear_to_srgb, srgb_to_linear import message_pb2 class Model(BaseModel): """Load your trained model and do inference in Nuke""" def __init__(self): super(Model, self).__init__() self.name = 'Regression Template TF' self.n_levels = 3 self.scale = 0.5 dir_path = os.path.dirname(os.path.realpath(__file__)) self.checkpoints_dir = os.path.join(dir_path, 'checkpoints') self.patch_size = 50 self.output_param_number = 1 # Initialise checkpoint name to the latest checkpoint ckpt_names = get_ckpt_list(self.checkpoints_dir) if not ckpt_names: # empty list self.checkpoint_name = '' else: latest_ckpt = tf.compat.v1.train.latest_checkpoint(self.checkpoints_dir) if latest_ckpt is not None: self.checkpoint_name = latest_ckpt.split('/')[-1] else: self.checkpoint_name = ckpt_names[-1] self.prev_ckpt_name = self.checkpoint_name # Silence TF log when creating tf.Session() os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Define options self.gamma_to_predict = 1.0 self.predict = False self.options = ('checkpoint_name', 'gamma_to_predict',) self.buttons = ('predict',) # Define inputs/outputs self.inputs = {'input': 3} self.outputs = {'output': 3} def load(self, model): # Check if empty or invalid checkpoint name if self.checkpoint_name=='': ckpt_names = get_ckpt_list(self.checkpoints_dir) if not ckpt_names: raise ValueError("No checkpoints found in {}".format(self.checkpoints_dir)) else: raise ValueError("Empty checkpoint name, try an available checkpoint in {} (ex: {})" .format(self.checkpoints_dir, ckpt_names[-1])) print_("Loading trained model checkpoint...\n", 'm') # Load from given checkpoint file name self.saver.restore(self.sess, os.path.join(self.checkpoints_dir, self.checkpoint_name)) print_("...Checkpoint {} loaded\n".format(self.checkpoint_name), 'm') def inference(self, image_list): """Do an inference on the model with a set of inputs. # Arguments: image_list: The input image list Return the result of the inference. """ image = image_list[0] image = linear_to_srgb(image).copy() if not hasattr(self, 'sess'): # Initialise tensorflow graph tf.compat.v1.reset_default_graph() config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth=True self.sess=tf.compat.v1.Session(config=config) # Input is stacked histograms of original and gamma-graded images. input_shape = [1, 2, 100] # Initialise input placeholder size self.input = tf.compat.v1.placeholder(tf.float32, shape=input_shape) self.model = baseline_model( input_shape=input_shape[1:], output_param_number=self.output_param_number) self.infer_op = self.model(self.input) # Load latest model checkpoint self.saver = tf.compat.v1.train.Saver() self.load(self.model) self.prev_ckpt_name = self.checkpoint_name # If checkpoint name has changed, load new checkpoint if self.prev_ckpt_name != self.checkpoint_name or self.checkpoint_name == '': self.load(self.model) # If checkpoint correctly loaded, update previous checkpoint name self.prev_ckpt_name = self.checkpoint_name # Preprocess image same way we preprocessed it for training # Here for gamma correction compute histograms def histogram(x, value_range=[0.0, 1.0], nbins=100): """Return histogram of tensor x""" h, w, c = x.shape hist = tf.histogram_fixed_width(x, value_range, nbins=nbins) hist = tf.divide(hist, h * w * c) return hist with tf.compat.v1.Session() as sess: # Convert to grayscale img_gray = tf.image.rgb_to_grayscale(image) img_gray = tf.image.resize(img_gray, [self.patch_size, self.patch_size]) # Apply gamma correction img_gray_grade = tf.math.pow(img_gray, self.gamma_to_predict) img_grade = tf.math.pow(image, self.gamma_to_predict) # Compute histograms img_hist = histogram(img_gray) img_grade_hist = histogram(img_gray_grade) hists_op = tf.stack([img_hist, img_grade_hist], axis=0) hists, img_grade = sess.run([hists_op, img_grade]) res_img = srgb_to_linear(img_grade) hists_batch = np.expand_dims(hists, 0) start = time.time() # Run model inference inference = self.sess.run(self.infer_op, feed_dict={self.input: hists_batch}) duration = time.time() - start print('Inference duration: {:4.3f}s'.format(duration)) res = inference[-1] print("Predicted gamma: {}".format(res)) # If predict button is pressed in Nuke if self.predict: script_msg = message_pb2.FieldValuePairAttrib() script_msg.name = "PythonScript" # Create a Python script message to run in Nuke python_script = self.nuke_script(res) script_msg_val = script_msg.values.add() script_msg_str = script_msg_val.string_attributes.add() script_msg_str.values.extend([python_script]) return [res_img, script_msg] return [res_img] def nuke_script(self, res): """Return the Python script function to create a pop up window in Nuke.""" popup_msg = "Predicted gamma: {}".format(res) script = "nuke.message('{}')\n".format(popup_msg) return script
pyscreenshot/plugins/xwd.py
ponty/pyscreenshot
416
12783252
import logging from easyprocess import EasyProcess from pyscreenshot.plugins.backend import CBackend from pyscreenshot.tempexport import RunProgError, read_func_img from pyscreenshot.util import extract_version log = logging.getLogger(__name__) PROGRAM = "xwd" # wikipedia: https://en.wikipedia.org/wiki/Xwd # xwd | xwdtopnm | pnmtopng > Screenshot.png # xwdtopnm is buggy: https://bugs.launchpad.net/ubuntu/+source/netpbm-free/+bug/1379480 # solution : imagemagick convert # xwd -root -display :0 | convert xwd:- file.png # TODO: xwd sometimes grabs the wrong window so this backend will be not added now def read_xwd_img(): def run_prog(fpng, bbox=None): fxwd = fpng + ".xwd" pxwd = EasyProcess([PROGRAM, "-root", "-out", fxwd]) pxwd.call() if pxwd.return_code != 0: raise RunProgError(pxwd.stderr) pconvert = EasyProcess(["convert", "xwd:" + fxwd, fpng]) pconvert.call() if pconvert.return_code != 0: raise RunProgError(pconvert.stderr) im = read_func_img(run_prog) return im class XwdWrapper(CBackend): name = "xwd" is_subprocess = True def grab(self, bbox=None): im = read_xwd_img() if bbox: im = im.crop(bbox) return im def backend_version(self): return extract_version(EasyProcess([PROGRAM, "-version"]).call().stdout)
nevergrad/optimization/test_special.py
risto-trajanov/nevergrad
3,217
12783260
<reponame>risto-trajanov/nevergrad # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import time import collections import typing as tp import pytest import numpy as np from .optimizerlib import registry from . import test_optimizerlib KEY = "NEVERGRAD_SPECIAL_TESTS" if not os.environ.get(KEY, ""): pytest.skip(f"These tests only run if {KEY} is set in the environment", allow_module_level=True) @pytest.mark.parametrize("dimension", (2, 4, 7, 77)) @pytest.mark.parametrize("num_workers", (1,)) @pytest.mark.parametrize("scale", (4.0,)) @pytest.mark.parametrize("baseline", ["MetaModel", "CMA", "ECMA"]) @pytest.mark.parametrize("budget", [400, 4000]) @pytest.mark.parametrize("ellipsoid", [True, False]) def test_metamodel_sqp_chaining( dimension: int, num_workers: int, scale: float, budget: int, ellipsoid: bool, baseline: str ) -> None: """The test can operate on the sphere or on an elliptic funciton.""" target = test_optimizerlib.QuadFunction(scale=scale, ellipse=ellipsoid) baseline = baseline if dimension > 1 else "OnePlusOne" chaining = "ChainMetaModelSQP" # In both cases we compare MetaModel and CMA for a same given budget. # But we expect MetaModel to be clearly better only for a larger budget in the ellipsoid case. contextual_budget = budget if ellipsoid else 3 * budget contextual_budget *= 5 * int(max(1, np.sqrt(scale))) num_trials = 27 successes = 0.0 durations: tp.Dict[str, float] = collections.defaultdict(int) for _ in range(num_trials): if successes >= num_trials / 2: break # Let us run the comparison. recoms: tp.Dict[str, np.ndarray] = {} for name in (chaining, baseline): opt = registry[name](dimension, contextual_budget, num_workers=num_workers) t0 = time.time() recoms[name] = opt.minimize(target).value durations[name] += time.time() - t0 if target(recoms[baseline]) < target(recoms[chaining]): successes += 1 if target(recoms[baseline]) == target(recoms[chaining]): successes += 0.5 if successes <= num_trials // 2: print( f"ChainMetaModelSQP fails ({successes}/{num_trials}) for d={dimension}, scale={scale}, " f"num_workers={num_workers}, ellipsoid={ellipsoid}, budget={budget}, vs {baseline}" ) raise AssertionError("ChaingMetaModelSQP fails by performance.") print( f"ChainMetaModelSQP wins for d={dimension}, scale={scale}, num_workers={num_workers}, " f"ellipsoid={ellipsoid}, budget={budget}, vs {baseline}" ) assert durations[chaining] < 7 * durations[baseline], "Computationally more than 7x more expensive." @pytest.mark.parametrize("args", test_optimizerlib.get_metamodel_test_settings(special=True)) @pytest.mark.parametrize("baseline", ("CMA", "ECMA")) def test_metamodel_special(baseline: str, args: tp.Tuple[tp.Any, ...]) -> None: """The test can operate on the sphere or on an elliptic funciton.""" kwargs = dict(zip(test_optimizerlib.META_TEST_ARGS, args)) test_optimizerlib.check_metamodel(baseline=baseline, **kwargs)
test/unit/test_noise_gates.py
stjordanis/pyquil
677
12783312
import numpy as np from pyquil.gates import RZ, RX, I, CZ, ISWAP, CPHASE from pyquil.noise_gates import _get_qvm_noise_supported_gates, THETA def test_get_qvm_noise_supported_gates_from_compiler_isa(compiler_isa): gates = _get_qvm_noise_supported_gates(compiler_isa) for q in [0, 1, 2]: for g in [ I(q), RX(np.pi / 2, q), RX(-np.pi / 2, q), RX(np.pi, q), RX(-np.pi, q), RZ(THETA, q), ]: assert g in gates assert CZ(0, 1) in gates assert CZ(1, 0) in gates assert ISWAP(1, 2) in gates assert ISWAP(2, 1) in gates assert CPHASE(THETA, 2, 0) in gates assert CPHASE(THETA, 0, 2) in gates ASPEN_8_QUBITS_NO_RX = {8, 9, 10, 18, 19, 28, 29, 31} ASPEN_8_QUBITS_NO_RZ = {8, 9, 10, 18, 19, 28, 29, 31} ASPEN_8_EDGES_NO_CZ = {(0, 1), (10, 11), (1, 2), (21, 22), (17, 10), (12, 25)} def test_get_qvm_noise_supported_gates_from_aspen8_isa(qcs_aspen8_quantum_processor, noise_model_dict): gates = _get_qvm_noise_supported_gates(qcs_aspen8_quantum_processor.to_compiler_isa()) for q in range(len(qcs_aspen8_quantum_processor._isa.architecture.nodes)): if q not in ASPEN_8_QUBITS_NO_RX: for g in [ RX(np.pi / 2, q), RX(-np.pi / 2, q), RX(np.pi, q), RX(-np.pi, q), ]: assert g in gates if q not in ASPEN_8_QUBITS_NO_RZ: assert RZ(THETA, q) in gates for edge in qcs_aspen8_quantum_processor._isa.architecture.edges: if ( edge.node_ids[0], edge.node_ids[1], ) in ASPEN_8_EDGES_NO_CZ: continue assert CZ(edge.node_ids[0], edge.node_ids[1]) in gates assert CZ(edge.node_ids[1], edge.node_ids[0]) in gates
setup.py
fdvty/open-box
184
12783317
<gh_stars>100-1000 #!/usr/bin/env python # This en code is licensed under the MIT license found in the # LICENSE file in the root directory of this en tree. import sys import importlib.util from pathlib import Path from distutils.core import setup from setuptools import find_packages requirements = dict() for extra in ["dev", "main"]: # Skip `package @ git+[repo_url]` because not supported by pypi if (3, 6) <= sys.version_info < (3, 7): requirements[extra] = [r for r in Path("requirements/%s_py36.txt" % extra).read_text().splitlines() if '@' not in r ] else: requirements[extra] = [r for r in Path("requirements/%s.txt" % extra).read_text().splitlines() if '@' not in r ] # Find version number spec = importlib.util.spec_from_file_location("openbox.pkginfo", str(Path(__file__).parent / "openbox" / "pkginfo.py")) pkginfo = importlib.util.module_from_spec(spec) spec.loader.exec_module(pkginfo) version = pkginfo.version package_name = pkginfo.package_name # Get the platform info. def get_platform(): platforms = { 'linux': 'Linux', 'linux1': 'Linux', 'linux2': 'Linux', 'darwin': 'OSX', 'win32': 'Windows' } if sys.platform not in platforms: raise ValueError('Unsupported platform - %s.' % sys.platform) return platforms[sys.platform] platform = get_platform() # Get readme strings. def readme() -> str: return open("README.md", encoding='utf-8').read() setup( name=package_name, version=version, description="Efficient and generalized blackbox optimization (BBO) system", long_description=readme(), long_description_content_type="text/markdown", url='https://github.com/PKU-DAIR/open-box', author="<NAME> from <EMAIL> <EMAIL>", packages=find_packages(), license="MIT", install_requires=requirements["main"], extras_require={"dev": requirements["dev"]}, package_data={"open-box": ["py.typed"]}, include_package_data=True, python_requires='>=3.6.0', entry_points={ "console_scripts": [ "openbox = openbox.__main__:main", ] } )
img2dataset/logger.py
rom1504/img2dataset
482
12783349
"""logging utils for the downloader""" import wandb import time from collections import Counter import fsspec import json from multiprocessing import Process, Queue import queue class CappedCounter: """Maintain a counter with a capping to avoid memory issues""" def __init__(self, max_size=10 ** 5): self.max_size = max_size self.counter = Counter() def increment(self, key): if len(self.counter) >= self.max_size: self._keep_most_frequent() self.counter[key] += 1 def _keep_most_frequent(self): self.counter = Counter(dict(self.counter.most_common(int(self.max_size / 2)))) def most_common(self, k): return self.counter.most_common(k) def update(self, counter): self.counter.update(counter.counter) if len(self.counter) >= self.max_size: self._keep_most_frequent() def dump(self): return self.counter @classmethod def load(cls, d, max_size=10 ** 5): c = CappedCounter(max_size) c.counter = Counter(d) return c class Logger: """logger which logs when number of calls reaches a value or a time interval has passed""" def __init__(self, processes_count=1, min_interval=0): """Log only every processes_count and if min_interval (seconds) have elapsed since last log""" # wait for all processes to return self.processes_count = processes_count self.processes_returned = 0 # min time (in seconds) before logging a new table (avoids too many logs) self.min_interval = min_interval self.last = time.perf_counter() # keep track of whether we logged the last call self.last_call_logged = False self.last_args = None self.last_kwargs = None def __call__(self, *args, **kwargs): self.processes_returned += 1 if self.processes_returned % self.processes_count == 0 and time.perf_counter() - self.last > self.min_interval: self.do_log(*args, **kwargs) self.last = time.perf_counter() self.last_call_logged = True else: self.last_call_logged = False self.last_args = args self.last_kwargs = kwargs def do_log(self, *args, **kwargs): raise NotImplementedError() def sync(self): """Ensure last call is logged""" if not self.last_call_logged: self.do_log(*self.last_args, **self.last_kwargs) # reset for next file self.processes_returned = 0 class SpeedLogger(Logger): """Log performance metrics""" def __init__(self, prefix, enable_wandb, **logger_args): super().__init__(**logger_args) self.prefix = prefix self.start = time.perf_counter() self.count = 0 self.success = 0 self.failed_to_download = 0 self.failed_to_resize = 0 self.enable_wandb = enable_wandb def __call__( self, duration, count, success, failed_to_download, failed_to_resize ): # pylint: disable=arguments-differ self.count += count self.success += success self.failed_to_download += failed_to_download self.failed_to_resize += failed_to_resize super().__call__(duration, self.count, self.success, self.failed_to_download, self.failed_to_resize) def do_log( self, duration, count, success, failed_to_download, failed_to_resize ): # pylint: disable=arguments-differ img_per_sec = count / duration success_ratio = 1.0 * success / count failed_to_download_ratio = 1.0 * failed_to_download / count failed_to_resize_ratio = 1.0 * failed_to_resize / count print( " - ".join( [ f"{self.prefix:<7}", f"success: {success_ratio:.3f}", f"failed to download: {failed_to_download_ratio:.3f}", f"failed to resize: {failed_to_resize_ratio:.3f}", f"images per sec: {img_per_sec:.0f}", f"count: {count}", ] ) ) if self.enable_wandb: wandb.log( { f"{self.prefix}/img_per_sec": img_per_sec, f"{self.prefix}/success": success_ratio, f"{self.prefix}/failed_to_download": failed_to_download_ratio, f"{self.prefix}/failed_to_resize": failed_to_resize_ratio, f"{self.prefix}/count": count, } ) class StatusTableLogger(Logger): """Log status table to W&B, up to `max_status` most frequent items""" def __init__(self, max_status=100, min_interval=60, enable_wandb=False, **logger_args): super().__init__(min_interval=min_interval, **logger_args) # avoids too many errors unique to a specific website (SSL certificates, etc) self.max_status = max_status self.enable_wandb = enable_wandb def do_log(self, status_dict, count): # pylint: disable=arguments-differ if self.enable_wandb: status_table = wandb.Table( columns=["status", "frequency", "count"], data=[[k, 1.0 * v / count, v] for k, v in status_dict.most_common(self.max_status)], ) wandb.run.log({"status": status_table}) def write_stats( output_folder, shard_id, count, successes, failed_to_download, failed_to_resize, start_time, end_time, status_dict, oom_shard_count, ): """Write stats to disk""" stats = { "count": count, "successes": successes, "failed_to_download": failed_to_download, "failed_to_resize": failed_to_resize, "duration": end_time - start_time, "status_dict": status_dict.dump(), } fs, output_path = fsspec.core.url_to_fs(output_folder) shard_name = "{shard_id:0{oom_shard_count}d}".format(shard_id=shard_id, oom_shard_count=oom_shard_count) json_file = f"{output_path}/{shard_name}_stats.json" with fs.open(json_file, "w") as f: json.dump(stats, f, indent=4) # https://docs.python.org/3/library/multiprocessing.html # logger process that reads stats files regularly, aggregates and send to wandb / print to terminal class LoggerProcess(Process): """Logger process that reads stats files regularly, aggregates and send to wandb / print to terminal""" def __init__(self, output_folder, enable_wandb, wandb_project, config_parameters, processes_count, log_interval=60): super().__init__() self.log_interval = log_interval self.enable_wandb = enable_wandb self.fs, self.output_path = fsspec.core.url_to_fs(output_folder) self.stats_files = set() self.wandb_project = wandb_project self.config_parameters = config_parameters self.processes_count = processes_count self.q = Queue() def run(self): """Run logger process""" if self.enable_wandb: self.current_run = wandb.init(project=self.wandb_project, config=self.config_parameters, anonymous="allow") else: self.current_run = None self.total_speed_logger = SpeedLogger( "total", processes_count=self.processes_count, enable_wandb=self.enable_wandb ) self.status_table_logger = StatusTableLogger( processes_count=self.processes_count, enable_wandb=self.enable_wandb ) start_time = time.perf_counter() last_check = 0 total_status_dict = CappedCounter() while True: time.sleep(0.1) try: self.q.get(False) last_one = True except queue.Empty as _: last_one = False if not last_one and time.perf_counter() - last_check < self.log_interval: continue try: # read stats files stats_files = self.fs.glob(self.output_path + "/*.json") # get new stats files new_stats_files = set(stats_files) - self.stats_files if len(new_stats_files) == 0: if last_one: self.finish() return # read new stats files for stats_file in new_stats_files: with self.fs.open(stats_file, "r") as f: stats = json.load(f) SpeedLogger("worker", enable_wandb=self.enable_wandb)( duration=stats["duration"], count=stats["count"], success=stats["successes"], failed_to_download=stats["failed_to_download"], failed_to_resize=stats["failed_to_resize"], ) self.total_speed_logger( duration=time.perf_counter() - start_time, count=stats["count"], success=stats["successes"], failed_to_download=stats["failed_to_download"], failed_to_resize=stats["failed_to_resize"], ) status_dict = CappedCounter.load(stats["status_dict"]) total_status_dict.update(status_dict) self.status_table_logger(total_status_dict, self.total_speed_logger.count) self.stats_files.add(stats_file) last_check = time.perf_counter() if last_one: self.finish() return except Exception as e: # pylint: disable=broad-except print(e) self.finish() return def finish(self): """Finish logger process""" self.total_speed_logger.sync() self.status_table_logger.sync() if self.current_run is not None: self.current_run.finish() def join(self, timeout=None): """Stop logger process""" self.q.put("stop") super().join() self.q.close()
src/orders/migrations/0007_OrderPromoCodes.py
denkasyanov/education-backend
151
12783352
<gh_stars>100-1000 # Generated by Django 2.2.13 on 2020-09-30 13:14 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('orders', '0006_PromoCodeComments'), ] operations = [ migrations.AddField( model_name='order', name='promocode', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to='orders.PromoCode'), ), ]
examples/simple.py
ldn-softdev/pyeapi
126
12783385
#!/usr/bin/env python from __future__ import print_function import pyeapi connection = pyeapi.connect(host='192.168.1.16') output = connection.execute(['enable', 'show version']) print(('My system MAC address is', output['result'][1]['systemMacAddress']))
i3pystatus/pomodoro.py
fkusei/i3pystatus
413
12783389
import subprocess from datetime import datetime, timedelta from i3pystatus import IntervalModule from i3pystatus.core.desktop import DesktopNotification STOPPED = 0 RUNNING = 1 BREAK = 2 class Pomodoro(IntervalModule): """ This plugin shows Pomodoro timer. Left click starts/restarts timer. Right click stops it. Example color settings. .. code-block:: python color_map = { 'stopped': '#2ECCFA', 'running': '#FFFF00', 'break': '#37FF00' } """ settings = ( ('sound', 'Path to sound file to play as alarm. Played by "aplay" utility'), ('pomodoro_duration', 'Working (pomodoro) interval duration in seconds'), ('break_duration', 'Short break duration in seconds'), ('long_break_duration', 'Long break duration in seconds'), ('short_break_count', 'Short break count before first long break'), ('format', 'format string, available formatters: current_pomodoro, ' 'total_pomodoro, time'), ('inactive_format', 'format string to display when no timer is running'), ('color', 'dictionary containing a mapping of statuses to colours') ) inactive_format = 'Start Pomodoro' color_map = { 'stopped': '#2ECCFA', 'running': '#FFFF00', 'break': '#37FF00' } color = None sound = None interval = 1 short_break_count = 3 format = '☯ {current_pomodoro}/{total_pomodoro} {time}' pomodoro_duration = 25 * 60 break_duration = 5 * 60 long_break_duration = 15 * 60 on_rightclick = "stop" on_leftclick = "start" def init(self): # state could be either running/break or stopped self.state = STOPPED self.current_pomodoro = 0 self.total_pomodoro = self.short_break_count + 1 # and 1 long break self.time = None if self.color is not None and type(self.color) == dict: self.color_map.update(self.color) def run(self): if self.time and datetime.utcnow() >= self.time: if self.state == RUNNING: self.state = BREAK if self.current_pomodoro == self.short_break_count: self.time = datetime.utcnow() + \ timedelta(seconds=self.long_break_duration) else: self.time = datetime.utcnow() + \ timedelta(seconds=self.break_duration) text = 'Go for a break!' else: self.state = RUNNING self.time = datetime.utcnow() + \ timedelta(seconds=self.pomodoro_duration) text = 'Back to work!' self.current_pomodoro = (self.current_pomodoro + 1) % self.total_pomodoro self._alarm(text) if self.state == RUNNING or self.state == BREAK: min, sec = divmod((self.time - datetime.utcnow()).total_seconds(), 60) text = '{:02}:{:02}'.format(int(min), int(sec)) sdict = { 'time': text, 'current_pomodoro': self.current_pomodoro + 1, 'total_pomodoro': self.total_pomodoro } color = self.color_map['running'] if self.state == RUNNING else self.color_map['break'] text = self.format.format(**sdict) else: text = self.inactive_format color = self.color_map['stopped'] self.output = { 'full_text': text, 'color': color } def start(self): self.state = RUNNING self.time = datetime.utcnow() + timedelta(seconds=self.pomodoro_duration) self.current_pomodoro = 0 def stop(self): self.state = STOPPED self.time = None def _alarm(self, text): notification = DesktopNotification(title='Alarm!', body=text) notification.display() if self.sound is not None: subprocess.Popen(['aplay', self.sound, '-q'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
tests/test_runtime.py
NathanDeMaria/aws-lambda-r-runtime
134
12783400
import base64 import json import re import unittest import boto3 from tests import get_version, get_function_name, is_local from tests.sam import LocalLambdaServer, start_local_lambda class TestRuntimeLayer(unittest.TestCase): lambda_server: LocalLambdaServer = None @classmethod def setUpClass(cls): if is_local(): cls.lambda_server = start_local_lambda(template_path="test-template.yaml", parameter_overrides={'Version': get_version()}, ) def get_client(self): return self.lambda_server.get_client() if is_local() else boto3.client('lambda') def test_script(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("ExampleFunction"), Payload=json.dumps({'x': 1}), ) raw_payload = response['Payload'].read().decode('utf-8') result = json.loads(raw_payload) self.assertEqual(2, result) def test_lowercase_extension(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("LowerCaseExtensionFunction"), Payload=json.dumps({'x': 1}), ) raw_payload = response['Payload'].read().decode('utf-8') result = json.loads(raw_payload) self.assertEqual(2, result) def test_multiple_arguments(self): lambda_client = self.get_client() payload = {'x': 'bar', 'y': 1} response = lambda_client.invoke(FunctionName=get_function_name("MultipleArgumentsFunction"), Payload=json.dumps(payload), ) raw_payload = response['Payload'].read().decode('utf-8') result = json.loads(raw_payload) self.assertDictEqual(payload, result) @unittest.skipIf(is_local(), 'Lambda local does not support log retrieval') def test_debug_logging(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("LoggingFunction"), LogType='Tail', Payload=json.dumps({'x': 1}), ) raw_payload = response['Payload'].read().decode('utf-8') result = json.loads(raw_payload) self.assertEqual(1, result) log = base64.b64decode(response['LogResult']).decode('utf-8') self.assertIn("runtime:Sourcing 'script.R'", log) self.assertIn("runtime:Invoking function 'handler_with_debug_logging' with parameters:\n$x\n[1] 1", log) self.assertIn("runtime:Function returned:\n[1] 1", log) self.assertIn("runtime:Posted result:\n", log) @unittest.skipIf(is_local(), 'Lambda local does not support log retrieval') def test_no_debug_logging(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("ExampleFunction"), LogType='Tail', Payload=json.dumps({'x': 1}), ) raw_payload = response['Payload'].read().decode('utf-8') result = json.loads(raw_payload) self.assertEqual(2, result) log = base64.b64decode(response['LogResult']).decode('utf-8') self.assertNotIn("Sourcing ", log) self.assertNotIn("Invoking function ", log) self.assertNotIn("Function returned:", log) self.assertNotIn("Posted result:", log) @unittest.skipIf(is_local(), 'Lambda local does not pass errors properly') def test_missing_source_file(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("MissingSourceFileFunction"), Payload=json.dumps({'y': 1}), ) raw_payload = response['Payload'].read().decode('utf-8') json_payload = json.loads(raw_payload) self.assertEqual('Unhandled', response['FunctionError']) self.assertIn('Source file does not exist: missing.[R|r]', json_payload['errorMessage']) self.assertEqual('simpleError', json_payload['errorType']) @unittest.skipIf(is_local(), 'Lambda local does not pass errors properly') def test_missing_function(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("MissingFunctionFunction"), Payload=json.dumps({'y': 1}), ) raw_payload = response['Payload'].read().decode('utf-8') json_payload = json.loads(raw_payload) self.assertEqual('Unhandled', response['FunctionError']) self.assertIn('Function "handler_missing" does not exist', json_payload['errorMessage']) self.assertEqual('simpleError', json_payload['errorType']) @unittest.skipIf(is_local(), 'Lambda local does not pass errors properly') def test_function_as_variable(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("HandlerAsVariableFunction"), Payload=json.dumps({'y': 1}), ) raw_payload = response['Payload'].read().decode('utf-8') json_payload = json.loads(raw_payload) self.assertEqual('Unhandled', response['FunctionError']) self.assertIn('Function "handler_as_variable" does not exist', json_payload['errorMessage']) self.assertEqual('simpleError', json_payload['errorType']) @unittest.skipIf(is_local(), 'Lambda local does not pass errors properly') def test_missing_argument(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("ExampleFunction")) raw_payload = response['Payload'].read().decode('utf-8') json_payload = json.loads(raw_payload) self.assertEqual('Unhandled', response['FunctionError']) self.assertIn('argument "x" is missing, with no default', json_payload['errorMessage']) self.assertEqual('simpleError', json_payload['errorType']) @unittest.skipIf(is_local(), 'Lambda local does not pass errors properly') def test_unused_argument(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("ExampleFunction"), Payload=json.dumps({'x': 1, 'y': 1}), ) raw_payload = response['Payload'].read().decode('utf-8') json_payload = json.loads(raw_payload) self.assertEqual('Unhandled', response['FunctionError']) self.assertIn('unused argument (y = 1)', json_payload['errorMessage']) self.assertEqual('simpleError', json_payload['errorType']) # @unittest.skipIf(is_local(), 'Fails locally with "argument list too long"') @unittest.skip('Fails with timeout') def test_long_argument(self): lambda_client = self.get_client() payload = {x: x for x in range(0, 100000)} response = lambda_client.invoke(FunctionName=get_function_name("VariableArgumentsFunction"), Payload=json.dumps(payload), ) raw_payload = response['Payload'].read().decode('utf-8') result = json.loads(raw_payload) self.assertEqual(1, result) @unittest.skipIf(is_local(), 'Lambda local does not pass errors properly') def test_missing_library(self): lambda_client = self.get_client() response = lambda_client.invoke(FunctionName=get_function_name("MissingLibraryFunction"), Payload=json.dumps({'y': 1}), ) raw_payload = response['Payload'].read().decode('utf-8') json_payload = json.loads(raw_payload) self.assertEqual('Unhandled', response['FunctionError']) self.assertIn('there is no package called ‘Matrix’', json_payload['errorMessage']) error_type = 'packageNotFoundError' if get_version() == '3_6_0' else 'simpleError' self.assertEqual(error_type, json_payload['errorType']) @classmethod def tearDownClass(cls): if is_local(): cls.lambda_server.kill()
tools/check_python_format.py
cockroachzl/recommenders-addons
584
12783416
<filename>tools/check_python_format.py #!/usr/bin/env python from subprocess import check_call, CalledProcessError def check_bash_call(string): check_call(["bash", "-c", string]) def _run_format(): files_changed = False try: check_bash_call( "find . -name '*.py' -print0 | xargs -0 yapf --style=./.yapf -dr") except CalledProcessError: check_bash_call( "find . -name '*.py' -print0 | xargs -0 yapf --style=./.yapf -ir") files_changed = True if files_changed: print("Some files have changed.") print("Please use 'yapf --style=google -ri ./**/*.py' before commit.") else: print("No formatting needed.") if files_changed: exit(1) def run_format(): try: _run_format() except CalledProcessError as error: print("Yapf check returned exit code", error.returncode) exit(error.returncode) if __name__ == "__main__": run_format()
examples/csj/s0/csj_tools/wn.2.prep.text.py
treeaaa/wenet
1,166
12783422
import os import sys # train test1 test2 test3 def readtst(tstfn): outlist = list() with open(tstfn) as br: for aline in br.readlines(): aline = aline.strip() outlist.append(aline) return outlist def split_train_tests_xml(xmlpath, test1fn, test2fn, test3fn): test1list = readtst(test1fn) test2list = readtst(test2fn) test3list = readtst(test3fn) outtrainlist = list() # full path ".xml.simp" files outt1list = list() # test 1, full path ".xml.simp" files outt2list = list() outt3list = list() for afile in os.listdir(xmlpath): if not afile.endswith('.xml.simp'): continue afile2 = xmlpath + '/' + afile aid = afile.split('.')[0] if aid in test1list: outt1list.append(afile2) elif aid in test2list: outt2list.append(afile2) elif aid in test3list: outt3list.append(afile2) else: outtrainlist.append(afile2) return outtrainlist, outt1list, outt2list, outt3list def all_wavs(wavpath): wavlist = list() for afile in os.listdir(wavpath): if not afile.endswith('.wav'): continue afile2 = wavpath + '/' + afile wavlist.append(afile2) return wavlist def gen_text(xmllist, outpath): # id \t text # e.g., /workspace/asr/wenet/examples/csj/s0/data/xml/S11M1689.xml.simp # ID = S11M1689_stime_etime outtxtfn = os.path.join(outpath, 'text') with open(outtxtfn, 'w') as bw: for xmlfn in xmllist: aid = xmlfn.split('/')[-1] aid2 = aid.split('.')[0] with open(xmlfn) as br: for aline in br.readlines(): aline = aline.strip() # stime \t etime \t text1 \t text2 \t text3 \t text4 \t text5 cols = aline.split('\t') # TODO different between "< 7" and "< 4"? strange # -> use "< 4", DO NOT use "< 7" ! if len(cols) < 4: continue stime = cols[0] etime = cols[1] atxt = cols[3].replace(' ', '') afullid = '{}_{}_{}'.format(aid2, stime, etime) aoutline = '{}\t{}\n'.format(afullid, atxt) bw.write(aoutline) def parse_xml_set(xmllist): outset = set() for xml in xmllist: aid = xml.split('/')[-1] aid2 = aid.split('.')[0] outset.add(aid2) return outset def gen_wav_scp(xmllist, wavlist, outpath): # xmlset = pure id set, alike 'S04F1228' # can be from train, test1, test2, or test3 xmlset = parse_xml_set(xmllist) outwavscpfn = os.path.join(outpath, 'wav.scp') with open(outwavscpfn, 'w') as bw: for wav in wavlist: # wav is alike "/workspace/asr/wenet/examples/csj/s0/data # /wav/S04F1228.wav_00458.875_00459.209.wav" aid = wav.split('/')[-1] cols = aid.split('_') aid2 = cols[0].split('.')[0] if aid2 not in xmlset: continue stime = cols[1] etime = cols[2].replace('.wav', '') afullid = '{}_{}_{}'.format(aid2, stime, etime) wavabspath = os.path.abspath(wav) aoutline = '{}\t{}\n'.format(afullid, wavabspath) bw.write(aoutline) def prep_text_wavscp( xmlpath, wavpath, test1fn, test2fn, test3fn, outtrainpath, out1path, out2path, out3path): trainlist, t1list, t2list, t3list = split_train_tests_xml( xmlpath, test1fn, test2fn, test3fn) wavlist = all_wavs(wavpath) gen_text(trainlist, outtrainpath) gen_text(t1list, out1path) gen_text(t2list, out2path) gen_text(t3list, out3path) gen_wav_scp(trainlist, wavlist, outtrainpath) gen_wav_scp(t1list, wavlist, out1path) gen_wav_scp(t2list, wavlist, out2path) gen_wav_scp(t3list, wavlist, out3path) if __name__ == '__main__': if len(sys.argv) < 10: print( "Usage: {}".format(sys.argv[0]) + "<xmlpath> " + "<wavpath> <test1fn> <test2fn> <test3fn> " + "<outtrainpath> <out1path> <out2path> <out3path>") exit(1) xmlpath = sys.argv[1] wavpath = sys.argv[2] test1fn = sys.argv[3] test2fn = sys.argv[4] test3fn = sys.argv[5] outtrainpath = sys.argv[6] out1path = sys.argv[7] out2path = sys.argv[8] out3path = sys.argv[9] prep_text_wavscp(xmlpath, wavpath, test1fn, test2fn, test3fn, outtrainpath, out1path, out2path, out3path)
hal_fuzz/hal_fuzz/handlers/stm32f4_hal/stm32f4_i2c.py
diagprov/hal-fuzz
117
12783451
<filename>hal_fuzz/hal_fuzz/handlers/stm32f4_hal/stm32f4_i2c.py import sys from unicorn.arm_const import * from ...util import * import sys from ..fuzz import fuzz_remaining, get_fuzz from ...models.i2c import I2CModel def HAL_I2C_Init(uc): pass def HAL_I2C_Mem_Read(uc): # HAL_StatusTypeDef __fastcall HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) device_id = uc.reg_read(UC_ARM_REG_R0) dev_addr = uc.reg_read(UC_ARM_REG_R1) mem_addr = uc.reg_read(UC_ARM_REG_R2) mem_addr_size = uc.reg_read(UC_ARM_REG_R3) dst_buf = struct.unpack("<I", uc.mem_read(uc.reg_read(UC_ARM_REG_SP), 4))[0] dst_buf_size = struct.unpack("<I", uc.mem_read(uc.reg_read(UC_ARM_REG_SP) + 0x4, 4))[0] timeout = struct.unpack("<I", uc.mem_read(uc.reg_read(UC_ARM_REG_SP) + 0x8, 4))[0] assert(dst_buf != 0) assert(dst_buf_size < 1000) assert(mem_addr < 65535) assert(dst_buf_size >= mem_addr_size) #stuff = I2CModel.rx(device_id, dev_addr, mem_addr_size) stuff = get_fuzz(mem_addr_size) uc.mem_write(dst_buf, stuff) uc.reg_write(UC_ARM_REG_R0, 0) print(b"<<< " + stuff) def HAL_I2C_Mem_Write(uc): uc.reg_write(UC_ARM_REG_R0, 0)
python/gpu-enabled-multiprocessing.py
GangababuManam/tensorflow-101
832
12783462
<reponame>GangababuManam/tensorflow-101<gh_stars>100-1000 import pandas as pd import multiprocessing from multiprocessing import Pool def train(index, df): import tensorflow as tf import keras from keras.models import Sequential #------------------------------ #this block enables GPU enabled multiprocessing core_config = tf.ConfigProto() core_config.gpu_options.allow_growth = True session = tf.Session(config=core_config) keras.backend.set_session(session) #------------------------------ #prepare input and output values df = df.drop(columns=['index']) data = df.drop(columns=['target']).values target = df['target'] #------------------------------ model = Sequential() model.add(Dense(5 #num of hidden units , input_shape=(data.shape[1],))) #num of features in input layer model.add(Activation('sigmoid')) model.add(Dense(1))#number of nodes in output layer model.add(Activation('sigmoid')) model.compile(loss='mse', optimizer=keras.optimizers.Adam()) #------------------------------ model.fit(data, target, epochs = 5000, verbose = 1) model.save("model_for_%s.hdf5" % index) #------------------------------ #finally, close sessions session.close() keras.backend.clear_session() #----------------------------- #main program multiprocessing.set_start_method('spawn', force=True) df = pd.read_csv("dataset.csv") my_tuple = [(i, df[df['index'] == i]) for i in range(0, 20)] with Pool(10) as pool: pool.starmap(train, my_tuple)
src/networks/lenet.py
francesco-p/FACIL
243
12783471
from torch import nn import torch.nn.functional as F class LeNet(nn.Module): """LeNet-like network for tests with MNIST (28x28).""" def __init__(self, in_channels=1, num_classes=10, **kwargs): super().__init__() # main part of the network self.conv1 = nn.Conv2d(in_channels, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 16, 120) self.fc2 = nn.Linear(120, 84) # last classifier layer (head) with as many outputs as classes self.fc = nn.Linear(84, num_classes) # and `head_var` with the name of the head, so it can be removed when doing incremental learning experiments self.head_var = 'fc' def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc(out) return out
egg/platform_arm.py
TheMartianObserver/nsimd
247
12783490
<reponame>TheMartianObserver/nsimd<filename>egg/platform_arm.py # Copyright (c) 2020 Agenium Scale # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # This file gives the implementation of platform ARM, i.e. ARM SIMD. # Reading this file is rather straightforward. ARM SIMD extensions are rather # coherent and consistent. It implements the following architectures: # - ARMv7 -> 128 bits registers without f16 and f64 support # - Aarch32 -> 128 bits registers with optional f16 and without f64 support # - Aarch64 -> 128 bits registers with optional f16 and f64 support # - SVE -> up to 2048 bits registers # The first three SIMD extensions are collectively called NEON. Aarch32 and # Aarch64 correspond respectively to ARMv8 32 and 64 bits chips. Note that # the ARM documentation says that ARMv7, Aarch32 are different but it seems # that they differ by only a handful of intrinsics which are not in the scope # of NSIMD so we have implemented the following: # # - ARMv7 \ -> neon128 # - Aarch32 / # - Aarch64 -> aarch64 # - SVE -> sve import common # ----------------------------------------------------------------------------- # Helpers def neon_typ(typ): prefix = {'i': 'int', 'u': 'uint', 'f': 'float'} return '{}{}x{}_t'.format(prefix[typ[0]], typ[1:], 128 // int(typ[1:])) def half_neon64_typ(typ): prefix = {'i': 'int', 'u': 'uint', 'f': 'float'} return '{}{}x{}_t'.format(prefix[typ[0]], typ[1:], 64 // int(typ[1:])) def sve_typ(typ): prefix = {'i': 'svint', 'u': 'svuint', 'f': 'svfloat'} return '{}{}_t'.format(prefix[typ[0]], typ[1:]) def suf(typ): if typ[0] == 'i': return 's{}'.format(typ[1:]) else: return typ neon = ['neon128', 'aarch64'] fixed_sized_sve = ['sve128', 'sve256', 'sve512', 'sve1024', 'sve2048'] sve = ['sve'] + fixed_sized_sve fmtspec = {} def convert_from_predicate(opts, op): if opts.sve_emulate_bool: return '''svsel({op}, svdup_n_u{typnbits}_x({svtrue}, (u{typnbits})~0), svdup_n_u{typnbits}_x({svtrue}, 0))'''. \ format(op=op, **fmtspec) else: return op def convert_to_predicate(opts, op): if opts.sve_emulate_bool: # TODO: the casts are a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected return '''svcmpeq({svtrue}, (svuint{typnbits}_t){op}, svdup_n_u{typnbits}_x({svtrue}, (u{typnbits})~0))'''.format(op=op, **fmtspec) else: return op # ----------------------------------------------------------------------------- # Implementation of mandatory functions for this module def get_simd_exts(): return ['neon128', 'aarch64', 'sve', 'sve128', 'sve256', 'sve512', 'sve1024', 'sve2048'] def get_prev_simd_ext(simd_ext): if simd_ext in ['neon128', 'aarch64']: return 'cpu' elif simd_ext in sve: return 'aarch64' raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) def emulate_fp16(simd_ext): if not simd_ext in get_simd_exts(): raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) if simd_ext in sve: return False else: return True def get_type(opts, simd_ext, typ, nsimd_typ): if simd_ext in neon: if typ == 'f64': if simd_ext == 'neon128': return 'typedef struct {{ double v0; double v1; }} {};'. \ format(nsimd_typ) else: return 'typedef {} {};'.format(neon_typ('f64'), nsimd_typ) elif typ == 'f16': return ''' #ifdef NSIMD_ARM_FP16 typedef float16x8_t {nsimd_typ}; #else typedef struct {{ float32x4_t v0; float32x4_t v1; }} {nsimd_typ}; #endif '''.format(nsimd_typ=nsimd_typ) # extra \n are necessary else: return 'typedef {} {};'.format(neon_typ(typ), nsimd_typ) elif simd_ext == 'sve': return 'typedef {} {};'.format(sve_typ(typ), nsimd_typ) elif simd_ext in fixed_sized_sve: return 'typedef {} {} __attribute__((arm_sve_vector_bits({})));'. \ format(sve_typ(typ), nsimd_typ, simd_ext[3:]) else: raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) def get_logical_type(opts, simd_ext, typ, nsimd_typ): if typ not in common.types: raise ValueError('Unknown type "{}"'.format(typ)) if simd_ext not in get_simd_exts(): raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) if typ in common.ftypes + common.itypes: typ2 = 'u{}'.format(typ[1:]); else: typ2 = typ if simd_ext == 'neon128': if typ == 'f16': return \ ''' #ifdef NSIMD_ARM_FP16 typedef uint16x8_t {nsimd_typ}; #else typedef struct {{ uint32x4_t v0; uint32x4_t v1; }} {nsimd_typ}; #endif '''.format(nsimd_typ=nsimd_typ) # extra \n are necessary elif typ == 'f64': return 'typedef struct {{ u64 v0; u64 v1; }} {};'.format(nsimd_typ) else: return get_type(opts, simd_ext, typ2, nsimd_typ) if simd_ext == 'aarch64': if typ == 'f16': return get_logical_type(opts, 'neon128', 'f16', nsimd_typ) else: return get_type(opts, simd_ext, typ2, nsimd_typ) elif simd_ext in sve: if opts.sve_emulate_bool: return get_type(opts, simd_ext, 'u' + typ[1:], nsimd_typ) elif simd_ext in fixed_sized_sve: return \ 'typedef svbool_t {} __attribute__((arm_sve_vector_bits({})));'. \ format(nsimd_typ, simd_ext[3:]) else: return 'typedef svbool_t {};'.format(nsimd_typ) def get_nb_registers(simd_ext): if simd_ext in neon: return '16' elif simd_ext in sve: return '32' else: raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) def get_native_soa_typ(simd_ext, typ, deg): prefix = { 'i': 'int', 'u': 'uint', 'f': 'float' }[typ[0]] if simd_ext in sve: return 'sv{}x{}_t'.format(prefix + typ[1:], deg) else: return '{}{}x{}x{}_t'.format(prefix, typ[1:], 128 // int(typ[1:]), deg) def get_SoA_type(simd_ext, typ, deg, nsimd_typ): if simd_ext != 'sve': raise ValueError('SIMD extension must be "sve"') prefix = { 'i': 'int', 'u': 'uint', 'f': 'float' }[typ[0]] return 'typedef {} {};'.format(get_native_soa_typ(simd_ext, typ, deg), nsimd_typ) def has_compatible_SoA_types(simd_ext): if simd_ext not in neon + sve: raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) return False # ----------------------------------------------------------------------------- def get_additional_include(func, platform, simd_ext): ret = '''#include <nsimd/cpu/cpu/{}.h> '''.format(func) if simd_ext in sve: ret += '''#include <nsimd/arm/aarch64/{}.h> '''.format(func) if func in ['load2u', 'load3u', 'load4u', 'load2a', 'load3a', 'load4a']: deg = func[4] ret += '''#if NSIMD_CXX > 0 extern "C" {{ #endif NSIMD_INLINE nsimd_{simd_ext}_vu16x{deg} nsimd_{func}_{simd_ext}_u16(const u16*); # if NSIMD_CXX > 0 }} // extern "C" #endif '''.format(func=func, deg=deg, simd_ext=simd_ext) if func in ['mask_storea1', 'mask_storeu1', 'masko_loada1', 'masko_loadu1', 'maskz_loada1', 'maskz_loadu1'] and \ simd_ext not in sve: ret += '''#include <nsimd/scalar_utilities.h> ''' if func == 'mask_for_loop_tail' and simd_ext not in sve: ret += '''#include <nsimd/arm/{simd_ext}/set1.h> #include <nsimd/arm/{simd_ext}/set1l.h> #include <nsimd/arm/{simd_ext}/iota.h> #include <nsimd/arm/{simd_ext}/lt.h> '''.format(simd_ext=simd_ext) if simd_ext == 'neon128' and func == 'notl': ret += '''#include <nsimd/arm/neon128/notb.h> ''' if simd_ext in neon and func == 'ne': ret += '''#include <nsimd/arm/{simd_ext}/eq.h> # include <nsimd/arm/{simd_ext}/notl.h> '''.format(simd_ext=simd_ext) if simd_ext in neon and func in ['fms', 'fnms']: ret += '''#include <nsimd/arm/{simd_ext}/ne.h> #include <nsimd/arm/{simd_ext}/fma.h> #include <nsimd/arm/{simd_ext}/fnma.h> '''.format(simd_ext=simd_ext) if func == 'shra': ret += '''#include <nsimd/arm/{simd_ext}/shr.h> '''.format(simd_ext=simd_ext) if func in ['loadlu', 'loadla']: ret += '''#include <nsimd/arm/{simd_ext}/eq.h> # include <nsimd/arm/{simd_ext}/set1.h> # include <nsimd/arm/{simd_ext}/{load}.h> # include <nsimd/arm/{simd_ext}/notl.h> '''.format(load='load' + func[5], simd_ext=simd_ext) if func in ['storelu', 'storela']: ret += '''#include <nsimd/arm/{simd_ext}/if_else1.h> # include <nsimd/arm/{simd_ext}/set1.h> # include <nsimd/arm/{simd_ext}/{store}.h> '''.format(store='store' + func[6], simd_ext=simd_ext) if func == 'to_logical': ret += '''#include <nsimd/arm/{simd_ext}/reinterpret.h> #include <nsimd/arm/{simd_ext}/ne.h> ''' .format(simd_ext=simd_ext) if func == 'zip': ret += '''#include <nsimd/arm/{simd_ext}/ziplo.h> #include <nsimd/arm/{simd_ext}/ziphi.h> '''.format(simd_ext=simd_ext) if func == 'unzip': ret += '''#include <nsimd/arm/{simd_ext}/unziplo.h> #include <nsimd/arm/{simd_ext}/unziphi.h> '''.format(simd_ext=simd_ext) if func == 'adds': ret += '''#include <nsimd/arm/{simd_ext}/add.h> '''.format(simd_ext=simd_ext) if func == 'subs': ret += '''#include <nsimd/arm/{simd_ext}/sub.h> '''.format(simd_ext=simd_ext) if func in ['gather', 'scatter'] and simd_ext == 'sve': ret += '''#include <nsimd/arm/sve/len.h> ''' return ret # ----------------------------------------------------------------------------- # Emulators def emulate_op1(op, simd_ext, typ): if simd_ext in neon: le = 128 // int(typ[1:]); return '''int i; {typ} buf[{le}]; vst1q_{suf}(buf, {in0}); for (i=0; i < {le}; i += nsimd_len_cpu_{typ}()) {{ nsimd_storeu_cpu_{typ}( & buf[i], nsimd_{op}_cpu_{typ}( nsimd_loadu_cpu_{typ}(&buf[i])));}} return vld1q_{suf}(buf); '''. \ format(op=op, le=le, **fmtspec) if simd_ext in sve: le = 2048 // int(typ[1:]); return '''int i; {typ} buf[{le}]; svst1_{suf}({svtrue}, buf, {in0}); for (i=0; i < simd_len_{simd_ext}_{typ}(); i += nsimd_len_cpu_{typ}()) {{ nsimd_storeu_cpu_{typ}( & buf[i], nsimd_{op}_cpu_{typ}( nsimd_loadu_cpu_{typ}(&buf[i])));}} return svld1_{suf}({svtrue}, buf); '''. \ format(op=op, le=le, **fmtspec) def emulate_op2(op, simd_ext, typ): if simd_ext in neon: le = 128 // int(typ[1:]); return '''int i; {typ} buf0[{le}], buf1[{le}]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); for (i=0; i < {le}; i++) {{ buf0[i] = ({typ})(buf0[i] {op} buf1[i]);}} return vld1q_{suf}(buf0); '''. \ format(op=op, le=le, **fmtspec) if simd_ext in sve: le = 2048 // int(typ[1:]); return '''int i; {typ} buf0[{le}], buf1[{le}]; svst1_{suf}({svtrue}, buf0, {in0}); svst1_{suf}({svtrue}, buf1, {in1}); for (i=0; i < nsimd_len_{simd_ext}_{typ}(); i++) {{ buf0[i] = ({typ})(buf0[i] {op} buf1[i]);}} return svld1_{suf}({svtrue}, buf0); '''. \ format(op=op, le=le, **fmtspec) def emulate_lop2_neon(opts, op, simd_ext, typ): le = 128 // int(typ[1:]); ltyp = get_logical_type(opts, simd_ext, typ) lsuf = suf(ltyp) return '''int i; {ltyp} buf0[{le}], buf1[{le}]; vst1q_{lsuf}(buf0, {in0}); vst1q_{lsuf}(buf1, {in1}); for (i = 0; i < {le}; i++) {{ buf0[i] = buf0[i] {op} buf1[i] ? ({ltyp})-1 : 0; }} return vld1q_{lsuf}(buf0);'''. \ format(op=op, le=le, ltyp=ltyp, lsuf=lsuf, **fmtspec) def emulate_op3_neon(op, simd_ext, typ): le = 128 // int(typ[1:]); return '''int i; {typ} buf0[{le}], buf1[{le}], buf2[{le}]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); vst1q_{suf}(buf2, {in2}); for (i = 0; i < {le}; i += nsimd_len_cpu_{typ}()) {{ nsimd_storeu_cpu_{typ}(&buf0[i], nsimd_{op}_cpu_{typ}( nsimd_loadu_cpu_{typ}(&buf0[i]), nsimd_loadu_cpu_{typ}(&buf1[i]), nsimd_loadu_cpu_{typ}(&buf2[i]))); }} return vld1q_{suf}(buf0);'''.format(op=op, le=le, **fmtspec) def emulate_f64_neon(simd_ext, op, params): fmtspec2 = fmtspec.copy() fmtspec2['op'] = op fmtspec2['buf_ret_decl'] = 'nsimd_cpu_{}f64 buf_ret;'. \ format('v' if params[0] == 'v' else 'vl') fmtspec2['buf_decl'] = '\n'.join(['nsimd_cpu_{}f64 buf{};'. \ format('v' if p[1] == 'v' else 'vl', p[0]) \ for p in common.enum(params[1:])]) fmtspec2['bufs'] = ','.join(['buf{}'.format(i) \ for i in range(0, len(params) - 1)]) fmtspec2['ret_decl'] = 'nsimd_{}_{}f64 ret;'. \ format(simd_ext, 'v' if params[0] == 'v' else 'vl') buf_set = '\n'.join('''buf{i}.v0 = {ini}.v0; buf{i}.v1 = {ini}.v1;'''. \ format(i=i, ini=fmtspec['in{}'.format(i)]) \ for i in range(0, len(params) - 1)) return '''{buf_ret_decl} {buf_decl} {ret_decl} {buf_set} buf_ret = nsimd_{op}_cpu_f64({bufs}); ret.v0 = buf_ret.v0; ret.v1 = buf_ret.v1; return ret;'''.format(buf_set=buf_set, **fmtspec2) # ----------------------------------------------------------------------------- def f16f64(simd_ext, typ, op, armop, arity, forced_intrinsics = ''): fmtspec2 = fmtspec.copy() tmpl = ', '.join(['{{in{}}}.v{{{{i}}}}'.format(i).format(**fmtspec) \ for i in range(0, arity)]) fmtspec2['args1'] = tmpl.format(i='0') fmtspec2['args2'] = tmpl.format(i='1') fmtspec2['armop'] = armop fmtspec2['op'] = op if simd_ext in neon and typ == 'f16': if forced_intrinsics != '': fmtspec2['intrinsics'] = forced_intrinsics else: temp = ', '.join(['{{in{}}}'.format(i).format(**fmtspec) \ for i in range(0, arity)]) fmtspec2['intrinsics'] = 'return v{}q_f16({});'.format(armop, temp) return '''#ifdef NSIMD_ARM_FP16 {intrinsics} #else nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_{op}_{simd_ext}_f32({args1}); ret.v1 = nsimd_{op}_{simd_ext}_f32({args2}); return ret; #endif'''.format(**fmtspec2) elif simd_ext == 'neon128' and typ == 'f64': return emulate_f64_neon(simd_ext, op, ['v'] * (arity + 1)) return '' # ----------------------------------------------------------------------------- # Lenghts def max_len(simd_ext, typ): if simd_ext == 'sve': return 2048 // int(typ[1:]) elif simd_ext in fixed_sized_sve: return int(simd_ext[3:]) // int(typ[1:]) else: return 128 // int(typ[1:]) def real_len(simd_ext, typ): if simd_ext == 'sve': return 'nsimd_len_sve_{typ}()'.format(**fmtspec) else: return max_len(simd_ext, typ) # ----------------------------------------------------------------------------- # Loads of degree 1, 2, 3 and 4 def load1234(opts, simd_ext, typ, deg): if simd_ext in neon: if deg == 1: normal = 'return vld{deg}q_{suf}({in0});'. \ format(deg=deg, **fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else /* Note that we can do much better but is it useful? */ nsimd_{simd_ext}_vf16 ret; f32 buf[4]; buf[0] = nsimd_u16_to_f32(*(u16*){in0}); buf[1] = nsimd_u16_to_f32(*((u16*){in0} + 1)); buf[2] = nsimd_u16_to_f32(*((u16*){in0} + 2)); buf[3] = nsimd_u16_to_f32(*((u16*){in0} + 3)); ret.v0 = vld1q_f32(buf); buf[0] = nsimd_u16_to_f32(*((u16*){in0} + 4)); buf[1] = nsimd_u16_to_f32(*((u16*){in0} + 5)); buf[2] = nsimd_u16_to_f32(*((u16*){in0} + 6)); buf[3] = nsimd_u16_to_f32(*((u16*){in0} + 7)); ret.v1 = vld1q_f32(buf); return ret; #endif'''.format(normal=normal, **fmtspec) elif typ == 'f64' and simd_ext == 'neon128': return \ '''nsimd_neon128_vf64 ret; ret.v0 = *{in0}; ret.v1 = *({in0} + 1); return ret;'''.format(**fmtspec) else: return normal else: normal = \ '''nsimd_{simd_ext}_v{typ}x{deg} ret; {soa_typ} buf = vld{deg}q_{suf}({in0}); {assignment} return ret;'''. \ format(deg=deg, soa_typ=get_native_soa_typ(simd_ext, typ, deg), assignment='\n'.join(['ret.v{i} = buf.val[{i}];'. \ format(i=i) for i in range(0, deg)]), **fmtspec) if typ == 'f16': assignment = \ '''vst1q_u16(buf, temp.val[{{i}}]); ret.v{{i}} = nsimd_loadu_{simd_ext}_f16((f16 *)buf);'''. \ format(**fmtspec) return \ '''{soa_typ} temp = vld{deg}q_u16((u16 *){in0}); u16 buf[8]; nsimd_{simd_ext}_vf16x{deg} ret; {assignment} return ret;'''. \ format(deg=deg, assignment='\n'.join([assignment. \ format(i=i) for i in range(0, deg)]), soa_typ=get_native_soa_typ(simd_ext, 'u16', deg), **fmtspec) elif typ in 'f64' and simd_ext == 'neon128': return \ 'nsimd_neon128_vf64x{} ret;\n'.format(deg) + \ '\n'.join(['ret.v{i}.v0 = *({in0} + {i});'. \ format(i=i, **fmtspec) for i in range(0, deg)]) + \ '\n'.join(['ret.v{i}.v1 = *({in0} + {ipd});'. \ format(i=i, ipd=i + deg, **fmtspec) \ for i in range(0, deg)]) + \ '\nreturn ret;\n' elif typ in ['i64', 'u64'] and simd_ext == 'neon128': return \ '''nsimd_neon128_v{typ}x{deg} ret; {typ} buf[2];'''.format(deg=deg, **fmtspec) + \ '\n'.join(['''buf[0] = *({in0} + {i}); buf[1] = *({in0} + {ipd}); ret.v{i} = vld1q_{suf}(buf);'''. \ format(i=i, ipd=i + deg, **fmtspec) \ for i in range(0, deg)]) + \ '\nreturn ret;\n' else: return normal else: if deg == 1: return 'return svld{deg}_{suf}({svtrue}, {in0});'. \ format(deg=deg, **fmtspec) else: return \ '''nsimd_{simd_ext}_v{typ}x{deg} ret; {sve_typ} buf = svld{deg}_{suf}({svtrue}, {in0}); {assignment} return ret;'''.format(assignment=\ '\n'.join(['ret.v{i} = svget{deg}_{suf}(buf, {i});'. \ format(i=i, deg=deg, **fmtspec) \ for i in range(deg)]), sve_typ=get_native_soa_typ('sve', typ, deg), deg=deg, **fmtspec) # ----------------------------------------------------------------------------- # Mask loads def maskoz_load(oz, simd_ext, typ): if simd_ext in sve: return 'return svsel_{suf}({in0}, svld1_{suf}({in0}, {in1}), {oz});'. \ format(oz='{in2}'.format(**fmtspec) if oz == 'o' \ else 'svdup_n_{suf}(({typ})0)'.format(**fmtspec), **fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''nsimd_neon128_vf64 ret; if ({in0}.v0) {{ ret.v0 = {in1}[0]; }} else {{ ret.v0 = {oz0}; }} if ({in0}.v1) {{ ret.v1 = {in1}[1]; }} else {{ ret.v1 = {oz1}; }} return ret;'''.format( oz0 = '0.0f' if oz == 'z' else '{in2}.v0'.format(**fmtspec), oz1 = '0.0f' if oz == 'z' else '{in2}.v1'.format(**fmtspec), **fmtspec) le = 128 // int(typ[1:]) normal = '''int i; {typ} buf[{le}]; u{typnbits} mask[{le}]; vst1q_{suf}(buf, {oz}); vst1q_u{typnbits}(mask, {in0}); for (i = 0; i < {le}; i++) {{ if (mask[i]) {{ buf[i] = {in1}[i]; }} }} return vld1q_{suf}(buf);'''. \ format(oz='vdupq_n_{suf}(({typ})0)'.format(**fmtspec) \ if oz == 'z' else '{in2}'.format(**fmtspec), le=le, **fmtspec) if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {normal} #else int i; nsimd_{simd_ext}_vf16 ret; f32 buf[8]; u32 mask[8]; vst1q_f32(buf, {oz0}); vst1q_f32(buf + 4, {oz1}); vst1q_u32(mask, {in0}.v0); vst1q_u32(mask + 4, {in0}.v1); for (i = 0; i < 8; i++) {{ if (mask[i]) {{ buf[i] = nsimd_f16_to_f32({in1}[i]); }} }} ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + 4); return ret; #endif'''. \ format(oz0='vdupq_n_f32(0.0f)'.format(**fmtspec) \ if oz == 'z' else '{in2}.v0'.format(**fmtspec), oz1='vdupq_n_f32(0.0f)'.format(**fmtspec) \ if oz == 'z' else '{in2}.v1'.format(**fmtspec), normal=normal, **fmtspec) return normal # ----------------------------------------------------------------------------- # Stores of degree 1, 2, 3 and 4 def store1234(opts, simd_ext, typ, deg): if simd_ext in neon: if deg == 1: normal = 'vst{deg}q_{suf}({in0}, {in1});'. \ format(deg=deg, **fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else f32 buf[4]; vst1q_f32(buf, {in1}.v0); *((u16*){in0} ) = nsimd_f32_to_u16(buf[0]); *((u16*){in0} + 1) = nsimd_f32_to_u16(buf[1]); *((u16*){in0} + 2) = nsimd_f32_to_u16(buf[2]); *((u16*){in0} + 3) = nsimd_f32_to_u16(buf[3]); vst1q_f32(buf, {in1}.v1); *((u16*){in0} + 4) = nsimd_f32_to_u16(buf[0]); *((u16*){in0} + 5) = nsimd_f32_to_u16(buf[1]); *((u16*){in0} + 6) = nsimd_f32_to_u16(buf[2]); *((u16*){in0} + 7) = nsimd_f32_to_u16(buf[3]); #endif'''.format(normal=normal, **fmtspec) elif typ == 'f64' and simd_ext == 'neon128': return \ '''*{in0} = {in1}.v0; *({in0} + 1) = {in1}.v1;'''.format(**fmtspec) else: return normal else: normal = \ '''{soa_typ} buf; {assignment} vst{deg}q_{suf}({in0}, buf);'''. \ format(deg=deg, assignment='\n'.join([ 'buf.val[{{}}] = {{in{}}};'.format(i). \ format(i - 1, **fmtspec) for i in range(1, deg + 1)]), soa_typ=get_native_soa_typ(simd_ext, typ, deg), **fmtspec) if typ == 'f16': assignment = \ '''nsimd_storeu_{{simd_ext}}_f16((f16 *)buf, {{in{}}}); temp.val[{{}}] = vld1q_u16(buf);''' return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else {soa_typ} temp; u16 buf[8]; {assignment} vst{deg}q_u16((u16 *){in0}, temp); #endif'''. \ format(assignment='\n'.join([assignment.format(i). \ format(i - 1, **fmtspec) \ for i in range(1, deg + 1)]), deg=deg, normal=normal, soa_typ=get_native_soa_typ(simd_ext, 'u16', deg), **fmtspec) elif typ == 'f64' and simd_ext == 'neon128': return \ '\n'.join(['*({{in0}} + {}) = {{in{}}}.v0;'. \ format(i - 1, i).format(**fmtspec) \ for i in range(1, deg + 1)]) + '\n' + \ '\n'.join(['*({{in0}} + {}) = {{in{}}}.v1;'. \ format(i + deg - 1, i).format(**fmtspec) \ for i in range(1, deg + 1)]) elif typ in ['i64', 'u64'] and simd_ext == 'neon128': return \ '{typ} buf[{biglen}];'.format(biglen=2 * deg, **fmtspec) + \ '\n'.join(['vst1q_{{suf}}(buf + {im1x2}, {{in{i}}});'. \ format(im1x2=2 * (i - 1), i=i).format(**fmtspec) \ for i in range(1, deg + 1)]) + \ '\n'.join(['''*({in0} + {i}) = buf[{ix2}]; *({in0} + {ipd}) = buf[{ix2p1}];'''. \ format(i=i, ipd=i + deg, ix2=i * 2, ix2p1=2 * i + 1, **fmtspec) \ for i in range(0, deg)]) else: return normal else: if deg == 1: return 'svst{deg}_{suf}({svtrue}, {in0}, {in1});'. \ format(deg=deg, **fmtspec) fill_soa_typ = \ '\n'.join(['tmp = svset{{deg}}_{{suf}}(tmp, {im1}, {{in{i}}});'. \ format(im1=i - 1, i=i).format(deg=deg, **fmtspec) \ for i in range(1, deg + 1)]) return \ '''{soa_typ} tmp = svundef{deg}_{suf}(); {fill_soa_typ} svst{deg}_{suf}({svtrue}, {in0}, tmp);'''. \ format(soa_typ=get_native_soa_typ('sve', typ, deg), deg=deg, fill_soa_typ=fill_soa_typ, **fmtspec) # ----------------------------------------------------------------------------- # Mask stores def mask_store(simd_ext, typ): if simd_ext in sve: return 'svst1_{suf}({in0}, {in1}, {in2});'.format(**fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''if ({in0}.v0) {{ {in1}[0] = {in2}.v0; }} if ({in0}.v1) {{ {in1}[1] = {in2}.v1; }}'''.format(**fmtspec) le = 128 // int(typ[1:]) normal = '''int i; {typ} buf[{le}]; u{typnbits} mask[{le}]; vst1q_{suf}(buf, {in2}); vst1q_u{typnbits}(mask, {in0}); for (i = 0; i < {le}; i++) {{ if (mask[i]) {{ {in1}[i] = buf[i]; }} }}'''.format(le=le, **fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else f32 buf[8]; u32 mask[8]; int i; vst1q_u32(mask, {in0}.v0); vst1q_u32(mask + 4, {in0}.v1); vst1q_f32(buf, {in2}.v0); vst1q_f32(buf + 4, {in2}.v1); for (i = 0; i < 8; i++) {{ if (mask[i]) {{ {in1}[i] = nsimd_f32_to_f16(buf[i]); }} }} #endif'''.format(normal=normal, **fmtspec) return normal # ----------------------------------------------------------------------------- # Length def len1(simd_ext, typ): if simd_ext in neon: return 'return {};'.format(128 // int(typ[1:])) elif simd_ext == 'sve': return 'return (int)svcntp_b{typnbits}({svtrue}, {svtrue});'. \ format(**fmtspec) elif simd_ext in fixed_sized_sve: return 'return {};'.format(int(simd_ext[3:]) // int(typ[1:])) # ----------------------------------------------------------------------------- # Add/sub def addsub(op, simd_ext, typ): ret = f16f64(simd_ext, typ, op, op, 2) if ret != '': return ret if simd_ext in neon: return 'return v{op}q_{suf}({in0}, {in1});'. \ format(op=op, **fmtspec) else: return 'return sv{op}_{suf}_x({svtrue}, {in0}, {in1});'. \ format(op=op, **fmtspec) # ----------------------------------------------------------------------------- # Multiplication def mul2(simd_ext, typ): ret = f16f64(simd_ext, typ, 'mul', 'mul', 2) if ret != '': return ret elif simd_ext in neon and typ in ['i64', 'u64']: return emulate_op2('*', simd_ext, typ) else: if simd_ext in neon: return 'return vmulq_{suf}({in0}, {in1});'.format(**fmtspec) else: return 'return svmul_{suf}_x({svtrue}, {in0}, {in1});'. \ format(**fmtspec) # ----------------------------------------------------------------------------- # Division def div2(simd_ext, typ): if simd_ext == 'aarch64' and typ in ['f32', 'f64']: return 'return vdivq_{suf}({in0}, {in1});'.format(**fmtspec) elif simd_ext in sve and \ typ in ['f16', 'f32', 'f64', 'i32', 'u32', 'i64', 'u64']: return 'return svdiv_{suf}_x({svtrue}, {in0}, {in1});'. \ format(**fmtspec) else: ret = f16f64(simd_ext, typ, 'div', 'div', 2) if ret != '': return ret return emulate_op2('/', simd_ext, typ) # ----------------------------------------------------------------------------- # Binary operators: and, or, xor, andnot def binop2(op, simd_ext, typ): armop = {'orb': 'orr', 'xorb': 'eor', 'andb': 'and', 'andnotb': 'bic'} if typ in common.iutypes: if simd_ext in neon: return 'return v{armop}q_{suf}({in0}, {in1});'. \ format(armop=armop[op], **fmtspec) else: return 'return sv{armop}_{suf}_x({svtrue}, {in0}, {in1});'. \ format(armop=armop[op], **fmtspec) # From here only float types if typ == 'f16': intrinsics = \ '''return vreinterpretq_f16_u16(v{armop}q_u16(vreinterpretq_u16_f16( {in0}), vreinterpretq_u16_f16({in1})));'''. \ format(armop=armop[op], **fmtspec) else: intrinsics = '' ret = f16f64(simd_ext, typ, op, armop[op], 2, intrinsics) if ret != '': return ret if simd_ext in neon: return \ '''return vreinterpretq_f{typnbits}_u{typnbits}(v{armop}q_u{typnbits}( vreinterpretq_u{typnbits}_f{typnbits}({in0}), vreinterpretq_u{typnbits}_f{typnbits}({in1})));'''. \ format(armop=armop[op], **fmtspec) else: return \ '''return svreinterpret_f{typnbits}_u{typnbits}( sv{armop}_u{typnbits}_x({svtrue}, svreinterpret_u{typnbits}_f{typnbits}({in0}), svreinterpret_u{typnbits}_f{typnbits}({in1})));'''. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Binary not def not1(simd_ext, typ): if typ in common.iutypes: if simd_ext in neon: if typ in ['i8', 'u8', 'i16', 'u16', 'i32', 'u32']: return 'return vmvnq_{suf}({in0});'.format(**fmtspec) else: return \ '''return vreinterpretq_{suf}_u32(vmvnq_u32( vreinterpretq_u32_{suf}({in0})));'''. \ format(**fmtspec) if simd_ext in sve: return 'return svnot_{suf}_x({svtrue}, {in0});'.format(**fmtspec) # From here only float types if typ == 'f16': intrinsics = \ '''return vreinterpretq_f16_u16(vmvnq_u16(vreinterpretq_u16_f16( {in0})));'''.format(**fmtspec) else: intrinsics = '' ret = f16f64(simd_ext, typ, 'notb', 'mvn', 1, intrinsics) if ret != '': return ret if simd_ext in neon: return \ '''return vreinterpretq_{suf}_u32(vmvnq_u32( vreinterpretq_u32_{suf}({in0})));'''. \ format(**fmtspec) else: return \ '''return svreinterpret_{suf}_u{typnbits}(svnot_u{typnbits}_x( {svtrue}, svreinterpret_u{typnbits}_{suf}({in0})));'''. \ format(**fmtspec) # ----------------------------------------------------------------------------- # Logical operators: and, or, xor, andnot def lop2(opts, op, simd_ext, typ): armop = {'orl': 'orr', 'xorl': 'eor', 'andl': 'and', 'andnotl': 'bic'} if simd_ext in neon: if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 return v{armop}q_u16({in0}, {in1}); #else nsimd_{simd_ext}_vlf16 ret; ret.v0 = v{armop}q_u32({in0}.v0, {in1}.v0); ret.v1 = v{armop}q_u32({in0}.v1, {in1}.v1); return ret; #endif'''.format(armop=armop[op], **fmtspec) elif simd_ext == 'neon128' and typ == 'f64': if op == 'andnotl': return '''nsimd_{simd_ext}_vlf64 ret; ret.v0 = {in0}.v0 & (~{in1}.v0); ret.v1 = {in0}.v1 & (~{in1}.v1); return ret;'''.format(**fmtspec) else: cpuop = {'orl': '|', 'xorl': '^', 'andl': '&'} return '''nsimd_{simd_ext}_vlf64 ret; ret.v0 = {in0}.v0 {cpuop} {in1}.v0; ret.v1 = {in0}.v1 {cpuop} {in1}.v1; return ret;'''.format(cpuop=cpuop[op], **fmtspec) else: return 'return v{armop}q_u{typnbits}({in0}, {in1});'. \ format(armop=armop[op], **fmtspec) else: if opts.sve_emulate_bool: # TODO: the casts are a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected return \ '''return sv{armop}_x({svtrue}, (svuint{typnbits}_t){in0}, (svuint{typnbits}_t){in1});'''. \ format(armop=armop[op], **fmtspec) else: return '''return sv{armop}_z({svtrue}, {in0}, {in1});'''. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Logical not def lnot1(opts, simd_ext, typ): if simd_ext in neon: if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 return vmvnq_u16({in0}); #else nsimd_{simd_ext}_vlf16 ret; ret.v0 = vmvnq_u32({in0}.v0); ret.v1 = vmvnq_u32({in0}.v1); return ret; #endif'''.format(**fmtspec) elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vlf64 ret; ret.v0 = ~{in0}.v0; ret.v1 = ~{in0}.v1; return ret;'''.format(**fmtspec) elif typ in ['i64', 'u64', 'f64']: return '''return vreinterpretq_u{typnbits}_u32(vmvnq_u32( vreinterpretq_u32_u{typnbits}({in0})));'''. \ format(**fmtspec) else: return 'return vmvnq_u{typnbits}({in0});'.format(**fmtspec) elif simd_ext in sve: if opts.sve_emulate_bool: # TODO: the cast is a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected return 'return svnot_x({svtrue}, (svuint{typnbits}_t){in0});'.format(**fmtspec) else: return 'return svnot_z({svtrue}, {in0});'.format(**fmtspec) # ----------------------------------------------------------------------------- # Square root def sqrt1(simd_ext, typ): if simd_ext == 'neon128': if typ in 'f16': return '''nsimd_neon128_vf16 ret; ret.v0 = nsimd_sqrt_neon128_f32({in0}.v0); ret.v1 = nsimd_sqrt_neon128_f32({in0}.v1); return ret;'''.format(**fmtspec) elif typ == 'f64': return f16f64('neon128', 'f64', 'sqrt', 'sqrt', 1) else: return emulate_op1('sqrt', simd_ext, typ) elif simd_ext == 'aarch64': if typ == 'f16': return f16f64('aarch64', 'f16', 'sqrt', 'sqrt', 1) else: return 'return vsqrtq_{suf}({in0});'.format(**fmtspec) else: return 'return svsqrt_{suf}_x({svtrue}, {in0});'.format(**fmtspec) # ----------------------------------------------------------------------------- # Shifts def shl_shr(op, simd_ext, typ): if simd_ext in neon: sign = '-' if op == 'shr' else '' if typ in common.utypes: return '''return vshlq_{suf}({in0}, vdupq_n_s{typnbits}( (i{typnbits})({sign}{in1})));'''. \ format(sign=sign, **fmtspec) else: return \ '''return vreinterpretq_s{typnbits}_u{typnbits}(vshlq_u{typnbits}( vreinterpretq_u{typnbits}_s{typnbits}({in0}), vdupq_n_s{typnbits}((i{typnbits})({sign}{in1}))));'''. \ format(sign=sign, **fmtspec) else: armop = 'lsl' if op == 'shl' else 'lsr' if op == 'shr' and typ in common.itypes: return \ '''return svreinterpret_{suf}_{suf2}(sv{armop}_{suf2}_x({svtrue}, svreinterpret_{suf2}_{suf}({in0}), svdup_n_u{typnbits}((u{typnbits}){in1})));'''. \ format(suf2=common.bitfield_type[typ], armop=armop, **fmtspec) else: return '''return sv{armop}_{suf}_x({svtrue}, {in0}, svdup_n_u{typnbits}((u{typnbits}){in1}));'''. \ format(armop=armop, **fmtspec) def shra(simd_ext, typ): if typ in common.utypes: return '''return nsimd_shr_{simd_ext}_{typ}({in0}, {in1});'''. \ format(**fmtspec) if simd_ext in neon: return '''return vshlq_{suf}( {in0}, vdupq_n_s{typnbits}((i{typnbits})-{in1}));'''.\ format(**fmtspec) elif simd_ext in sve: if typ[0] == 'i': return '''return svasr_n_{suf}_x({svtrue}, {in0}, (u{typnbits}){in1});'''.\ format(**fmtspec) elif typ[0] == 'u': return 'return svlsl_n_{suf}_x({svtrue}, {in0}, (u64){in1});'.\ format(**fmtspec) # ----------------------------------------------------------------------------- # Set1 def set1(simd_ext, typ): if simd_ext in neon: if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vdupq_n_f16({in0}); #else nsimd_{simd_ext}_vf16 ret; f32 f = nsimd_f16_to_f32({in0}); ret.v0 = nsimd_set1_{simd_ext}_f32(f); ret.v1 = nsimd_set1_{simd_ext}_f32(f); return ret; #endif'''.format(**fmtspec) elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = {in0}; ret.v1 = {in0}; return ret;'''.format(**fmtspec) else: return 'return vdupq_n_{suf}({in0});'.format(**fmtspec) else: return 'return svdup_n_{suf}({in0});'.format(**fmtspec) # ----------------------------------------------------------------------------- # Set1l def lset1(simd_ext, typ): if simd_ext in sve: return '''if ({in0}) {{ return svptrue_b{typnbits}(); }} else {{ return svpfalse_b(); }}'''.format(**fmtspec) # getting here means no NEON and AARCH64 only mask = 'vdupq_n_u{typnbits}((u{typnbits}){{}})'.format(**fmtspec) normal = '''if ({in0}) {{ return {ones}; }} else {{ return {zeros}; }}'''.format(ones=mask.format('-1'), zeros=mask.format('0'), **fmtspec) if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {normal} #else nsimd_{simd_ext}_vlf16 ret; ret.v0 = nsimd_set1l_{simd_ext}_f32({in0}); ret.v1 = ret.v0; return ret; #endif'''.format(normal=normal, **fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''nsimd_neon128_vlf64 ret; ret.v0 = (u64)({in0} ? -1 : 0); ret.v1 = ret.v0; return ret;'''.format(**fmtspec) return normal # ----------------------------------------------------------------------------- # Comparison operators: ==, <, <=, >, >= def cmp2(opts, op, simd_ext, typ): binop = {'eq': '==', 'lt': '<', 'le': '<=', 'gt': '>', 'ge': '>='} armop = {'eq': 'eq', 'lt': 'lt', 'le': 'le', 'gt': 'gt', 'ge': 'ge'} if simd_ext in neon: emul_f16 = '''nsimd_{simd_ext}_vlf16 ret; ret.v0 = nsimd_{op}_{simd_ext}_f32({in0}.v0, {in1}.v0); ret.v1 = nsimd_{op}_{simd_ext}_f32({in0}.v1, {in1}.v1); return ret;'''.format(op=op, **fmtspec) normal = 'return vc{armop}q_{suf}({in0}, {in1});'. \ format(armop=armop[op], **fmtspec) if typ == 'f16': if simd_ext == 'neon128': return emul_f16 else: return \ '''#ifdef NSIMD_ARM_FP16 {} #else {} #endif'''.format(normal, emul_f16) if simd_ext == 'neon128' and typ == 'f64': return '''nsimd_{simd_ext}_vl{typ} ret; ret.v0 = {in0}.v0 {op} {in1}.v0 ? (u64)-1 : 0; ret.v1 = {in0}.v1 {op} {in1}.v1 ? (u64)-1 : 0; return ret;'''.format(op=binop[op], **fmtspec) elif simd_ext == 'neon128' and typ in ['i64', 'u64']: return '''{typ} buf0[2], buf1[2]; u64 ret[2]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); ret[0] = buf0[0] {op} buf1[0] ? (u64)-1 : 0; ret[1] = buf0[1] {op} buf1[1] ? (u64)-1 : 0; return vld1q_u64(ret);'''. \ format(op=binop[op], **fmtspec) else: return normal elif simd_ext in sve: if opts.sve_emulate_bool: # TODO: the casts are a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected comp = 'svcmp{op}_{suf}({svtrue}, ({svetyp}){in0}, ({svetyp}){in1})'. \ format(op=armop[op], **fmtspec) return 'return {};'.format(convert_from_predicate(opts, comp)) else: return 'return svcmp{op}_{suf}({svtrue}, {in0}, {in1});'. \ format(op=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Not equal def neq2(opts, simd_ext, typ): if simd_ext in neon: return '''return nsimd_notl_{simd_ext}_{typ}( nsimd_eq_{simd_ext}_{typ}({in0}, {in1}));'''. \ format(**fmtspec) elif simd_ext in sve: comp='svcmpne_{suf}({svtrue}, {in0}, {in1})'. \ format(**fmtspec) return 'return {};'.format(convert_from_predicate(opts, comp)) # ----------------------------------------------------------------------------- # If_else def if_else3(opts, simd_ext, typ): if simd_ext in neon: intrinsic = 'return vbslq_{suf}({in0}, {in1}, {in2});'. \ format(**fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {intrinsic} #else nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_if_else1_{simd_ext}_f32( {in0}.v0, {in1}.v0, {in2}.v0); ret.v1 = nsimd_if_else1_{simd_ext}_f32( {in0}.v1, {in1}.v1, {in2}.v1); return ret; #endif'''.format(intrinsic=intrinsic, **fmtspec) elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = {in0}.v0 != 0u ? {in1}.v0 : {in2}.v0; ret.v1 = {in0}.v1 != 0u ? {in1}.v1 : {in2}.v1; return ret;'''.format(**fmtspec) else: return intrinsic elif simd_ext in sve: if opts.sve_emulate_bool: # TODO: the casts are a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected return 'return svsel_{suf}({cond}, ({svetyp}){in1}, ({svetyp}){in2});' \ .format(cond=convert_to_predicate(opts, '{in0}'.format(**fmtspec)), **fmtspec) else: return 'return svsel_{suf}({in0}, {in1}, {in2});' \ .format(**fmtspec) # ----------------------------------------------------------------------------- # Minimum and maximum def minmax2(op, simd_ext, typ): ret = f16f64(simd_ext, typ, op, op, 2) if ret != '': return ret if simd_ext in neon: if typ in ['i64', 'u64']: binop = '<' if op == 'min' else '>' return '''{typ} buf0[2], buf1[2]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); buf0[0] = buf0[0] {binop} buf1[0] ? buf0[0] : buf1[0]; buf0[1] = buf0[1] {binop} buf1[1] ? buf0[1] : buf1[1]; return vld1q_{suf}(buf0);'''. \ format(binop=binop, **fmtspec) else: return 'return v{op}q_{suf}({in0}, {in1});'. \ format(op=op, **fmtspec) else: return 'return sv{op}_{suf}_x({svtrue}, {in0}, {in1});'. \ format(op=op, **fmtspec) # ----------------------------------------------------------------------------- # Abs def abs1(simd_ext, typ): if typ in common.utypes: return 'return {in0};'.format(**fmtspec) elif simd_ext in neon: if typ == 'f16': return f16f64(simd_ext, 'f16', 'abs', 'abs', 1) elif (typ in ['i8', 'i16', 'i32', 'f32']) or \ (simd_ext == 'aarch64' and typ in ['i64', 'f64']): return 'return vabsq_{suf}({in0});'.format(**fmtspec) elif typ == 'i64': return emulate_op1('abs', 'neon128', 'i64') else: return f16f64(simd_ext, 'f64', 'abs', 'abs', 1) else: return 'return svabs_{suf}_x({svtrue}, {in0});'. \ format(**fmtspec) # ----------------------------------------------------------------------------- # Round, trunc, ceil and round_to_even def round1(op, simd_ext, typ): if typ in common.iutypes: return 'return {in0};'.format(**fmtspec) armop = {'floor': 'rndm', 'ceil': 'rndp', 'trunc': 'rnd', 'round_to_even': 'rndn'} if simd_ext == 'neon128': ret = f16f64('neon128', typ, op, 'v{armop}q_{suf}'. \ format(armop=armop, **fmtspec), 1) if ret != '': return ret return emulate_op1(op, 'neon128', typ); elif simd_ext == 'aarch64': if typ == 'f16': return f16f64('aarch64', 'f16', op, armop[op], 1) else: return 'return v{armop}q_{suf}({in0});'. \ format(armop=armop[op], **fmtspec) else: armop = {'floor': 'rintm', 'ceil': 'rintp', 'trunc': 'rintz', 'round_to_even': 'rintn'} return 'return sv{armop}_{suf}_x({svtrue}, {in0});'. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # FMA and FNMA def fmafnma3(op, simd_ext, typ): if typ in common.ftypes and simd_ext == 'aarch64': armop = {'fma': 'fma', 'fnma': 'fms'} else: armop = {'fma': 'mla', 'fnma': 'mls'} if simd_ext in neon: normal = 'return v{armop}q_{suf}({in2}, {in1}, {in0});'. \ format(armop=armop[op], **fmtspec) emul = emulate_op3_neon(op, simd_ext, typ) if typ == 'f16': using_f32 = \ '''nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_{op}_{simd_ext}_f32({in0}.v0, {in1}.v0, {in2}.v0); ret.v1 = nsimd_{op}_{simd_ext}_f32({in0}.v1, {in1}.v1, {in2}.v1); return ret;'''.format(op=op, **fmtspec) if simd_ext == 'aarch64': return \ '''#ifdef NSIMD_ARM_FP16 {} #else {} #endif'''.format(emul, using_f32) else: return using_f32 elif simd_ext == 'neon128' and typ == 'f64': return emulate_f64_neon('neon128', op, ['v'] * 4) elif simd_ext == 'aarch64' and typ == 'f64': return normal elif typ in ['i64', 'u64']: return emul else: return normal else: return 'return sv{armop}_{suf}_x({svtrue}, {in2}, {in1}, {in0});'. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # FMS and FNMS def fmsfnms3(op, simd_ext, typ): if typ in common.iutypes: return \ '''return nsimd_neg_{simd_ext}_{typ}(nsimd_{op2}_{simd_ext}_{typ}( {in0}, {in1}, {in2}));'''. \ format(op2='fma' if op == 'fnms' else 'fnma', **fmtspec) if simd_ext in neon: return \ '''return nsimd_{op2}_{simd_ext}_{typ}({in0}, {in1}, nsimd_neg_{simd_ext}_{typ}({in2}));'''. \ format(op2='fma' if op == 'fms' else 'fnma', **fmtspec) else: armop = {'fnms': 'nmla', 'fms': 'nmls'} return 'return sv{armop}_{suf}_x({svtrue}, {in2}, {in1}, {in0});'. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Neg def neg1(simd_ext, typ): if simd_ext in neon: normal = 'return vnegq_{suf}({in0});'.format(**fmtspec) if typ == 'f16': return f16f64(simd_ext, 'f16', 'neg', 'neg', 1) elif typ in ['i8', 'i16', 'i32', 'f32']: return normal elif typ in ['u8', 'u16', 'u32']: return \ '''return vreinterpretq_{suf}_s{typnbits}( vnegq_s{typnbits}( vreinterpretq_s{typnbits}_{suf}({in0})));'''. \ format(**fmtspec) elif simd_ext == 'neon128' and typ in ['i64', 'u64']: return emulate_op1('neg', simd_ext, typ) elif simd_ext == 'neon128' and typ == 'f64': return \ '''nsimd_neon128_vf64 ret; ret.v0 = -{in0}.v0; ret.v1 = -{in0}.v1; return ret;'''.format(**fmtspec) elif simd_ext == 'aarch64' and typ in ['f64', 'i64']: return normal elif simd_ext == 'aarch64' and typ == 'u64': return \ '''return vreinterpretq_u64_s64(vnegq_s64( vreinterpretq_s64_u64({in0})));'''. \ format(**fmtspec) else: if typ in common.utypes: return \ '''return svreinterpret_{suf}_s{typnbits}( svneg_s{typnbits}_x({svtrue}, svreinterpret_s{typnbits}_{suf}({in0})));'''. \ format(**fmtspec) else: return 'return svneg_{suf}_x({svtrue}, {in0});'.format(**fmtspec) # ----------------------------------------------------------------------------- # Reciprocals def recs1(op, simd_ext, typ): cte = '({typ})1'.format(**fmtspec) if typ != 'f16' \ else 'nsimd_f32_to_f16(1.0f)' if op in ['rec', 'rec11']: return \ '''return nsimd_div_{simd_ext}_{typ}( nsimd_set1_{simd_ext}_{typ}({cte}), {in0});'''. \ format(cte=cte, **fmtspec) elif op == 'rsqrt11': return \ '''return nsimd_div_{simd_ext}_{typ}( nsimd_set1_{simd_ext}_{typ}({cte}), nsimd_sqrt_{simd_ext}_{typ}({in0}));'''. \ format(cte=cte, **fmtspec) elif op in ['rec8', 'rsqrt8']: armop = 'recpe' if op == 'rec8' else 'rsqrte' if simd_ext in sve: return 'return sv{armop}_{suf}({in0});'. \ format(armop=armop, **fmtspec) else: ret = f16f64(simd_ext, typ, op, armop, 1) if ret != '': return ret return 'return v{armop}q_{suf}({in0});'. \ format(armop=armop, **fmtspec) # Rec11 and rsqrt11 # According to http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka14282.html # reciprocal estimates only work when inputs is restrained in some small # interval so we comment these for now and return full-precision reciprocals. # def rec11rsqrt11(op, simd_ext, typ): # armop = {'rec11': 'recpe', 'rsqrt11': 'rsqrte'} # if simd_ext in neon: # ret = f16f64(simd_ext, typ, op, armop[op], 1) # if ret != '': # return ret # return 'return v{armop}q_{suf}({in0});'. \ # format(armop=armop[op], **fmtspec) # else: # return 'return sv{armop}_{suf}({in0});'. \ # format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Load of logicals def loadl(aligned, simd_ext, typ): return \ '''/* This can surely be improved but it is not our priority. */ return nsimd_notl_{simd_ext}_{typ}(nsimd_eq_{simd_ext}_{typ}( nsimd_load{align}_{simd_ext}_{typ}( {in0}), nsimd_set1_{simd_ext}_{typ}({zero})));'''. \ format(align='a' if aligned else 'u', zero = 'nsimd_f32_to_f16(0.0f)' if typ == 'f16' else '({})0'.format(typ), **fmtspec) # ----------------------------------------------------------------------------- # Store of logicals def storel(aligned, simd_ext, typ): return \ '''/* This can surely be improved but it is not our priority. */ nsimd_store{align}_{simd_ext}_{typ}({in0}, nsimd_if_else1_{simd_ext}_{typ}({in1}, nsimd_set1_{simd_ext}_{typ}({one}), nsimd_set1_{simd_ext}_{typ}({zero})));'''. \ format(align = 'a' if aligned else 'u', one = 'nsimd_f32_to_f16(1.0f)' if typ == 'f16' else '({})1'.format(typ), zero = 'nsimd_f32_to_f16(0.0f)' if typ == 'f16' else '({})0'.format(typ), **fmtspec) # ----------------------------------------------------------------------------- # All and any def allany1(opts, op, simd_ext, typ): binop = '&&' if op == 'all' else '||' if simd_ext == 'neon128': if typ == 'f16': return \ '''return nsimd_{op}_neon128_f32({in0}.v0) {binop} nsimd_{op}_neon128_f32({in0}.v1);'''. \ format(op=op, binop=binop, **fmtspec) elif typ == 'f64': return 'return {in0}.v0 {binop} {in0}.v1;'. \ format(binop=binop, **fmtspec) else: return 'return ' + \ binop.join(['vgetq_lane_u{typnbits}({in0}, {i})'. \ format(i=i, **fmtspec) \ for i in range(0, 128 // int(fmtspec['typnbits']))]) + \ ';' elif simd_ext == 'aarch64': armop = {'all': 'min', 'any': 'max'} normal = 'return v{armop}vq_u{typnbits}({in0}) != 0;'. \ format(armop=armop[op], **fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else return nsimd_{op}_aarch64_f32({in0}.v0) {binop} nsimd_{op}_aarch64_f32({in0}.v1); #endif'''.format(normal=normal, op=op, binop=binop, **fmtspec) elif typ in ['i64', 'u64', 'f64']: return \ 'return v{armop}vq_u32(vreinterpretq_u32_u64({in0})) != 0;'. \ format(armop=armop[op], **fmtspec) else: return normal elif simd_ext in sve: if op == 'any': operand= convert_to_predicate(opts, '{in0}'.format(**fmtspec)) return '''return svptest_any({svtrue}, {operand});'''. \ format(operand=operand, **fmtspec) else: operand='svnot_z({svtrue}, {op})'. \ format(op=convert_to_predicate(opts, '{in0}'.format(**fmtspec)), **fmtspec) return '''return !svptest_any({svtrue}, {operand});'''. \ format(operand=operand, **fmtspec) # ----------------------------------------------------------------------------- # nbtrue def nbtrue1(opts, simd_ext, typ): if simd_ext == 'neon128': if typ == 'f16': return \ '''return nsimd_nbtrue_neon128_f32({in0}.v0) + nsimd_nbtrue_neon128_f32({in0}.v1);'''. \ format(**fmtspec) elif typ == 'f64': return 'return -(int)((i64){in0}.v0 + (i64){in0}.v1);'. \ format(**fmtspec) else: return \ '''nsimd_neon128_vi{typnbits} temp = vreinterpretq_s{typnbits}_u{typnbits}({in0}); return -(int)('''.format(**fmtspec) + \ '+'.join(['vgetq_lane_s{typnbits}(temp, {i})'. \ format(i=i, **fmtspec) \ for i in range(0, 128 // int(fmtspec['typnbits']))]) + \ ');' elif simd_ext == 'aarch64': normal = \ '''return -(int)vaddvq_s{typnbits}( vreinterpretq_s{typnbits}_u{typnbits}({in0}));'''. \ format(**fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else return nsimd_nbtrue_aarch64_f32({in0}.v0) + nsimd_nbtrue_aarch64_f32({in0}.v1); #endif'''.format(normal=normal, **fmtspec) elif typ in ['i64', 'u64', 'f64']: return \ '''return -(vaddvq_s32(vreinterpretq_s32_u64({in0})) >> 1);'''. \ format(**fmtspec) else: return normal elif simd_ext in sve: return 'return (int)svcntp_b{typnbits}({svtrue}, {op});'. \ format(op=convert_to_predicate(opts, '{in0}'.format(**fmtspec)), **fmtspec) # ----------------------------------------------------------------------------- # Reinterpret logical def reinterpretl1(simd_ext, from_typ, to_typ): if from_typ == to_typ or simd_ext in sve: return 'return {in0};'.format(**fmtspec) to_f16_with_f32 = \ '''nsimd_{simd_ext}_vlf16 ret; u32 buf[4]; buf[0] = (vgetq_lane_u16({in0}, 0) ? (u32)-1 : 0); buf[1] = (vgetq_lane_u16({in0}, 1) ? (u32)-1 : 0); buf[2] = (vgetq_lane_u16({in0}, 2) ? (u32)-1 : 0); buf[3] = (vgetq_lane_u16({in0}, 3) ? (u32)-1 : 0); ret.v0 = vld1q_u32(buf); buf[0] = (vgetq_lane_u16({in0}, 4) ? (u32)-1 : 0); buf[1] = (vgetq_lane_u16({in0}, 5) ? (u32)-1 : 0); buf[2] = (vgetq_lane_u16({in0}, 6) ? (u32)-1 : 0); buf[3] = (vgetq_lane_u16({in0}, 7) ? (u32)-1 : 0); ret.v1 = vld1q_u32(buf); return ret;'''.format(**fmtspec) from_f16_with_f32 = \ '''u16 buf[8]; buf[0] = (vgetq_lane_u32({in0}.v0, 0) ? (u16)-1 : 0); buf[1] = (vgetq_lane_u32({in0}.v0, 1) ? (u16)-1 : 0); buf[2] = (vgetq_lane_u32({in0}.v0, 2) ? (u16)-1 : 0); buf[3] = (vgetq_lane_u32({in0}.v0, 3) ? (u16)-1 : 0); buf[4] = (vgetq_lane_u32({in0}.v1, 0) ? (u16)-1 : 0); buf[5] = (vgetq_lane_u32({in0}.v1, 1) ? (u16)-1 : 0); buf[6] = (vgetq_lane_u32({in0}.v1, 2) ? (u16)-1 : 0); buf[7] = (vgetq_lane_u32({in0}.v1, 3) ? (u16)-1 : 0); return vld1q_u16(buf);'''.format(**fmtspec) if simd_ext == 'neon128': if to_typ == 'f16': return to_f16_with_f32 elif from_typ == 'f16': return from_f16_with_f32 elif to_typ == 'f64': return '''nsimd_neon128_vlf64 ret; ret.v0 = vgetq_lane_u64({in0}, 0); ret.v1 = vgetq_lane_u64({in0}, 1); return ret;'''.format(**fmtspec) elif from_typ == 'f64': return '''u64 buf[2]; buf[0] = {in0}.v0; buf[1] = {in0}.v1; return vld1q_u64(buf);'''.format(**fmtspec) else: return 'return {in0};'.format(**fmtspec) elif simd_ext == 'aarch64': if to_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return {in0}; #else {using_f32} #endif'''.format(using_f32=to_f16_with_f32, **fmtspec) elif from_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return {in0}; #else {using_f32} #endif'''.format(using_f32=from_f16_with_f32, **fmtspec) else: return 'return {in0};'.format(**fmtspec) # ----------------------------------------------------------------------------- # Convert def convert1(simd_ext, from_typ, to_typ): fmtspec2 = fmtspec.copy() fmtspec2['to_suf'] = suf(to_typ) fmtspec2['from_suf'] = suf(from_typ) if from_typ == to_typ: return 'return {in0};'.format(**fmtspec) if from_typ in common.iutypes and to_typ in common.iutypes: if simd_ext in neon: return 'return vreinterpretq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) else: return 'return svreinterpret_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) if simd_ext in sve: return 'return svcvt_{to_suf}_{from_suf}_x({svtrue}, {in0});'. \ format(**fmtspec2) to_f16_with_f32 = \ '''nsimd_{simd_ext}_vf16 ret; f32 buf[4]; buf[0] = (f32)vgetq_lane_{from_suf}({in0}, 0); buf[1] = (f32)vgetq_lane_{from_suf}({in0}, 1); buf[2] = (f32)vgetq_lane_{from_suf}({in0}, 2); buf[3] = (f32)vgetq_lane_{from_suf}({in0}, 3); ret.v0 = vld1q_f32(buf); buf[0] = (f32)vgetq_lane_{from_suf}({in0}, 4); buf[1] = (f32)vgetq_lane_{from_suf}({in0}, 5); buf[2] = (f32)vgetq_lane_{from_suf}({in0}, 6); buf[3] = (f32)vgetq_lane_{from_suf}({in0}, 7); ret.v1 = vld1q_f32(buf); return ret;'''.format(**fmtspec2) from_f16_with_f32 = \ '''{to_typ} buf[8]; buf[0] = ({to_typ})vgetq_lane_f32({in0}.v0, 0); buf[1] = ({to_typ})vgetq_lane_f32({in0}.v0, 1); buf[2] = ({to_typ})vgetq_lane_f32({in0}.v0, 2); buf[3] = ({to_typ})vgetq_lane_f32({in0}.v0, 3); buf[4] = ({to_typ})vgetq_lane_f32({in0}.v1, 0); buf[5] = ({to_typ})vgetq_lane_f32({in0}.v1, 1); buf[6] = ({to_typ})vgetq_lane_f32({in0}.v1, 2); buf[7] = ({to_typ})vgetq_lane_f32({in0}.v1, 3); return vld1q_{to_suf}(buf);'''.format(**fmtspec2) if simd_ext == 'neon128': if to_typ == 'f16': return to_f16_with_f32 elif from_typ == 'f16': return from_f16_with_f32 elif to_typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = (f64)vgetq_lane_{from_suf}({in0}, 0); ret.v1 = (f64)vgetq_lane_{from_suf}({in0}, 1); return ret;'''.format(**fmtspec2) elif from_typ == 'f64': return '''{to_typ} buf[2]; buf[0] = ({to_typ}){in0}.v0; buf[1] = ({to_typ}){in0}.v1; return vld1q_{to_suf}(buf);'''.format(**fmtspec2) else: return 'return vcvtq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) elif simd_ext == 'aarch64': if to_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vcvtq_{to_suf}_{from_suf}({in0}); #else {using_f32} #endif'''.format(using_f32=to_f16_with_f32, **fmtspec2) elif from_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vcvtq_{to_suf}_{from_suf}({in0}); #else {using_f32} #endif'''.format(using_f32=from_f16_with_f32, **fmtspec2) else: return 'return vcvtq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) # ----------------------------------------------------------------------------- # Reinterpret def reinterpret1(simd_ext, from_typ, to_typ): fmtspec2 = fmtspec.copy() fmtspec2['to_suf'] = suf(to_typ) fmtspec2['from_suf'] = suf(from_typ) if from_typ == to_typ: return 'return {in0};'.format(**fmtspec) if simd_ext in sve: return 'return svreinterpret_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) to_f16_with_f32 = \ '''nsimd_{simd_ext}_vf16 ret; f32 buf[4]; buf[0] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 0)); buf[1] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 1)); buf[2] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 2)); buf[3] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 3)); ret.v0 = vld1q_f32(buf); buf[0] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 4)); buf[1] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 5)); buf[2] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 6)); buf[3] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 7)); ret.v1 = vld1q_f32(buf); return ret;'''.format(**fmtspec2) from_f16_with_f32 = \ '''{to_typ} buf[8]; buf[0] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v0, 0)); buf[1] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v0, 1)); buf[2] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v0, 2)); buf[3] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v0, 3)); buf[4] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v1, 0)); buf[5] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v1, 1)); buf[6] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v1, 2)); buf[7] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v1, 3)); return vld1q_{to_suf}(buf);'''.format(**fmtspec2) if simd_ext == 'neon128': if to_typ == 'f16': return to_f16_with_f32 elif from_typ == 'f16': return from_f16_with_f32 elif to_typ == 'f64': return '''nsimd_neon128_vf64 ret; union {{ f64 to; {from_typ} from; }} buf; buf.from = vgetq_lane_{from_suf}({in0}, 0); ret.v0 = buf.to; buf.from = vgetq_lane_{from_suf}({in0}, 1); ret.v1 = buf.to; return ret;'''.format(**fmtspec2) elif from_typ == 'f64': return '''union {{ f64 from; {to_typ} to; }} buf_; {to_typ} buf[2]; buf_.from = {in0}.v0; buf[0] = buf_.to; buf_.from = {in0}.v1; buf[1] = buf_.to; return vld1q_{to_suf}(buf);'''.format(**fmtspec2) else: return 'return vreinterpretq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) elif simd_ext == 'aarch64': if to_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vreinterpretq_{to_suf}_{from_suf}({in0}); #else {using_f32} #endif'''.format(using_f32=to_f16_with_f32, **fmtspec2) elif from_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vreinterpretq_{to_suf}_{from_suf}({in0}); #else {using_f32} #endif'''.format(using_f32=from_f16_with_f32, **fmtspec2) else: return 'return vreinterpretq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) # ----------------------------------------------------------------------------- # reverse def reverse1(simd_ext, typ): armtyp = suf(typ) if simd_ext in sve: return '''return svrev_{suf}( {in0} );'''.format(**fmtspec) elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = {in0}.v1; ret.v1 = {in0}.v0; return ret;'''.format(**fmtspec) elif typ in [ 'i64', 'u64', 'f64' ]: return '''return vcombine_{armtyp}(vget_high_{armtyp}({in0}), vget_low_{armtyp}({in0}));'''. \ format(armtyp=armtyp, **fmtspec) elif typ == 'f16': return '''nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_reverse_{simd_ext}_f32(a0.v1); ret.v1 = nsimd_reverse_{simd_ext}_f32(a0.v0); return ret;'''.format(**fmtspec) else: return '''{in0} = vrev64q_{armtyp}({in0}); return vcombine_{armtyp}(vget_high_{armtyp}({in0}), vget_low_{armtyp}({in0}));'''. \ format(armtyp=armtyp, **fmtspec) # ----------------------------------------------------------------------------- # Horizontal sum def addv(simd_ext, typ): if simd_ext == 'neon128': if typ == 'f64': return 'return ({typ})({in0}.v0 + {in0}.v1);'.format(**fmtspec) elif typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {t} tmp = vadd_{suf}(vget_low_{suf}({in0}), vget_high_{suf}({in0})); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 3)); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 0)); return vget_lane_{suf}(tmp, 0); #else float32x2_t tmp0 = vadd_f32(vget_low_f32({in0}.v0), vget_high_f32({in0}.v0)); tmp0 = vadd_f32(tmp0, vext_f32(tmp0, tmp0, 1)); float32x2_t tmp1 = vadd_f32(vget_low_f32({in0}.v1), vget_high_f32({in0}.v1)); tmp1 = vadd_f32(tmp1, vext_f32(tmp1, tmp1, 1)); return nsimd_f32_to_f16(vget_lane_f32(tmp0, 0) + vget_lane_f32(tmp1, 0)); #endif''' .format(t=half_neon64_typ(typ), **fmtspec) elif typ == 'f32': return \ '''{t} tmp = vadd_{suf}(vget_low_{suf}({in0}), vget_high_{suf}({in0})); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 1)); return vget_lane_{suf}(tmp, 0);'''. \ format(t=half_neon64_typ(typ), **fmtspec) elif typ[0] in ['i', 'u']: le = 128 // int(typ[1:]); return \ '''{typ} res = ({typ})0; {typ} buf[{le}]; vst1q_{suf}(buf, {in0}); for (int i = 0; i < {le}; i++) {{ res += buf[i]; }} return res;'''. \ format(le=le, **fmtspec) elif simd_ext == 'aarch64': if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {t} tmp = vadd_{suf}(vget_low_{suf}({in0}), vget_high_{suf}({in0})); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 3)); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 0)); return vget_lane_{suf}(tmp, 0); #else float32x2_t tmp0 = vadd_f32(vget_low_f32({in0}.v0), vget_high_f32({in0}.v0)); tmp0 = vadd_f32(tmp0, vext_f32(tmp0, tmp0, 1)); float32x2_t tmp1 = vadd_f32(vget_low_f32({in0}.v1), vget_high_f32({in0}.v1)); tmp1 = vadd_f32(tmp1, vext_f32(tmp1, tmp1, 1)); return nsimd_f32_to_f16(vget_lane_f32(tmp0, 0) + vget_lane_f32(tmp1, 0)); #endif''' .format(t=half_neon64_typ(typ), **fmtspec) elif typ in ['f32', 'f64']: return 'return vaddvq_{suf}({in0});'.format(**fmtspec) elif simd_ext in sve: return 'return svaddv_{suf}({svtrue}, {in0});' .format(**fmtspec) # ----------------------------------------------------------------------------- # Up convert def upcvt1(simd_ext, from_typ, to_typ): # For integer upcast, due to 2's complement representation # _s : signed -> bigger signed # _s : signed -> bigger unsigned # _u : unsigned -> bigger signed # _u : unsigned -> bigger unsigned if simd_ext in neon: if from_typ == 'f16' and to_typ == 'f32': return \ '''#ifdef NSIMD_ARM_FP16 nsimd_{simd_ext}_vf32x2 ret; ret.v0 = vcvt_f32_f16(vget_low_{suf}({in0})); ret.v1 = vcvt_f32_f16(vget_high_{suf}({in0})); return ret; #else nsimd_{simd_ext}_vf32x2 ret; ret.v0 = {in0}.v0; ret.v1 = {in0}.v1; return ret; #endif'''.format(**fmtspec) elif from_typ == 'f32' and to_typ == 'f64': if simd_ext == 'neon128': return \ '''nsimd_neon128_vf64x2 ret; f32 buf[4]; vst1q_f32(buf, {in0}); ret.v0.v0 = (f64)buf[0]; ret.v0.v1 = (f64)buf[1]; ret.v1.v0 = (f64)buf[2]; ret.v1.v1 = (f64)buf[3]; return ret;'''.format(**fmtspec) else: return \ '''nsimd_aarch64_vf64x2 ret; ret.v0 = vcvt_f64_f32(vget_low_{suf}({in0})); ret.v1 = vcvt_f64_f32(vget_high_{suf}({in0})); return ret;'''.format(**fmtspec) elif (from_typ in common.itypes and to_typ in common.itypes) or \ (from_typ in common.utypes and to_typ in common.utypes): return '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = vmovl_{suf}(vget_low_{suf}({in0})); ret.v1 = vmovl_{suf}(vget_high_{suf}({in0})); return ret;'''.format(**fmtspec) elif (from_typ in common.itypes and to_typ in common.utypes) or \ (from_typ in common.utypes and to_typ in common.itypes): return '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = vreinterpretq_{suf_to_typ}_{suf_int_typ}( vmovl_{suf}(vget_low_{suf}({in0}))); ret.v1 = vreinterpretq_{suf_to_typ}_{suf_int_typ}( vmovl_{suf}(vget_high_{suf}({in0}))); return ret;'''. \ format(suf_to_typ=suf(to_typ), suf_int_typ=suf(from_typ[0] + to_typ[1:]), **fmtspec) else: return \ '''nsimd_{simd_ext}_v{to_typ}x2 ret; nsimd_{simd_ext}_v{int_typ}x2 tmp; tmp = nsimd_upcvt_{simd_ext}_{int_typ}_{from_typ}({in0}); ret.v0 = nsimd_cvt_{simd_ext}_{to_typ}_{int_typ}(tmp.v0); ret.v1 = nsimd_cvt_{simd_ext}_{to_typ}_{int_typ}(tmp.v1); return ret;'''. \ format(int_typ=from_typ[0] + to_typ[1:], **fmtspec) # Getting here means that we deal with SVE if (from_typ in common.itypes and to_typ in common.itypes) or \ (from_typ in common.utypes and to_typ in common.utypes): return '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = svunpklo_{suf_to_typ}({in0}); ret.v1 = svunpkhi_{suf_to_typ}({in0}); return ret;'''.format(suf_to_typ=suf(to_typ), **fmtspec) elif (from_typ in common.itypes and to_typ in common.utypes) or \ (from_typ in common.utypes and to_typ in common.itypes): return \ '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = svreinterpret_{suf_to_typ}_{suf_int_typ}( svunpklo_{suf_int_typ}({in0})); ret.v1 = svreinterpret_{suf_to_typ}_{suf_int_typ}( svunpkhi_{suf_int_typ}({in0})); return ret;'''. \ format(suf_to_typ=suf(to_typ), suf_int_typ=suf(from_typ[0] + to_typ[1:]), **fmtspec) elif from_typ in common.iutypes and to_typ in common.ftypes: return \ '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = svcvt_{suf_to_typ}_{suf_int_typ}_x( {svtrue}, svunpklo_{suf_int_typ}({in0})); ret.v1 = svcvt_{suf_to_typ}_{suf_int_typ}_x( {svtrue}, svunpkhi_{suf_int_typ}({in0})); return ret;'''. \ format(suf_to_typ=suf(to_typ), suf_int_typ=suf(from_typ[0] + to_typ[1:]), **fmtspec) else: return \ '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = svcvt_{suf_to_typ}_{suf}_x({svtrue}, svzip1_{suf}( {in0}, {in0})); ret.v1 = svcvt_{suf_to_typ}_{suf}_x({svtrue}, svzip2_{suf}( {in0}, {in0})); return ret;'''.format(suf_to_typ=suf(to_typ), **fmtspec) # ----------------------------------------------------------------------------- # Down convert def downcvt1(simd_ext, from_typ, to_typ): if simd_ext in neon: if from_typ == 'f64' and to_typ == 'f32': if simd_ext == 'neon128': return '''f32 buf[4]; buf[0] = (f32){in0}.v0; buf[1] = (f32){in0}.v1; buf[2] = (f32){in1}.v0; buf[3] = (f32){in1}.v1; return vld1q_f32(buf);'''.format(**fmtspec) else: return '''return vcombine_f32(vcvt_f32_f64({in0}), vcvt_f32_f64({in1}));'''. \ format(**fmtspec) elif from_typ == 'f32' and to_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vcombine_f16(vcvt_f16_f32({in0}), vcvt_f16_f32({in1})); #else nsimd_{simd_ext}_vf16 ret; ret.v0 = {in0}; ret.v1 = {in1}; return ret; #endif'''.format(**fmtspec) elif (from_typ in common.itypes and to_typ in common.itypes) or \ (from_typ in common.utypes and to_typ in common.utypes): return '''return vcombine_{suf_to_typ}(vmovn_{suf}({in0}), vmovn_{suf}({in1}));'''. \ format(suf_to_typ=suf(to_typ), **fmtspec) elif (from_typ in common.itypes and to_typ in common.itypes) or \ (from_typ in common.utypes and to_typ in common.utypes): return '''return vreinterpretq_{suf_to_typ}( vcombine_{suf_to_typ}(vmovn_{suf}({in0}), vmovn_{suf}({in1}));'''. \ format(suf_to_typ=suf(to_typ), **fmtspec) else: return \ '''return nsimd_downcvt_{simd_ext}_{to_typ}_{int_typ}( nsimd_cvt_{simd_ext}_{int_typ}_{from_typ}({in0}), nsimd_cvt_{simd_ext}_{int_typ}_{from_typ}({in1}));'''.\ format(int_typ=to_typ[0] + from_typ[1:], **fmtspec) # Getting here means that we deal with SVE if from_typ in common.iutypes and to_typ in common.iutypes: return '''return svuzp1_{suf_to_typ}( svreinterpret_{suf_to_typ}_{suf}({in0}), svreinterpret_{suf_to_typ}_{suf}({in1}));'''. \ format(suf_to_typ=suf(to_typ), **fmtspec) elif from_typ in common.ftypes and to_typ in common.iutypes: return \ '''return svuzp1_{suf_to_typ}(svreinterpret_{suf_to_typ}_{suf_int_typ}( svcvt_{suf_int_typ}_{suf}_x({svtrue}, {in0})), svreinterpret_{suf_to_typ}_{suf_int_typ}( svcvt_{suf_int_typ}_{suf}_x({svtrue}, {in1})));'''. \ format(suf_to_typ=suf(to_typ), suf_int_typ=suf(to_typ[0] + from_typ[1:]), **fmtspec) else: return \ '''return svuzp1_{suf_to_typ}(svcvt_{suf_to_typ}_{suf}_x( {svtrue}, {in0}), svcvt_{suf_to_typ}_{suf}_x( {svtrue}, {in1}));'''. \ format(suf_to_typ=suf(to_typ), **fmtspec) # ----------------------------------------------------------------------------- # adds def adds(simd_ext, from_typ): if from_typ in common.ftypes: return 'return nsimd_add_{simd_ext}_{from_typ}({in0}, {in1});'. \ format(**fmtspec) if simd_ext in neon: return 'return vqaddq_{suf}({in0}, {in1});'.format(**fmtspec) else: return 'return svqadd_{suf}({in0}, {in1});'.format(**fmtspec) # ----------------------------------------------------------------------------- # subs def subs(simd_ext, from_typ): if from_typ in common.ftypes: return 'return nsimd_sub_{simd_ext}_{from_typ}({in0}, {in1});'. \ format(**fmtspec) elif simd_ext in neon: return 'return vqsubq_{suf}({in0}, {in1});'.format(**fmtspec) else: return 'return svqsub_{suf}({in0}, {in1});'.format(**fmtspec) # ----------------------------------------------------------------------------- # to_mask def to_mask1(opts, simd_ext, typ): if typ in common.itypes + common.ftypes: normal = 'return vreinterpretq_{suf}_u{typnbits}({in0});'. \ format(**fmtspec) else: normal = 'return {in0};'.format(**fmtspec) emulate_f16 = '''nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_to_mask_{simd_ext}_f32({in0}.v0); ret.v1 = nsimd_to_mask_{simd_ext}_f32({in0}.v1); return ret;'''.format(**fmtspec) if simd_ext == 'neon128' and typ == 'f16': return emulate_f16 elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = nsimd_scalar_reinterpret_f64_u64({in0}.v0); ret.v1 = nsimd_scalar_reinterpret_f64_u64({in0}.v1); return ret;'''.format(**fmtspec) elif simd_ext == 'aarch64' and typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {normal} #else {emulate_f16} #endif'''.format(normal=normal, emulate_f16=emulate_f16) elif simd_ext in sve: if opts.sve_emulate_bool: return 'return svreinterpret_{suf}_u{typnbits}({in0});'. \ format(**fmtspec) else: utyp = 'u{}'.format(fmtspec['typnbits']) return '''return svreinterpret_{suf}_{utyp}(svsel_{utyp}( {in0}, svdup_n_{utyp}(({utyp})-1), svdup_n_{utyp}(({utyp})0)));'''. \ format(utyp=utyp, **fmtspec) else: return normal # ----------------------------------------------------------------------------- # iota def iota(simd_ext, typ): if simd_ext in sve: if typ in common.iutypes: return 'return svindex_{suf}(0, 1);'.format(**fmtspec) else: return \ '''return svcvt_{suf}_s{typnbits}_x({svtrue}, svindex_s{typnbits}(0, 1));'''.format(**fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''nsimd_neon128_vf64 ret; ret.v0 = 0.0; ret.v1 = 1.0; return ret;'''.format(**fmtspec) typ2 = 'f32' if typ == 'f16' else typ le = 128 // int(typ[1:]) iota = ', '.join(['({typ2}){i}'.format(typ2=typ2, i=i) \ for i in range(le)]) normal = '''{typ} buf[{le}] = {{ {iota} }}; return vld1q_{suf}(buf);'''. \ format(le=le, iota=iota, **fmtspec) if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {normal} #else f32 buf[8] = {{ {iota} }}; nsimd_{simd_ext}_vf16 ret; ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + 4); return ret; #endif'''.format(iota=iota, normal=normal, **fmtspec) return normal # ----------------------------------------------------------------------------- # mask_for_loop_tail def mask_for_loop_tail(simd_ext, typ): if typ == 'f16': threshold = 'nsimd_f32_to_f16((f32)({in1} - {in0}))'.format(**fmtspec) else: threshold = '({typ})({in1} - {in0})'.format(**fmtspec) if simd_ext == 'sve': le = 'nsimd_len_sve_{typ}()'.format(**fmtspec) elif simd_ext in fixed_sized_sve: le = int(simd_ext[3:]) // int(typ[1:]) else: le = 128 // int(typ[1:]) return '''if ({in0} >= {in1}) {{ return nsimd_set1l_{simd_ext}_{typ}(0); }} if ({in1} - {in0} < {le}) {{ nsimd_{simd_ext}_v{typ} n = nsimd_set1_{simd_ext}_{typ}({threshold}); return nsimd_lt_{simd_ext}_{typ}( nsimd_iota_{simd_ext}_{typ}(), n); }} else {{ return nsimd_set1l_{simd_ext}_{typ}(1); }}'''.format(le=le, threshold=threshold, **fmtspec) # ----------------------------------------------------------------------------- # to_logical def to_logical1(opts, simd_ext, typ): if typ in common.iutypes: return '''return nsimd_ne_{simd_ext}_{typ}({in0}, nsimd_set1_{simd_ext}_{typ}(({typ})0));'''. \ format(**fmtspec) normal_fp = \ '''return nsimd_reinterpretl_{simd_ext}_{suf}_{utyp}( nsimd_ne_{simd_ext}_{utyp}( nsimd_reinterpret_{simd_ext}_{utyp}_{typ}( {in0}), nsimd_set1_{simd_ext}_{utyp}(({utyp})0)));'''. \ format(utyp='u{}'.format(fmtspec['typnbits']), **fmtspec) if typ in ['f32', 'f64'] or (typ == 'f16' and simd_ext in sve): return normal_fp emulate_fp16 = \ '''nsimd_{simd_ext}_vlf16 ret; ret.v0 = nsimd_to_logical_{simd_ext}_f32({in0}.v0); ret.v1 = nsimd_to_logical_{simd_ext}_f32({in0}.v1); return ret;'''.format(**fmtspec) if simd_ext == 'aarch64': return '''#ifdef NSIMD_ARM_FP16 {normal_fp} #else {emulate_fp16} #endif'''.format(normal_fp=normal_fp, emulate_fp16=emulate_fp16) elif simd_ext == 'neon128': return emulate_fp16 # ----------------------------------------------------------------------------- # unpack functions def zip_unzip_half(func, simd_ext, typ): if simd_ext == 'aarch64' or simd_ext in sve: if typ =='f16' and simd_ext == 'aarch64': if func in ['zip1', 'zip2']: return '''\ #ifdef NSIMD_ARM_FP16 return {s}v{op}{q}_{suf}({in0}, {in1}); #else nsimd_{simd_ext}_v{typ} ret; ret.v0 = {s}vzip1{q}_f32({in0}.v{i}, {in1}.v{i}); ret.v1 = {s}vzip2{q}_f32({in0}.v{i}, {in1}.v{i}); return ret; #endif '''.format(op=func, i = '0' if func in ['zip1', 'uzp1'] else '1', s = 's' if simd_ext in sve else '', q = '' if simd_ext in sve else 'q', **fmtspec) else: return '''\ #ifdef NSIMD_ARM_FP16 return {s}v{op}{q}_{suf}({in0}, {in1}); #else nsimd_{simd_ext}_v{typ} ret; ret.v0 = {s}v{func}{q}_f32({in0}.v0, {in0}.v1); ret.v1 = {s}v{func}{q}_f32({in1}.v0, {in1}.v1); return ret; #endif'''.format(op=func, func=func, s = 's' if simd_ext in sve else '', q = '' if simd_ext in sve else 'q', **fmtspec) else: return 'return {s}v{op}{q}_{suf}({in0}, {in1});'. \ format(op=func, s = 's' if simd_ext in sve else '', q = '' if simd_ext in sve else 'q', **fmtspec) elif simd_ext == 'neon128': armop = {'zip1': 'zipq', 'zip2': 'zipq', 'uzp1': 'uzpq', 'uzp2': 'uzpq'} prefix = { 'i': 'int', 'u': 'uint', 'f': 'float' } neon_typ = '{}{}x{}x2_t'. \ format(prefix[typ[0]], typ[1:], 128 // int(typ[1:])) if typ == 'f16': if func in ['zip1', 'zip2']: return '''\ nsimd_{simd_ext}_v{typ} ret; float32x4x2_t tmp = v{op}_f32({in0}.v{i}, {in1}.v{i}); ret.v0 = tmp.val[0]; ret.v1 = tmp.val[1]; return ret; '''.format(i = '0' if func == 'zip1' else '1', op=armop[func], **fmtspec) else: return '''\ nsimd_{simd_ext}_v{typ} ret; float32x4x2_t tmp0 = vuzpq_f32({in0}.v0, {in0}.v1); float32x4x2_t tmp1 = vuzpq_f32({in1}.v0, {in1}.v1); ret.v0 = tmp0.val[{i}]; ret.v1 = tmp1.val[{i}]; return ret; '''.format(i = '0' if func == 'uzp1' else '1', **fmtspec) elif typ in ['i64', 'u64']: return '''\ {typ} buf0[2], buf1[2]; {typ} ret[2]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); ret[0] = buf0[{i}]; ret[1] = buf1[{i}]; return vld1q_{suf}(ret);'''. \ format(**fmtspec, i= '0' if func in ['zip1', 'uzp1'] else '1') elif typ == 'f64' : return '''\ nsimd_{simd_ext}_v{typ} ret; ret.v0 = {in0}.v{i}; ret.v1 = {in1}.v{i}; return ret;'''. \ format(**fmtspec, i= '0' if func in ['zip1', 'uzp1'] else '1') else : return '''\ {neon_typ} res; res = v{op}_{suf}({in0}, {in1}); return res.val[{i}];'''. \ format(neon_typ=neon_typ, op=armop[func], **fmtspec, i = '0' if func in ['zip1', 'uzp1'] else '1') def zip_unzip(func, simd_ext, typ): lo_hi = '''\ nsimd_{simd_ext}_v{typ}x2 ret; ret.v0 = nsimd_{func}lo_{simd_ext}_{typ}({in0}, {in1}); ret.v1 = nsimd_{func}hi_{simd_ext}_{typ}({in0}, {in1}); return ret; '''.format(func='zip' if func == 'zip' else 'unzip', **fmtspec) if simd_ext == 'aarch64' or simd_ext in sve: content = '''\ nsimd_{simd_ext}_v{typ}x2 ret; ret.v0 = {s}v{func}1{q}_{suf}({in0}, {in1}); ret.v1 = {s}v{func}2{q}_{suf}({in0}, {in1}); return ret;'''.format(s = 's' if simd_ext in sve else '', q = '' if simd_ext in sve else 'q', func=func, **fmtspec) if typ == 'f16': return '''\ #ifdef NSIMD_ARM_FP16 {c} #else {default} #endif'''.\ format(c=content, default=lo_hi, s = 's' if simd_ext in sve else '', **fmtspec) else: return content else: prefix = { 'i': 'int', 'u': 'uint', 'f': 'float' } neon_typ = '{}{}x{}x2_t'.\ format(prefix[typ[0]], typ[1:], 128 // int(typ[1:])) content = '''\ nsimd_{simd_ext}_v{typ}x2 ret; {neon_typ} tmp = v{func}q_{suf}({in0}, {in1}); ret.v0 = tmp.val[0]; ret.v1 = tmp.val[1]; return ret;'''\ .format(func=func, neon_typ=neon_typ, **fmtspec) if typ in ['u64', 'i64', 'f64']: return lo_hi elif typ == 'f16': return '''\ #ifdef NSIMD_ARM_FP16 {content} #else {default} #endif'''.\ format(content=content, default=lo_hi, f='zip' if func == 'zip' else 'unzip', **fmtspec) else: return content # ----------------------------------------------------------------------------- # gather def gather(simd_ext, typ): le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) if simd_ext in sve: emul = '''int i; {typ} buf[{le}]; i{typnbits} offset_buf[{le}]; svst1_s{typnbits}({svtrue}, offset_buf, {in1}); for (i = 0; i < {real_le}; i++) {{ buf[i] = {in0}[offset_buf[i]]; }} return svld1_{suf}({svtrue}, buf);'''. \ format(le=le, real_le=real_le, **fmtspec) else: emul = \ '''nsimd_{simd_ext}_v{typ} ret; ret = vdupq_n_{suf}({in0}[vgetq_lane_s{typnbits}({in1}, 0)]);'''. \ format(**fmtspec) + ''.join([ '''ret = vsetq_lane_{suf}({in0}[ vgetq_lane_s{typnbits}({in1}, {i})], ret, {i});\n'''. \ format(i=i, **fmtspec) for i in range(1, le)]) + \ 'return ret;' if typ == 'f16': if simd_ext in sve: return emul return '''#ifdef NSIMD_ARM_FP16 {emul} #else nsimd_{simd_ext}_vf16 ret; f32 buf[8]; '''.format(emul=emul, **fmtspec) + \ ''.join(['buf[{i}] = nsimd_f16_to_f32({in0}[' \ 'vgetq_lane_s16({in1}, {i})]);\n'. \ format(i=i, **fmtspec) for i in range(4)]) + \ ''.join(['buf[4 + {i}] = nsimd_f16_to_f32({in0}[' \ 'vgetq_lane_s16({in1}, 4 + {i})]);\n'. \ format(i=i, **fmtspec) for i in range(4)]) + \ ''' ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + 4); return ret; #endif'''.format(**fmtspec) if simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; i64 offset_buf[2]; vst1q_s64(offset_buf, {in1}); ret.v0 = {in0}[offset_buf[0]]; ret.v1 = {in0}[offset_buf[1]]; return ret;'''.format(**fmtspec) if simd_ext in neon or typ in ['i8', 'u8', 'i16', 'u16']: return emul # getting here means SVE return 'return svld1_gather_s{typnbits}index_{suf}({svtrue}, {in0}, ' \ '{in1});'.format(**fmtspec) # ----------------------------------------------------------------------------- # linear gather def gather_linear(simd_ext, typ): if simd_ext in sve: if typ in ['i8', 'u8', 'i16', 'u16', 'f16']: le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) return '''{typ} buf[{le}]; int i; for (i = 0; i < {real_le}; i++) {{ buf[i] = {in0}[i * {in1}]; }} return svld1_{suf}({svtrue}, buf);'''. \ format(le=le, real_le=real_le, **fmtspec) else: return 'return svld1_gather_s{typnbits}index_{suf}({svtrue}, ' \ '{in0}, svindex_s{typnbits}(0, (i{typnbits}){in1}));'. \ format(**fmtspec) # getting here means neon128 and aarch64 intrinsic = '''nsimd_{simd_ext}_v{typ} ret; ret = vdupq_n_{suf}({in0}[0]); '''.format(**fmtspec) + ''.join([ 'ret = vsetq_lane_{suf}({in0}[{i} * {in1}], ret, {i});\n'. \ format(i=i, **fmtspec) \ for i in range(1, 128 // int(fmtspec['typnbits']))]) + \ '''return ret;''' if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {intrinsic} #else nsimd_{simd_ext}_vf16 ret; f32 buf[8]; int i; for (i = 0; i < 8; i++) {{ buf[i] = nsimd_f16_to_f32({in0}[i * {in1}]); }} ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + 4); return ret; #endif'''.format(intrinsic=intrinsic, **fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''nsimd_neon128_vf64 ret; ret.v0 = {in0}[0]; ret.v1 = {in0}[{in1}]; return ret;'''.format(**fmtspec) return intrinsic # ----------------------------------------------------------------------------- # masked gather def maskoz_gather(oz, simd_ext, typ): le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) if simd_ext in sve: utyp = 'u{typnbits}'.format(**fmtspec) store = '''svst1_s{typnbits}({svtrue}, offset_buf, {in2}); svst1_{utyp}({svtrue}, mask, svsel_{utyp}( {in0}, svdup_n_{utyp}(({utyp})-1), svdup_n_{utyp}( ({utyp})0))); '''.format(utyp=utyp, **fmtspec) if oz == 'z': store += 'svst1_{suf}({svtrue}, buf, svdup_n_{suf}(({typ})0));'. \ format(**fmtspec) else: store += 'svst1_{suf}({svtrue}, buf, {in3});'.format(**fmtspec) load = 'svld1_{suf}({svtrue}, buf)'.format(**fmtspec) else: store = '''vst1q_s{typnbits}(offset_buf, {in2}); vst1q_u{typnbits}(mask, {in0});'''.format(**fmtspec) if oz == 'z': store += 'vst1q_{suf}(buf, vdupq_n_{suf}(({typ})0));'. \ format(**fmtspec) else: store += 'vst1q_{suf}(buf, {in3});'.format(**fmtspec) load = 'vld1q_{suf}(buf)'.format(**fmtspec) emul = '''int i; {typ} buf[{le}]; u{typnbits} mask[{le}]; i{typnbits} offset_buf[{le}]; {store} for (i = 0; i < {real_le}; i++) {{ if (mask[i]) {{ buf[i] = {in1}[offset_buf[i]]; }} }} return {load};'''. \ format(le=le, real_le=real_le, store=store, load=load, **fmtspec) if typ == 'f16': if simd_ext in sve: return emul if oz == 'z': oz0 = 'vdupq_n_f32(0.0f)' oz1 = oz0 else: oz0 = '{in3}.v0'.format(**fmtspec) oz1 = '{in3}.v1'.format(**fmtspec) return '''#ifdef NSIMD_ARM_FP16 {emul} #else nsimd_{simd_ext}_vf16 ret; int i; f32 buf[{le}]; u32 mask[{le}]; i16 offset_buf[{le}]; vst1q_s16(offset_buf, {in2}); vst1q_f32(buf, {oz0}); vst1q_f32(buf + {leo2}, {oz1}); vst1q_u32(mask, {in0}.v0); vst1q_u32(mask + {leo2}, {in0}.v1); for (i = 0; i < {le}; i++) {{ if (mask[i]) {{ buf[i] = nsimd_f16_to_f32({in1}[offset_buf[i]]); }} }} ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + {leo2}); return ret; #endif'''.format(emul=emul, leo2=le // 2, le=le, oz0=oz0, oz1=oz1, **fmtspec) if simd_ext == 'neon128' and typ == 'f64': oz0 = '0.0' if oz == 'z' else '{in3}.v0'.format(**fmtspec) oz1 = '0.0' if oz == 'z' else '{in3}.v1'.format(**fmtspec) return '''nsimd_neon128_vf64 ret; i64 offset_buf[2]; vst1q_s64(offset_buf, {in2}); if ({in0}.v0) {{ ret.v0 = {in1}[offset_buf[0]]; }} else {{ ret.v0 = {oz0}; }} if ({in0}.v1) {{ ret.v1 = {in1}[offset_buf[1]]; }} else {{ ret.v1 = {oz1}; }} return ret;'''.format(oz0=oz0, oz1=oz1, **fmtspec) if simd_ext in neon or typ in ['i8', 'u8', 'i16', 'u16']: return emul # getting here means SVE oz0 = 'svdup_n_{suf}(({typ})0)'.format(**fmtspec) if oz == 'z' \ else '{in3}'.format(**fmtspec) return '''return svsel_{suf}({in0}, svld1_gather_s{typnbits}index_{suf}( {in0}, {in1}, {in2}), {oz0});'''. \ format(oz0=oz0, **fmtspec) # ----------------------------------------------------------------------------- # scatter def scatter(simd_ext, typ): le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) if simd_ext in sve: emul = '''int i; {typ} buf[{le}]; i{typnbits} offset_buf[{le}]; svst1_s{typnbits}({svtrue}, offset_buf, {in1}); svst1_{suf}({svtrue}, buf, {in2}); for (i = 0; i < {real_le}; i++) {{ {in0}[offset_buf[i]] = buf[i]; }}'''.format(le=le, real_le=real_le, **fmtspec) else: emul = '\n'.join(['{in0}[vgetq_lane_s{typnbits}({in1}, {i})] = ' \ 'vgetq_lane_{suf}({in2}, {i});\n'. \ format(i=i, **fmtspec) for i in range(int(le))]) if typ == 'f16': if simd_ext in sve: return emul return '''#ifdef NSIMD_ARM_FP16 {emul} #else '''.format(emul=emul) + \ '\n'.join(['{in0}[vgetq_lane_s16({in1}, {i})] = ' \ 'nsimd_f32_to_f16(vgetq_lane_f32({in2}.v0, ' '{i}));\n'.format(i=i, **fmtspec) \ for i in range(4)]) + \ '\n'.join(['{in0}[vgetq_lane_s16({in1}, 4 + {i})] = ' \ 'nsimd_f32_to_f16(vgetq_lane_f32({in2}.v1, ' '{i}));\n'.format(i=i, **fmtspec) \ for i in range(4)]) + \ ''' #endif''' if simd_ext == 'neon128' and typ == 'f64': return '''i64 offset_buf[2]; vst1q_s64(offset_buf, {in1}); {in0}[offset_buf[0]] = {in2}.v0; {in0}[offset_buf[1]] = {in2}.v1;'''.format(**fmtspec) if simd_ext in neon or typ in ['i8', 'u8', 'i16', 'u16']: return emul # getting here means SVE return 'svst1_scatter_s{typnbits}index_{suf}({svtrue}, {in0}, ' \ '{in1}, {in2});'.format(le=le, **fmtspec) # ----------------------------------------------------------------------------- # linear scatter def scatter_linear(simd_ext, typ): if simd_ext in sve: if typ in ['i8', 'u8', 'i16', 'u16', 'f16']: le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) return '''{typ} buf[{le}]; int i; svst1_{suf}({svtrue}, buf, {in2}); for (i = 0; i < {real_le}; i++) {{ {in0}[i * {in1}] = buf[i]; }}'''.format(le=le, real_le=real_le, **fmtspec) else: return 'svst1_scatter_s{typnbits}index_{suf}({svtrue}, {in0}, ' \ 'svindex_s{typnbits}(0, (i{typnbits}){in1}), {in2});'. \ format(**fmtspec) # getting here means neon128 and aarch64 intrinsic = '\n'.join([ '{in0}[{i} * {in1}] = vgetq_lane_{suf}({in2}, {i});'. \ format(i=i, **fmtspec) for i in range(128 // int(fmtspec['typnbits']))]) if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {intrinsic} #else f32 buf[8]; int i; vst1q_f32(buf, {in2}.v0); vst1q_f32(buf + 4, {in2}.v1); for (i = 0; i < 8; i++) {{ {in0}[i * {in1}] = nsimd_f32_to_f16(buf[i]); }} #endif'''.format(intrinsic=intrinsic, **fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''{in0}[0] = {in2}.v0; {in0}[{in1}] = {in2}.v1;'''.format(**fmtspec) return intrinsic # ----------------------------------------------------------------------------- # mask_scatter def mask_scatter(simd_ext, typ): le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) if simd_ext in sve: store = '''svst1_s{typnbits}({svtrue}, offset_buf, {in2}); svst1_u{typnbits}({svtrue}, mask, svsel_u{typnbits}( {in0}, svdup_n_u{typnbits}((u{typnbits})1), svdup_n_u{typnbits}((u{typnbits})0))); svst1_{suf}({svtrue}, buf, {in3});'''.format(**fmtspec) else: store = '''vst1q_s{typnbits}(offset_buf, {in2}); vst1q_{suf}(buf, {in3}); vst1q_u{typnbits}(mask, {in0});'''.format(**fmtspec) emul = '''int i; {typ} buf[{le}]; u{typnbits} mask[{le}]; i{typnbits} offset_buf[{le}]; {store} for (i = 0; i < {real_le}; i++) {{ if (mask[i]) {{ {in1}[offset_buf[i]] = buf[i]; }} }}'''.format(le=le, real_le=real_le, store=store, **fmtspec) if typ == 'f16': if simd_ext in sve: return emul return '''#ifdef NSIMD_ARM_FP16 {emul} #else int i; f32 buf[{le}]; u32 mask[{le}]; i16 offset_buf[{le}]; vst1q_s16(offset_buf, {in2}); vst1q_f32(buf, {in3}.v0); vst1q_f32(buf + {leo2}, {in3}.v1); vst1q_u32(mask, {in0}.v0); vst1q_u32(mask + {leo2}, {in0}.v1); for (i = 0; i < {le}; i++) {{ if (mask[i]) {{ {in1}[offset_buf[i]] = nsimd_f32_to_f16(buf[i]); }} }} #endif'''.format(emul=emul, le=le, leo2=le // 2, **fmtspec) if simd_ext == 'neon128' and typ == 'f64': return '''i64 offset_buf[2]; vst1q_s64(offset_buf, {in2}); if ({in0}.v0) {{ {in1}[offset_buf[0]] = {in3}.v0; }} if ({in0}.v1) {{ {in1}[offset_buf[1]] = {in3}.v1; }}'''.format(**fmtspec) if simd_ext in neon or typ in ['i8', 'u8', 'i16', 'u16']: return emul # getting here means SVE return 'svst1_scatter_s{typnbits}index_{suf}({in0}, {in1}, ' \ '{in2}, {in3});'.format(le=le, **fmtspec) # ----------------------------------------------------------------------------- # get_impl function def get_impl(opts, func, simd_ext, from_typ, to_typ): global fmtspec simd_ext2 = simd_ext if not simd_ext in fixed_sized_sve else 'sve' fmtspec = { 'simd_ext': simd_ext, 'simd_ext2': simd_ext2, 'typ': from_typ, 'from_typ': from_typ, 'to_typ': to_typ, 'suf': suf(from_typ), 'in0': common.in0, 'in1': common.in1, 'in2': common.in2, 'in3': common.in3, 'in4': common.in4, 'in5': common.in5, 'typnbits': from_typ[1:], 'svtrue': 'svptrue_b{}()'.format(from_typ[1:]), 'svetyp': sve_typ(from_typ), } impls = { 'loada': lambda: load1234(opts, simd_ext, from_typ, 1), 'masko_loada1': lambda: maskoz_load('o', simd_ext, from_typ), 'maskz_loada1': lambda: maskoz_load('z', simd_ext, from_typ), 'load2a': lambda: load1234(opts, simd_ext, from_typ, 2), 'load3a': lambda: load1234(opts, simd_ext, from_typ, 3), 'load4a': lambda: load1234(opts, simd_ext, from_typ, 4), 'loadu': lambda: load1234(opts, simd_ext, from_typ, 1), 'masko_loadu1': lambda: maskoz_load('o', simd_ext, from_typ), 'maskz_loadu1': lambda: maskoz_load('z', simd_ext, from_typ), 'load2u': lambda: load1234(opts, simd_ext, from_typ, 2), 'load3u': lambda: load1234(opts, simd_ext, from_typ, 3), 'load4u': lambda: load1234(opts, simd_ext, from_typ, 4), 'storea': lambda: store1234(opts, simd_ext, from_typ, 1), 'mask_storea1': lambda: mask_store(simd_ext, from_typ), 'store2a': lambda: store1234(opts, simd_ext, from_typ, 2), 'store3a': lambda: store1234(opts, simd_ext, from_typ, 3), 'store4a': lambda: store1234(opts, simd_ext, from_typ, 4), 'storeu': lambda: store1234(opts, simd_ext, from_typ, 1), 'mask_storeu1': lambda: mask_store(simd_ext, from_typ), 'store2u': lambda: store1234(opts, simd_ext, from_typ, 2), 'store3u': lambda: store1234(opts, simd_ext, from_typ, 3), 'store4u': lambda: store1234(opts, simd_ext, from_typ, 4), 'gather': lambda: gather(simd_ext, from_typ), 'gather_linear': lambda: gather_linear(simd_ext, from_typ), 'maskz_gather': lambda: maskoz_gather('z', simd_ext, from_typ), 'masko_gather': lambda: maskoz_gather('o', simd_ext, from_typ), 'scatter': lambda: scatter(simd_ext, from_typ), 'scatter_linear': lambda: scatter_linear(simd_ext, from_typ), 'mask_scatter': lambda: mask_scatter(simd_ext, from_typ), 'andb': lambda: binop2("andb", simd_ext2, from_typ), 'xorb': lambda: binop2("xorb", simd_ext2, from_typ), 'orb': lambda: binop2("orb", simd_ext2, from_typ), 'andl': lambda: lop2(opts, "andl", simd_ext2, from_typ), 'xorl': lambda: lop2(opts, "xorl", simd_ext2, from_typ), 'orl': lambda: lop2(opts, "orl", simd_ext2, from_typ), 'notb': lambda: not1(simd_ext2, from_typ), 'notl': lambda: lnot1(opts, simd_ext2, from_typ), 'andnotb': lambda: binop2("andnotb", simd_ext2, from_typ), 'andnotl': lambda: lop2(opts, "andnotl", simd_ext2, from_typ), 'add': lambda: addsub("add", simd_ext2, from_typ), 'sub': lambda: addsub("sub", simd_ext2, from_typ), 'adds': lambda: adds(simd_ext2, from_typ), 'subs': lambda: subs(simd_ext2, from_typ), 'div': lambda: div2(simd_ext2, from_typ), 'sqrt': lambda: sqrt1(simd_ext2, from_typ), 'len': lambda: len1(simd_ext, from_typ), 'mul': lambda: mul2(simd_ext2, from_typ), 'shl': lambda: shl_shr("shl", simd_ext2, from_typ), 'shr': lambda: shl_shr("shr", simd_ext2, from_typ), 'shra': lambda: shra(simd_ext2, from_typ), 'set1': lambda: set1(simd_ext2, from_typ), 'set1l': lambda: lset1(simd_ext2, from_typ), 'eq': lambda: cmp2(opts, "eq", simd_ext2, from_typ), 'lt': lambda: cmp2(opts, "lt", simd_ext2, from_typ), 'le': lambda: cmp2(opts, "le", simd_ext2, from_typ), 'gt': lambda: cmp2(opts, "gt", simd_ext2, from_typ), 'ge': lambda: cmp2(opts, "ge", simd_ext2, from_typ), 'ne': lambda: neq2(opts, simd_ext2, from_typ), 'if_else1': lambda: if_else3(opts, simd_ext2, from_typ), 'min': lambda: minmax2("min", simd_ext2, from_typ), 'max': lambda: minmax2("max", simd_ext2, from_typ), 'loadla': lambda: loadl(True, simd_ext2, from_typ), 'loadlu': lambda: loadl(False, simd_ext2, from_typ), 'storela': lambda: storel(True, simd_ext2, from_typ), 'storelu': lambda: storel(False, simd_ext2, from_typ), 'abs': lambda: abs1(simd_ext2, from_typ), 'fma': lambda: fmafnma3("fma", simd_ext2, from_typ), 'fnma': lambda: fmafnma3("fnma", simd_ext2, from_typ), 'fms': lambda: fmsfnms3("fms", simd_ext2, from_typ), 'fnms': lambda: fmsfnms3("fnms", simd_ext2, from_typ), 'ceil': lambda: round1("ceil", simd_ext2, from_typ), 'floor': lambda: round1("floor", simd_ext2, from_typ), 'trunc': lambda: round1("trunc", simd_ext2, from_typ), 'round_to_even': lambda: round1("round_to_even", simd_ext2, from_typ), 'all': lambda: allany1(opts, "all", simd_ext2, from_typ), 'any': lambda: allany1(opts, "any", simd_ext2, from_typ), 'reinterpret': lambda: reinterpret1(simd_ext2, from_typ, to_typ), 'reinterpretl': lambda: reinterpretl1(simd_ext2, from_typ, to_typ), 'cvt': lambda: convert1(simd_ext2, from_typ, to_typ), 'rec11': lambda: recs1("rec11", simd_ext2, from_typ), 'rec8': lambda: recs1("rec8", simd_ext2, from_typ), 'rsqrt11': lambda: recs1("rsqrt11", simd_ext2, from_typ), 'rsqrt8': lambda: recs1("rsqrt8", simd_ext2, from_typ), 'rec': lambda: recs1("rec", simd_ext2, from_typ), 'neg': lambda: neg1(simd_ext2, from_typ), 'nbtrue': lambda: nbtrue1(opts, simd_ext2, from_typ), 'reverse': lambda: reverse1(simd_ext2, from_typ), 'addv': lambda: addv(simd_ext2, from_typ), 'upcvt': lambda: upcvt1(simd_ext2, from_typ, to_typ), 'downcvt': lambda: downcvt1(simd_ext2, from_typ, to_typ), 'to_logical': lambda: to_logical1(opts, simd_ext2, from_typ), 'to_mask': lambda: to_mask1(opts, simd_ext2, from_typ), 'ziplo': lambda: zip_unzip_half("zip1", simd_ext2, from_typ), 'ziphi': lambda: zip_unzip_half("zip2", simd_ext2, from_typ), 'unziplo': lambda: zip_unzip_half("uzp1", simd_ext2, from_typ), 'unziphi': lambda: zip_unzip_half("uzp2", simd_ext2, from_typ), 'zip' : lambda: zip_unzip("zip", simd_ext2, from_typ), 'unzip' : lambda: zip_unzip("uzp", simd_ext2, from_typ), 'mask_for_loop_tail': lambda : mask_for_loop_tail(simd_ext, from_typ), 'iota': lambda : iota(simd_ext2, from_typ) } if simd_ext not in get_simd_exts(): raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) if not from_typ in common.types: raise ValueError('Unknown type "{}"'.format(from_typ)) if not func in impls: return common.NOT_IMPLEMENTED else: return impls[func]()
anuga/parallel/tests/test_sequential_dist_sw_flow.py
samcom12/anuga_core
136
12783516
<reponame>samcom12/anuga_core """ Simple water flow example using ANUGA Water driven up a linear slope and time varying boundary, similar to a beach environment This is a very simple test of the parallel algorithm using the simplified parallel API """ from __future__ import print_function from __future__ import division #------------------------------------------------------------------------------ # Import necessary modules #------------------------------------------------------------------------------ from past.utils import old_div from future.utils import raise_ import unittest import os import sys #import pypar import numpy as num import anuga from anuga import Domain from anuga import Reflective_boundary from anuga import Dirichlet_boundary from anuga import Time_boundary from anuga import Transmissive_boundary from anuga import rectangular_cross_domain from anuga import distribute, myid, numprocs, send, receive, barrier, finalize from anuga.parallel.sequential_distribute import sequential_distribute_dump from anuga.parallel.sequential_distribute import sequential_distribute_load import anuga.utilities.plot_utils as util #-------------------------------------------------------------------------- # Setup parameters #-------------------------------------------------------------------------- yieldstep = 0.25 finaltime = 1.0 nprocs = 4 N = 29 M = 29 verbose = False new_parameters = {} new_parameters['ghost_layer_width'] = 2 #--------------------------------- # Setup Functions #--------------------------------- def topography(x,y): return old_div(-x,2) ########################################################################### # Setup Test ########################################################################## def run_simulation(parallel=False, verbose=False): #-------------------------------------------------------------------------- # Setup computational domain and quantities #-------------------------------------------------------------------------- if myid == 0: domain = rectangular_cross_domain(M, N) domain.set_name('odomain') # Set sww filename domain.set_datadir('.') domain.set_quantity('elevation', topography) # Use function for elevation domain.set_quantity('friction', 0.0) # Constant friction domain.set_quantity('stage', expression='elevation') # Dry initial stage else: domain = None #-------------------------------------------------------------------------- # Create pickled partition #-------------------------------------------------------------------------- if myid == 0: if verbose: print('DUMPING PARTITION DATA') sequential_distribute_dump(domain, numprocs, verbose=verbose, parameters=new_parameters) #-------------------------------------------------------------------------- # Create the parallel domains #-------------------------------------------------------------------------- if parallel: if myid == 0 and verbose : print('DISTRIBUTING TO PARALLEL DOMAIN') pdomain = distribute(domain, verbose=verbose, parameters=new_parameters) pdomain.set_name('pdomain') if myid == 0 and verbose : print('LOADING IN PARALLEL DOMAIN') sdomain = sequential_distribute_load(filename='odomain', verbose = verbose) sdomain.set_name('sdomain') if myid == 0 and verbose: print('EVOLVING pdomain') setup_and_evolve(pdomain, verbose=verbose) if myid == 0 and verbose: print('EVOLVING sdomain') setup_and_evolve(sdomain, verbose=verbose) if myid == 0: if verbose: print('EVOLVING odomain') setup_and_evolve(domain, verbose=verbose) if myid == 0 and verbose: parameter_file=open('odomain.txt', 'w') from pprint import pprint pprint(domain.get_algorithm_parameters(),parameter_file,indent=4) parameter_file.close() parameter_file=open('sdomain.txt', 'w') from pprint import pprint pprint(sdomain.get_algorithm_parameters(),parameter_file,indent=4) parameter_file.close() parameter_file=open('pdomain.txt', 'w') from pprint import pprint pprint(pdomain.get_algorithm_parameters(),parameter_file,indent=4) parameter_file.close() assert num.allclose(pdomain.quantities['stage'].centroid_values, sdomain.quantities['stage'].centroid_values) assert num.allclose(pdomain.quantities['stage'].vertex_values, sdomain.quantities['stage'].vertex_values) assert num.allclose(pdomain.vertex_coordinates, sdomain.vertex_coordinates) assert num.allclose(pdomain.centroid_coordinates, sdomain.centroid_coordinates) #--------------------------------- # Now compare the merged sww files #--------------------------------- if myid == 0: if verbose: print('COMPARING SWW FILES') odomain_v = util.get_output('odomain.sww') odomain_c = util.get_centroids(odomain_v) pdomain_v = util.get_output('pdomain.sww') pdomain_c = util.get_centroids(pdomain_v) sdomain_v = util.get_output('sdomain.sww') sdomain_c = util.get_centroids(sdomain_v) # Test some values against the original ordering if verbose: order = 2 print('PDOMAIN CENTROID VALUES') print(num.linalg.norm(odomain_c.x-pdomain_c.x,ord=order)) print(num.linalg.norm(odomain_c.y-pdomain_c.y,ord=order)) print(num.linalg.norm(odomain_c.stage[-1]-pdomain_c.stage[-1],ord=order)) print(num.linalg.norm(odomain_c.xmom[-1]-pdomain_c.xmom[-1],ord=order)) print(num.linalg.norm(odomain_c.ymom[-1]-pdomain_c.ymom[-1],ord=order)) print(num.linalg.norm(odomain_c.xvel[-1]-pdomain_c.xvel[-1],ord=order)) print(num.linalg.norm(odomain_c.yvel[-1]-pdomain_c.yvel[-1],ord=order)) print('SDOMAIN CENTROID VALUES') print(num.linalg.norm(odomain_c.x-sdomain_c.x,ord=order)) print(num.linalg.norm(odomain_c.y-sdomain_c.y,ord=order)) print(num.linalg.norm(odomain_c.stage[-1]-sdomain_c.stage[-1],ord=order)) print(num.linalg.norm(odomain_c.xmom[-1]-sdomain_c.xmom[-1],ord=order)) print(num.linalg.norm(odomain_c.ymom[-1]-sdomain_c.ymom[-1],ord=order)) print(num.linalg.norm(odomain_c.xvel[-1]-sdomain_c.xvel[-1],ord=order)) print(num.linalg.norm(odomain_c.yvel[-1]-sdomain_c.yvel[-1],ord=order)) print('PDOMAIN VERTEX VALUES') print(num.linalg.norm(odomain_v.stage[-1]-pdomain_v.stage[-1],ord=order)) print(num.linalg.norm(odomain_v.xmom[-1]-pdomain_v.xmom[-1],ord=order)) print(num.linalg.norm(odomain_v.ymom[-1]-pdomain_v.ymom[-1],ord=order)) print(num.linalg.norm(odomain_v.xvel[-1]-pdomain_v.xvel[-1],ord=order)) print(num.linalg.norm(odomain_v.yvel[-1]-pdomain_v.yvel[-1],ord=order)) print('SDOMAIN VERTEX VALUES') print(num.linalg.norm(odomain_v.stage[-1]-sdomain_v.stage[-1],ord=order)) print(num.linalg.norm(odomain_v.xmom[-1]-sdomain_v.xmom[-1],ord=order)) print(num.linalg.norm(odomain_v.ymom[-1]-sdomain_v.ymom[-1],ord=order)) print(num.linalg.norm(odomain_v.xvel[-1]-sdomain_v.xvel[-1],ord=order)) print(num.linalg.norm(odomain_v.yvel[-1]-sdomain_v.yvel[-1],ord=order)) assert num.allclose(odomain_c.stage,pdomain_c.stage) assert num.allclose(odomain_c.xmom,pdomain_c.xmom) assert num.allclose(odomain_c.ymom,pdomain_c.ymom) assert num.allclose(odomain_c.xvel,pdomain_c.xvel) assert num.allclose(odomain_c.yvel,pdomain_c.yvel) assert num.allclose(odomain_v.x,pdomain_v.x) assert num.allclose(odomain_v.y,pdomain_v.y) assert num.linalg.norm(odomain_v.x-pdomain_v.x,ord=0) == 0 assert num.linalg.norm(odomain_v.y-pdomain_v.y,ord=0) == 0 assert num.linalg.norm(odomain_v.stage[-1]-pdomain_v.stage[-1],ord=0) < 100 assert num.linalg.norm(odomain_v.xmom[-1]-pdomain_v.xmom[-1],ord=0) < 100 assert num.linalg.norm(odomain_v.ymom[-1]-pdomain_v.ymom[-1],ord=0) < 100 assert num.linalg.norm(odomain_v.xvel[-1]-pdomain_v.xvel[-1],ord=0) < 100 assert num.linalg.norm(odomain_v.yvel[-1]-pdomain_v.yvel[-1],ord=0) < 100 assert num.allclose(odomain_c.x,sdomain_c.x) assert num.allclose(odomain_c.y,sdomain_c.y) assert num.allclose(odomain_c.stage,sdomain_c.stage) assert num.allclose(odomain_c.xmom,sdomain_c.xmom) assert num.allclose(odomain_c.ymom,sdomain_c.ymom) assert num.allclose(odomain_c.xvel,sdomain_c.xvel) assert num.allclose(odomain_c.yvel,sdomain_c.yvel) assert num.allclose(odomain_v.x,sdomain_v.x) assert num.allclose(odomain_v.y,sdomain_v.y) order = 0 assert num.linalg.norm(odomain_v.x-sdomain_v.x,ord=order) == 0 assert num.linalg.norm(odomain_v.y-sdomain_v.y,ord=order) == 0 assert num.linalg.norm(odomain_v.stage[-1]-sdomain_v.stage[-1],ord=order) < 100 assert num.linalg.norm(odomain_v.xmom[-1]-sdomain_v.xmom[-1],ord=order) < 100 assert num.linalg.norm(odomain_v.ymom[-1]-sdomain_v.ymom[-1],ord=order) < 100 assert num.linalg.norm(odomain_v.xvel[-1]-sdomain_v.xvel[-1],ord=order) < 100 assert num.linalg.norm(odomain_v.yvel[-1]-sdomain_v.yvel[-1],ord=order) < 100 # COMPARE CENTROID PDOMAIN SDOMAIN assert num.allclose(pdomain_c.x,sdomain_c.x) assert num.allclose(pdomain_c.y,sdomain_c.y) assert num.allclose(pdomain_c.stage[-1],sdomain_c.stage[-1]) assert num.allclose(pdomain_c.xmom[-1],sdomain_c.xmom[-1]) assert num.allclose(pdomain_c.ymom[-1],sdomain_c.ymom[-1]) assert num.allclose(pdomain_c.xvel[-1],sdomain_c.xvel[-1]) assert num.allclose(pdomain_c.yvel[-1],sdomain_c.yvel[-1]) # COMPARE VERTEX PDOMAIN SDOMAIN assert num.allclose(pdomain_v.x,sdomain_v.x) assert num.allclose(pdomain_v.y,sdomain_v.y) assert num.allclose(pdomain_v.stage[-1],sdomain_v.stage[-1]) assert num.allclose(pdomain_v.xmom[-1],sdomain_v.xmom[-1]) assert num.allclose(pdomain_v.ymom[-1],sdomain_v.ymom[-1]) assert num.allclose(pdomain_v.xvel[-1],sdomain_v.xvel[-1]) assert num.allclose(pdomain_v.yvel[-1],sdomain_v.yvel[-1]) import os os.remove('odomain.sww') os.remove('pdomain.sww') os.remove('sdomain.sww') os.remove('odomain_P3_0.pickle') os.remove('odomain_P3_1.pickle') os.remove('odomain_P3_2.pickle') #os.remove('odomain_P4_3.pickle') import glob [ os.remove(fl) for fl in glob.glob('*.npy') ] def setup_and_evolve(domain, verbose=False): #-------------------------------------------------------------------------- # Setup domain parameters #-------------------------------------------------------------------------- domain.set_flow_algorithm('DE0') #domain.set_store_vertices_uniquely() #------------------------------------------------------------------------------ # Setup boundary conditions # This must currently happen *AFTER* domain has been distributed #------------------------------------------------------------------------------ Br = Reflective_boundary(domain) # Solid reflective wall Bd = Dirichlet_boundary([-0.2,0.,0.]) # Constant boundary values # Associate boundary tags with boundary objects domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) #------------------------------------------------------------------------------ # Evolve #------------------------------------------------------------------------------ for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): if myid == 0 and verbose : domain.write_time() #if myid == 0 and verbose : print domain.quantities['stage'].get_maximum_value() domain.sww_merge(delete_old=True) # Test an nprocs-way run of the shallow water equations # against the sequential code. class Test_parallel_sw_flow(unittest.TestCase): def test_parallel_sw_flow(self): if verbose : print("Expect this test to fail if not run from the parallel directory.") cmd = anuga.mpicmd(os.path.abspath(__file__)) result = os.system(cmd) assert_(result == 0) # Because we are doing assertions outside of the TestCase class # the PyUnit defined assert_ function can't be used. def assert_(condition, msg="Assertion Failed"): if condition == False: #pypar.finalize() raise_(AssertionError, msg) if __name__=="__main__": if numprocs == 1: runner = unittest.TextTestRunner() suite = unittest.makeSuite(Test_parallel_sw_flow, 'test') runner.run(suite) else: from anuga.utilities.parallel_abstraction import global_except_hook import sys sys.excepthook = global_except_hook #------------------------------------------ # Run the codel and compare sequential # results at 4 gauge stations #------------------------------------------ if myid ==0 and verbose: print('PARALLEL START') run_simulation(parallel=True, verbose=verbose) finalize()
src/copy_mechanism/copy_layer.py
Ravi-0809/question-generation
212
12783527
from typing import Callable from tensorflow.python.layers import base from tensorflow.python.eager import context from tensorflow.python.estimator import util as estimator_util from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.layers import utils as layers_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import variable_scope as vs from tensorflow.python.ops import variables as tf_variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.layers import base from tensorflow.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import standard_ops from tensorflow.contrib.layers import fully_connected import tensorflow as tf import sys from helpers.misc_utils import debug_tensor, debug_shape from helpers.ops import safe_log FLAGS = tf.app.flags.FLAGS class CopyLayer(base.Layer): """Densely-connected layer class. This layer implements the operation: `outputs = activation(inputs * kernel + bias)` Where `activation` is the activation function passed as the `activation` argument (if not `None`), `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only if `use_bias` is `True`). Note: if the input to the layer has a rank greater than 2, then it is flattened prior to the initial matrix multiply by `kernel`. Arguments: units: Integer or Long, dimensionality of the output space. activation: Activation function (callable). Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer function for the weight matrix. If `None` (default), weights are initialized using the default initializer used by `tf.get_variable`. bias_initializer: Initializer function for the bias. kernel_regularizer: Regularizer function for the weight matrix. bias_regularizer: Regularizer function for the bias. activity_regularizer: Regularizer function for the output. kernel_constraint: An optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: An optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Properties: units: Python integer, dimensionality of the output space. activation: Activation function (callable). use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer instance (or name) for the kernel matrix. bias_initializer: Initializer instance (or name) for the bias. kernel_regularizer: Regularizer instance for the kernel matrix (callable) bias_regularizer: Regularizer instance for the bias (callable). activity_regularizer: Regularizer instance for the output (callable) kernel_constraint: Constraint function for the kernel matrix. bias_constraint: Constraint function for the bias. kernel: Weight matrix (TensorFlow variable or tensor). bias: Bias vector, if applicable (TensorFlow variable or tensor). """ def __init__(self, embedding_dim, units, switch_units=64, activation=None, use_bias=False, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, source_provider: Callable[[], tf.Tensor] = None, source_provider_sl: Callable[[], tf.Tensor] = None, condition_encoding: Callable[[], tf.Tensor] = None, output_mask: Callable[[], tf.Tensor] = None, training_mode=False, vocab_size=None, context_as_set=False, max_copy_size=None, mask_oovs=False, **kwargs): super(CopyLayer, self).__init__(trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs) self.vocab_size = vocab_size self.source_provider = source_provider self.source_provider_sl = source_provider_sl self.embedding_dim = embedding_dim self.units = units self.switch_units = switch_units self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.kernel_constraint = kernel_constraint self.bias_constraint = bias_constraint self.input_spec = base.InputSpec(min_ndim=2) self.training_mode=training_mode # self.output_mask=output_mask self.max_copy_size=max_copy_size self.mask_oovs = mask_oovs self.context_as_set=context_as_set self.condition_encoding = condition_encoding def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) # print("building copy layer") # print(input_shape) self.built = True def call(self, inputs): inputs = ops.convert_to_tensor(inputs, dtype=self.dtype) # batch x len_source+emb_dim # inputs = debug_shape(inputs, "inputs") # print(inputs) # [batch_size, emb_dim + len_source] in eval, # [len_target, batch_size,emb_dim + len_source] in train source = self.source_provider() # [batch_size, len_source] # source = debug_shape(source,"src") source_sl = self.source_provider_sl() condition_encoding = self.condition_encoding() # condition_encoding = debug_shape(condition_encoding, "cond enc") batch_size = tf.shape(source)[0] len_source = tf.shape(source)[1] shape = tf.shape(inputs) is_eval = len(inputs.get_shape()) == 2 beam_width = tf.constant(1) if is_eval else shape[1] # len_target = tf.Print(len_target, [len_target, batch_size, shape[-1]], "input reshape") # inputs = tf.reshape(inputs, [-1, shape[-1]]) # [len_target * batch_size, len_source + emb_dim] inputs_new = tf.reshape(inputs, [batch_size*beam_width, shape[-1]]) # [len_target, batch_size, len_source + emb_dim] # inputs_new = debug_shape(inputs_new, "inputs_new") # -- [len_target, batch_size, embedding_dim] attention, [] # -- [len_target, batch_size, len_source] alignments # attention, alignments = tf.split(inputs, [self.embedding_dim, -1], axis=1) attention, alignments = tf.split(inputs_new, num_or_size_splits=[self.embedding_dim, -1], axis=-1) # [len_target, batch_size, vocab_size] if FLAGS.out_vocab_cpu: with tf.device('/cpu:*'): shortlist = tf.layers.dense(attention, self.vocab_size, activation=tf.nn.softmax, use_bias=False) else: shortlist = tf.layers.dense(attention, self.vocab_size, activation=tf.nn.softmax, use_bias=False) # attention = debug_shape(attention, "attn") # alignments = debug_shape(alignments, "align ("+str(self.units)+" desired)") # alignments = debug_tensor(alignments, "alignments") # print(alignments) # shortlist = debug_shape(shortlist, "shortlist") # TEMP: kill OOVs s = tf.shape(shortlist) mask = tf.concat([tf.ones((s[0],1)),tf.zeros((s[0],1)),tf.ones((s[0],s[1]-2))], axis=1) shortlist = tf.cond(self.mask_oovs, lambda: shortlist * mask, lambda: shortlist) # pad the alignments to the longest possible source st output vocab is fixed size # TODO: Check for non zero alignments outside the seq length # alignments_padded = debug_shape(alignments_padded, "align padded") # switch takes st, vt and yt−1 as inputs # vt = concat(weighted context encoding at t; condition encoding) # st = hidden state at t # y_t-1 is previous generated token condition_encoding_tiled = tf.contrib.seq2seq.tile_batch(condition_encoding, multiplier=beam_width) vt = tf.concat([attention, condition_encoding_tiled], axis=1) # NOTE: this is missing the previous input y_t-1 and s_t switch_input = tf.concat([vt],axis=1) switch_h1 = tf.layers.dropout(tf.layers.dense(switch_input, self.switch_units, activation=tf.nn.tanh, kernel_initializer=tf.glorot_uniform_initializer()), rate=0.3, training=self.training_mode) switch_h2 = tf.layers.dropout(tf.layers.dense(switch_h1, self.switch_units, activation=tf.nn.tanh, kernel_initializer=tf.glorot_uniform_initializer()), rate=0.3, training=self.training_mode) self.switch = tf.layers.dense(switch_h2, 1, activation=tf.sigmoid, kernel_initializer=tf.glorot_uniform_initializer()) # switch = debug_shape(switch, "switch") if FLAGS.disable_copy: self.switch = 0 elif FLAGS.disable_shortlist: self.switch = 1 # if self.output_mask is not None: # alignments = self.output_mask() * alignments source_tiled = tf.contrib.seq2seq.tile_batch(source, multiplier=beam_width) source_tiled_sl = tf.contrib.seq2seq.tile_batch(source_sl, multiplier=beam_width) shortlist = (1-self.switch)*shortlist alignments = self.switch*alignments # Take any tokens that are the same in either vocab and combine their probabilities # old: mult by a big sparse matrix - not v mem efficient.. # opt1: mult the copy dist by a vocab x copy matrix and add to vocab part # opt2: do an nd_gather to copy the relevant prob mass, then mask carefully to remove it if FLAGS.combine_vocab: # copy everything in real shortlist except special toks # print(len_source, self.max_copy_size) source_tiled_sl_padded = tf.pad(source_tiled_sl, [[0, 0], [0, self.max_copy_size-tf.shape(source_tiled_sl)[-1]]], 'CONSTANT', constant_values=0) # attempt 2! batch_ix = tf.tile(tf.expand_dims(tf.range(batch_size*beam_width),axis=-1),[1,len_source]) # seq_ix = tf.tile(tf.expand_dims(tf.range(len_source),axis=0),[batch_size*beam_width,1]) tgt_indices = tf.reshape(tf.concat([tf.expand_dims(batch_ix,-1),tf.expand_dims(source_tiled_sl,-1)], axis=2),[-1,2]) ident_indices = tf.where(tf.greater(source_tiled_sl, -1)) # get ixs of all elements # ident_indices = tf.where() # tgt_indices = debug_tensor(tgt_indices) # get the copy probs at each point in the source.. updates = tf.reshape(tf.gather_nd(alignments, ident_indices),[-1]) # and send them to the their shortlist index sum_part = tf.scatter_nd(tgt_indices, updates, [batch_size*beam_width, self.vocab_size+self.max_copy_size]) # then zero out the ix's that got copied align_zeroed = alignments * tf.cast(tf.greater_equal(source_tiled_sl,self.vocab_size),tf.float32) align_moved = alignments * tf.cast(tf.less(source_tiled_sl,self.vocab_size),tf.float32) # ie only let through stuff that *isnt* in SL # and add the correct pieces together alignments = align_zeroed shortlist = shortlist + sum_part[:,:self.vocab_size] # result = tf.Print(result, [tf.reduce_sum(result[:,:self.vocab_size],-1)], "result sl sum") # shortlist = tf.Print(shortlist, [tf.reduce_sum(align_moved,-1)], "sum align_moved") # shortlist = tf.Print(shortlist, [tf.reduce_sum(sum_part[:,:self.vocab_size],-1)], "sum sum_part") # convert position probs to ids if self.context_as_set: # print(source) # batch x seq # print(alignments) # batch x seq pos_to_id = tf.one_hot(source_tiled-self.vocab_size, depth=self.max_copy_size) # batch x seq x vocab if FLAGS.maxout_pointer: copy_dist = tf.reduce_max(pos_to_id * tf.expand_dims(alignments, 2), axis=1) else: copy_dist = tf.squeeze(tf.matmul(tf.expand_dims(alignments,1), pos_to_id), axis=1) else: copy_dist=alignments copy_dist_padded = tf.pad(copy_dist, [[0, 0], [0, self.max_copy_size-tf.shape(copy_dist)[-1]]], 'CONSTANT', constant_values=0) result = tf.concat([shortlist,copy_dist_padded], axis=1) # this used to be safe_log'd # if FLAGS.combine_vocab: # result = tf.Print(result, [tf.reduce_sum(result,-1)], "result sum") target_shape = tf.concat([shape[:-1], [-1]], 0) result =tf.reshape(result, target_shape) return result # return tf.Print(result, [tf.reduce_max(switch), tf.reduce_max(shortlist), # tf.reduce_max(alignments)], summarize=10) def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) input_shape = input_shape.with_rank_at_least(2) # print(input_shape) if input_shape[-1].value is None: raise ValueError( 'The innermost dimension of input_shape must be defined, but saw: %s' % input_shape) return input_shape[:-1].concatenate(self.units+self.vocab_size if not self.context_as_set else self.vocab_size+self.max_copy_size) # this for older tf versions def _compute_output_shape(self, input_shape): return self.compute_output_shape(input_shape) def dense( inputs, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for the densely-connected layer. This layer implements the operation: `outputs = activation(inputs.kernel + bias)` Where `activation` is the activation function passed as the `activation` argument (if not `None`), `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only if `use_bias` is `True`). Note: if the `inputs` tensor has a rank greater than 2, then it is flattened prior to the initial matrix multiply by `kernel`. Arguments: inputs: Tensor input. units: Integer or Long, dimensionality of the output space. activation: Activation function (callable). Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer function for the weight matrix. If `None` (default), weights are initialized using the default initializer used by `tf.get_variable`. bias_initializer: Initializer function for the bias. kernel_regularizer: Regularizer function for the weight matrix. bias_regularizer: Regularizer function for the bias. activity_regularizer: Regularizer function for the output. kernel_constraint: An optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: An optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: String, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ layer = CopyLayer(units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _scope=name, _reuse=reuse) print("inside copy layer, yaaay!") sys.exit(0) return layer.apply(inputs)
nso/test_api.py
caputomarcos/network-programmability-stream
120
12783544
<reponame>caputomarcos/network-programmability-stream #!/usr/bin/env python3 import ncs from ncs.maagic import Root from typing import Iterator, Tuple NSO_USERNAME = 'admin' NSO_CONTEXT = 'python' # NSO_GROUPS = ['ncsadmin'] def get_device_name(nso: Root) -> Iterator[Tuple[str, str]]: for device in nso.devices.device: # print device.config.ios__cached_show.version.model breakpoint() yield (device.name, device.ios__cached_show.version.model) def main() -> None: with ncs.maapi.single_read_trans(NSO_USERNAME, NSO_CONTEXT) as transaction: nso = ncs.maagic.get_root(transaction) devices = nso.devices.device # print(devices["isp1-pe1"].config.ios__ntp.server.peer_list) # breakpoint() for device in devices: device.config.ios__ntp.server.peer_list.append({"name": "192.168.3.11"}) # device.config.ios__ntp.server.ip = "192.168.3.11" # print(device.name) # print(device.config.ios__ntp) # print(device.config.ios__cached_show.version) transaction.apply() if __name__ == '__main__': main()
voctogui/voctogui.py
0xflotus/voctomix
521
12783558
#!/usr/bin/env python3 import gi # import GStreamer and GLib-Helper classes gi.require_version('Gtk', '3.0') gi.require_version('Gst', '1.0') gi.require_version('GstVideo', '1.0') gi.require_version('GstNet', '1.0') from gi.repository import Gtk, Gdk, Gst, GstVideo import signal import logging import sys import os sys.path.insert(0, '.') from vocto.debug import gst_log_messages # check min-version minGst = (1, 5) minPy = (3, 0) Gst.init([]) if Gst.version() < minGst: raise Exception('GStreamer version', Gst.version(), 'is too old, at least', minGst, 'is required') if sys.version_info < minPy: raise Exception('Python version', sys.version_info, 'is too old, at least', minPy, 'is required') Gdk.init([]) Gtk.init([]) # select Awaita:Dark theme settings = Gtk.Settings.get_default() settings.set_property("gtk-theme-name", "Adwaita") settings.set_property("gtk-application-prefer-dark-theme", True) # if you want use dark theme, set second arg to True # main class class Voctogui(object): def __init__(self): self.log = logging.getLogger('Voctogui') from lib.args import Args from lib.ui import Ui # Load UI file path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ui/voctogui.ui') self.log.info('Loading ui-file from file %s', path) if os.path.isfile(path): self.ui = Ui(path) else: raise Exception("Can't find any .ui-Files to use in {}".format(path)) # # search for a .css style sheet file and load it # css_provider = Gtk.CssProvider() context = Gtk.StyleContext() path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ui/voctogui.css') self.log.info('Loading css-file from file %s', path) if os.path.isfile(path): css_provider.load_from_path(path) else: raise Exception("Can't find .css file '{}'".format(path)) context.add_provider_for_screen( Gdk.Screen.get_default(), css_provider, Gtk.STYLE_PROVIDER_PRIORITY_USER ) self.ui.setup() def run(self): self.log.info('Setting UI visible') self.ui.show() try: self.log.info('Running.') Gtk.main() self.log.info('Connection lost. Exiting.') except KeyboardInterrupt: self.log.info('Terminated via Ctrl-C') def quit(self): self.log.info('Quitting.') Gtk.main_quit() # run mainclass def main(): # parse command-line args from lib import args args.parse() from lib.args import Args docolor = (Args.color == 'always') \ or (Args.color == 'auto' and sys.stderr.isatty()) from lib.loghandler import LogHandler handler = LogHandler(docolor, Args.timestamp) logging.root.addHandler(handler) levels = { 3 : logging.DEBUG, 2 : logging.INFO, 1 : logging.WARNING, 0 : logging.ERROR } logging.root.setLevel(levels[Args.verbose]) gst_levels = { 3 : Gst.DebugLevel.DEBUG, 2 : Gst.DebugLevel.INFO, 1 : Gst.DebugLevel.WARNING, 0 : Gst.DebugLevel.ERROR } gst_log_messages(gst_levels[Args.gstreamer_log]) # make killable by ctrl-c logging.debug('setting SIGINT handler') signal.signal(signal.SIGINT, signal.SIG_DFL) logging.info('Python Version: %s', sys.version_info) logging.info('GStreamer Version: %s', Gst.version()) logging.debug('loading Config') from lib import config config.load() from lib.config import Config # establish a synchronus connection to server import lib.connection as Connection Connection.establish(Config.getHost()) # fetch config from server Config.fetchServerConfig() # Warn when connecting to a non-local core without preview-encoders enabled # The list-comparison is not complete # (one could use a local hostname or the local system ip), # but it's only here to warn that one might be making a mistake localhosts = ['::1', '127.0.0.1', 'localhost'] if not Config.getPreviewsEnabled() and Config.getHost() not in localhosts: logging.warning( 'Connecting to `%s` (which looks like a remote host) ' 'might not work without enabeling the preview encoders ' '(set `[previews] enabled=true` on the core) or it might saturate ' 'your ethernet link between the two machines.', Config.getHost() ) import lib.connection as Connection import lib.clock as ClockManager # obtain network-clock ClockManager.obtainClock(Connection.ip) # switch connection to nonblocking, event-driven mode Connection.enterNonblockingMode() # init main-class and main-loop # (this binds all event-hander on the Connection) logging.debug('initializing Voctogui') voctogui = Voctogui() # start the Mainloop and show the Window logging.debug('running Voctogui') voctogui.run() if __name__ == '__main__': try: main() except RuntimeError as e: logging.error(str(e)) sys.exit(1)
src/genie/libs/parser/iosxr/tests/ShowSpanningTreePvrsTag/cli/equal/golden_output_expected.py
balmasea/genieparser
204
12783626
expected_output = { 'pvrstag': { 'foo': { 'domain': 'foo', 'interfaces': { 'GigabitEthernet0/0/0/0': { 'interface': 'GigabitEthernet0/0/0/0', 'vlans': { '5': { 'preempt_delay': True, 'preempt_delay_state': 'Sending startup BPDU until 13:38:03', 'sub_interface': 'GigabitEthernet0/0/0/0.5', 'sub_interface_state': 'Up', 'max_age': 20, 'root_priority': 0, 'root_bridge': '0000.0000.0000', 'root_cost': 1, 'bridge_priority': 32768, 'bridge_id': '0255.1dff.3c70', 'port_priority': 128, 'port_id': 1, 'hello_time': 2, 'active': True, 'counters': { 'bdpu_sent': 6, 'topology_changes': 0, }, }, }, }, 'GigabitEthernet0/0/0/1': { 'interface': 'GigabitEthernet0/0/0/1', 'vlans': { '5': { 'preempt_delay': True, 'preempt_delay_state': 'Sending standard BPDU', 'sub_interface': 'GigabitEthernet0/0/0/1.5', 'sub_interface_state': 'Up', 'max_age': 20, 'root_priority': 0, 'root_bridge': '0000.0000.0000', 'root_cost': 0, 'bridge_priority': 32768, 'bridge_id': '021a.9eff.5645', 'port_priority': 128, 'port_id': 1, 'hello_time': 2, 'active': True, 'counters': { 'bdpu_sent': 7, 'topology_changes': 0, }, }, }, }, }, }, }, }
anuga/file_conversion/sts2sww_mesh.py
GeoscienceAustralia/anuga_core
136
12783633
from __future__ import print_function from __future__ import division from builtins import range from past.utils import old_div import os import numpy as num from anuga.file.netcdf import NetCDFFile import pylab as P import anuga from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular from anuga.shallow_water.shallow_water_domain import Domain from anuga.shallow_water.boundaries import Reflective_boundary from anuga.coordinate_transforms.geo_reference import Geo_reference from anuga.shallow_water.forcing import * from anuga.utilities.numerical_tools import ensure_numeric from anuga.file.sww import Write_sww from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a, \ netcdf_float def sts2sww_mesh(basename_in, basename_out=None, spatial_thinning=1, verbose=False): from anuga.mesh_engine.mesh_engine import NoTrianglesError from anuga.pmesh.mesh import Mesh if verbose: print("Starting sts2sww_mesh") mean_stage=0. zscale=1. if (basename_in[:-4]=='.sts'): stsname = basename_in else: stsname = basename_in + '.sts' if verbose: print("Reading sts NetCDF file: %s" %stsname) infile = NetCDFFile(stsname, netcdf_mode_r) cellsize = infile.cellsize ncols = infile.ncols nrows = infile.nrows no_data = infile.no_data refzone = infile.zone x_origin = infile.xllcorner y_origin = infile.yllcorner origin = num.array([x_origin, y_origin]) x = infile.variables['x'][:] y = infile.variables['y'][:] times = infile.variables['time'][:] wind_speed_full = infile.variables['wind_speed'][:] wind_angle_full = infile.variables['wind_angle'][:] pressure_full = infile.variables['barometric_pressure'][:] infile.close() number_of_points = nrows*ncols points_utm = num.zeros((number_of_points,2),num.float) points_utm[:,0]=x+x_origin points_utm[:,1]=y+y_origin thinned_indices=[] for i in range(number_of_points): if (old_div(i,ncols)==0 or old_div(i,ncols)==ncols-1 or (old_div(i,ncols))%(spatial_thinning)==0): if ( i%(spatial_thinning)==0 or i%nrows==0 or i%nrows==nrows-1 ): thinned_indices.append(i) #Spatial thinning points_utm=points_utm[thinned_indices] number_of_points = points_utm.shape[0] number_of_timesteps = wind_speed_full.shape[0] wind_speed = num.empty((number_of_timesteps,number_of_points),dtype=float) wind_angle = num.empty((number_of_timesteps,number_of_points),dtype=float) barometric_pressure = num.empty((number_of_timesteps,number_of_points),dtype=float) if verbose: print("Total number of points: ", nrows*ncols) print("Number of thinned points: ", number_of_points) for i in range(number_of_timesteps): wind_speed[i] = wind_speed_full[i,thinned_indices] wind_angle[i] = wind_angle_full[i,thinned_indices] barometric_pressure[i] = pressure_full[i,thinned_indices] #P.plot(points_utm[:,0],points_utm[:,1],'ro') #P.show() if verbose: print("Generating sww triangulation of gems data") mesh = Mesh() mesh.add_vertices(points_utm) mesh.auto_segment(smooth_indents=True, expand_pinch=True) mesh.auto_segment(mesh.shape.get_alpha() * 1.1) try: mesh.generate_mesh(minimum_triangle_angle=0.0, verbose=False) except NoTrianglesError: # This is a bit of a hack, going in and changing the data structure. mesh.holes = [] mesh.generate_mesh(minimum_triangle_angle=0.0, verbose=False) mesh_dic = mesh.Mesh2MeshList() points_utm=ensure_numeric(points_utm) assert num.alltrue(ensure_numeric(mesh_dic['generatedpointlist']) == ensure_numeric(points_utm)) volumes = mesh_dic['generatedtrianglelist'] # Write sww intro and grid stuff. if (basename_out is not None and basename_out[:-4]=='.sww'): swwname = basename_out else: swwname = basename_in + '.sww' if verbose: 'Output to %s' % swwname if verbose: print("Writing sww wind and pressure field file") outfile = NetCDFFile(swwname, netcdf_mode_w) sww = Write_sww([], ['wind_speed','wind_angle','barometric_pressure']) sww.store_header(outfile, times, len(volumes), len(points_utm), verbose=verbose, sww_precision='d') outfile.mean_stage = mean_stage outfile.zscale = zscale sww.store_triangulation(outfile, points_utm, volumes, refzone, new_origin=origin, #check effect of this line verbose=verbose) if verbose: print('Converting quantities') # Read in a time slice from the sts file and write it to the SWW file #print wind_angle[0,:10] for i in range(len(times)): sww.store_quantities(outfile, slice_index=i, verbose=verbose, wind_speed=wind_speed[i,:], wind_angle=wind_angle[i,:], barometric_pressure=barometric_pressure[i,:], sww_precision=num.float) if verbose: sww.verbose_quantities(outfile) outfile.close()
hs_core/tests/api/native/test_hs_requests.py
tommac7/hydroshare
178
12783690
<gh_stars>100-1000 from django.test import TestCase from hs_core.hydroshare import hs_requests from django.conf import settings class TestRewrite(TestCase): """ Test local rewriting that bypasses firewalls and hits local nginx server """ def setUp(self): self.prod_fqdn = getattr(settings, "PROD_FQDN_OR_IP", "www.hydroshare.org") self.fqdn = getattr(settings, "FQDN_OR_IP", "www.hydroshare.org") self.nginx_ip = hs_requests.get_nginx_ip() def test_localize_outer(self): """ rewrite requests to outer host""" self.assertEqual(hs_requests.localize_url("https://{}/foo/bar/".format(self.fqdn)), "https://{}/foo/bar/".format(self.nginx_ip)) self.assertEqual(hs_requests.localize_url("http://{}/foo/bar/".format(self.fqdn)), "http://{}/foo/bar/".format(self.nginx_ip)) def test_localize_www(self): """ rewrite requests to production host""" self.assertEqual(hs_requests.localize_url("https://{}/foo/bar/".format(self.prod_fqdn)), "https://{}/foo/bar/".format(self.nginx_ip)) self.assertEqual(hs_requests.localize_url("http://{}/foo/bar/".format(self.prod_fqdn)), "http://{}/foo/bar/".format(self.nginx_ip)) def test_do_not_localize_others(self): """ don't rewrite other host addresses """ self.assertEqual(hs_requests.localize_url("https://{}/foo/bar/".format("www.foo.com")), "https://{}/foo/bar/".format("www.foo.com")) self.assertEqual(hs_requests.localize_url("http://{}/foo/bar/".format("www.foo.com")), "http://{}/foo/bar/".format("www.foo.com"))
i3pystatus/clock.py
fkusei/i3pystatus
413
12783696
import errno import os import locale from datetime import datetime try: import pytz HAS_PYTZ = True except ImportError: HAS_PYTZ = False from i3pystatus import IntervalModule class Clock(IntervalModule): """ This class shows a clock. .. note:: Optionally requires `pytz` for time zone data when using time zones other than local time. Format can be passed in four different ways: - single string, no timezone, just the strftime-format - one two-tuple, first is the format, second the timezone - list of strings - no timezones - list of two tuples, first is the format, second is timezone Use mousewheel to cycle between formats. For complete time format specification see: :: man strftime All available timezones are located in directory: :: /usr/share/zoneinfo/ .. rubric:: Format examples :: # one format, local timezone format = '%a %b %-d %b %X' # multiple formats, local timezone format = [ '%a %b %-d %b %X', '%X' ] # one format, specified timezone format = ('%a %b %-d %b %X', 'Europe/Bratislava') # multiple formats, specified timezones format = [ ('%a %b %-d %b %X', 'America/New_York'), ('%X', 'Etc/GMT+9') ] """ settings = ( ("format", "`None` means to use the default, locale-dependent format."), ("color", "RGB hexadecimal code color specifier, default to #ffffff"), ) format = None color = "#ffffff" interval = 1 on_upscroll = ["scroll_format", 1] on_downscroll = ["scroll_format", -1] def init(self): env_lang = os.environ.get('LC_TIME', None) if env_lang is None: env_lang = os.environ.get('LANG', None) if env_lang is not None: if env_lang.find('.') != -1: lang = tuple(env_lang.split('.', 1)) else: lang = (env_lang, None) else: lang = (None, None) if lang != locale.getlocale(locale.LC_TIME): # affects language of *.strftime() in whole program locale.setlocale(locale.LC_TIME, lang) if self.format is None: if lang[0] == 'en_US': # MDY format - United States of America self.format = ["%a %b %-d %X"] else: # DMY format - almost all other countries self.format = ["%a %-d %b %X"] elif isinstance(self.format, str) or isinstance(self.format, tuple): self.format = [self.format] self.system_tz = self._get_system_tz() self.format = [self._expand_format(fmt) for fmt in self.format] self.current_format_id = 0 def _expand_format(self, fmt): if isinstance(fmt, tuple): if len(fmt) == 1: return (fmt[0], None) else: if not HAS_PYTZ: raise RuntimeError("Need `pytz` for timezone data") return (fmt[0], pytz.timezone(fmt[1])) return (fmt, self.system_tz) def _get_system_tz(self): ''' Get the system timezone for use when no timezone is explicitly provided Requires pytz, if not available then no timezone will be set when not explicitly provided. ''' if not HAS_PYTZ: return None def _etc_localtime(): try: with open('/etc/localtime', 'rb') as fp: return pytz.tzfile.build_tzinfo('system', fp) except OSError as exc: if exc.errno != errno.ENOENT: self.logger.error( 'Unable to read from /etc/localtime: %s', exc.strerror ) except pytz.UnknownTimeZoneError: self.logger.error( '/etc/localtime contains unrecognized tzinfo' ) return None def _etc_timezone(): try: with open('/etc/timezone', 'r') as fp: tzname = fp.read().strip() return pytz.timezone(tzname) except OSError as exc: if exc.errno != errno.ENOENT: self.logger.error( 'Unable to read from /etc/localtime: %s', exc.strerror ) except pytz.UnknownTimeZoneError: self.logger.error( '/etc/timezone contains unrecognized timezone \'%s\'', tzname ) return None return _etc_localtime() or _etc_timezone() def run(self): time = datetime.now(self.format[self.current_format_id][1]) self.output = { "full_text": time.strftime(self.format[self.current_format_id][0]), "color": self.color, "urgent": False, } def scroll_format(self, step=1): self.current_format_id = (self.current_format_id + step) % len(self.format)
scripts/announcement.py
vishalbelsare/jina
15,179
12783701
import re import sys meetup_svg = '.github/images/meetup.svg' readme_md = 'README.md' conf_py = 'docs/conf.py' def rm_announce(): # remove all announcement with open(readme_md) as fp: _old = fp.read() _new = re.sub( r'(<!--startmsg-->\s*?\n).*(\n\s*?<!--endmsg-->)', rf'\g<1>\g<2>', _old, flags=re.DOTALL, ) with open(readme_md, 'w') as fp: fp.write(_new) with open(conf_py) as fp: _old = fp.read() _new = re.sub( r'(# start-announce\s*?\n).*(\n\s*?# end-announce)', rf'\g<1>\g<2>', _old, flags=re.DOTALL, ) with open(conf_py, 'w') as fp: fp.write(_new) if len(sys.argv) < 3: rm_announce() else: text = sys.argv[1] url = sys.argv[2] if not text or not url: rm_announce() else: announce_url = f''' "announcement": \'\'\' <a href="{url}">{text}</a> \'\'\', ''' meetup_svg_url = f'<a href="{url}"><img src="https://github.com/jina-ai/jina/blob/master/{meetup_svg}?raw=true"></a>' # update meetup_svg with open(meetup_svg) as fp: _old = fp.read() _new = re.sub(r'(<a href=").*(")', rf'\g<1>{url}\g<2>', _old) _new = re.sub( r'(<!--startmsg-->\s*?\n).*(\n\s*?<!--endmsg-->)', rf'\g<1>{text}\g<2>', _new, flags=re.DOTALL, ) with open(meetup_svg, 'w') as fp: fp.write(_new) # update readme_md with open(readme_md) as fp: _old = fp.read() _new = re.sub( r'(<!--startmsg-->\s*?\n).*(\n\s*?<!--endmsg-->)', rf'\g<1>{meetup_svg_url}\g<2>', _old, flags=re.DOTALL, ) with open(readme_md, 'w') as fp: fp.write(_new) # update conf with open(conf_py) as fp: _old = fp.read() _new = re.sub( r'(# start-announce\s*?\n).*(\n\s*?# end-announce)', rf'\g<1>{announce_url}\g<2>', _old, flags=re.DOTALL, ) with open(conf_py, 'w') as fp: fp.write(_new)
deps/ts_proto_deps.bzl
heartless-clown/rules_proto
249
12783715
<reponame>heartless-clown/rules_proto """ GENERATED FILE - DO NOT EDIT (created via @build_stack_rules_proto//cmd/depsgen) """ load("@build_bazel_rules_nodejs//:index.bzl", "npm_install", "yarn_install") def _maybe(repo_rule, name, **kwargs): if name not in native.existing_rules(): repo_rule(name = name, **kwargs) def ts_proto_deps(): npm_ts_proto() # via <TOP> npm_tsc() # via <TOP> def npm_ts_proto(): _maybe( npm_install, name = "npm_ts_proto", package_json = "@build_stack_rules_proto//plugin/stephenh/ts-proto:package.json", package_lock_json = "@build_stack_rules_proto//plugin/stephenh/ts-proto:package-lock.json", symlink_node_modules = False, ) def npm_tsc(): _maybe( yarn_install, name = "npm_tsc", package_json = "@build_stack_rules_proto//rules/ts:package.json", yarn_lock = "@build_stack_rules_proto//rules/ts:yarn.lock", frozen_lockfile = True, )
languages/python/sqlalchemy-oso/tests/test_partial.py
connec/oso
2,167
12783747
<reponame>connec/oso from polar import Variable from sqlalchemy.orm import Session from sqlalchemy_oso.partial import partial_to_filter from .models import User def test_partial_to_query_filter(oso, engine): oso.load_str('ok(_: User{username:"gwen"});') session = Session(bind=engine) gwen = User(username="gwen") session.add(gwen) steve = User(username="steve") session.add(steve) result = oso.query_rule("ok", Variable("actor"), accept_expression=True) partial = next(result)["bindings"]["actor"] filter = partial_to_filter(partial, session, User, oso.get_class) q = list(session.query(User).filter(filter)) assert q == [gwen]
src/mesh_edit.py
mbirkholzupc/hmd
259
12783757
<filename>src/mesh_edit.py import numpy as np from scipy import sparse from scipy.sparse.linalg import lsqr, cg, eigsh import matplotlib.pyplot as plt import scipy.io as sio import pickle import sparseqr import time WEIGHT = 1.0 ############################################################## ## Laplacian Mesh Editing ## ############################################################## #Purpose: To return a sparse matrix representing a Laplacian matrix with #the graph Laplacian (D - A) in the upper square part and anchors as the #lower rows #Inputs: mesh (polygon mesh object), anchorsIdx (indices of the anchor points) #Returns: L (An (N+K) x N sparse matrix, where N is the number of vertices #and K is the number of anchors) def getLaplacianMatrixUmbrella(mesh, anchorsIdx): n = mesh.n_vertices() # N x 3 k = anchorsIdx.shape[0] I = [] J = [] V = [] vv_idx_list = list(mesh.vertex_vertex_indices()) # Build sparse Laplacian Matrix coordinates and values for i in range(n): idx_nbr = filter(lambda x:x != -1, vv_idx_list[i]) num_nbr = len(idx_nbr) I = I + ([i] * (num_nbr + 1)) # repeated row J = J + idx_nbr + [i] # column indices and this row V = V + ([-1] * num_nbr) + [num_nbr] # negative weights and row degree # augment Laplacian matrix with anchor weights for i in range(k): I = I + [n + i] J = J + [anchorsIdx[i]] V = V + [WEIGHT] # default anchor weight L = sparse.coo_matrix((V, (I, J)), shape=(n + k, n)).tocsr() return L # Modified for openmesh.mesh, Note that only suitable for watertight model #Purpose: To return a sparse matrix representing a laplacian matrix with #cotangent weights in the upper square part and anchors as the lower rows #Inputs: mesh (polygon mesh object), anchorsIdx (indices of the anchor points) #Returns: L (An (N+K) x N sparse matrix, where N is the number of vertices #and K is the number of anchors) def getLaplacianMatrixCotangent(mesh, anchorsIdx): n = mesh.n_vertices() # N x 3 k = anchorsIdx.shape[0] I = [] J = [] V = [] #l = mesh.vertex_vertex_indices() for v in mesh.vertices(): weights = [] p_this = mesh.point(v) p_nbrs = [] id_this = v.idx() id_nbrs = [] for vv in mesh.vv(v): p_nbrs.append(mesh.point(vv)) id_nbrs.append(vv.idx()) num_nbr = len(id_nbrs) for i in range(num_nbr): u = p_this - p_nbrs[(i+num_nbr-1)%num_nbr] v = p_nbrs[(i+num_nbr)%num_nbr]- p_nbrs[(i+num_nbr-1)%num_nbr] cotangent_1 = (np.dot(u, v) /np.sqrt(np.sum(np.square(np.cross(u, v))))) u = p_this - p_nbrs[(i+num_nbr+1)%num_nbr] v = p_nbrs[(i+num_nbr)%num_nbr]- p_nbrs[(i+num_nbr+1)%num_nbr] cotangent_2 = (np.dot(u, v) /np.sqrt(np.sum(np.square(np.cross(u, v))))) weights.append(-0.5 * (cotangent_1 + cotangent_2)) # cotangent weights I = I + ([id_this] * (num_nbr + 1)) # repeated row J = J + id_nbrs + [id_this] # column indices and this row V = V + weights + [(-1 * np.sum(weights))] # n negative weights and row vertex sum # augment Laplacian matrix with anchor weights for i in range(k): I = I + [n + i] J = J + [anchorsIdx[i]] V = V + [WEIGHT] # default anchor weight L = sparse.coo_matrix((V, (I, J)), shape=(n + k, n)).tocsr() return L #Purpose: Given a mesh, to perform Laplacian mesh editing by solving the system #of delta coordinates and anchors in the least squared sense #Inputs: mesh (polygon mesh object), anchors (a K x 3 numpy array of anchor #coordinates), anchorsIdx (a parallel array of the indices of the anchors) #Returns: Nothing (should update mesh.VPos) def solveLaplacianMesh(mesh, anchors, anchorsIdx, cotangent=True): n = mesh.n_vertices() k = anchorsIdx.shape[0] operator = (getLaplacianMatrixUmbrella, getLaplacianMatrixCotangent) L = operator[1](mesh, anchorsIdx) if cotangent else operator[0](mesh, anchorsIdx) delta = np.array(L.dot(mesh.points())) # augment delta solution matrix with weighted anchors for i in range(k): delta[n + i, :] = WEIGHT * anchors[i, :] # update mesh vertices with least-squares solution for i in range(3): #mesh.points()[:, i] = lsqr(L, delta[:, i])[0] mesh.points()[:, i] = sparseqr.solve(L, delta[:, i], tolerance = 1e-8) return mesh ############################################################## ## High Speed Laplacian Mesh Editing ## ############################################################## # using umbrella weights for higher speed class fast_deform(): def __init__(self, f_ijv_pkl = '../predef/dsa_IJV.pkl', f_achr_pkl = '../predef/dsa_achr.pkl', weight = 1.0, ): self.weight = weight with open (f_ijv_pkl, 'rb') as fp: dic_IJV = pickle.load(fp) I = dic_IJV['I'] J = dic_IJV['J'] V = dic_IJV['V'] self.n = dic_IJV['num_vert'] with open (f_achr_pkl, 'rb') as fp: dic_achr = pickle.load(fp) #achr_id = dic_achr['achr_id'] self.k = dic_achr['achr_num'] if weight != 1.0: num_V = len(V) for i in range(num_V-self.k,num_V): V[i] = V[i] * self.weight self.L = sparse.coo_matrix((V, (I, J)), shape=(self.n + self.k, self.n)).tocsr() def deform(self, mesh, anchors): #t_start = time.time() delta = np.array(self.L.dot(mesh.points())) #t_end = time.time() #print("delta computation time is %.5f seconds." % (t_end - t_start)) #t_start = time.time() # augment delta solution matrix with weighted anchors for i in range(self.k): delta[self.n + i, :] = self.weight * anchors[i, :] #t_end = time.time() #print("give anchor value computation time is %.5f seconds." % (t_end - t_start)) #t_start = time.time() # update mesh vertices with least-squares solution for i in range(3): mesh.points()[:, i] = sparseqr.solve(self.L, delta[:, i], tolerance = 1e-8) #mesh.points()[:, i] = lsqr(self.L, delta[:, i])[0] #t_end = time.time() #print("sparse lsqr time is %.5f seconds." % (t_end - t_start)) return mesh ############################################################## ## High Speed Laplacian Mesh Editing for DSA ## ############################################################## class fast_deform_dsa(): def __init__(self, f_ijv_pkl = '../predef/dsa_IJV.pkl', f_achr_pkl = '../predef/dsa_achr.pkl', weight = 1.0, ): self.weight = weight with open (f_ijv_pkl, 'rb') as fp: dic_IJV = pickle.load(fp) self.I = dic_IJV['I'] self.J = dic_IJV['J'] self.V = dic_IJV['V'] self.n = dic_IJV['num_vert'] with open (f_achr_pkl, 'rb') as fp: dic_achr = pickle.load(fp) #achr_id = dic_achr['achr_id'] self.k = dic_achr['achr_num'] self.num_V = len(self.V) if self.weight != 1.0: for i in range(self.num_V-self.k, self.num_V): self.V[i] = self.V[i] * self.weight # for inactive index, zero means inactive, non-zeros means active def deform(self, verts, achr_verts, active_index = []): if active_index != []: for i in range(len(active_index)): if active_index[i] == 0: self.V[self.num_V-self.k+i] = 0 self.L = sparse.coo_matrix((self.V, (self.I, self.J)), shape=(self.n + self.k, self.n)).tocsr() delta = np.array(self.L.dot(verts)) # augment delta solution matrix with weighted anchors for i in range(self.k): delta[self.n + i, :] = self.weight * achr_verts[i, :] # update mesh vertices with least-squares solution deformed_verts = np.zeros(verts.shape) for i in range(3): deformed_verts[:, i] = sparseqr.solve(self.L, delta[:, i], tolerance = 1e-8 ) return deformed_verts ############################################################## ## High Speed Laplacian Mesh Editing for Joint Adapt ## ############################################################## class fast_deform_dja(): def __init__(self, f_ijv_pkl = '../predef/dja_IJV.pkl', f_achr_pkl = '../predef/dja_achr.pkl', weight = 1.0, ): self.weight = weight with open (f_ijv_pkl, 'rb') as fp: dic_IJV = pickle.load(fp) self.I = dic_IJV['I'] self.J = dic_IJV['J'] self.V = dic_IJV['V'] self.n = dic_IJV['num_vert'] with open (f_achr_pkl, 'rb') as fp: dic_achr = pickle.load(fp) #achr_id = dic_achr['achr_id'] self.k = dic_achr['achr_num'] self.num_V = len(self.V) if self.weight != 1.0: for i in range(self.num_V-self.k, self.num_V): self.V[i] = self.V[i] * self.weight # for inactive index, zero means inactive, non-zeros means active def deform(self, verts, achr_verts): self.L = sparse.coo_matrix((self.V, (self.I, self.J)), shape=(self.n + self.k, self.n)).tocsr() delta = np.array(self.L.dot(verts)) # augment delta solution matrix with weighted anchors for i in range(self.k): delta[self.n + i, :] = self.weight * achr_verts[i, :] # update mesh vertices with least-squares solution deformed_verts = np.zeros(verts.shape) for i in range(3): deformed_verts[:, i] = sparseqr.solve(self.L, delta[:, i], tolerance = 1e-8 ) return deformed_verts
models/nlp/electra/utils.py
kevinyang8/deep-learning-models
129
12783790
<reponame>kevinyang8/deep-learning-models from colorama import Fore, Style def colorize(token: str, color: str) -> str: return f"{color}{token}{Style.RESET_ALL}" def colorize_gen(tokenizer, true_ids, gen_ids, mask): gen_ids = gen_ids.numpy() true_ids = true_ids.numpy() mask = mask.numpy() tokens = tokenizer.convert_ids_to_tokens(gen_ids) styled_tokens = tokens.copy() for i in range(len(tokens)): if mask[i]: styled_tokens[i] = colorize( tokens[i], color=Fore.GREEN if (true_ids[i] == gen_ids[i]) else Fore.RED ) else: styled_tokens[i] = tokens[i] return " ".join(styled_tokens) def colorize_dis(tokenizer, gen_ids, dis_preds): gen_ids = gen_ids.numpy() dis_preds = dis_preds.numpy() tokens = tokenizer.convert_ids_to_tokens(gen_ids) styled_tokens = tokens.copy() for i in range(len(tokens)): if dis_preds[i]: styled_tokens[i] = colorize(tokens[i], color=Fore.YELLOW) else: styled_tokens[i] = tokens[i] return " ".join(styled_tokens)
stable_nalu/layer/gumbel_nalu.py
wlm2019/Neural-Arithmetic-Units
147
12783801
from .gumbel_nac import GumbelNACLayer from .gumbel_mnac import GumbelMNACLayer from ._abstract_nalu import AbstractNALULayer from ._abstract_recurrent_cell import AbstractRecurrentCell class GumbelNALULayer(AbstractNALULayer): """Implements the Gumbel NALU (Neural Arithmetic Logic Unit) Arguments: in_features: number of ingoing features out_features: number of outgoing features """ def __init__(self, in_features, out_features, **kwargs): super().__init__(GumbelNACLayer, GumbelMNACLayer, in_features, out_features, **kwargs) class GumbelNALUCell(AbstractRecurrentCell): """Implements the Gumbel NALU (Neural Arithmetic Logic Unit) as a recurrent cell Arguments: input_size: number of ingoing features hidden_size: number of outgoing features """ def __init__(self, input_size, hidden_size, **kwargs): super().__init__(GumbelNALULayer, GumbelMNACLayer, input_size, hidden_size, **kwargs)
Basset/pretrained_model_reloaded_th.py
Luma-1994/lama
137
12783812
<reponame>Luma-1994/lama import torch import torch.nn as nn from functools import reduce from torch.autograd import Variable class LambdaBase(nn.Sequential): def __init__(self, fn, *args): super(LambdaBase, self).__init__(*args) self.lambda_func = fn def forward_prepare(self, input): output = [] for module in self._modules.values(): output.append(module(input)) return output if output else input class Lambda(LambdaBase): def forward(self, input): return self.lambda_func(self.forward_prepare(input)) class LambdaMap(LambdaBase): def forward(self, input): return list(map(self.lambda_func,self.forward_prepare(input))) class LambdaReduce(LambdaBase): def forward(self, input): return reduce(self.lambda_func,self.forward_prepare(input)) def get_model(load_weights = True): # alphabet seems to be fine: """ https://github.com/davek44/Basset/tree/master/src/dna_io.py#L145-L148 seq = seq.replace('A','0') seq = seq.replace('C','1') seq = seq.replace('G','2') seq = seq.replace('T','3') """ pretrained_model_reloaded_th = nn.Sequential( # Sequential, nn.Conv2d(4,300,(19, 1)), nn.BatchNorm2d(300), nn.ReLU(), nn.MaxPool2d((3, 1),(3, 1)), nn.Conv2d(300,200,(11, 1)), nn.BatchNorm2d(200), nn.ReLU(), nn.MaxPool2d((4, 1),(4, 1)), nn.Conv2d(200,200,(7, 1)), nn.BatchNorm2d(200), nn.ReLU(), nn.MaxPool2d((4, 1),(4, 1)), Lambda(lambda x: x.view(x.size(0),-1)), # Reshape, nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(2000,1000)), # Linear, nn.BatchNorm1d(1000,1e-05,0.1,True),#BatchNorm1d, nn.ReLU(), nn.Dropout(0.3), nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(1000,1000)), # Linear, nn.BatchNorm1d(1000,1e-05,0.1,True),#BatchNorm1d, nn.ReLU(), nn.Dropout(0.3), nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(1000,164)), # Linear, nn.Sigmoid(), ) if load_weights: sd = torch.load('model_files/pretrained_model_reloaded_th.pth') pretrained_model_reloaded_th.load_state_dict(sd) return pretrained_model_reloaded_th model = get_model(load_weights = False)
tests/codec.py
axsguard/sstp-server
223
12783822
<reponame>axsguard/sstp-server #!/usr/bin/env python3 import os import timeit from sstpd.codec import escape, PppDecoder decoder = PppDecoder() def get_enscaped(): frames = [os.urandom(1500) for i in range(2)] return b''.join([escape(f) for f in frames]) def prof_unescape(): return timeit.timeit('decoder.unescape(data)', setup='data = get_enscaped()', globals=globals()) def codec_test(): frame = os.urandom(1500) escaped = escape(frame) print("escaped: %d bytes " % len(escaped)) unescaped = PppDecoder().unescape(escaped) assert len(unescaped) == 1 print("unescaped: %d bytes" % len(unescaped[0])) assert unescaped[0] == frame def main(): codec_test() print('Test unescape...') print('\t%f' % prof_unescape()) if __name__ == '__main__': main()
skmob/utils/tests/test_gislib.py
FilippoSimini/scikit-mobility
489
12783823
from skmob.utils import gislib import math class TestClustering: def setup_method(self): self.point_1 = (43.8430139, 10.5079940) self.point_2 = (43.5442700, 10.3261500) self.decimal = 43.8430139 self.DMS = (43, 50, 34.85) def test_get_distance(self): output = gislib.getDistance(self.point_1, self.point_2) assert (math.isclose(output, 36.293701213)) support = gislib.getDistanceByHaversine(self.point_1, self.point_2) assert (math.isclose(support, output)) output = gislib.getDistance(self.point_1, self.point_1) assert (math.isclose(output, 0)) def test_get_distance_by_haversine(self): output = gislib.getDistanceByHaversine(self.point_1, self.point_2) assert (math.isclose(output, 36.293701213)) output = gislib.getDistanceByHaversine(self.point_1, self.point_1) assert (math.isclose(output, 0)) # def test_decimal_to_DMS(self): # output = gislib.DecimalToDMS(self.decimal) # assert (output[0] == 43) # assert (output[1] == 50) # assert (math.isclose(output[2], 34.85)) def test_DMS_to_decimal(self): output = gislib.DMSToDecimal(self.DMS[0], self.DMS[1], self.DMS[2]) assert (math.isclose(output, 43.84301388888)) def test_get_coordinates_for_distance(self): output = gislib.getCoordinatesForDistance(self.point_1[0], self.point_1[1], 15) assert (math.isclose(output[0], 0.134989200863)) assert (math.isclose(output[1], 0.187162559305)) # def test_is_within_distance(self): # assert (gislib.isWithinDistance(self.point_1, self.point_2, 20)) # assert (gislib.isWithinDistance(self.point_1, self.point_2, 40) is False)
examples/settings.py
fakegit/googlevoice-1
156
12783867
import pprint from googlevoice import Voice def run(): voice = Voice() voice.login() pprint.pprint(voice.settings) __name__ == '__main__' and run()
examples/1_clap_for_everything.py
InnovativeInventor/pykeybasebot
117
12783869
<reponame>InnovativeInventor/pykeybasebot<gh_stars>100-1000 #!/usr/bin/env python3 ################################### # WHAT IS IN THIS EXAMPLE? # # This bot listens in one channel and reacts to every text message. ################################### import asyncio import logging import os import sys import pykeybasebot.types.chat1 as chat1 from pykeybasebot import Bot logging.basicConfig(level=logging.DEBUG) if "win32" in sys.platform: # Windows specific event-loop policy asyncio.set_event_loop_policy( asyncio.WindowsProactorEventLoopPolicy() # type: ignore ) async def handler(bot, event): if event.msg.content.type_name != chat1.MessageTypeStrings.TEXT.value: return channel = event.msg.channel msg_id = event.msg.id await bot.chat.react(channel, msg_id, ":clap:") listen_options = {"filter-channel": {"name": "yourbot,someoneelse"}} bot = Bot(username="yourbot", paperkey=os.environ["KEYBASE_PAPERKEY"], handler=handler) asyncio.run(bot.start(listen_options))
pycaption/scc/translator.py
vpaul-dev/pycaption-github-release-notes
183
12783900
from pycaption.scc.constants import CHARACTERS, SPECIAL_CHARS, EXTENDED_CHARS ALL_CHARACTERS = {**CHARACTERS, **SPECIAL_CHARS, **EXTENDED_CHARS} COMMAND_LABELS = { "9420": "Resume Caption Loading", "9429": "Resume Direct Captioning", "9425": "Roll-Up Captions--2 Rows", "9426": "Roll-Up Captions--3 Rows", "94a7": "Roll-Up Captions--4 Rows", "942a": "Text Restart", "94ab": "Resume Text Display", "942c": "Erase Displayed Memory", "94ae": "Erase Non-displayed Memory", "942f": "End Of Caption", "9140": "row 01, column 00, with plain white text.", "91c1": "row 01, column 00, with white underlined text.", "91c2": "row 01, column 00, with plain green text.", "9143": "row 01, column 00, with green underlined text.", "91c4": "row 01, column 00, with plain blue text.", "9145": "row 01, column 00, with blue underlined text.", "9146": "row 01, column 00, with plain cyan text.", "91c7": "row 01, column 00, with cyan underlined text.", "91c8": "row 01, column 00, with plain red text.", "9149": "row 01, column 00, with red underlined text.", "914a": "row 01, column 00, with plain yellow text.", "91cb": "row 01, column 00, with yellow underlined text.", "914c": "row 01, column 00, with plain magenta text.", "91cd": "row 01, column 00, with magenta underlined text.", "91ce": "row 01, column 00, with white italicized text.", "914f": "row 01, column 00, with white underlined italicized text.", "91d0": "row 01, column 00, with plain white text.", "9151": "row 01, column 00, with white underlined text.", "9152": "row 01, column 04, with plain white text.", "91d3": "row 01, column 04, with white underlined text.", "9154": "row 01, column 08, with plain white text.", "91d5": "row 01, column 08, with white underlined text.", "91d6": "row 01, column 12, with plain white text.", "9157": "row 01, column 12, with white underlined text.", "9158": "row 01, column 16, with plain white text.", "91d9": "row 01, column 16, with white underlined text.", "91da": "row 01, column 20, with plain white text.", "915b": "row 01, column 20, with white underlined text.", "91dc": "row 01, column 24, with plain white text.", "915d": "row 01, column 24, with white underlined text.", "915e": "row 01, column 28, with plain white text.", "91df": "row 01, column 28, with white underlined text.", "91e0": "row 02, column 00, with plain white text.", "9161": "row 02, column 00, with white underlined text.", "9162": "row 02, column 00, with plain green text.", "91e3": "row 02, column 00, with green underlined text.", "9164": "row 02, column 00, with plain blue text.", "91e5": "row 02, column 00, with blue underlined text.", "91e6": "row 02, column 00, with plain cyan text.", "9167": "row 02, column 00, with cyan underlined text.", "9168": "row 02, column 00, with plain red text.", "91e9": "row 02, column 00, with red underlined text.", "91ea": "row 02, column 00, with plain yellow text.", "916b": "row 02, column 00, with yellow underlined text.", "91ec": "row 02, column 00, with plain magenta text.", "916d": "row 02, column 00, with magenta underlined text.", "916e": "row 02, column 00, with white italicized text.", "91ef": "row 02, column 00, with white underlined italicized text.", "9170": "row 02, column 00, with plain white text.", "91f1": "row 02, column 00, with white underlined text.", "91f2": "row 02, column 04, with plain white text.", "9173": "row 02, column 04, with white underlined text.", "91f4": "row 02, column 08, with plain white text.", "9175": "row 02, column 08, with white underlined text.", "9176": "row 02, column 12, with plain white text.", "91f7": "row 02, column 12, with white underlined text.", "91f8": "row 02, column 16, with plain white text.", "9179": "row 02, column 16, with white underlined text.", "917a": "row 02, column 20, with plain white text.", "91fb": "row 02, column 20, with white underlined text.", "91fc": "row 02, column 24, with plain white text.", "91fd": "row 02, column 24, with white underlined text.", "91fe": "row 02, column 28, with plain white text.", "917f": "row 02, column 28, with white underlined text.", "9240": "row 03, column 00, with plain white text.", "92c1": "row 03, column 00, with white underlined text.", "92c2": "row 03, column 00, with plain green text.", "9243": "row 03, column 00, with green underlined text.", "92c4": "row 03, column 00, with plain blue text.", "9245": "row 03, column 00, with blue underlined text.", "9246": "row 03, column 00, with plain cyan text.", "92c7": "row 03, column 00, with cyan underlined text.", "92c8": "row 03, column 00, with plain red text.", "9249": "row 03, column 00, with red underlined text.", "924a": "row 03, column 00, with plain yellow text.", "92cb": "row 03, column 00, with yellow underlined text.", "924c": "row 03, column 00, with plain magenta text.", "92cd": "row 03, column 00, with magenta underlined text.", "92ce": "row 03, column 00, with white italicized text.", "924f": "row 03, column 00, with white underlined italicized text.", "92d0": "row 03, column 00, with plain white text.", "9251": "row 03, column 00, with white underlined text.", "9252": "row 03, column 04, with plain white text.", "92d3": "row 03, column 04, with white underlined text.", "9254": "row 03, column 08, with plain white text.", "92d5": "row 03, column 08, with white underlined text.", "92d6": "row 03, column 12, with plain white text.", "9257": "row 03, column 12, with white underlined text.", "9258": "row 03, column 16, with plain white text.", "92d9": "row 03, column 16, with white underlined text.", "92da": "row 03, column 20, with plain white text.", "925b": "row 03, column 20, with white underlined text.", "92dc": "row 03, column 24, with plain white text.", "925d": "row 03, column 24, with white underlined text.", "925e": "row 03, column 28, with plain white text.", "92df": "row 03, column 28, with white underlined text.", "92e0": "row 04, column 00, with plain white text.", "9261": "row 04, column 00, with white underlined text.", "9262": "row 04, column 00, with plain green text.", "92e3": "row 04, column 00, with green underlined text.", "9264": "row 04, column 00, with plain blue text.", "92e5": "row 04, column 00, with blue underlined text.", "92e6": "row 04, column 00, with plain cyan text.", "9267": "row 04, column 00, with cyan underlined text.", "9268": "row 04, column 00, with plain red text.", "92e9": "row 04, column 00, with red underlined text.", "92ea": "row 04, column 00, with plain yellow text.", "926b": "row 04, column 00, with yellow underlined text.", "92ec": "row 04, column 00, with plain magenta text.", "926d": "row 04, column 00, with magenta underlined text.", "926e": "row 04, column 00, with white italicized text.", "92ef": "row 04, column 00, with white underlined italicized text.", "9270": "row 04, column 00, with plain white text.", "92f1": "row 04, column 00, with white underlined text.", "92f2": "row 04, column 04, with plain white text.", "9273": "row 04, column 04, with white underlined text.", "92f4": "row 04, column 08, with plain white text.", "9275": "row 04, column 08, with white underlined text.", "9276": "row 04, column 12, with plain white text.", "92f7": "row 04, column 12, with white underlined text.", "92f8": "row 04, column 16, with plain white text.", "9279": "row 04, column 16, with white underlined text.", "927a": "row 04, column 20, with plain white text.", "92fb": "row 04, column 20, with white underlined text.", "92fc": "row 04, column 24, with plain white text.", "92fd": "row 04, column 24, with white underlined text.", "92fe": "row 04, column 28, with plain white text.", "927f": "row 04, column 28, with white underlined text.", "1540": "row 05, column 00, with plain white text.", "15c1": "row 05, column 00, with white underlined text.", "15c2": "row 05, column 00, with plain green text.", "1543": "row 05, column 00, with green underlined text.", "15c4": "row 05, column 00, with plain blue text.", "1545": "row 05, column 00, with blue underlined text.", "1546": "row 05, column 00, with plain cyan text.", "15c7": "row 05, column 00, with cyan underlined text.", "15c8": "row 05, column 00, with plain red text.", "1549": "row 05, column 00, with red underlined text.", "154a": "row 05, column 00, with plain yellow text.", "15cb": "row 05, column 00, with yellow underlined text.", "154c": "row 05, column 00, with plain magenta text.", "15cd": "row 05, column 00, with magenta underlined text.", "15ce": "row 05, column 00, with white italicized text.", "154f": "row 05, column 00, with white underlined italicized text.", "15d0": "row 05, column 00, with plain white text.", "1551": "row 05, column 00, with white underlined text.", "1552": "row 05, column 04, with plain white text.", "15d3": "row 05, column 04, with white underlined text.", "1554": "row 05, column 08, with plain white text.", "15d5": "row 05, column 08, with white underlined text.", "15d6": "row 05, column 12, with plain white text.", "1557": "row 05, column 12, with white underlined text.", "1558": "row 05, column 16, with plain white text.", "15d9": "row 05, column 16, with white underlined text.", "15da": "row 05, column 20, with plain white text.", "155b": "row 05, column 20, with white underlined text.", "15dc": "row 05, column 24, with plain white text.", "155d": "row 05, column 24, with white underlined text.", "155e": "row 05, column 28, with plain white text.", "15df": "row 05, column 28, with white underlined text.", "15e0": "row 06, column 00, with plain white text.", "1561": "row 06, column 00, with white underlined text.", "15462": "row 06, column 00, with plain green text.", "15e3": "row 06, column 00, with green underlined text.", "1564": "row 06, column 00, with plain blue text.", "15e5": "row 06, column 00, with blue underlined text.", "15e6": "row 06, column 00, with plain cyan text.", "1567": "row 06, column 00, with cyan underlined text.", "1568": "row 06, column 00, with plain red text.", "15e9": "row 06, column 00, with red underlined text.", "15ea": "row 06, column 00, with plain yellow text.", "156b": "row 06, column 00, with yellow underlined text.", "15ec": "row 06, column 00, with plain magenta text.", "156d": "row 06, column 00, with magenta underlined text.", "156e": "row 06, column 00, with white italicized text.", "15ef": "row 06, column 00, with white underlined italicized text.", "1570": "row 06, column 00, with plain white text.", "15f1": "row 06, column 00, with white underlined text.", "15f2": "row 06, column 04, with plain white text.", "1573": "row 06, column 04, with white underlined text.", "15f4": "row 06, column 08, with plain white text.", "1575": "row 06, column 08, with white underlined text.", "1576": "row 06, column 12, with plain white text.", "15f7": "row 06, column 12, with white underlined text.", "15f8": "row 06, column 16, with plain white text.", "1579": "row 06, column 16, with white underlined text.", "157a": "row 06, column 20, with plain white text.", "15fb": "row 06, column 20, with white underlined text.", "15fc": "row 06, column 24, with plain white text.", "15fd": "row 06, column 24, with white underlined text.", "15fe": "row 06, column 28, with plain white text.", "157f": "row 06, column 28, with white underlined text.", "1640": "row 07, column 00, with plain white text.", "16c1": "row 07, column 00, with white underlined text.", "16c2": "row 07, column 00, with plain green text.", "1643": "row 07, column 00, with green underlined text.", "16c4": "row 07, column 00, with plain blue text.", "1645": "row 07, column 00, with blue underlined text.", "1646": "row 07, column 00, with plain cyan text.", "16c7": "row 07, column 00, with cyan underlined text.", "16c8": "row 07, column 00, with plain red text.", "1649": "row 07, column 00, with red underlined text.", "164a": "row 07, column 00, with plain yellow text.", "16cb": "row 07, column 00, with yellow underlined text.", "164c": "row 07, column 00, with plain magenta text.", "16cd": "row 07, column 00, with magenta underlined text.", "16ce": "row 07, column 00, with white italicized text.", "164f": "row 07, column 00, with white underlined italicized text.", "16d0": "row 07, column 00, with plain white text.", "1651": "row 07, column 00, with white underlined text.", "1652": "row 07, column 04, with plain white text.", "16d3": "row 07, column 04, with white underlined text.", "1654": "row 07, column 08, with plain white text.", "16d5": "row 07, column 08, with white underlined text.", "16d6": "row 07, column 12, with plain white text.", "1657": "row 07, column 12, with white underlined text.", "1658": "row 07, column 16, with plain white text.", "16d9": "row 07, column 16, with white underlined text.", "16da": "row 07, column 20, with plain white text.", "165b": "row 07, column 20, with white underlined text.", "16dc": "row 07, column 24, with plain white text.", "165d": "row 07, column 24, with white underlined text.", "165e": "row 07, column 28, with plain white text.", "16df": "row 07, column 28, with white underlined text.", "16e0": "row 08, column 00, with plain white text.", "1661": "row 08, column 00, with white underlined text.", "16462": "row 08, column 00, with plain green text.", "16e3": "row 08, column 00, with green underlined text.", "1664": "row 08, column 00, with plain blue text.", "16e5": "row 08, column 00, with blue underlined text.", "16e6": "row 08, column 00, with plain cyan text.", "1667": "row 08, column 00, with cyan underlined text.", "1668": "row 08, column 00, with plain red text.", "16e9": "row 08, column 00, with red underlined text.", "16ea": "row 08, column 00, with plain yellow text.", "166b": "row 08, column 00, with yellow underlined text.", "16ec": "row 08, column 00, with plain magenta text.", "166d": "row 08, column 00, with magenta underlined text.", "166e": "row 08, column 00, with white italicized text.", "16ef": "row 08, column 00, with white underlined italicized text.", "1670": "row 08, column 00, with plain white text.", "16f1": "row 08, column 00, with white underlined text.", "16f2": "row 08, column 04, with plain white text.", "1673": "row 08, column 04, with white underlined text.", "16f4": "row 08, column 08, with plain white text.", "1675": "row 08, column 08, with white underlined text.", "1676": "row 08, column 12, with plain white text.", "16f7": "row 08, column 12, with white underlined text.", "16f8": "row 08, column 16, with plain white text.", "1679": "row 08, column 16, with white underlined text.", "167a": "row 08, column 20, with plain white text.", "16fb": "row 08, column 20, with white underlined text.", "16fc": "row 08, column 24, with plain white text.", "16fd": "row 08, column 24, with white underlined text.", "16fe": "row 08, column 28, with plain white text.", "167f": "row 08, column 28, with white underlined text.", "9740": "row 09, column 00, with plain white text.", "97c1": "row 09, column 00, with white underlined text.", "97c2": "row 09, column 00, with plain green text.", "9743": "row 09, column 00, with green underlined text.", "97c4": "row 09, column 00, with plain blue text.", "9745": "row 09, column 00, with blue underlined text.", "9746": "row 09, column 00, with plain cyan text.", "97c7": "row 09, column 00, with cyan underlined text.", "97c8": "row 09, column 00, with plain red text.", "9749": "row 09, column 00, with red underlined text.", "974a": "row 09, column 00, with plain yellow text.", "97cb": "row 09, column 00, with yellow underlined text.", "974c": "row 09, column 00, with plain magenta text.", "97cd": "row 09, column 00, with magenta underlined text.", "97ce": "row 09, column 00, with white italicized text.", "974f": "row 09, column 00, with white underlined italicized text.", "97d0": "row 09, column 00, with plain white text.", "9751": "row 09, column 00, with white underlined text.", "9752": "row 09, column 04, with plain white text.", "97d3": "row 09, column 04, with white underlined text.", "9754": "row 09, column 08, with plain white text.", "97d5": "row 09, column 08, with white underlined text.", "97d6": "row 09, column 12, with plain white text.", "9757": "row 09, column 12, with white underlined text.", "9758": "row 09, column 16, with plain white text.", "97d9": "row 09, column 16, with white underlined text.", "97da": "row 09, column 20, with plain white text.", "975b": "row 09, column 20, with white underlined text.", "97dc": "row 09, column 24, with plain white text.", "975d": "row 09, column 24, with white underlined text.", "975e": "row 09, column 28, with plain white text.", "97df": "row 09, column 28, with white underlined text.", "97e0": "row 10, column 00, with plain white text.", "9761": "row 10, column 00, with white underlined text.", "9762": "row 10, column 00, with plain green text.", "97e3": "row 10, column 00, with green underlined text.", "9764": "row 10, column 00, with plain blue text.", "97e5": "row 10, column 00, with blue underlined text.", "97e6": "row 10, column 00, with plain cyan text.", "9767": "row 10, column 00, with cyan underlined text.", "9768": "row 10, column 00, with plain red text.", "97e9": "row 10, column 00, with red underlined text.", "97ea": "row 10, column 00, with plain yellow text.", "976b": "row 10, column 00, with yellow underlined text.", "97ec": "row 10, column 00, with plain magenta text.", "976d": "row 10, column 00, with magenta underlined text.", "976e": "row 10, column 00, with white italicized text.", "97ef": "row 10, column 00, with white underlined italicized text.", "9770": "row 10, column 00, with plain white text.", "97f1": "row 10, column 00, with white underlined text.", "97f2": "row 10, column 04, with plain white text.", "9773": "row 10, column 04, with white underlined text.", "97f4": "row 10, column 08, with plain white text.", "9775": "row 10, column 08, with white underlined text.", "9776": "row 10, column 12, with plain white text.", "97f7": "row 10, column 12, with white underlined text.", "97f8": "row 10, column 16, with plain white text.", "9779": "row 10, column 16, with white underlined text.", "977a": "row 10, column 20, with plain white text.", "97fb": "row 10, column 20, with white underlined text.", "97fc": "row 10, column 24, with plain white text.", "97fd": "row 10, column 24, with white underlined text.", "97fe": "row 10, column 28, with plain white text.", "977f": "row 10, column 28, with white underlined text.", "1040": "row 11, column 00, with plain white text.", "10c1": "row 11, column 00, with white underlined text.", "10c2": "row 11, column 00, with plain green text.", "1043": "row 11, column 00, with green underlined text.", "10c4": "row 11, column 00, with plain blue text.", "1045": "row 11, column 00, with blue underlined text.", "1046": "row 11, column 00, with plain cyan text.", "10c7": "row 11, column 00, with cyan underlined text.", "10c8": "row 11, column 00, with plain red text.", "1049": "row 11, column 00, with red underlined text.", "104a": "row 11, column 00, with plain yellow text.", "10cb": "row 11, column 00, with yellow underlined text.", "104c": "row 11, column 00, with plain magenta text.", "10cd": "row 11, column 00, with magenta underlined text.", "10ce": "row 11, column 00, with white italicized text.", "104f": "row 11, column 00, with white underlined italicized text.", "10d0": "row 11, column 00, with plain white text.", "1051": "row 11, column 00, with white underlined text.", "1052": "row 11, column 04, with plain white text.", "10d3": "row 11, column 04, with white underlined text.", "1054": "row 11, column 08, with plain white text.", "10d5": "row 11, column 08, with white underlined text.", "10d6": "row 11, column 12, with plain white text.", "1057": "row 11, column 12, with white underlined text.", "1058": "row 11, column 16, with plain white text.", "10d9": "row 11, column 16, with white underlined text.", "10da": "row 11, column 20, with plain white text.", "105b": "row 11, column 20, with white underlined text.", "10dc": "row 11, column 24, with plain white text.", "105d": "row 11, column 24, with white underlined text.", "105e": "row 11, column 28, with plain white text.", "10df": "row 11, column 28, with white underlined text.", "1340": "row 12, column 00, with plain white text.", "13c1": "row 12, column 00, with white underlined text.", "13c2": "row 12, column 00, with plain green text.", "1343": "row 12, column 00, with green underlined text.", "13c4": "row 12, column 00, with plain blue text.", "1345": "row 12, column 00, with blue underlined text.", "1346": "row 12, column 00, with plain cyan text.", "13c7": "row 12, column 00, with cyan underlined text.", "13c8": "row 12, column 00, with plain red text.", "1349": "row 12, column 00, with red underlined text.", "134a": "row 12, column 00, with plain yellow text.", "13cb": "row 12, column 00, with yellow underlined text.", "134c": "row 12, column 00, with plain magenta text.", "13cd": "row 12, column 00, with magenta underlined text.", "13ce": "row 12, column 00, with white italicized text.", "134f": "row 12, column 00, with white underlined italicized text.", "13d0": "row 12, column 00, with plain white text.", "1351": "row 12, column 00, with white underlined text.", "1352": "row 12, column 04, with plain white text.", "13d3": "row 12, column 04, with white underlined text.", "1354": "row 12, column 08, with plain white text.", "13d5": "row 12, column 08, with white underlined text.", "13d6": "row 12, column 12, with plain white text.", "1357": "row 12, column 12, with white underlined text.", "1358": "row 12, column 16, with plain white text.", "13d9": "row 12, column 16, with white underlined text.", "13da": "row 12, column 20, with plain white text.", "135b": "row 12, column 20, with white underlined text.", "13dc": "row 12, column 24, with plain white text.", "135d": "row 12, column 24, with white underlined text.", "135e": "row 12, column 28, with plain white text.", "13df": "row 12, column 28, with white underlined text.", "13e0": "row 13, column 00, with plain white text.", "1361": "row 13, column 00, with white underlined text.", "13462": "row 13, column 00, with plain green text.", "13e3": "row 13, column 00, with green underlined text.", "1364": "row 13, column 00, with plain blue text.", "13e5": "row 13, column 00, with blue underlined text.", "13e6": "row 13, column 00, with plain cyan text.", "1367": "row 13, column 00, with cyan underlined text.", "1368": "row 13, column 00, with plain red text.", "13e9": "row 13, column 00, with red underlined text.", "13ea": "row 13, column 00, with plain yellow text.", "136b": "row 13, column 00, with yellow underlined text.", "13ec": "row 13, column 00, with plain magenta text.", "136d": "row 13, column 00, with magenta underlined text.", "136e": "row 13, column 00, with white italicized text.", "13ef": "row 13, column 00, with white underlined italicized text.", "1370": "row 13, column 00, with plain white text.", "13f1": "row 13, column 00, with white underlined text.", "13f2": "row 13, column 04, with plain white text.", "1373": "row 13, column 04, with white underlined text.", "13f4": "row 13, column 08, with plain white text.", "1375": "row 13, column 08, with white underlined text.", "1376": "row 13, column 12, with plain white text.", "13f7": "row 13, column 12, with white underlined text.", "13f8": "row 13, column 16, with plain white text.", "1379": "row 13, column 16, with white underlined text.", "137a": "row 13, column 20, with plain white text.", "13fb": "row 13, column 20, with white underlined text.", "13fc": "row 13, column 24, with plain white text.", "13fd": "row 13, column 24, with white underlined text.", "13fe": "row 13, column 28, with plain white text.", "137f": "row 13, column 28, with white underlined text.", "9440": "row 14, column 00, with plain white text.", "94c1": "row 14, column 00, with white underlined text.", "94c2": "row 14, column 00, with plain green text.", "9443": "row 14, column 00, with green underlined text.", "94c4": "row 14, column 00, with plain blue text.", "9445": "row 14, column 00, with blue underlined text.", "9446": "row 14, column 00, with plain cyan text.", "94c7": "row 14, column 00, with cyan underlined text.", "94c8": "row 14, column 00, with plain red text.", "9449": "row 14, column 00, with red underlined text.", "944a": "row 14, column 00, with plain yellow text.", "94cb": "row 14, column 00, with yellow underlined text.", "944c": "row 14, column 00, with plain magenta text.", "94cd": "row 14, column 00, with magenta underlined text.", "94ce": "row 14, column 00, with white italicized text.", "944f": "row 14, column 00, with white underlined italicized text.", "94d0": "row 14, column 00, with plain white text.", "9451": "row 14, column 00, with white underlined text.", "9452": "row 14, column 04, with plain white text.", "94d3": "row 14, column 04, with white underlined text.", "9454": "row 14, column 08, with plain white text.", "94d5": "row 14, column 08, with white underlined text.", "94d6": "row 14, column 12, with plain white text.", "9457": "row 14, column 12, with white underlined text.", "9458": "row 14, column 16, with plain white text.", "94d9": "row 14, column 16, with white underlined text.", "94da": "row 14, column 20, with plain white text.", "945b": "row 14, column 20, with white underlined text.", "94dc": "row 14, column 24, with plain white text.", "945d": "row 14, column 24, with white underlined text.", "945e": "row 14, column 28, with plain white text.", "94df": "row 14, column 28, with white underlined text.", "94e0": "row 15, column 00, with plain white text.", "9461": "row 15, column 00, with white underlined text.", "9462": "row 15, column 00, with plain green text.", "94e3": "row 15, column 00, with green underlined text.", "9464": "row 15, column 00, with plain blue text.", "94e5": "row 15, column 00, with blue underlined text.", "94e6": "row 15, column 00, with plain cyan text.", "9467": "row 15, column 00, with cyan underlined text.", "9468": "row 15, column 00, with plain red text.", "94e9": "row 15, column 00, with red underlined text.", "94ea": "row 15, column 00, with plain yellow text.", "946b": "row 15, column 00, with yellow underlined text.", "94ec": "row 15, column 00, with plain magenta text.", "946d": "row 15, column 00, with magenta underlined text.", "946e": "row 15, column 00, with white italicized text.", "94ef": "row 15, column 00, with white underlined italicized text.", "9470": "row 15, column 00, with plain white text.", "94f1": "row 15, column 00, with white underlined text.", "94f2": "row 15, column 04, with plain white text.", "9473": "row 15, column 04, with white underlined text.", "94f4": "row 15, column 08, with plain white text.", "9475": "row 15, column 08, with white underlined text.", "9476": "row 15, column 12, with plain white text.", "94f7": "row 15, column 12, with white underlined text.", "94f8": "row 15, column 16, with plain white text.", "9479": "row 15, column 16, with white underlined text.", "947a": "row 15, column 20, with plain white text.", "94fb": "row 15, column 20, with white underlined text.", "94fc": "row 15, column 24, with plain white text.", "94fd": "row 15, column 24, with white underlined text.", "94fe": "row 15, column 28, with plain white text.", "947f": "row 15, column 28, with white underlined text.", "97a1": "Tab Offset 1 column", "97a2": "Tab Offset 2 columns", "9723": "Tab Offset 3 columns", "94a1": "BackSpace", "94a4": "Delete to End of Row", "94ad": "Carriage Return", "1020": "Background White", "10a1": "Background Semi-Transparent White", "10a2": "Background Green", "1023": "Background Semi-Transparent Green", "10a4": "Background Blue", "1025": "Background Semi-Transparent Blue", "1026": "Background Cyan", "10a7": "Background Semi-Transparent Cyan", "10a8": "Background Red", "1029": "Background Semi-Transparent Red", "102a": "Background Yellow", "10ab": "Background Semi-Transparent Yellow", "102c": "Background Magenta", "10ad": "Background Semi-Transparent Magenta", "10ae": "Background Black", "102f": "Background Semi-Transparent Black", "97ad": "Background Transparent", "97a4": "Standard Character Set", "9725": "Double-Size Character Set", "9726": "First Private Character Set", "97a7": "Second Private Character Set", "97a8": "People`s Republic of China Character Set", "9729": "Korean Standard Character Set", "972a": "First Registered Character Set", "9120": "White", "91a1": "White Underline", "91a2": "Green", "9123": "Green Underline", "91a4": "Blue", "9125": "Blue Underline", "9126": "Cyan", "91a7": "Cyan Underline", "91a8": "Red", "9129": "Red Underline", "912a": "Yellow", "91ab": "Yellow Underline", "912c": "Magenta", "91ad": "Magenta Underline", "97ae": "Black", "972f": "Black Underline", "91ae": "Italics", "912f": "Italics Underline", "94a8": "Flash ON", "9423": "Alarm Off", "94a2": "Alarm On" } def translate_scc(scc_content, brackets='[]'): """ Replaces hexadecimal words with their meaning In order to make SCC files more human readable and easier to debug, this function is used to replace command codes with their labels and character bytes with their actual characters :param scc_content: SCC captions to be translated :type scc_content: str :param brackets: Brackets to group the translated content of a command :type brackets: str :return: Translated SCC captions :rtype: str """ opening_bracket, closing_bracket = brackets if brackets else ('', '') scc_elements = set(scc_content.split()) for elem in scc_elements: name = COMMAND_LABELS.get(elem) # If a 2 byte command was not found, try retrieving 1 byte characters if not name: char1 = ALL_CHARACTERS.get(elem[:2]) char2 = ALL_CHARACTERS.get(elem[2:]) if char1 is not None and char2 is not None: name = f"{char1}{char2}" if name: scc_content = scc_content.replace( elem, f"{opening_bracket}{name}{closing_bracket}") return scc_content
tox_helpers/run_integration_tests.py
sivchand/smart_open
2,047
12783915
<reponame>sivchand/smart_open """Runs integration tests.""" import os import subprocess os.environ['PYTEST_ADDOPTS'] = "--reruns 3 --reruns-delay 1" subprocess.check_call( [ 'pytest', 'integration-tests/test_207.py', 'integration-tests/test_http.py', ] ) if os.environ.get('AWS_ACCESS_KEY_ID') and os.environ.get('AWS_SECRET_ACCESS_KEY'): subprocess.check_call(['pytest', '-v', 'integration-tests/test_s3_ported.py'])
lib/datasets/augmentation.py
ParikhKadam/HybridPose
369
12783925
import numpy as np import cv2 import pdb # https://github.com/zju3dv/clean-pvnet/blob/master/lib/datasets/augmentation.py def debug_visualize(image, mask, pts2d, sym_cor, name_prefix='debug'): from random import sample cv2.imwrite('{}_image.png'.format(name_prefix), image * 255) cv2.imwrite('{}_mask.png'.format(name_prefix), mask * 255) img_pts = image.copy() * 255 for i in range(pts2d.shape[0]): x = int(round(pts2d[i, 0])) y = int(round(pts2d[i, 1])) img_pts = cv2.circle(img_pts, (x, y), 2, (0, 0, 255), thickness=-1) cv2.imwrite('{}_pts.png'.format(name_prefix), img_pts) img_sym = image.copy() * 255 ys, xs = np.nonzero(mask) for i_pt in sample([i for i in range(len(ys))], min(100, len(ys))): y = int(round(ys[i_pt])) x = int(round(xs[i_pt])) x_cor, y_cor = sym_cor[y, x] x_cor = int(round(x + x_cor)) y_cor = int(round(y + y_cor)) img_sym = cv2.line(img_sym, (x, y), (x_cor, y_cor), (0, 0, 255), 1) cv2.imwrite('{}_sym.png'.format(name_prefix), img_sym) def rotate_sym_cor(sym_cor, mask, R): h, w = sym_cor.shape[:2] ys, xs = np.nonzero(mask) source = np.float32(np.stack([xs, ys], axis=-1)) delta = np.float32(sym_cor[ys, xs]) target = source + delta last_col = np.ones((source.shape[0], 1), dtype=np.float32) source = np.concatenate([source, last_col], axis=-1) target = np.concatenate([target, last_col], axis=-1) last_row = np.asarray([[0, 0, 1]], dtype=np.float32) R = np.concatenate([R, last_row], axis=0).transpose() source = np.matmul(source, R)[:, :2] target = np.matmul(target, R)[:, :2] source = np.uint32(np.round(source)) delta = target - source # remove invalid indices xs, ys = source[:, 0], source[:, 1] valid = (xs > 0) & (xs < w) & (ys > 0) & (ys < h) xs, ys, delta = xs[valid], ys[valid], delta[valid] sym_cor = np.zeros_like(sym_cor) sym_cor[ys, xs] = delta return sym_cor def rotate_instance(img, mask, hcoords, sym_cor, rot_ang_min, rot_ang_max): h, w = img.shape[0], img.shape[1] degree = np.random.uniform(rot_ang_min, rot_ang_max) hs, ws = np.nonzero(mask) R = cv2.getRotationMatrix2D((np.mean(ws), np.mean(hs)), degree, 1) sym_cor = rotate_sym_cor(sym_cor, mask, R) mask = cv2.warpAffine(mask, R, (w, h), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=0) img = cv2.warpAffine(img, R, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=0) last_row = np.asarray([[0, 0, 1]], dtype=np.float32) R = np.concatenate([R, last_row], axis=0).transpose() last_col = np.ones((hcoords.shape[0], 1), dtype=np.float32) hcoords = np.concatenate([hcoords, last_col], axis=1) hcoords = np.float32(np.matmul(hcoords, R)) hcoords = hcoords[:, :2] return img, mask, hcoords, sym_cor def crop_resize_instance_v1(img, mask, hcoords, sym_cor, imheight, imwidth, overlap_ratio=0.5, ratio_min=0.8, ratio_max=1.2): ''' crop a region with [imheight*resize_ratio,imwidth*resize_ratio] which at least overlap with foreground bbox with overlap ''' hcoords_last_col = np.ones((hcoords.shape[0], 1), dtype=np.float32) hcoords = np.concatenate([hcoords, hcoords_last_col], axis=1) resize_ratio = np.random.uniform(ratio_min, ratio_max) target_height = int(imheight * resize_ratio) target_width = int(imwidth * resize_ratio) img, mask, hcoords, sym_cor = crop_or_padding_to_fixed_size_instance( img, mask, hcoords, sym_cor, target_height, target_width, overlap_ratio) img = cv2.resize(img, (imwidth, imheight), interpolation=cv2.INTER_LINEAR) mask = cv2.resize(mask, (imwidth, imheight), interpolation=cv2.INTER_NEAREST) sym_cor = cv2.resize(sym_cor, (imwidth, imheight), interpolation=cv2.INTER_NEAREST) sym_cor /= resize_ratio hcoords[:, 0] = hcoords[:, 0] / resize_ratio hcoords[:, 1] = hcoords[:, 1] / resize_ratio hcoords = hcoords[:, :2] return img, mask, hcoords, sym_cor def crop_or_padding_to_fixed_size_instance(img, mask, hcoords, sym_cor, th, tw, overlap_ratio=0.5): h, w, _ = img.shape hs, ws = np.nonzero(mask) hmin, hmax = np.min(hs), np.max(hs) wmin, wmax = np.min(ws), np.max(ws) fh, fw = hmax - hmin, wmax - wmin hpad, wpad = th >= h, tw >= w hrmax = int(min(hmin + overlap_ratio * fh, h - th)) # h must > target_height else hrmax<0 hrmin = int(max(hmin + overlap_ratio * fh - th, 0)) wrmax = int(min(wmin + overlap_ratio * fw, w - tw)) # w must > target_width else wrmax<0 wrmin = int(max(wmin + overlap_ratio * fw - tw, 0)) hbeg = 0 if (hpad or hrmin == hrmax) else np.random.randint(hrmin, hrmax) hend = hbeg + th wbeg = 0 if (wpad or wrmin == wrmax) else np.random.randint(wrmin, wrmax) # if pad then [0,wend] will larger than [0,w], indexing it is safe wend = wbeg + tw img = img[hbeg:hend, wbeg:wend] mask = mask[hbeg:hend, wbeg:wend] sym_cor = sym_cor[hbeg:hend, wbeg:wend] hcoords[:, 0] -= wbeg * hcoords[:, 2] hcoords[:, 1] -= hbeg * hcoords[:, 2] if hpad or wpad: nh, nw, _ = img.shape new_img = np.zeros([th, tw, 3], dtype=img.dtype) new_mask = np.zeros([th, tw], dtype=mask.dtype) new_sym_cor = np.zeros([th, tw, 2], dtype=sym_cor.dtype) hbeg = 0 if not hpad else (th - h) // 2 wbeg = 0 if not wpad else (tw - w) // 2 new_img[hbeg:hbeg + nh, wbeg:wbeg + nw] = img new_mask[hbeg:hbeg + nh, wbeg:wbeg + nw] = mask new_sym_cor[hbeg:hbeg + nh, wbeg:wbeg + nw] = sym_cor hcoords[:, 0] += wbeg * hcoords[:, 2] hcoords[:, 1] += hbeg * hcoords[:, 2] img, mask, sym_cor = new_img, new_mask, new_sym_cor return img, mask, hcoords, sym_cor def crop_or_padding_to_fixed_size(img, mask, sym_cor, th, tw): h, w, _ = img.shape hpad, wpad = th >= h, tw >= w hbeg = 0 if hpad else np.random.randint(0, h - th) wbeg = 0 if wpad else np.random.randint(0, w - tw) # if pad then [0,wend] will larger than [0,w], indexing it is safe hend = hbeg + th wend = wbeg + tw img = img[hbeg:hend, wbeg:wend] mask = mask[hbeg:hend, wbeg:wend] sym_cor = sym_cor[hbeg:hend, wbeg:wend] if hpad or wpad: nh, nw, _ = img.shape new_img = np.zeros([th, tw, 3], dtype=img.dtype) new_mask = np.zeros([th, tw], dtype=mask.dtype) new_sym_cor = np.zeros([th, tw, 2], dtype=sym_cor.dtype) hbeg = 0 if not hpad else (th - h) // 2 wbeg = 0 if not wpad else (tw - w) // 2 new_img[hbeg:hbeg + nh, wbeg:wbeg + nw] = img new_mask[hbeg:hbeg + nh, wbeg:wbeg + nw] = mask new_sym_cor[hbeg:hbeg + nh, wbeg:wbeg + nw] = sym_cor img, mask, sym_cor = new_img, new_mask, new_sym_cor return img, mask, sym_cor
recipes/nsimd/2.x/conanfile.py
rockandsalt/conan-center-index
562
12783926
import os from conans import ConanFile, CMake, tools required_conan_version = ">=1.33.0" class NsimdConan(ConanFile): name = "nsimd" homepage = "https://github.com/agenium-scale/nsimd" description = "Agenium Scale vectorization library for CPUs and GPUs" topics = ("hpc", "neon", "cuda", "avx", "simd", "avx2", "sse2", "aarch64", "avx512", "sse42", "rocm", "sve", "neon128") url = "https://github.com/conan-io/conan-center-index" license = "MIT" exports_sources = ["CMakeLists.txt", "patches/*"] generators = "cmake" settings = "os", "compiler", "build_type", "arch" options = { "shared": [True, False], "fPIC": [True, False], # This used only when building the library. # Most functionality is header only. "simd": [None, "cpu", "sse2", "sse42", "avx", "avx2", "avx512_knl", "avx512_skylake", "neon128", "aarch64", "sve", "sve128", "sve256", "sve512", "sve1024", "sve2048", "cuda", "rocm"] } default_options = { "shared": False, "fPIC": True, "simd": None } _cmake = None @property def _source_subfolder(self): return "source_subfolder" @property def _build_subfolder(self): return "build_subfolder" def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC # Most of the library is header only. # cpp files do not use STL. del self.settings.compiler.libcxx def source(self): tools.get(**self.conan_data["sources"][self.version], strip_root=True, destination=self._source_subfolder) def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) if self.options.simd: self._cmake.definitions["simd"] = self.options.simd if self.settings.arch == "armv7hf": self._cmake.definitions["NSIMD_ARM32_IS_ARMEL"] = False self._cmake.definitions["CMAKE_POSITION_INDEPENDENT_CODE"] = self.options.get_safe("fPIC", True) self._cmake.configure(build_folder=self._build_subfolder) return self._cmake def _patch_sources(self): cmakefile_path = os.path.join(self._source_subfolder, "CMakeLists.txt") tools.replace_in_file(cmakefile_path, " SHARED ", " ") tools.replace_in_file(cmakefile_path, "RUNTIME DESTINATION lib", "RUNTIME DESTINATION bin") tools.replace_in_file(cmakefile_path, "set_property(TARGET ${o} PROPERTY POSITION_INDEPENDENT_CODE ON)", "") def build(self): self._patch_sources() cmake = self._configure_cmake() cmake.build() def package(self): self.copy("LICENSE", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() def package_info(self): self.cpp_info.libs = tools.collect_libs(self)
tests/functional/regressions/test_issue87.py
matt-koevort/tartiflette
530
12783930
import pytest @pytest.mark.asyncio @pytest.mark.ttftt_engine @pytest.mark.parametrize( "query,errors", [ ( """ subscription Sub { newDog { name } newHuman { name } } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 2, "column": 13}, {"line": 2, "column": 30}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ( """ subscription Sub { newDog { name } __typename } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 2, "column": 13}, {"line": 2, "column": 30}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ( """ fragment MultipleSubscriptionsFields on Subscription { newDog { name } newHuman { name } } subscription Sub { ...MultipleSubscriptionsFields } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 11, "column": 13}, {"line": 2, "column": 66}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ( """ subscription Sub { ... on Subscription { newDog { name } newHuman { name } } } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 2, "column": 13}, {"line": 3, "column": 35}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ( """ fragment MultipleSubscriptionsFields on Subscription { ... on Subscription { newDog { name } newHuman { name } } } subscription Sub { ...MultipleSubscriptionsFields } """, [ { "message": "Subcription Sub must select only one top level field.", "path": None, "locations": [ {"line": 13, "column": 13}, {"line": 3, "column": 35}, ], "extensions": { "rule": "5.2.3.1", "spec": "June 2018", "details": "https://graphql.github.io/graphql-spec/June2018/#sec-Single-root-field", "tag": "single-root-field", }, } ], ), ], ) async def test_issue87(engine, query, errors): assert await engine.execute(query) == {"data": None, "errors": errors}
fbchat/_events/_delta_type.py
JabLuszko/fbchat
1,042
12783933
<reponame>JabLuszko/fbchat import attr import datetime from ._common import attrs_event, Event, UnknownEvent, ThreadEvent from .. import _util, _threads, _models from typing import Sequence, Optional @attrs_event class ColorSet(ThreadEvent): """Somebody set the color in a thread.""" #: The new color. Not limited to the ones in `ThreadABC.set_color` color = attr.ib(type=str) #: When the color was set at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) color = _threads.ThreadABC._parse_color(data["untypedData"]["theme_color"]) return cls(author=author, thread=thread, color=color, at=at) @attrs_event class EmojiSet(ThreadEvent): """Somebody set the emoji in a thread.""" #: The new emoji emoji = attr.ib(type=str) #: When the emoji was set at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) emoji = data["untypedData"]["thread_icon"] return cls(author=author, thread=thread, emoji=emoji, at=at) @attrs_event class NicknameSet(ThreadEvent): """Somebody set the nickname of a person in a thread.""" #: The person whose nickname was set subject = attr.ib(type=str) #: The new nickname. If ``None``, the nickname was cleared nickname = attr.ib(type=Optional[str]) #: When the nickname was set at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) subject = _threads.User( session=session, id=data["untypedData"]["participant_id"] ) nickname = data["untypedData"]["nickname"] or None # None if "" return cls( author=author, thread=thread, subject=subject, nickname=nickname, at=at ) @attrs_event class AdminsAdded(ThreadEvent): """Somebody added admins to a group.""" #: The people that were set as admins added = attr.ib(type=Sequence["_threads.User"]) #: When the admins were added at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) subject = _threads.User(session=session, id=data["untypedData"]["TARGET_ID"]) return cls(author=author, thread=thread, added=[subject], at=at) @attrs_event class AdminsRemoved(ThreadEvent): """Somebody removed admins from a group.""" #: The people that were removed as admins removed = attr.ib(type=Sequence["_threads.User"]) #: When the admins were removed at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) subject = _threads.User(session=session, id=data["untypedData"]["TARGET_ID"]) return cls(author=author, thread=thread, removed=[subject], at=at) @attrs_event class ApprovalModeSet(ThreadEvent): """Somebody changed the approval mode in a group.""" require_admin_approval = attr.ib(type=bool) #: When the approval mode was set at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) raa = data["untypedData"]["APPROVAL_MODE"] == "1" return cls(author=author, thread=thread, require_admin_approval=raa, at=at) @attrs_event class CallStarted(ThreadEvent): """Somebody started a call.""" #: When the call was started at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) return cls(author=author, thread=thread, at=at) @attrs_event class CallEnded(ThreadEvent): """Somebody ended a call.""" #: How long the call took duration = attr.ib(type=datetime.timedelta) #: When the call ended at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) duration = _util.seconds_to_timedelta(int(data["untypedData"]["call_duration"])) return cls(author=author, thread=thread, duration=duration, at=at) @attrs_event class CallJoined(ThreadEvent): """Somebody joined a call.""" #: When the call ended at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) return cls(author=author, thread=thread, at=at) @attrs_event class PollCreated(ThreadEvent): """Somebody created a group poll.""" #: The new poll poll = attr.ib(type="_models.Poll") #: When the poll was created at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) poll_data = _util.parse_json(data["untypedData"]["question_json"]) poll = _models.Poll._from_graphql(session, poll_data) return cls(author=author, thread=thread, poll=poll, at=at) @attrs_event class PollVoted(ThreadEvent): """Somebody voted in a group poll.""" #: The updated poll poll = attr.ib(type="_models.Poll") #: Ids of the voted options added_ids = attr.ib(type=Sequence[str]) #: Ids of the un-voted options removed_ids = attr.ib(type=Sequence[str]) #: When the poll was voted in at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) poll_data = _util.parse_json(data["untypedData"]["question_json"]) poll = _models.Poll._from_graphql(session, poll_data) added_ids = _util.parse_json(data["untypedData"]["added_option_ids"]) removed_ids = _util.parse_json(data["untypedData"]["removed_option_ids"]) return cls( author=author, thread=thread, poll=poll, added_ids=[str(x) for x in added_ids], removed_ids=[str(x) for x in removed_ids], at=at, ) @attrs_event class PlanCreated(ThreadEvent): """Somebody created a plan in a group.""" #: The new plan plan = attr.ib(type="_models.PlanData") #: When the plan was created at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) return cls(author=author, thread=thread, plan=plan, at=at) @attrs_event class PlanEnded(ThreadEvent): """A plan ended.""" #: The ended plan plan = attr.ib(type="_models.PlanData") #: When the plan ended at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) return cls(author=author, thread=thread, plan=plan, at=at) @attrs_event class PlanEdited(ThreadEvent): """Somebody changed a plan in a group.""" #: The updated plan plan = attr.ib(type="_models.PlanData") #: When the plan was updated at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) return cls(author=author, thread=thread, plan=plan, at=at) @attrs_event class PlanDeleted(ThreadEvent): """Somebody removed a plan in a group.""" #: The removed plan plan = attr.ib(type="_models.PlanData") #: When the plan was removed at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) return cls(author=author, thread=thread, plan=plan, at=at) @attrs_event class PlanResponded(ThreadEvent): """Somebody responded to a plan in a group.""" #: The plan that was responded to plan = attr.ib(type="_models.PlanData") #: Whether the author will go to the plan or not take_part = attr.ib(type=bool) #: When the plan was removed at = attr.ib(type=datetime.datetime) @classmethod def _parse(cls, session, data): author, thread, at = cls._parse_metadata(session, data) plan = _models.PlanData._from_pull(session, data["untypedData"]) take_part = data["untypedData"]["guest_status"] == "GOING" return cls(author=author, thread=thread, plan=plan, take_part=take_part, at=at) def parse_admin_message(session, data): type_ = data["type"] if type_ == "change_thread_theme": return ColorSet._parse(session, data) elif type_ == "change_thread_icon": return EmojiSet._parse(session, data) elif type_ == "change_thread_nickname": return NicknameSet._parse(session, data) elif type_ == "change_thread_admins": event_type = data["untypedData"]["ADMIN_EVENT"] if event_type == "add_admin": return AdminsAdded._parse(session, data) elif event_type == "remove_admin": return AdminsRemoved._parse(session, data) else: pass elif type_ == "change_thread_approval_mode": return ApprovalModeSet._parse(session, data) elif type_ == "instant_game_update": pass # TODO: This elif type_ == "messenger_call_log": # Previously "rtc_call_log" event_type = data["untypedData"]["event"] if event_type == "group_call_started": return CallStarted._parse(session, data) elif event_type in ["group_call_ended", "one_on_one_call_ended"]: return CallEnded._parse(session, data) else: pass elif type_ == "participant_joined_group_call": return CallJoined._parse(session, data) elif type_ == "group_poll": event_type = data["untypedData"]["event_type"] if event_type == "question_creation": return PollCreated._parse(session, data) elif event_type == "update_vote": return PollVoted._parse(session, data) else: pass elif type_ == "lightweight_event_create": return PlanCreated._parse(session, data) elif type_ == "lightweight_event_notify": return PlanEnded._parse(session, data) elif type_ == "lightweight_event_update": return PlanEdited._parse(session, data) elif type_ == "lightweight_event_delete": return PlanDeleted._parse(session, data) elif type_ == "lightweight_event_rsvp": return PlanResponded._parse(session, data) return UnknownEvent(source="Delta type", data=data)
distributed/protocol/tests/test_highlevelgraph.py
crusaderky/distributed
1,358
12783934
<gh_stars>1000+ import ast import pytest import dask import dask.array as da import dask.dataframe as dd from distributed.diagnostics import SchedulerPlugin from distributed.utils_test import gen_cluster np = pytest.importorskip("numpy") pd = pytest.importorskip("pandas") from numpy.testing import assert_array_equal @gen_cluster(client=True) async def test_combo_of_layer_types(c, s, a, b): """Check pack/unpack of a HLG that has everything!""" def add(x, y, z, extra_arg): return x + y + z + extra_arg y = c.submit(lambda x: x, 2) z = c.submit(lambda x: x, 3) x = da.blockwise( add, "x", da.zeros((3,), chunks=(1,)), "x", da.ones((3,), chunks=(1,)), "x", y, None, concatenate=False, dtype=int, extra_arg=z, ) df = dd.from_pandas(pd.DataFrame({"a": np.arange(3)}), npartitions=3) df = df.shuffle("a", shuffle="tasks") df = df["a"].to_dask_array() res = x.sum() + df.sum() res = await c.compute(res, optimize_graph=False) assert res == 21 @gen_cluster(client=True) async def test_blockwise(c, s, a, b): """Check pack/unpack of blockwise layer""" def add(x, y, z, extra_arg): return x + y + z + extra_arg y = c.submit(lambda x: x, 10) z = c.submit(lambda x: x, 3) x = da.blockwise( add, "x", da.zeros((3,), chunks=(1,)), "x", da.ones((3,), chunks=(1,)), "x", y, None, concatenate=False, dtype=int, extra_arg=z, ) res = await c.compute(x.sum(), optimize_graph=False) assert res == 42 @gen_cluster(client=True) async def test_shuffle(c, s, a, b): """Check pack/unpack of a shuffled dataframe""" df = dd.from_pandas( pd.DataFrame( {"a": np.arange(10, dtype=int), "b": np.arange(10, 0, -1, dtype=float)} ), npartitions=5, ) df = df.shuffle("a", shuffle="tasks", max_branch=2) df = df["a"] + df["b"] res = await c.compute(df, optimize_graph=False) assert res.dtypes == np.float64 assert (res == 10.0).all() class ExampleAnnotationPlugin(SchedulerPlugin): def __init__(self, priority_fn=None, qux="", resource="", retries=0): self.priority_fn = priority_fn or (lambda k: 0) self.qux = qux self.resource = resource self.retries = retries self.priority_matches = 0 self.resource_matches = 0 self.retry_matches = 0 self.qux_matches = 0 def update_graph(self, scheduler, dsk=None, keys=None, restrictions=None, **kwargs): annots = kwargs["annotations"] if "priority" in annots: self.priority_matches = sum( int(self.priority_fn(ast.literal_eval(k)) == p) for k, p in annots["priority"].items() ) if "qux" in annots: self.qux_matches = sum(int(self.qux == v) for v in annots["qux"].values()) if "custom_resource" in annots: self.resource_matches = sum( int(self.resource == v) for v in annots["custom_resource"].values() ) if "retries" in annots: self.retry_matches = sum( int(self.retries == v) for v in annots["retries"].values() ) @gen_cluster(client=True) async def test_array_annotations(c, s, a, b): def fn(k): return k[1] * 5 + k[2] qux = "baz" resource = "widget" plugin = ExampleAnnotationPlugin(priority_fn=fn, qux=qux, resource=resource) s.add_plugin(plugin) assert plugin in s.plugins.values() with dask.annotate(priority=fn, qux=qux): A = da.ones((10, 10), chunks=(2, 2)) with dask.annotate(custom_resource=resource): B = A + 1 with dask.config.set(optimization__fuse__active=False): result = await c.compute(B) assert_array_equal(result, 2) # There are annotation matches per array chunk (i.e. task) assert plugin.qux_matches == A.npartitions assert plugin.priority_matches == A.npartitions assert plugin.resource_matches == B.npartitions @gen_cluster(client=True) async def test_dataframe_annotations(c, s, a, b): retries = 5 plugin = ExampleAnnotationPlugin(retries=retries) s.add_plugin(plugin) assert plugin in s.plugins.values() df = dd.from_pandas( pd.DataFrame( {"a": np.arange(10, dtype=int), "b": np.arange(10, 0, -1, dtype=float)} ), npartitions=5, ) df = df.shuffle("a", shuffle="tasks", max_branch=2) acol = df["a"] bcol = df["b"] with dask.annotate(retries=retries): df = acol + bcol with dask.config.set(optimization__fuse__active=False): rdf = await c.compute(df) assert rdf.dtypes == np.float64 assert (rdf == 10.0).all() # There is an annotation match per partition (i.e. task) assert plugin.retry_matches == df.npartitions
dreamplace/ops/electric_potential/electric_overflow.py
Eternity666/DREAMPlace
323
12783956
## # @file electric_overflow.py # @author <NAME> # @date Aug 2018 # import math import numpy as np import torch from torch import nn from torch.autograd import Function from torch.nn import functional as F import dreamplace.ops.electric_potential.electric_potential_cpp as electric_potential_cpp import dreamplace.configure as configure if configure.compile_configurations["CUDA_FOUND"] == "TRUE": import dreamplace.ops.electric_potential.electric_potential_cuda as electric_potential_cuda import pdb import matplotlib matplotlib.use('Agg') from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt class ElectricDensityMapFunction(Function): """ @brief compute density overflow. @param ctx pytorch API to store data for backward proporgation @param pos location of cells, x and then y @param node_size_x_clamped stretched size, max(bin_size*sqrt2, node_size) @param node_size_y_clamped stretched size, max(bin_size*sqrt2, node_size) @param offset_x (stretched size - node_size) / 2 @param offset_y (stretched size - node_size) / 2 @param ratio original area / stretched area @param initial_density_map density_map for fixed cells @param target_density target density @param xl left boundary @param yl lower boundary @param xh right boundary @param yh upper boundary @param bin_size_x bin width @param bin_size_x bin height @param num_movable_nodes number of movable cells @param num_filler_nodes number of filler cells @param padding bin padding to boundary of placement region @param padding_mask padding mask with 0 and 1 to indicate padding bins with padding regions to be 1 @param num_bins_x number of bins in horizontal direction @param num_bins_y number of bins in vertical direction @param num_movable_impacted_bins_x number of impacted bins for any movable cell in x direction @param num_movable_impacted_bins_y number of impacted bins for any movable cell in y direction @param num_filler_impacted_bins_x number of impacted bins for any filler cell in x direction @param num_filler_impacted_bins_y number of impacted bins for any filler cell in y direction @param sorted_node_map the indices of the movable node map """ @staticmethod def forward( pos, node_size_x_clamped, node_size_y_clamped, offset_x, offset_y, ratio, bin_center_x, bin_center_y, initial_density_map, target_density, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_filler_nodes, padding, padding_mask, # same dimensions as density map, with padding regions to be 1 num_bins_x, num_bins_y, num_movable_impacted_bins_x, num_movable_impacted_bins_y, num_filler_impacted_bins_x, num_filler_impacted_bins_y, deterministic_flag, sorted_node_map): if pos.is_cuda: output = electric_potential_cuda.density_map( pos.view(pos.numel()), node_size_x_clamped, node_size_y_clamped, offset_x, offset_y, ratio, bin_center_x, bin_center_y, initial_density_map, target_density, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_filler_nodes, padding, num_bins_x, num_bins_y, num_movable_impacted_bins_x, num_movable_impacted_bins_y, num_filler_impacted_bins_x, num_filler_impacted_bins_y, deterministic_flag, sorted_node_map) else: output = electric_potential_cpp.density_map( pos.view(pos.numel()), node_size_x_clamped, node_size_y_clamped, offset_x, offset_y, ratio, bin_center_x, bin_center_y, initial_density_map, target_density, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_filler_nodes, padding, num_bins_x, num_bins_y, num_movable_impacted_bins_x, num_movable_impacted_bins_y, num_filler_impacted_bins_x, num_filler_impacted_bins_y, deterministic_flag) density_map = output.view([num_bins_x, num_bins_y]) # set padding density if padding > 0: density_map.masked_fill_(padding_mask, target_density * bin_size_x * bin_size_y) return density_map class ElectricOverflow(nn.Module): def __init__( self, node_size_x, node_size_y, bin_center_x, bin_center_y, target_density, xl, yl, xh, yh, bin_size_x, bin_size_y, num_movable_nodes, num_terminals, num_filler_nodes, padding, deterministic_flag, # control whether to use deterministic routine sorted_node_map, movable_macro_mask=None): super(ElectricOverflow, self).__init__() self.node_size_x = node_size_x self.node_size_y = node_size_y self.bin_center_x = bin_center_x self.bin_center_y = bin_center_y self.target_density = target_density self.xl = xl self.yl = yl self.xh = xh self.yh = yh self.bin_size_x = bin_size_x self.bin_size_y = bin_size_y self.num_movable_nodes = num_movable_nodes self.num_terminals = num_terminals self.num_filler_nodes = num_filler_nodes self.padding = padding self.sorted_node_map = sorted_node_map self.movable_macro_mask = movable_macro_mask self.deterministic_flag = deterministic_flag self.reset() def reset(self): sqrt2 = math.sqrt(2) # clamped means stretch a cell to bin size # clamped = max(bin_size*sqrt2, node_size) # offset means half of the stretch size # ratio means the original area over the stretched area self.node_size_x_clamped = self.node_size_x.clamp(min=self.bin_size_x * sqrt2) self.offset_x = (self.node_size_x - self.node_size_x_clamped).mul(0.5) self.node_size_y_clamped = self.node_size_y.clamp(min=self.bin_size_y * sqrt2) self.offset_y = (self.node_size_y - self.node_size_y_clamped).mul(0.5) node_areas = self.node_size_x * self.node_size_y self.ratio = node_areas / (self.node_size_x_clamped * self.node_size_y_clamped) # detect movable macros and scale down the density to avoid halos # the definition of movable macros should be different according to algorithms self.num_movable_macros = 0 if self.target_density < 1 and self.movable_macro_mask is not None: self.num_movable_macros = self.movable_macro_mask.sum().data.item() self.ratio[:self.num_movable_nodes][ self.movable_macro_mask] = self.target_density # compute maximum impacted bins self.num_bins_x = int(math.ceil((self.xh - self.xl) / self.bin_size_x)) self.num_bins_y = int(math.ceil((self.yh - self.yl) / self.bin_size_y)) if self.num_movable_nodes: self.num_movable_impacted_bins_x = int( ((self.node_size_x[:self.num_movable_nodes].max() + 2 * sqrt2 * self.bin_size_x) / self.bin_size_x).ceil().clamp(max=self.num_bins_x)) self.num_movable_impacted_bins_y = int( ((self.node_size_y[:self.num_movable_nodes].max() + 2 * sqrt2 * self.bin_size_y) / self.bin_size_y).ceil().clamp(max=self.num_bins_y)) else: self.num_movable_impacted_bins_x = 0 self.num_movable_impacted_bins_y = 0 if self.num_filler_nodes: self.num_filler_impacted_bins_x = ( (self.node_size_x[-self.num_filler_nodes:].max() + 2 * sqrt2 * self.bin_size_x) / self.bin_size_x).ceil().clamp(max=self.num_bins_x) self.num_filler_impacted_bins_y = ( (self.node_size_y[-self.num_filler_nodes:].max() + 2 * sqrt2 * self.bin_size_y) / self.bin_size_y).ceil().clamp(max=self.num_bins_y) else: self.num_filler_impacted_bins_x = 0 self.num_filler_impacted_bins_y = 0 if self.padding > 0: self.padding_mask = torch.ones(self.num_bins_x, self.num_bins_y, dtype=torch.uint8, device=self.node_size_x.device) self.padding_mask[self.padding:self.num_bins_x - self.padding, self.padding:self.num_bins_y - self.padding].fill_(0) else: self.padding_mask = torch.zeros(self.num_bins_x, self.num_bins_y, dtype=torch.uint8, device=self.node_size_x.device) # initial density_map due to fixed cells self.initial_density_map = None def compute_initial_density_map(self, pos): if self.num_terminals == 0: num_fixed_impacted_bins_x = 0 num_fixed_impacted_bins_y = 0 else: max_size_x = self.node_size_x[self.num_movable_nodes:self. num_movable_nodes + self.num_terminals].max() max_size_y = self.node_size_y[self.num_movable_nodes:self. num_movable_nodes + self.num_terminals].max() num_fixed_impacted_bins_x = ((max_size_x + self.bin_size_x) / self.bin_size_x).ceil().clamp( max=self.num_bins_x) num_fixed_impacted_bins_y = ((max_size_y + self.bin_size_y) / self.bin_size_y).ceil().clamp( max=self.num_bins_y) if pos.is_cuda: func = electric_potential_cuda.fixed_density_map else: func = electric_potential_cpp.fixed_density_map self.initial_density_map = func( pos, self.node_size_x, self.node_size_y, self.bin_center_x, self.bin_center_y, self.xl, self.yl, self.xh, self.yh, self.bin_size_x, self.bin_size_y, self.num_movable_nodes, self.num_terminals, self.num_bins_x, self.num_bins_y, num_fixed_impacted_bins_x, num_fixed_impacted_bins_y, self.deterministic_flag) # scale density of fixed macros self.initial_density_map.mul_(self.target_density) def forward(self, pos): if self.initial_density_map is None: self.compute_initial_density_map(pos) density_map = ElectricDensityMapFunction.forward( pos, self.node_size_x_clamped, self.node_size_y_clamped, self.offset_x, self.offset_y, self.ratio, self.bin_center_x, self.bin_center_y, self.initial_density_map, self.target_density, self.xl, self.yl, self.xh, self.yh, self.bin_size_x, self.bin_size_y, self.num_movable_nodes, self.num_filler_nodes, self.padding, self.padding_mask, self.num_bins_x, self.num_bins_y, self.num_movable_impacted_bins_x, self.num_movable_impacted_bins_y, self.num_filler_impacted_bins_x, self.num_filler_impacted_bins_y, self.deterministic_flag, self.sorted_node_map) bin_area = self.bin_size_x * self.bin_size_y density_cost = (density_map - self.target_density * bin_area).clamp_(min=0.0).sum().unsqueeze(0) return density_cost, density_map.max().unsqueeze(0) / bin_area def plot(plot_count, density_map, padding, name): """ density map contour and heat map """ density_map = density_map[padding:density_map.shape[0] - padding, padding:density_map.shape[1] - padding] print("max density = %g @ %s" % (np.amax(density_map), np.unravel_index(np.argmax(density_map), density_map.shape))) print("mean density = %g" % (np.mean(density_map))) fig = plt.figure() ax = fig.gca(projection='3d') x = np.arange(density_map.shape[0]) y = np.arange(density_map.shape[1]) x, y = np.meshgrid(x, y) # looks like x and y should be swapped ax.plot_surface(y, x, density_map, alpha=0.8) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('density') # plt.tight_layout() plt.savefig(name + ".3d.png") plt.close() # plt.clf() #fig, ax = plt.subplots() # ax.pcolor(density_map) # Loop over data dimensions and create text annotations. # for i in range(density_map.shape[0]): # for j in range(density_map.shape[1]): # text = ax.text(j, i, density_map[i, j], # ha="center", va="center", color="w") # fig.tight_layout() #plt.savefig(name+".2d.%d.png" % (plot_count)) # plt.close()
tests/test_dataflow/multiwoz/conftest.py
luweishuang/task_oriented_dialogue_as_dataflow_synthesis
257
12783974
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Any, Dict, List, Tuple import pytest from dataflow.multiwoz.trade_dst_utils import BeliefState def convert_belief_dict_to_belief_state(belief_dict: Dict[str, str]) -> BeliefState: belief_state: BeliefState = [] for slot_fullname, slot_value in sorted(belief_dict.items()): belief_state.append({"slots": [[slot_fullname, slot_value]]}) return belief_state def build_trade_dialogue( dialogue_id: str, turns: List[Tuple[str, str, Dict[str, str]]] ) -> Dict[str, Any]: trade_dialogue = { "dialogue_idx": dialogue_id, "dialogue": [ { # Our mock dialogues here use 1-based turn indices. # In real MultiWOZ/TRADE dialogues, turn index starts from 0. "turn_idx": turn_idx + 1, "system_transcript": agent_utt, "transcript": user_utt, "belief_state": convert_belief_dict_to_belief_state(belief_dict), } for turn_idx, (agent_utt, user_utt, belief_dict) in enumerate(turns) ], } return trade_dialogue @pytest.fixture def trade_dialogue_1() -> Dict[str, Any]: return build_trade_dialogue( dialogue_id="dummy_1", turns=[ # turn 1 # activate a domain without constraint, the plan should call "Find" with "EqualityConstraint" # we intentionally to only put two "none" slots in the belief state to match the MultiWoZ annotation style ( "", "i want to book a hotel", {"hotel-name": "none", "hotel-type": "none"}, ), # turn 2 # add constraints, the plan should call "Revise" with "EqualityConstraint" ( "ok what type", "guest house and cheap, probably hilton", { "hotel-name": "hilton", "hotel-pricerange": "cheap", "hotel-type": "guest house", }, ), # turn 3 # drop a constraint (but the domain is still active), the plan should call "Revise" with "EqualityConstraint" ( "no results", "ok try another hotel", { "hotel-name": "none", "hotel-pricerange": "cheap", "hotel-type": "guest house", }, ), # turn 4 # drop the domain ("failed", "ok never mind", {}), # turn 5 # activate the domain again ("sure", "can you find a hotel in west", {"hotel-area": "west"}), # turn 6 # activate a new domain and use a refer call ( "how about this", "ok can you find a restaurant in the same area", {"hotel-area": "west", "restaurant-area": "west"}, ), # turn 7 # use a refer call to get a value from a dead domain # the salience model should find the first valid refer value (skips "none") ( "how about this", "use the same price range as the hotel", { "hotel-area": "west", "restaurant-area": "west", "restaurant-pricerange": "cheap", }, ), # turn 8 # do not change belief state ( "ok", "give me the address", { "hotel-area": "west", "restaurant-area": "west", "restaurant-pricerange": "cheap", }, ), # turn 9 # a new domain ( "ok", "book a taxi now", { "hotel-area": "west", "restaurant-area": "west", "restaurant-pricerange": "cheap", "taxi-departure": "none", }, ), # turn 10 # do not change belief state (make sure the plan is "Revise" not "Find") ( "ok", "ok", { "hotel-area": "west", "restaurant-area": "west", "restaurant-pricerange": "cheap", "taxi-departure": "none", }, ), ], )
chapter5_operations/prediction_monitoring_pattern/src/configurations.py
sudabon/ml-system-in-actions
133
12783983
import os from logging import getLogger from src.constants import CONSTANTS, PLATFORM_ENUM logger = getLogger(__name__) class PlatformConfigurations: platform = os.getenv("PLATFORM", PLATFORM_ENUM.DOCKER.value) if not PLATFORM_ENUM.has_value(platform): raise ValueError(f"PLATFORM must be one of {[v.value for v in PLATFORM_ENUM.__members__.values()]}") class DBConfigurations: mysql_username = os.getenv("MYSQL_USER") mysql_password = os.getenv("MYSQL_PASSWORD") mysql_port = int(os.getenv("MYSQL_PORT", 3306)) mysql_database = os.getenv("MYSQL_DATABASE", "sample_db") mysql_server = os.getenv("MYSQL_SERVER") sql_alchemy_database_url = ( f"mysql://{mysql_username}:{mysql_password}@{mysql_server}:{mysql_port}/{mysql_database}?charset=utf8" ) class APIConfigurations: title = os.getenv("API_TITLE", "ServingPattern") description = os.getenv("API_DESCRIPTION", "machine learning system serving patterns") version = os.getenv("API_VERSION", "0.1") class ModelConfigurations: model_filepath = os.getenv("MODEL_FILEPATH") label_filepath = os.getenv("LABEL_FILEPATH") outlier_model_filepath = os.getenv("OUTLIER_MODEL_FILEPATH") outlier_lower_threshold = float(os.getenv("OUTLIER_LOWER_THRESHOLD", 0.0)) logger.info(f"{PlatformConfigurations.__name__}: {PlatformConfigurations.__dict__}") logger.info(f"{APIConfigurations.__name__}: {APIConfigurations.__dict__}") logger.info(f"{ModelConfigurations.__name__}: {ModelConfigurations.__dict__}")
tests/messages_data/mime_emails/raw_email7.py
unqx/imap_tools
344
12784029
<gh_stars>100-1000 import datetime from imap_tools import EmailAddress DATA = dict( subject='testing', from_='<EMAIL>', to=('<EMAIL>',), cc=(), bcc=(), reply_to=(), date=datetime.datetime(2005, 6, 6, 22, 21, 22, tzinfo=datetime.timezone(datetime.timedelta(0, 7200))), date_str='Mon, 6 Jun 2005 22:21:22 +0200', text='This is the first part.\r\n', html='', headers={'mime-version': ('1.0 (Apple Message framework v730)',), 'content-type': ('multipart/mixed; boundary=Apple-Mail-13-196941151',), 'message-id': ('<9169D984-4E0B-45EF-<EMAIL>-<EMAIL>>',), 'from': ('<EMAIL>',), 'subject': ('testing',), 'date': ('Mon, 6 Jun 2005 22:21:22 +0200',), 'to': ('<EMAIL>',)}, attachments=[ dict( filename='test.rb', content_id='', content_disposition='attachment', content_type='text/x-ruby-script', payload=b'puts "testing, testing"\r\n', ), dict( filename='test.pdf', content_id='', content_disposition='inline', content_type='application/pdf', payload=b'blah blah blah', ), dict( filename='smime.p7s', content_id='', content_disposition='attachment', content_type='application/pkcs7-signature', payload=b"\x8d\xa9\xa2\xb1*\x86H\x86\xf7\r\x01\x07\x02\xa0\x800\x88\xda\x9a+1\x0b0\t\x06\x05+\x0e\x03\x02\x1a\x05\x000\x80\x06\t*\x86J6\xa6\x8a\xc1\x07\x01\x00\x00\xa0\x82\x05J0\x82\x05F0\x82\x04.\x8d\xa9\xa2\xb1\x02\x02\x04?\xbe\xbaD0\r\x06\t*\x88\xda\x9a+\r\x01\x01\x05\x05\x00011\x0b0\t\x06\x03U\x04\x06\x13\x02F6\xa6\x8a\xc0\n\x06\x03U\x04\n\x13\x03TDC1\x140\x12\x06\x8d\xa9\xa2\xb3\x13\x0bTDC OCES CH\xda\x9a+\r040229115901Z\x17\r06026\xa6\x8a\xc22901Z0\x81\x801\x0b0\t\x06\x03U\x04\x8d\xa9\xa2\xb0K1)0'\x06\x03U\x04\n\x13 H\xda\x9a+. organisatorisk tin6\xa6\x8a\xc4nin", ), ], from_values=EmailAddress('', '<EMAIL>', '<EMAIL>'), to_values=(EmailAddress('', '<EMAIL>', '<EMAIL>'),), cc_values=(), bcc_values=(), reply_to_values=(), )
src/prefect/environments/execution/__init__.py
vnsn/prefect
8,633
12784051
""" Execution environments encapsulate the logic for where your Flow should execute in Prefect Cloud. DEPRECATED: Environment based configuration is deprecated, please transition to configuring `flow.run_config` instead of `flow.environment`. See https://docs.prefect.io/orchestration/flow_config/overview.html for more info. """ from prefect.environments.execution.base import Environment, load_and_run_flow from prefect.environments.execution.dask import DaskKubernetesEnvironment from prefect.environments.execution.dask import DaskCloudProviderEnvironment from prefect.environments.execution.fargate import FargateTaskEnvironment from prefect.environments.execution.k8s import KubernetesJobEnvironment from prefect.environments.execution.local import LocalEnvironment
common/test/test_signing_serializer.py
andkononykhin/plenum
148
12784073
<gh_stars>100-1000 from collections import OrderedDict import pytest from common.serializers.serialization import serialize_msg_for_signing def test_serialize_int(): assert b"1" == serialize_msg_for_signing(1) def test_serialize_str(): assert b"aaa" == serialize_msg_for_signing("aaa") def test_serialize_none(): assert b"" == serialize_msg_for_signing(None) def test_serialize_simple_dict(): assert b"1:a|2:b" == serialize_msg_for_signing({1: 'a', 2: 'b'}) assert b"1:a|2:b" == serialize_msg_for_signing({"2": 'b', "1": 'a'}) def test_serialize_array(): assert b"1,5,3,4,2" == serialize_msg_for_signing([1, 5, 3, 4, 2]) def test_serialize_ordered_dict(): v1 = OrderedDict([('1', 'a'), ('2', 'b')]) v2 = OrderedDict([('2', 'b'), ('1', 'a')]) assert b"1:a|2:b" == serialize_msg_for_signing(v1) assert b"1:a|2:b" == serialize_msg_for_signing(v2) def test_serialize_dict_with_array(): assert b"1:a|2:b|3:1,2:k" == serialize_msg_for_signing({1: 'a', 2: 'b', 3: [1, {2: 'k'}]}) assert b"1:a|2:b|3:1,2:k" == serialize_msg_for_signing({'1': 'a', '2': 'b', '3': ['1', {'2': 'k'}]}) @pytest.mark.skip("An issue in Signing Serializer: https://jira.hyperledger.org/browse/INDY-1469") def test_serialize_dicts_with_different_keys(): v1 = serialize_msg_for_signing( { 1: 'a', 2: { 3: 'b', 4: { 5: { 6: 'c' } } } }) v2 = serialize_msg_for_signing( { 1: 'a', 2: { 3: 'b', }, 4: { 5: { 6: 'c' } } }) assert v1 == v2 @pytest.mark.skip("An issue in Signing Serializer: https://jira.hyperledger.org/browse/INDY-1469") def test_serialize_complex_dict(): assert b'1:a|2:3:b|2:4:5:6:c' == serialize_msg_for_signing( { 1: 'a', 2: { 3: 'b', 4: { 5: { 6: 'c' } } } }) assert b'1:a|2:3:b|2:4:5:6:c' == serialize_msg_for_signing( { '1': 'a', '2': { '3': 'b', '4': { '5': { '6': 'c' } } } }) v = serialize_msg_for_signing( { '1': 'a', '2': 'b', '3': { '4': 'c', '5': 'd', '6': { '7': { '8': 'e', '9': 'f' }, '10': { '11': 'g', '12': 'h' } }, '13': { '13': { '13': 'i', } } } }) assert b'1:a|2:b|3:4:c|3:5:d|3:6:7:8:e|3:6:7:9:f|3:6:10:11:g|3:6:10:12:h|3:13:13:13:i' == v @pytest.mark.skip("An issue in Signing Serializer: https://jira.hyperledger.org/browse/INDY-1469") def test_serialize_complex_ordered_dict(): assert b'1:a|2:3:b|4:c' == serialize_msg_for_signing( OrderedDict([ ('1', 'a'), ('2', OrderedDict([ ('3', 'b'), ('4', 'c'), ])) ])) assert b'1:a|2:3:b|4:c' == serialize_msg_for_signing( OrderedDict([ ('2', OrderedDict([ ('4', 'c'), ('3', 'b'), ])), ('1', 'a'), ]))
src/UnloadAutoPartitions/genunload.py
rmcelroyF8/amazon-redshift-utils
2,452
12784085
<reponame>rmcelroyF8/amazon-redshift-utils<gh_stars>1000+ """ GenUnload : Generate unload commands given a config file (config.ini) which has information about table, schema, partition column & sort columns ------------------------------------------------------------------------------------------------------------------------------------------- -- <NAME> 05/23/2019 example: python3 genunload.py Readme.md has the requirements info. """ from __future__ import print_function import os import sys import datetime from datetime import timedelta import boto3 import base64 import json import argparse import configparser import pgpasslib import pg8000 import re ssl = True __version__ = "1.0" pg8000.paramstyle = "qmark" def connect(host, port, db, dbuser, table, schema, column_list, partition_column, sort_keys, s3path, iamrole): # get password from .pgpass or environment try: pg_pwd = pgpasslib.getpass(host,port,db,dbuser) print(pg_pwd) if pg_pwd: pwd = <PASSWORD>pwd except pgpasslib.FileNotFound as e: pass # Connect to the cluster try: if debug: print('Connecting to Redshift: %s' % host) conn = pg8000.connect(database=db, user=dbuser, password=<PASSWORD>, host=host, port=port, ssl=ssl) conn.autocommit = True except: print('Redshift Connection Failed: exception %s' % sys.exc_info()[1]) raise if debug: print('Successfully connected to Redshift cluster') # create a new cursor cursor = conn.cursor() check_table_exists(cursor, conn, table, schema) full_column_list, partition_keys, partition_column_type = get_column_list_partition_keys(cursor, conn, table, schema, column_list, partition_column) gen_unload(full_column_list, partition_keys, partition_column_type, schema, table, partition_column, sort_keys, s3path, iamrole) if execute: print("Executing unload commands !") execute_unload(cursor, conn) conn.commit() if debug: print("Done with the script !!") def check_table_exists(cursor, conn, table, schema): # check if table exists if debug: print('Check for table exists: %s' % table) stmt = "SELECT EXISTS (SELECT 1 FROM information_schema.tables WHERE table_schema = '%s' AND table_name = '%s');" % (schema, table) cursor.execute(stmt) s = cursor.fetchone() s = ' '.join(map(str, s)) if s == 'False': print('Table does not exist: %s' % table) exit(1) else: print('Table %s exists' % table) def get_column_list_partition_keys(cursor, conn, table, schema, column_list, partition_column): # get partition column data type stmt = "select data_type from information_schema.columns where table_name = '%s' and table_schema = '%s' and column_name = '%s';" % ( table, schema, partition_column) if debug: print('Collecting data type information for partition column: %s' % partition_column) cursor.execute(stmt) partition_column_type = cursor.fetchone() if partition_column_type is None: print('Please check your partition column: %s' % partition_column) exit(1) partition_column_type = ' '.join(map(str, partition_column_type)) if any(re.findall(r'integer|numeric|decimal|bigint|real|double precision|smallint', partition_column_type, re.IGNORECASE)): partition_column_type = 'numeric' elif any(re.findall(r'timestamp without time zone|date|character varying|character|timestamp with time zone|bool|boolean', partition_column_type, re.IGNORECASE)): partition_column_type = 'alphanumeric' # if column_list not set , then select all columns except for partition column if not column_list: stmt = "select column_name from information_schema.columns where table_name = '%s' and table_schema = '%s' order by ordinal_position;" % (table, schema) if debug: print('Collecting column list excluding partition column: %s' % partition_column) cursor.execute(stmt) column_list = cursor.fetchall() full_column_list = [x[0] for x in column_list] full_column_list.remove(partition_column) full_column_list = ','.join(map(str, full_column_list)) else: full_column_list = column_list # get distinct partition keys using partition column stmt = "select distinct %s from %s.%s;" % (partition_column, schema, table) if debug: print('Collecting distinct partition keys for partition column: %s [skipping NULL values]' % partition_column) cursor.execute(stmt) keys = cursor.fetchall() partition_keys = [x[0] for x in keys] print('Column list = %s' % full_column_list) # print('Partition keys = %s' % partition_keys) return full_column_list, partition_keys, partition_column_type def gen_unload(full_column_list, partition_keys, partition_column_type, schema, table, partition_column, sort_keys, s3path, iamrole): """ :param full_column_list: list :param partition_keys: list :param partition_column_type: str :param schema: str :param table: str :param partition_column: str :param sort_keys: str :param s3path: str :param iamrole: str :return: str """ s3path = s3path[:-1] if s3path.endswith('/') else s3path column_list_str = full_column_list if sort_keys: sql = 'SELECT ' + column_list_str + ' FROM ' + schema + '.' + table + ' WHERE ' + partition_column + '=' + '<>' + ' ORDER BY ' + sort_keys else: sql = 'SELECT ' + column_list_str + ' FROM ' + schema + '.' + table + ' WHERE ' + partition_column + '=' + '<>' part1 = 'UNLOAD ( ' + '\'' + sql + '\'' part3 = 'IAM_ROLE \'' + iamrole + '\' FORMAT PARQUET ALLOWOVERWRITE;' unload_stmt = str() for key in partition_keys: if key is not None: if partition_column_type == 'numeric': temp = part1.replace('<>', str(key)) unload_stmt = unload_stmt + temp + ') TO ' + '\'' + s3path + '/' + partition_column + '=' + str(key) + '/\' ' + part3 + '\n' elif partition_column_type == 'alphanumeric': temp = part1.replace('<>', '\\\'' + str(key) + '\\\'') unload_stmt = unload_stmt + temp + ') TO ' + '\'' + s3path + '/' + partition_column + '=' + str(key) + '/\' ' + part3 + '\n' if debug: print('Generating unload statements !') with open('unload.sql', 'w') as file: file.write(unload_stmt) def execute_unload(cursor, conn): with open(os.path.dirname(__file__) + 'unload.sql', 'r') as sql: unload_commands = sql.read() for s in unload_commands.split(";"): stmt = s.strip() if s is not None and stmt != "": if debug is True: print(stmt) try: cursor.execute(stmt) except Exception as e: if re.search(".*column.*does not exist*", str(e)) is not None: print('Check the column list !') raise else: print(e) raise e conn.commit() print('Done with executing unload commands !') def main(): config = configparser.ConfigParser() config.read('config.ini') parser = argparse.ArgumentParser() global debug global execute host = config.get('cluster', 'identifier', fallback=None) dbuser = config.get('cluster', 'dbuser', fallback='dbadmin') db = config.get('cluster', 'database', fallback='dev') port = int(config.get('cluster', 'port', fallback='5439')) schema = config.get('cluster', 'schema', fallback='public') table = config.get('cluster', 'table', fallback=None) partition_column = config.get('cluster', 'partition_key', fallback=None) sort_keys = config.get('cluster', 'sort_keys', fallback=None) column_list = config.get('cluster', 'column_list', fallback='All') debug = config.getboolean('cluster', 'debug', fallback=False) execute = config.getboolean('cluster', 'execute', fallback=False) s3path = config.get('s3', 'path', fallback=None) iamrole = config.get('creds', 'iam_role', fallback=None) if host is None or dbuser is None or db is None or schema is None or table is None or partition_column is None or sort_keys is None or column_list is None or s3path is None or iamrole is None: parser.print_help() exit() connect(host, port, db, dbuser, table, schema, column_list, partition_column, sort_keys, s3path, iamrole) if __name__ == "__main__": main()
scripts/contractInteraction/config.py
omerzam/Sovryn-smart-contracts
108
12784098
from brownie import * from brownie.network.contract import InterfaceContainer import json def loadConfig(): global contracts, acct thisNetwork = network.show_active() if thisNetwork == "development": acct = accounts[0] configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "testnet": acct = accounts.load("rskdeployer") configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "testnet-ws": acct = accounts.load("rskdeployer") configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "rsk-testnet": acct = accounts.load("rskdeployer") configFile = open('./scripts/contractInteraction/testnet_contracts.json') elif thisNetwork == "rsk-mainnet": acct = accounts.load("rskdeployer") configFile = open('./scripts/contractInteraction/mainnet_contracts.json') else: raise Exception("Network not supported.") contracts = json.load(configFile)
social_core/backends/fedora.py
shnaqawi/social-core
745
12784099
<filename>social_core/backends/fedora.py<gh_stars>100-1000 """ Fedora OpenId backend, docs at: https://python-social-auth.readthedocs.io/en/latest/backends/fedora.html """ from .open_id import OpenIdAuth class FedoraOpenId(OpenIdAuth): name = 'fedora' URL = 'https://id.fedoraproject.org' USERNAME_KEY = 'nickname'
pytorch_ares/third_party/free_adv_train/free_train.py
thu-ml/realsafe
107
12784137
<reponame>thu-ml/realsafe """Trains a model, saving checkpoints and tensorboard summaries along the way.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import os import shutil from timeit import default_timer as timer import tensorflow as tf import numpy as np import sys from free_model import Model import cifar10_input import cifar100_input import pdb import config def get_path_dir(data_dir, dataset, **_): path = os.path.join(data_dir, dataset) if os.path.islink(path): path = os.readlink(path) return path def train(tf_seed, np_seed, train_steps, out_steps, summary_steps, checkpoint_steps, step_size_schedule, weight_decay, momentum, train_batch_size, epsilon, replay_m, model_dir, dataset, **kwargs): tf.set_random_seed(tf_seed) np.random.seed(np_seed) model_dir = model_dir + '%s_m%d_eps%.1f_b%d' % (dataset, replay_m, epsilon, train_batch_size) # TODO Replace with not defaults # Setting up the data and the model data_path = get_path_dir(dataset=dataset, **kwargs) if dataset == 'cifar10': raw_data = cifar10_input.CIFAR10Data(data_path) else: raw_data = cifar100_input.CIFAR100Data(data_path) global_step = tf.contrib.framework.get_or_create_global_step() model = Model(mode='train', dataset=dataset, train_batch_size=train_batch_size) # Setting up the optimizer boundaries = [int(sss[0]) for sss in step_size_schedule][1:] values = [sss[1] for sss in step_size_schedule] learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32), boundaries, values) optimizer = tf.train.MomentumOptimizer(learning_rate, momentum) # Optimizing computation total_loss = model.mean_xent + weight_decay * model.weight_decay_loss grads = optimizer.compute_gradients(total_loss) # Compute new image pert_grad = [g for g, v in grads if 'perturbation' in v.name] sign_pert_grad = tf.sign(pert_grad[0]) new_pert = model.pert + epsilon * sign_pert_grad clip_new_pert = tf.clip_by_value(new_pert, -epsilon, epsilon) assigned = tf.assign(model.pert, clip_new_pert) # Train no_pert_grad = [(tf.zeros_like(v), v) if 'perturbation' in v.name else (g, v) for g, v in grads] with tf.control_dependencies([assigned]): min_step = optimizer.apply_gradients(no_pert_grad, global_step=global_step) tf.initialize_variables([model.pert]) # TODO: Removed from TF # Setting up the Tensorboard and checkpoint outputs if not os.path.exists(model_dir): os.makedirs(model_dir) saver = tf.train.Saver(max_to_keep=1) tf.summary.scalar('accuracy', model.accuracy) tf.summary.scalar('xent', model.xent / train_batch_size) tf.summary.scalar('total loss', total_loss / train_batch_size) merged_summaries = tf.summary.merge_all() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: print('\n\n********** free training for epsilon=%.1f using m_replay=%d **********\n\n' % (epsilon, replay_m)) print('important params >>> \n model dir: %s \n dataset: %s \n training batch size: %d \n' % (model_dir, dataset, train_batch_size)) if dataset == 'cifar100': print('the ride for CIFAR100 is bumpy -- fasten your seatbelts! \n \ you will probably see the training and validation accuracy fluctuating a lot early in trainnig \n \ this is natural especially for large replay_m values because we see that mini-batch so many times.') # initialize data augmentation if dataset == 'cifar10': data = cifar10_input.AugmentedCIFAR10Data(raw_data, sess, model) else: data = cifar100_input.AugmentedCIFAR100Data(raw_data, sess, model) # Initialize the summary writer, global variables, and our time counter. summary_writer = tf.summary.FileWriter(model_dir + '/train', sess.graph) eval_summary_writer = tf.summary.FileWriter(model_dir + '/eval') sess.run(tf.global_variables_initializer()) # Main training loop for ii in range(train_steps): if ii % replay_m == 0: x_batch, y_batch = data.train_data.get_next_batch(train_batch_size, multiple_passes=True) nat_dict = {model.x_input: x_batch, model.y_input: y_batch} x_eval_batch, y_eval_batch = data.eval_data.get_next_batch(train_batch_size, multiple_passes=True) eval_dict = {model.x_input: x_eval_batch, model.y_input: y_eval_batch} # Output to stdout if ii % summary_steps == 0: train_acc, summary = sess.run([model.accuracy, merged_summaries], feed_dict=nat_dict) summary_writer.add_summary(summary, global_step.eval(sess)) val_acc, summary = sess.run([model.accuracy, merged_summaries], feed_dict=eval_dict) eval_summary_writer.add_summary(summary, global_step.eval(sess)) print('Step {}: ({})'.format(ii, datetime.now())) print(' training nat accuracy {:.4}% -- validation nat accuracy {:.4}%'.format(train_acc * 100, val_acc * 100)) sys.stdout.flush() # Tensorboard summaries elif ii % out_steps == 0: nat_acc = sess.run(model.accuracy, feed_dict=nat_dict) print('Step {}: ({})'.format(ii, datetime.now())) print(' training nat accuracy {:.4}%'.format(nat_acc * 100)) # Write a checkpoint if (ii+1) % checkpoint_steps == 0: saver.save(sess, os.path.join(model_dir, 'checkpoint'), global_step=global_step) # Actual training step sess.run(min_step, feed_dict=nat_dict) if __name__ == '__main__': args = config.get_args() train(**vars(args))
ogb_lsc/pcq/conformer_utils.py
kawa-work/deepmind-research
10,110
12784149
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Conformer utilities.""" import copy from typing import List, Optional from absl import logging import numpy as np import rdkit from rdkit import Chem from rdkit.Chem import AllChem import tensorflow.compat.v2 as tf def generate_conformers( molecule: Chem.rdchem.Mol, max_num_conformers: int, *, random_seed: int = -1, prune_rms_thresh: float = -1.0, max_iter: int = -1, fallback_to_random: bool = False, ) -> Chem.rdchem.Mol: """Generates conformers for a given molecule. Args: molecule: molecular representation of the compound. max_num_conformers: maximum number of conformers to generate. If pruning is done, the returned number of conformers is not guaranteed to match max_num_conformers. random_seed: random seed to use for conformer generation. prune_rms_thresh: RMSD threshold which allows to prune conformers that are too similar. max_iter: Maximum number of iterations to perform when optimising MMFF force field. If set to <= 0, energy optimisation is not performed. fallback_to_random: if conformers cannot be obtained, use random coordinates to initialise. Returns: Copy of a `molecule` with added hydrogens. The returned molecule contains force field-optimised conformers. The number of conformers is guaranteed to be <= max_num_conformers. """ mol = copy.deepcopy(molecule) mol = Chem.AddHs(mol) mol = _embed_conformers( mol, max_num_conformers, random_seed, prune_rms_thresh, fallback_to_random, use_random=False) if max_iter > 0: mol_with_conformers = _minimize_by_mmff(mol, max_iter) if mol_with_conformers is None: mol_with_conformers = _minimize_by_uff(mol, max_iter) else: mol_with_conformers = mol # Aligns conformations in a molecule to each other using the first # conformation as the reference. AllChem.AlignMolConformers(mol_with_conformers) # We remove hydrogens to keep the number of atoms consistent with the graph # nodes. mol_with_conformers = Chem.RemoveHs(mol_with_conformers) return mol_with_conformers def atom_to_feature_vector( atom: rdkit.Chem.rdchem.Atom, conformer: Optional[np.ndarray] = None, ) -> List[float]: """Converts rdkit atom object to feature list of indices. Args: atom: rdkit atom object. conformer: Generated conformers. Returns -1 values if set to None. Returns: List containing positions (x, y, z) of each atom from the conformer. """ if conformer: pos = conformer.GetAtomPosition(atom.GetIdx()) return [pos.x, pos.y, pos.z] return [np.nan, np.nan, np.nan] def compute_conformer(smile: str, max_iter: int = -1) -> np.ndarray: """Computes conformer. Args: smile: Smile string. max_iter: Maximum number of iterations to perform when optimising MMFF force field. If set to <= 0, energy optimisation is not performed. Returns: A tuple containing index, fingerprint and conformer. Raises: RuntimeError: If unable to convert smile string to RDKit mol. """ mol = rdkit.Chem.MolFromSmiles(smile) if not mol: raise RuntimeError('Unable to convert smile to molecule: %s' % smile) conformer_failed = False try: mol = generate_conformers( mol, max_num_conformers=1, random_seed=45, prune_rms_thresh=0.01, max_iter=max_iter) except IOError as e: logging.exception('Failed to generate conformers for %s . IOError %s.', smile, e) conformer_failed = True except ValueError: logging.error('Failed to generate conformers for %s . ValueError', smile) conformer_failed = True except: # pylint: disable=bare-except logging.error('Failed to generate conformers for %s.', smile) conformer_failed = True atom_features_list = [] conformer = None if conformer_failed else list(mol.GetConformers())[0] for atom in mol.GetAtoms(): atom_features_list.append(atom_to_feature_vector(atom, conformer)) conformer_features = np.array(atom_features_list, dtype=np.float32) return conformer_features def get_random_rotation_matrix(include_mirror_symmetry: bool) -> tf.Tensor: """Returns a single random rotation matrix.""" rotation_matrix = _get_random_rotation_3d() if include_mirror_symmetry: random_mirror_symmetry = _get_random_mirror_symmetry() rotation_matrix = tf.matmul(rotation_matrix, random_mirror_symmetry) return rotation_matrix def rotate(vectors: tf.Tensor, rotation_matrix: tf.Tensor) -> tf.Tensor: """Batch of vectors on a single rotation matrix.""" return tf.matmul(vectors, rotation_matrix) def _embed_conformers( molecule: Chem.rdchem.Mol, max_num_conformers: int, random_seed: int, prune_rms_thresh: float, fallback_to_random: bool, *, use_random: bool = False, ) -> Chem.rdchem.Mol: """Embeds conformers into a copy of a molecule. If random coordinates allowed, tries not to use random coordinates at first, and uses random only if fails. Args: molecule: molecular representation of the compound. max_num_conformers: maximum number of conformers to generate. If pruning is done, the returned number of conformers is not guaranteed to match max_num_conformers. random_seed: random seed to use for conformer generation. prune_rms_thresh: RMSD threshold which allows to prune conformers that are too similar. fallback_to_random: if conformers cannot be obtained, use random coordinates to initialise. *: use_random: Use random coordinates. Shouldn't be set by any caller except this function itself. Returns: A copy of a molecule with embedded conformers. Raises: ValueError: if conformers cannot be obtained for a given molecule. """ mol = copy.deepcopy(molecule) # Obtains parameters for conformer generation. # In particular, ETKDG is experimental-torsion basic knowledge distance # geometry, which allows to randomly generate an initial conformation that # satisfies various geometric constraints such as lower and upper bounds on # the distances between atoms. params = AllChem.ETKDGv3() params.randomSeed = random_seed params.pruneRmsThresh = prune_rms_thresh params.numThreads = -1 params.useRandomCoords = use_random conf_ids = AllChem.EmbedMultipleConfs(mol, max_num_conformers, params) if not conf_ids: if not fallback_to_random or use_random: raise ValueError('Cant get conformers') return _embed_conformers( mol, max_num_conformers, random_seed, prune_rms_thresh, fallback_to_random, use_random=True) return mol def _minimize_by_mmff( molecule: Chem.rdchem.Mol, max_iter: int, ) -> Optional[Chem.rdchem.Mol]: """Minimizes forcefield for conformers using MMFF algorithm. Args: molecule: a datastructure containing conformers. max_iter: number of maximum iterations to use when optimising force field. Returns: A copy of a `molecule` containing optimised conformers; or None if MMFF cannot be performed. """ molecule_props = AllChem.MMFFGetMoleculeProperties(molecule) if molecule_props is None: return None mol = copy.deepcopy(molecule) for conf_id in range(mol.GetNumConformers()): ff = AllChem.MMFFGetMoleculeForceField( mol, molecule_props, confId=conf_id, ignoreInterfragInteractions=False) ff.Initialize() # minimises a conformer within a mol in place. ff.Minimize(max_iter) return mol def _minimize_by_uff( molecule: Chem.rdchem.Mol, max_iter: int, ) -> Chem.rdchem.Mol: """Minimizes forcefield for conformers using UFF algorithm. Args: molecule: a datastructure containing conformers. max_iter: number of maximum iterations to use when optimising force field. Returns: A copy of a `molecule` containing optimised conformers. """ mol = copy.deepcopy(molecule) conf_ids = range(mol.GetNumConformers()) for conf_id in conf_ids: ff = AllChem.UFFGetMoleculeForceField(mol, confId=conf_id) ff.Initialize() # minimises a conformer within a mol in place. ff.Minimize(max_iter) return mol def _get_symmetry_rotation_matrix(sign: tf.Tensor) -> tf.Tensor: """Returns the 2d/3d matrix for mirror symmetry.""" zero = tf.zeros_like(sign) one = tf.ones_like(sign) # pylint: disable=bad-whitespace,bad-continuation rot = [sign, zero, zero, zero, one, zero, zero, zero, one] # pylint: enable=bad-whitespace,bad-continuation shape = (3, 3) rot = tf.stack(rot, axis=-1) rot = tf.reshape(rot, shape) return rot def _quaternion_to_rotation_matrix(quaternion: tf.Tensor) -> tf.Tensor: """Converts a batch of quaternions to a batch of rotation matrices.""" q0 = quaternion[0] q1 = quaternion[1] q2 = quaternion[2] q3 = quaternion[3] r00 = 2 * (q0 * q0 + q1 * q1) - 1 r01 = 2 * (q1 * q2 - q0 * q3) r02 = 2 * (q1 * q3 + q0 * q2) r10 = 2 * (q1 * q2 + q0 * q3) r11 = 2 * (q0 * q0 + q2 * q2) - 1 r12 = 2 * (q2 * q3 - q0 * q1) r20 = 2 * (q1 * q3 - q0 * q2) r21 = 2 * (q2 * q3 + q0 * q1) r22 = 2 * (q0 * q0 + q3 * q3) - 1 matrix = tf.stack([r00, r01, r02, r10, r11, r12, r20, r21, r22], axis=-1) return tf.reshape(matrix, [3, 3]) def _get_random_rotation_3d() -> tf.Tensor: random_quaternions = tf.random.normal( shape=[4], dtype=tf.float32) random_quaternions /= tf.linalg.norm( random_quaternions, axis=-1, keepdims=True) return _quaternion_to_rotation_matrix(random_quaternions) def _get_random_mirror_symmetry() -> tf.Tensor: random_0_1 = tf.random.uniform( shape=(), minval=0, maxval=2, dtype=tf.int32) random_signs = tf.cast((2 * random_0_1) - 1, tf.float32) return _get_symmetry_rotation_matrix(random_signs)
fkie_node_manager/src/fkie_node_manager/nmd_client/__init__.py
JOiiNT-LAB/multimaster_fkie
194
12784152
<filename>fkie_node_manager/src/fkie_node_manager/nmd_client/__init__.py # Software License Agreement (BSD License) # # Copyright (c) 2018, Fraunhofer FKIE/CMS, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Fraunhofer nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from python_qt_binding.QtCore import QObject, Signal import fkie_node_manager_daemon.remote as remote from .file_channel import FileChannel from .launch_channel import LaunchChannel from .monitor_channel import MonitorChannel from .screen_channel import ScreenChannel from .settings_channel import SettingsChannel from .version_channel import VersionChannel class NmdClient(QObject): error = Signal(str, str, str, Exception) ''' :ivar str,str,str,Exception error: error is a signal, which is emitted on errors {method, url, path, Exception}. ''' def __init__(self): QObject.__init__(self) self._channels = [] self.file = FileChannel() self.file.error.connect(self.on_error) self._channels.append(self.file) self.launch = LaunchChannel() self.launch.error.connect(self.on_error) self._channels.append(self.launch) self.monitor = MonitorChannel() self.monitor.error.connect(self.on_error) self._channels.append(self.monitor) self.screen = ScreenChannel() self.screen.error.connect(self.on_error) self._channels.append(self.screen) self.settings = SettingsChannel() self.settings.error.connect(self.on_error) self._channels.append(self.settings) self.version = VersionChannel() self.version.error.connect(self.on_error) self._channels.append(self.version) def stop(self): print("clear grpc channels...") for channel in self._channels: channel.stop() remote.clear_channels() print("clear grpc channels...ok") self.clear_cache() del self._channels[:] def clear_cache(self, grpc_path=''): for channel in self._channels: channel.clear_cache(grpc_path) def on_error(self, method, url, path, exception): self.error.emit(method, url, path, exception)
utils/wfuzzbasicauthbrute/wfuzz/framework/core/myexception.py
ismailbozkurt/kubebot
171
12784184
class FuzzException(Exception): FATAL, SIGCANCEL = range(2) def __init__(self, etype, msg): self.etype = etype self.msg = msg Exception.__init__(self, msg)
tests/core/trio/test_trio_endpoint_compat_with_asyncio.py
gsalgado/lahja
400
12784192
<filename>tests/core/trio/test_trio_endpoint_compat_with_asyncio.py<gh_stars>100-1000 import asyncio import multiprocessing import pytest from lahja.asyncio import AsyncioEndpoint from lahja.common import BaseEvent, ConnectionConfig class EventTest(BaseEvent): def __init__(self, value): self.value = value def run_asyncio(coro, *args): loop = asyncio.get_event_loop() loop.run_until_complete(coro(*args)) loop.close() async def _do_asyncio_client_endpoint(name, ipc_path): config = ConnectionConfig(name, ipc_path) async with AsyncioEndpoint(name + "client").run() as client: await client.connect_to_endpoints(config) assert client.is_connected_to(name) await client.wait_until_endpoint_subscribed_to(config.name, EventTest) event = EventTest("test") await client.broadcast(event) @pytest.mark.trio async def test_trio_endpoint_serving_asyncio_endpoint( endpoint_server, endpoint_server_config ): name = endpoint_server_config.name path = endpoint_server_config.path proc = multiprocessing.Process( target=run_asyncio, args=(_do_asyncio_client_endpoint, name, path) ) proc.start() result = await endpoint_server.wait_for(EventTest) assert isinstance(result, EventTest) assert result.value == "test" proc.join()
lib/WindowParent.py
aganders3/python-0.9.1
116
12784203
# A 'WindowParent' is the only module that uses real stdwin functionality. # It is the root of the tree. # It should have exactly one child when realized. import stdwin from stdwinevents import * from TransParent import ManageOneChild Error = 'WindowParent.Error' # Exception class WindowParent() = ManageOneChild(): # def create(self, (title, size)): self.title = title self.size = size # (width, height) self._reset() return self # def _reset(self): self.child = 0 self.win = 0 self.itimer = 0 self.do_mouse = 0 self.do_timer = 0 # def destroy(self): if self.child: self.child.destroy() self._reset() # def need_mouse(self, child): self.do_mouse = 1 def no_mouse(self, child): self.do_mouse = 0 # def need_timer(self, child): self.do_timer = 1 def no_timer(self, child): self.do_timer = 0 # def realize(self): if self.win: raise Error, 'realize(): called twice' if not self.child: raise Error, 'realize(): no child' size = self.child.minsize(self.beginmeasuring()) self.size = max(self.size[0], size[0]), \ max(self.size[1], size[1]) #stdwin.setdefwinsize(self.size) # XXX Compensate stdwin bug: stdwin.setdefwinsize(self.size[0]+4, self.size[1]+2) self.win = stdwin.open(self.title) if self.itimer: self.win.settimer(self.itimer) bounds = (0, 0), self.win.getwinsize() self.child.setbounds(bounds) # def beginmeasuring(self): # Return something with which a child can measure text if self.win: return self.win.begindrawing() else: return stdwin # def begindrawing(self): if self.win: return self.win.begindrawing() else: raise Error, 'begindrawing(): not realized yet' # def change(self, area): if self.win: self.win.change(area) # def scroll(self, args): if self.win: self.win.scroll(args) # def settimer(self, itimer): if self.win: self.win.settimer(itimer) else: self.itimer = itimer # # Only call dispatch if we have a child # def dispatch(self, (type, win, detail)): if win <> self.win: return elif type = WE_DRAW: d = self.win.begindrawing() self.child.draw(d, detail) elif type = WE_MOUSE_DOWN: if self.do_mouse: self.child.mouse_down(detail) elif type = WE_MOUSE_MOVE: if self.do_mouse: self.child.mouse_move(detail) elif type = WE_MOUSE_UP: if self.do_mouse: self.child.mouse_up(detail) elif type = WE_TIMER: if self.do_timer: self.child.timer() elif type = WE_SIZE: self.win.change((0, 0), (10000, 10000)) # XXX bounds = (0, 0), self.win.getwinsize() self.child.setbounds(bounds) #
ansible/roles/lib_gcloud/build/src/gcloud_compute_projectinfo.py
fahlmant/openshift-tools
164
12784209
# pylint: skip-file class GcloudComputeProjectInfoError(Exception): '''exception class for projectinfo''' pass # pylint: disable=too-many-instance-attributes class GcloudComputeProjectInfo(GcloudCLI): ''' Class to wrap the gcloud compute projectinfo command''' # pylint allows 5 # pylint: disable=too-many-arguments def __init__(self, metadata=None, metadata_from_file=None, remove_keys=None, verbose=False): ''' Constructor for gcloud resource ''' super(GcloudComputeProjectInfo, self).__init__() self._metadata = metadata self.metadata_from_file = metadata_from_file self.remove_keys = remove_keys self._existing_metadata = None self.verbose = verbose @property def metadata(self): '''property for existing metadata''' return self._metadata @property def existing_metadata(self): '''property for existing metadata''' if self._existing_metadata == None: self._existing_metadata = [] metadata = self.list_metadata() metadata = metadata['results']['commonInstanceMetadata'] if metadata.has_key('items'): self._existing_metadata = metadata['items'] return self._existing_metadata def list_metadata(self): '''return metatadata''' results = self._list_metadata('project-info') if results['returncode'] == 0: results['results'] = yaml.load(results['results']) return results def exists(self): ''' return whether the metadata that we are removing exists ''' # currently we aren't opening up files for comparison so always return False if self.metadata_from_file: return False for key, val in self.metadata.items(): for data in self.existing_metadata: if key == 'sshKeys' and data['key'] == key: ssh_keys = {} # get all the users and their public keys out of the project for user_pub_key in data['value'].strip().split('\n'): col_index = user_pub_key.find(':') user = user_pub_key[:col_index] pub_key = user_pub_key[col_index+1:] ssh_keys[user] = pub_key # compare the users that were passed in to see if we need to update for inc_user, inc_pub_key in val.items(): if not ssh_keys.has_key(inc_user) or ssh_keys[inc_user] != inc_pub_key: return False # matched all ssh keys break elif data['key'] == str(key) and str(data['value']) == str(val): break else: return False return True def keys_exist(self): ''' return whether the keys exist in the metadata''' for key in self.remove_keys: for mdata in self.existing_metadata: if key == mdata['key']: break else: # NOT FOUND return False return True def needs_update(self): ''' return whether an we need to update ''' # compare incoming values with metadata returned # for each key in user supplied check against returned data return not self.exists() def delete_metadata(self, remove_all=False): ''' attempt to remove metadata ''' return self._delete_metadata(self.remove_keys, remove_all=remove_all) def create_metadata(self): '''create an metadata''' results = None if self.metadata and self.metadata.has_key('sshKeys'): # create a file and pass it to create ssh_strings = ["%s:%s" % (user, pub_key) for user, pub_key in self.metadata['sshKeys'].items()] ssh_keys = {'sshKeys': Utils.create_file('ssh_keys', '\n'.join(ssh_strings), 'raw')} results = self._create_metadata('project-info', self.metadata, ssh_keys) # remove them and continue del self.metadata['sshKeys'] if len(self.metadata.keys()) == 0: return results new_results = self._create_metadata('project-info', self.metadata, self.metadata_from_file) if results: return [results, new_results] return new_results
examples/optimizers/swarm/create_ffoa.py
anukaal/opytimizer
528
12784220
from opytimizer.optimizers.swarm import FFOA # Creates a FFOA optimizer o = FFOA()
pyorient/ogm/vertex.py
spy7/pyorient
142
12784239
<reponame>spy7/pyorient from .element import GraphElement from .broker import VertexBroker class Vertex(GraphElement): Broker = VertexBroker # TODO # Edge information is carried in vertexes retrieved from database, # as OrientBinaryObject. Can likely optimise these traversals # when we know how to parse these. def outE(self, *edge_classes): g = self._graph return g.outE(self._id, *edge_classes) if g else None def inE(self, *edge_classes): g = self._graph return g.inE(self._id, *edge_classes) if g else None def bothE(self, *edge_classes): g = self._graph return g.bothE(self._id, *edge_classes) if g else None def out(self, *edge_classes): g = self._graph return g.out(self._id, *edge_classes) if g else None def in_(self, *edge_classes): g = self._graph return g.in_(self._id, *edge_classes) if g else None def both(self, *edge_classes): g = self._graph return g.both(self._id, *edge_classes) if g else None def __call__(self, edge_or_broker): """Provides syntactic sugar for creating edges.""" if hasattr(edge_or_broker, 'broker'): edge_or_broker = edge_or_broker.broker.element_cls elif hasattr(edge_or_broker, 'element_cls'): edge_or_broker = edge_or_broker.element_cls if edge_or_broker.decl_type == 1: return VertexVector(self, edge_or_broker.objects) class VertexVector(object): def __init__(self, origin, edge_broker, **kwargs): self.origin = origin self.edge_broker = edge_broker self.kwargs = kwargs def __gt__(self, target): """Syntactic sugar for creating an edge. :param target: If a batch variable, return a command for creating an edge to this vertex. Otherwise, create the edge. """ if hasattr(target, '_id'): if target._id[0] == '$': return self.edge_broker.create_command( self.origin, target, **self.kwargs) else: return self.edge_broker.create( self.origin, target, **self.kwargs) return self
external_push/admin.py
fossabot/fermentrack
114
12784243
<reponame>fossabot/fermentrack from django.contrib import admin from external_push.models import GenericPushTarget, BrewersFriendPushTarget, BrewfatherPushTarget, ThingSpeakPushTarget, GrainfatherPushTarget @admin.register(GenericPushTarget) class GenericPushTargetAdmin(admin.ModelAdmin): list_display = ('name', 'status', 'target_host') @admin.register(BrewersFriendPushTarget) class BrewersFriendPushTargetAdmin(admin.ModelAdmin): list_display = ('gravity_sensor_to_push', 'status', 'push_frequency') @admin.register(BrewfatherPushTarget) class BrewfatherPushTargetAdmin(admin.ModelAdmin): list_display = ('gravity_sensor_to_push', 'status', 'push_frequency') @admin.register(ThingSpeakPushTarget) class ThingSpeakPushTargetAdmin(admin.ModelAdmin): list_display = ('name', 'status') @admin.register(GrainfatherPushTarget) class GrainfatherPushTargetAdmin(admin.ModelAdmin): list_display = ('gravity_sensor_to_push', 'status', 'push_frequency')
scripts/UtilitiesConvertCharacter.py
CrackerCat/pwndra
524
12784255
# Convert an operand to characters #@author b0bb #@category Pwn #@keybinding shift r #@menupath Analysis.Pwn.Utilities.Convert to Char #@toolbar import ghidra.app.cmd.equate.SetEquateCmd as SetEquateCmd import ghidra.program.util.OperandFieldLocation as OperandFieldLocation import ghidra.program.model.lang.OperandType as OperandType def run(): if type(currentLocation) is not OperandFieldLocation: return addr = currentLocation.getAddress() inst = currentProgram.getListing().getInstructionAt(addr) opin = currentLocation.getOperandIndex() if inst.getOperandType(opin) == OperandType.SCALAR: string = '' scalar = inst.getScalar(opin) bvalue = scalar.byteArrayValue() if not currentProgram.getLanguage().isBigEndian(): bvalue.reverse() for value in bvalue: if value < 0x20 or value > 0x7e: string += '\\x%02x' % value else: string += chr(value) cmd = SetEquateCmd('"%s"' % string, addr, opin, scalar.getValue()) state.getTool().execute(cmd, currentProgram) run()
rllab/envs/mujoco/hill/terrain.py
RussellM2020/maml_gps
1,838
12784266
from scipy.stats import multivariate_normal from scipy.signal import convolve2d import matplotlib try: matplotlib.pyplot.figure() matplotlib.pyplot.close() except Exception: matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import os # the colormap should assign light colors to low values TERRAIN_CMAP = 'Greens' DEFAULT_PATH = '/tmp/mujoco_terrains' STEP = 0.1 def generate_hills(width, height, nhills): ''' @param width float, terrain width @param height float, terrain height @param nhills int, #hills to gen. #hills actually generted is sqrt(nhills)^2 ''' # setup coordinate grid xmin, xmax = -width/2.0, width/2.0 ymin, ymax = -height/2.0, height/2.0 x, y = np.mgrid[xmin:xmax:STEP, ymin:ymax:STEP] pos = np.empty(x.shape + (2,)) pos[:, :, 0] = x; pos[:, :, 1] = y # generate hilltops xm, ym = np.mgrid[xmin:xmax:width/np.sqrt(nhills), ymin:ymax:height/np.sqrt(nhills)] mu = np.c_[xm.flat, ym.flat] sigma = float(width*height)/(nhills*8) for i in range(mu.shape[0]): mu[i] = multivariate_normal.rvs(mean=mu[i], cov=sigma) # generate hills sigma = sigma + sigma*np.random.rand(mu.shape[0]) rvs = [ multivariate_normal(mu[i,:], cov=sigma[i]) for i in range(mu.shape[0]) ] hfield = np.max([ rv.pdf(pos) for rv in rvs ], axis=0) return x, y, hfield def clear_patch(hfield, box): ''' Clears a patch shaped like box, assuming robot is placed in center of hfield @param box: rllab.spaces.Box-like ''' if box.flat_dim > 2: raise ValueError("Provide 2dim box") # clear patch h_center = int(0.5 * hfield.shape[0]) w_center = int(0.5 * hfield.shape[1]) fromrow, torow = w_center + int(box.low[0]/STEP), w_center + int(box.high[0] / STEP) fromcol, tocol = h_center + int(box.low[1]/STEP), h_center + int(box.high[1] / STEP) hfield[fromrow:torow, fromcol:tocol] = 0.0 # convolve to smoothen edges somewhat, in case hills were cut off K = np.ones((10,10)) / 100.0 s = convolve2d(hfield[fromrow-9:torow+9, fromcol-9:tocol+9], K, mode='same', boundary='symm') hfield[fromrow-9:torow+9, fromcol-9:tocol+9] = s return hfield def _checkpath(path_): if path_ is None: path_ = DEFAULT_PATH if not os.path.exists(path_): os.makedirs(path_) return path_ def save_heightfield(x, y, hfield, fname, path=None): ''' @param path, str (optional). If not provided, DEFAULT_PATH is used. Make sure the path + fname match the <file> attribute of the <asset> element in the env XML where the height field is defined ''' path = _checkpath(path) plt.figure() plt.contourf(x, y, -hfield, 100, cmap=TERRAIN_CMAP) # terrain_cmap is necessary to make sure tops get light color plt.savefig(os.path.join(path, fname), bbox_inches='tight') plt.close() def save_texture(x, y, hfield, fname, path=None): ''' @param path, str (optional). If not provided, DEFAULT_PATH is used. Make sure this matches the <texturedir> of the <compiler> element in the env XML ''' path = _checkpath(path) plt.figure() plt.contourf(x, y, -hfield, 100, cmap=TERRAIN_CMAP) xmin, xmax = x.min(), x.max() ymin, ymax = y.min(), y.max() # for some reason plt.grid does not work here, so generate gridlines manually for i in np.arange(xmin,xmax,0.5): plt.plot([i,i], [ymin,ymax], 'k', linewidth=0.1) for i in np.arange(ymin,ymax,0.5): plt.plot([xmin,xmax],[i,i], 'k', linewidth=0.1) plt.savefig(os.path.join(path, fname), bbox_inches='tight') plt.close()
FaceTime/frida/replay.py
googleprojectzero/Street-Party
226
12784273
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 import frida import sys import os vid_index=0 aud_index = 0 def on_message(message, data): global vid_index global aud_index print(message) session = frida.attach("avconferenced") code = open('replay.js', 'r').read() script = session.create_script(code); script.on("message", on_message) script.load() print("Press Ctrl-C to quit") sys.stdin.read()
test/rql_test/drivers/driver_test.py
zadcha/rethinkdb
21,684
12784280
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest from driver import bag, compare, err, err_regex, partial, uuid class PythonTestDriverTest(unittest.TestCase): def compare(self, expected, result, options=None): self.assertTrue(compare(expected, result, options=options)) def compareFalse(self, expected, result, options=None): self.assertFalse(compare(expected, result, options=options)) def test_string(self): # simple self.compare('a', 'a') self.compare('á', 'á') self.compare('something longer\nwith two lines', 'something longer\nwith two lines') self.compareFalse('a', 'b') self.compareFalse('a', 1) self.compareFalse('a', []) self.compareFalse('a', None) self.compareFalse('a', ['a']) self.compareFalse('a', {'a': 1}) def test_array(self): # simple pass self.compare([1, 2, 3], [1, 2, 3]) # out of order self.compareFalse([1, 2, 3], [1, 3, 2]) # totally mistmatched lists self.compareFalse([1, 2, 3], [3, 4, 5]) # missing items self.compareFalse([1, 2, 3], [1, 2]) self.compareFalse([1, 2, 3], [1, 3]) # extra items self.compareFalse([1, 2, 3], [1, 2, 3, 4]) # empty array self.compare([], []) self.compareFalse([1], []) self.compareFalse([], [1]) self.compareFalse([], None) # strings self.compare(['a', 'b'], ['a', 'b']) self.compareFalse(['a', 'c'], ['a', 'b']) # multiple of a single value self.compare([1, 2, 2, 3, 3, 3], [1, 2, 2, 3, 3, 3]) self.compareFalse([1, 2, 2, 3, 3, 3], [1, 2, 3]) self.compareFalse([1, 2, 3], [1, 2, 2, 3, 3, 3]) def test_array_partial(self): '''note that these are all in-order''' # simple self.compare(partial([1]), [1, 2, 3]) self.compare(partial([2]), [1, 2, 3]) self.compare(partial([3]), [1, 2, 3]) self.compare(partial([1, 2]), [1, 2, 3]) self.compare(partial([1, 3]), [1, 2, 3]) self.compare(partial([1, 2, 3]), [1, 2, 3]) self.compareFalse(partial([4]), [1, 2, 3]) # ordered self.compareFalse(partial([3, 2, 1], ordered=True), [1, 2, 3]) self.compareFalse(partial([1, 3, 2], ordered=True), [1, 2, 3]) # empty array self.compare(partial([]), [1, 2, 3]) # multiple of a single items self.compare(partial([1, 2, 2]), [1, 2, 2, 3, 3, 3]) self.compareFalse(partial([1, 2, 2, 2]), [1, 2, 2, 3, 3, 3]) def test_array_unordered(self): # simple self.compare(bag([1, 2]), [1, 2]) self.compare(bag([2, 1]), [1, 2]) self.compareFalse(bag([1, 2]), [1, 2, 3]) self.compareFalse(bag([1, 3]), [1, 2, 3]) self.compareFalse(bag([3, 1]), [1, 2, 3]) # empty array self.compare(bag([]), []) def test_dict(self): # simple self.compare({'a': 1, 'b': 2, 'c': 3}, {'a': 1, 'b': 2, 'c': 3}) self.compare({'a': 1, 'b': 2, 'c': 3}, {'c': 3, 'a': 1, 'b': 2}) self.compareFalse({'a': 1, 'b': 2, 'c': 3}, {'a': 1}) self.compareFalse({'a': 1}, {'a': 1, 'b': 2, 'c': 3}) # empty self.compare({}, {}) self.compareFalse({}, {'a': 1}) self.compareFalse({'a': 1}, {}) def test_dict_partial(self): # simple self.compare(partial({'a': 1}), {'a': 1}) self.compare(partial({'a': 1}), {'a': 1, 'b': 2}) self.compareFalse(partial({'a': 2}), {'a': 1, 'b': 2}) self.compareFalse(partial({'c': 1}), {'a': 1, 'b': 2}) self.compareFalse(partial({'a': 1, 'b': 2}), {'b': 2}) # empty self.compare(partial({}), {}) self.compare(partial({}), {'a': 1}) self.compareFalse(partial({'a': 1}), {}) def test_compare_dict_in_array(self): # simple self.compare([{'a': 1}], [{'a': 1}]) self.compare([{'a': 1, 'b': 2}], [{'a': 1, 'b': 2}]) self.compare([{'a': 1}, {'b': 2}], [{'a': 1}, {'b': 2}]) self.compareFalse([{'a': 1}], [{'a': 1, 'b': 2}]) self.compareFalse([{'a': 2, 'b': 2}], [{'a': 1, 'b': 2}]) self.compareFalse([{'a': 2, 'c': 3}], [{'a': 1, 'b': 2}]) self.compareFalse([{'a': 2, 'c': 3}], [{'a': 1}]) self.compareFalse([{'a': 1}, {'b': 2}], [{'a': 1, 'b': 2}]) # order self.compareFalse([{'a': 1}, {'b': 2}], [{'b': 2}, {'a': 1}]) # partial self.compare(partial([{}]), [{'a': 1, 'b': 2}]) self.compare(partial([{}]), [{'a': 1, 'b': 2}]) self.compare(partial([{'a': 1}]), [{'a': 1, 'b': 2}]) self.compare(partial([{'a': 1, 'b': 2}]), [{'a': 1, 'b': 2}]) self.compare(partial([{'a': 1}, {'b': 2}]), [{'a': 1}, {'b': 2}, {'c': 3}]) self.compareFalse(partial([{'a': 2}]), [{'a': 1, 'b': 2}]) self.compareFalse(partial([{'a': 1, 'b': 2}]), [{'a': 1}]) # partial order self.compareFalse(partial([{'a': 1}, {'b': 2}], ordered=True), [{'b': 2}, {'a': 1}]) # partial unordered self.compare(partial([{'a': 1}, {'b': 2}]), [{'b': 2}, {'a': 1}]) self.compare(partial([{'a': 1}, {'b': 2}], ordered=False), [{'b': 2}, {'a': 1}]) def test_compare_partial_items_in_array(self): self.compare([{'a': 1, 'b': 1}, partial({'a': 2})], [{'a': 1, 'b': 1}, {'a': 2, 'b': 2}]) def test_compare_array_in_dict(self): pass def test_exception(self): # class only self.compare(KeyError, KeyError()) self.compare(KeyError(), KeyError()) self.compare(err('KeyError'), KeyError()) self.compare(err(KeyError), KeyError()) self.compareFalse(KeyError, NameError()) self.compareFalse(KeyError(), NameError()) self.compareFalse(err('KeyError'), NameError()) self.compareFalse(err(KeyError), NameError()) # subclass self.compare(LookupError, KeyError()) self.compare(LookupError(), KeyError()) self.compare(err('LookupError'), KeyError()) self.compare(err(LookupError), KeyError()) self.compareFalse(KeyError, LookupError()) self.compareFalse(KeyError(), LookupError()) self.compareFalse(err('KeyError'), LookupError()) self.compareFalse(err(KeyError), LookupError()) # message self.compare(err(KeyError), KeyError('alpha')) self.compare(err(KeyError, 'alpha'), KeyError('alpha')) self.compareFalse(err(KeyError, 'alpha'), KeyError('beta')) # regex message self.compare(err(KeyError), KeyError('alpha')) # regex message with debug/assertion text self.compare(err_regex(KeyError, 'alpha'), KeyError('alpha')) self.compare(err_regex(KeyError, 'alp'), KeyError('alpha')) self.compare(err_regex(KeyError, '.*pha'), KeyError('alpha')) self.compareFalse(err_regex(KeyError, 'beta'), KeyError('alpha')) # ToDo: frames (when/if we support them) def test_compare_uuid(self): # simple self.compare(uuid(), '4e9e5bc2-9b11-4143-9aa1-75c10e7a193a') self.compareFalse(uuid(), '4') self.compareFalse(uuid(), '*') self.compareFalse(uuid(), None) def test_numbers(self): # simple self.compare(1, 1) self.compare(1, 1.0) self.compare(1.0, 1) self.compare(1.0, 1.0) self.compareFalse(1, 2) self.compareFalse(1, 2.0) self.compareFalse(1.0, 2) self.compareFalse(1.0, 2.0) # precision precision = {'precision': 0.5} self.compare(1, 1.4, precision) self.compare(1.0, 1.4, precision) self.compareFalse(1, 2, precision) self.compareFalse(1, 1.6, precision) self.compareFalse(1.0, 2, precision) self.compareFalse(1.0, 1.6, precision) if __name__ == '__main__': unittest.main()
tests/unit/test_order.py
Aspire1Inspire2/td-ameritrade-python-api
610
12784290
<gh_stars>100-1000 import unittest import td.enums as td_enums from unittest import TestCase from configparser import ConfigParser from td.orders import Order from td.orders import OrderLeg from td.client import TDClient from td.stream import TDStreamerClient class TDSession(TestCase): """Will perform a unit test for the TD session.""" def setUp(self) -> None: """Set up the Robot.""" # Grab configuration values. config = ConfigParser() config.read('config/config.ini') CLIENT_ID = config.get('main', 'CLIENT_ID') REDIRECT_URI = config.get('main', 'REDIRECT_URI') JSON_PATH = config.get('main', 'JSON_PATH') ACCOUNT_NUMBER = config.get('main', 'ACCOUNT_NUMBER') # Initalize the session. self.td_session = TDClient( client_id=CLIENT_ID, redirect_uri=REDIRECT_URI, credentials_path=JSON_PATH, account_number=ACCOUNT_NUMBER ) self.td_order = Order() self.td_order_leg = OrderLeg() def test_creates_instance_of_session(self): """Create an instance and make sure it's a robot.""" self.assertIsInstance(self.td_session, TDClient) self.assertIsInstance(self.td_order, Order) self.assertIsInstance(self.td_order_leg, OrderLeg) def test_define_simple_order(self): """Test creating a simple order.""" # Add the Order session. self.td_order.order_session( session=td_enums.ORDER_SESSION.NORMAL ) # Add the Order duration. self.td_order.order_duration( duration=td_enums.DURATION.GOOD_TILL_CANCEL ) # Add the Order Leg Instruction. self.td_order_leg.order_leg_instruction( instruction=td_enums.ORDER_INSTRUCTIONS.SELL ) # Add the Order Leg price. self.td_order_leg.order_leg_price( price=112.50 ) # Add the Order Leg quantity. self.td_order_leg.order_leg_quantity( quantity=10 ) # Add the Order Leg Asset. self.td_order_leg.order_leg_asset( asset_type=td_enums.ORDER_ASSET_TYPE.EQUITY, symbol='MSFT' ) # Add the Order Leg. self.td_order.add_order_leg( order_leg=self.td_order_leg ) correct_dict = { "session": "NORMAL", "duration": "GOOD_TILL_CANCEL", "orderLegCollection": [ { "instruction": "SELL", "price": 112.5, "quantity": 10, "instrument": { "assetType": "EQUITY", "symbol": "MSFT" } } ] } self.assertDictEqual(correct_dict, self.td_order._grab_order()) def tearDown(self): """Clean Up.""" self.td_session = None self.td_order = None self.td_order_leg = None if __name__ == '__main__': unittest.main()
core/polyaxon/polyboard/processors/logs_processor.py
admariner/polyaxon
3,200
12784338
<filename>core/polyaxon/polyboard/processors/logs_processor.py # !/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from polyaxon.polyboard.logging.handler import PolyaxonHandler EXCLUDE_DEFAULT_LOGGERS = ("polyaxon.client", "polyaxon.cli") def setup_logging(add_logs, exclude=EXCLUDE_DEFAULT_LOGGERS): plx_logger = logging.getLogger() plx_logger.setLevel(logging.INFO) if logging.StreamHandler not in map(type, plx_logger.handlers): plx_logger.addHandler(logging.StreamHandler()) plx_logger.propagate = False if PolyaxonHandler in map(type, plx_logger.handlers): for handler in plx_logger.handlers: if isinstance(handler, PolyaxonHandler): handler.set_add_logs(add_logs=add_logs) else: handler = PolyaxonHandler(add_logs=add_logs) plx_logger.addHandler(handler) for logger_name in exclude: plx_logger = logging.getLogger(logger_name) if logging.StreamHandler not in map(type, plx_logger.handlers): plx_logger.addHandler(logging.StreamHandler()) plx_logger.propagate = False
unstrip.py
pzread/unstrip
103
12784395
<reponame>pzread/unstrip import sys import sqlite3 import msgpack from scan import * from mark import * if __name__ == '__main__': conn = sqlite3.connect('fin.db') try: conn.execute('CREATE TABLE flowfin (label text primary key,len int,fin blob,hash text);') conn.execute('CREATE INDEX index_flowfin_len ON flowfin (len);') conn.execute('CREATE INDEX index_flowfin_hash ON flowfin (hash);') except sqlite3.OperationalError: pass if 'gendb' in sys.argv: gen_db(conn) else: filepath = sys.argv[-1] exe = EXE(filepath,filepath) mark_list = [] call_loc = set() start_pc = exe.elf.header['e_entry'] call_loc = exe.ScanBlock(exe.GetSection(start_pc)) main_pc = None cur = conn.cursor() cur.execute('SELECT * FROM flowfin WHERE label=?;', ('libc-start.o # __libc_start_main',)) finent = cur.fetchone() if finent != None: finb = msgpack.unpackb(finent[2]) for pos,loc in call_loc: fina = exe.FuncFin(loc,set()) if CmpFin(fina,finb) == 0: ins,_ = Disasm(pos[0],pos[1] - 7) main_pc = ins.operands[1].value.imm break if main_pc != None: mark_list.append((exe.GetSection(main_pc),'main')) call_loc.update(exe.ScanBlock(exe.GetSection(main_pc))) for pos,loc in call_loc: fina = exe.FuncFin(loc,set()) find_name = None for row in conn.execute('SELECT * FROM flowfin WHERE len<=?;', (len(fina),)): finb = msgpack.unpackb(row[2]) dis = CmpFin(fina,finb) if dis == 0: find_name = row[0] break if find_name == None: find_name = '<unknown>' else: mark_list.append((loc,find_name.split(' # ')[1])) print('%016lx - %s'%(loc[0].base + loc[1],find_name)) mark(exe,mark_list)
src/meltano/core/job/finder.py
siilats/meltano
122
12784416
<reponame>siilats/meltano """Defines JobFinder.""" from datetime import datetime, timedelta from .job import HEARTBEAT_VALID_MINUTES, HEARTBEATLESS_JOB_VALID_HOURS, Job, State class JobFinder: """ Query builder for the `Job` model for a certain `elt_uri`. """ def __init__(self, job_id: str): self.job_id = job_id def latest(self, session): return ( session.query(Job) .filter(Job.job_id == self.job_id) .order_by(Job.started_at.desc()) .first() ) def successful(self, session): return session.query(Job).filter( (Job.job_id == self.job_id) & (Job.state == State.SUCCESS) & Job.ended_at.isnot(None) ) def running(self, session): """Find jobs in the running state.""" return session.query(Job).filter( (Job.job_id == self.job_id) & (Job.state == State.RUNNING) ) def latest_success(self, session): return self.successful(session).order_by(Job.ended_at.desc()).first() def latest_running(self, session): """Find the most recent job in the running state, if any.""" return self.running(session).order_by(Job.started_at.desc()).first() def with_payload(self, session, flags=0, since=None): query = ( session.query(Job) .filter( (Job.job_id == self.job_id) & (Job.payload_flags != 0) & (Job.payload_flags.op("&")(flags) == flags) & Job.ended_at.isnot(None) ) .order_by(Job.ended_at.asc()) ) if since: query = query.filter(Job.ended_at > since) return query def latest_with_payload(self, session, **kwargs): return ( self.with_payload(session, **kwargs) .order_by(None) # Reset ascending order .order_by(Job.ended_at.desc()) .first() ) @classmethod def all_stale(cls, session): """Return all stale jobs.""" now = datetime.utcnow() last_valid_heartbeat_at = now - timedelta(minutes=HEARTBEAT_VALID_MINUTES) last_valid_started_at = now - timedelta(hours=HEARTBEATLESS_JOB_VALID_HOURS) return session.query(Job).filter( (Job.state == State.RUNNING) & ( ( Job.last_heartbeat_at.isnot(None) & (Job.last_heartbeat_at < last_valid_heartbeat_at) ) | ( Job.last_heartbeat_at.is_(None) & (Job.started_at < last_valid_started_at) ) ) ) def stale(self, session): """Return stale jobs with the instance's job ID.""" return self.all_stale(session).filter(Job.job_id == self.job_id)
tasks/admin.py
housepig7/ops
394
12784427
<reponame>housepig7/ops from django.contrib import admin # Register your models here. from .models import history,toolsscript admin.site.register(history) admin.site.register(toolsscript)
sdk/search/azure-search-documents/tests/test_index_documents_batch.py
rsdoherty/azure-sdk-for-python
2,728
12784432
<gh_stars>1000+ # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ import pytest from azure.search.documents.models import IndexAction from azure.search.documents import IndexDocumentsBatch METHOD_NAMES = [ "add_upload_actions", "add_delete_actions", "add_merge_actions", "add_merge_or_upload_actions", ] METHOD_MAP = dict(zip(METHOD_NAMES, ["upload", "delete", "merge", "mergeOrUpload"])) class TestIndexDocumentsBatch(object): def test_init(self): batch = IndexDocumentsBatch() assert batch.actions == [] def test_repr(self): batch = IndexDocumentsBatch() assert repr(batch) == "<IndexDocumentsBatch [0 actions]>" batch._actions = [1, 2, 3] assert repr(batch) == "<IndexDocumentsBatch [3 actions]>" # a strict length test here would require constructing an actions list # with a length of ~10**24, so settle for this simple sanity check on # an extreme case. batch_actions = list(range(2000)) assert len(repr(batch)) <= 1024 def test_actions_returns_list_copy(self): batch = IndexDocumentsBatch() batch.actions.extend([1, 2, 3]) assert type(batch.actions) is list assert batch.actions == [] assert batch.actions is not batch._actions @pytest.mark.parametrize("method_name", METHOD_NAMES) def test_add_method(self, method_name): batch = IndexDocumentsBatch() method = getattr(batch, method_name) method("doc1") assert len(batch.actions) == 1 method("doc2", "doc3") assert len(batch.actions) == 3 method(["doc4", "doc5"]) assert len(batch.actions) == 5 method(("doc6", "doc7")) assert len(batch.actions) == 7 assert all( action.action_type == METHOD_MAP[method_name] for action in batch.actions ) assert all(type(action) == IndexAction for action in batch.actions) expected = ["doc{}".format(i) for i in range(1, 8)] assert [action.additional_properties for action in batch.actions] == expected
src/ostorlab/agent/message/proto/v2/report/status_pb2.py
bbhunter/ostorlab
113
12784475
<reponame>bbhunter/ostorlab<gh_stars>100-1000 # Generated by the protocol buffer compiler. DO NOT EDIT! # source: v2/report/status.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='v2/report/status.proto', package='', serialized_pb=_b( '\n\x16v2/report/status.proto\"i\n\x06status\x12\x0f\n\x07scan_id\x18\x01 \x02(\x05\x12%\n\nattributes\x18\x02 \x03(\x0b\x32\x11.status.attribute\x1a\'\n\tattribute\x12\x0b\n\x03key\x18\x01 \x02(\t\x12\r\n\x05value\x18\x02 \x02(\t') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _STATUS_ATTRIBUTE = _descriptor.Descriptor( name='attribute', full_name='status.attribute', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='status.attribute.key', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='value', full_name='status.attribute.value', index=1, number=2, type=9, cpp_type=9, label=2, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=92, serialized_end=131, ) _STATUS = _descriptor.Descriptor( name='status', full_name='status', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='scan_id', full_name='status.scan_id', index=0, number=1, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='attributes', full_name='status.attributes', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_STATUS_ATTRIBUTE, ], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=26, serialized_end=131, ) _STATUS_ATTRIBUTE.containing_type = _STATUS _STATUS.fields_by_name['attributes'].message_type = _STATUS_ATTRIBUTE DESCRIPTOR.message_types_by_name['status'] = _STATUS status = _reflection.GeneratedProtocolMessageType('status', (_message.Message,), dict( attribute=_reflection.GeneratedProtocolMessageType('attribute', (_message.Message,), dict( DESCRIPTOR=_STATUS_ATTRIBUTE, __module__='v2.report.status_pb2' # @@protoc_insertion_point(class_scope:status.attribute) )) , DESCRIPTOR=_STATUS, __module__='v2.report.status_pb2' # @@protoc_insertion_point(class_scope:status) )) _sym_db.RegisterMessage(status) _sym_db.RegisterMessage(status.attribute) # @@protoc_insertion_point(module_scope)
memory/memory_object.py
nbanmp/seninja
109
12784504
<gh_stars>100-1000 from ..expr import BV, BVArray, Bool, ITE class MemoryObj(object): def __init__(self, name, bits=64, bvarray=None): self.bvarray = BVArray( "MEMOBJ_" + name, bits, 8 ) if bvarray is None else bvarray self.name = name self.bits = bits def __str__(self): return "<MemoryObj{bits} {name}>".format( bits=self.bits, name=self.name ) def __repr__(self): return self.__str__() def load(self, index: BV): return self.bvarray.Select(index) def store(self, index: BV, value: BV, condition: Bool = None): if condition is None: self.bvarray.Store(index, value) else: # this can be inefficient self.bvarray.ConditionalStore(index, value, condition) def copy(self): return MemoryObj(self.name, self.bits, self.bvarray.copy()) def merge(self, other, merge_condition: Bool): self.bvarray = self.bvarray.merge(other.bvarray, merge_condition)
tests/frequentist/test_bounds.py
danielsaaf/confidence
107
12784518
import pytest import time import numpy as np from spotify_confidence.analysis.frequentist.confidence_computers.z_test_computer import sequential_bounds @pytest.mark.skip(reason="Skipping because this test is very slow") def test_many_days(): """ This input (based on a real experiment) is very long, which can cause slow calculation """ t = [ 0.0016169976338740648, 0.0057857955498163615, 0.012200379088315757, 0.020199591701142824, 0.02956441064038571, 0.04047102718841871, 0.052929825413405296, 0.06580092295219643, 0.07878439818310792, 0.09148496950057272, 0.1028893343050959, 0.1128434997940756, 0.12298934256730025, 0.13280979910049193, 0.14267997977787195, 0.15281963941289514, 0.16293176212095561, 0.17198778455162406, 0.17996747917082068, 0.18786110540725684, 0.1955669737257397, 0.20335013690301407, 0.21277055903588274, 0.22148328777708232, 0.2295912740670489, 0.23640586948077766, 0.2431234831038822, 0.24987292468428604, 0.2568336065927525, 0.2649271880853427, 0.27282722271091664, 0.2799894816822785, 0.2862801096305317, 0.2925685639072496, 0.2988294699944579, 0.3051314956400879, 0.3118994077972684, 0.31887303037202536, 0.32523581745772245, 0.3307398353487736, 0.33616198578702633, 0.34151324975562525, 0.3478405485563082, 0.3546238566149848, 0.36130761502236336, 0.36751189302418574, 0.3730571543616735, 0.37865278180851814, 0.38428987795273567, 0.3900127609160433, 0.3964718089893684, 0.40306122104207753, 0.40914555292031984, 0.41449831480764515, 0.4198849769608837, 0.4256404199470336, 0.4315384355133149, 0.43801594290086987, 0.4444516211895538, 0.45034373518130405, 0.4556807858158224, 0.4610488197166289, 0.46633036852044285, 0.4717294082126311, 0.47769497653470894, 0.48369759863580825, 0.4892945325380834, 0.49431792124380325, 0.49935417177798586, 0.5043009639028166, 0.5093262559789482, 0.5149098888134348, 0.5205835093969735, 0.5261172491490695, 0.5310141031413226, 0.5359027242118537, 0.540068909216935, 0.5451620919252675, 0.5506752550043325, 0.5562355968920056, 0.5614758121490083, 0.5660462437469214, 0.5706616804819072, 0.5750453002157994, 0.5795939049979849, 0.5861802311128667, 0.5913273051077091, 0.5958976691303413, 0.6001503392324151, 0.6042404457337608, 0.6082963816680697, 0.6124734913435614, 0.6174918231657613, 0.6223867287374153, 0.6268875352709179, 0.6308341907134806, 0.6348490070893678, 0.6388763812049537, 0.6430405276890614, 0.6476616520101889, 0.6525750168960728, 0.6570689758011117, 0.6610427627189518, 0.6649727383296814, 0.6689671694958335, 0.673019050913289, 0.6776959248411508, 0.6825336054124376, 0.6869984168463193, 0.6908780826604262, 0.6949984065748767, 0.6991746490342636, 0.7033415661048878, 0.7082721626873987, 0.7131064081819068, 0.7176506656210218, 0.7216193168175142, 0.7256178250256133, 0.7296113326629264, 0.733677461202103, 0.7383860054116087, 0.7431864069529378, 0.7475115177561259, 0.7513220765829758, 0.7551652404828552, 0.7591154774153049, 0.7635879699061145, 0.76888963361854, 0.7740750002725536, 0.7788235152607059, 0.7829338267710377, 0.7870690059847372, 0.7912444713283939, 0.7954864645360872, 0.8002680350991415, 0.8051864906561857, 0.8097254772233912, 0.8137210008565843, 0.8175460095309978, 0.8214444612731922, 0.8256005212486867, 0.8302889054993935, 0.8351108860804202, 0.839542135124793, 0.8433705788759852, 0.8472835029908369, 0.8513248314019267, 0.8556693700983707, 0.8606610209471658, 0.865499591259651, 0.8699232042972833, 0.8737653545679493, 0.8776996212090155, 0.8816179062961511, 0.8856027192473231, 0.8900849425785808, 0.8947120585746139, 0.8993599427069738, 0.9035026227768521, 0.9075820073336299, 0.9115699850604569, 0.9158137239629064, 0.9207252417911126, 0.925749689176233, 0.9303560370359392, 0.9343408161994707, 0.9384800274049299, 0.9426168396879175, 0.9475247422385961, 0.9523909621035122, 0.9573336433987555, 0.9618665256655873, 0.9657568345864344, 0.9697355995499667, 0.973736889607129, 0.9778353641807583, 0.9828378833872299, 0.987703190985854, 0.9921586319807856, 0.9960384779956415, 1.0, ] start_time = time.time() results = sequential_bounds(np.array(t), alpha=0.003333333, sides=2) my_bounds = results.bounds expected = np.array( [ 5.75400023, 8.0, 5.14701605, 4.91478643, 4.80691346, 4.69004328, 4.57921075, 4.49683943, 4.44452939, 4.38899083, 4.35683792, 4.33289847, 4.301461, 4.27383028, 4.24513591, 4.21444005, 4.18809224, 4.17037988, 4.15702106, 4.13796352, 4.12345883, 4.10808648, 4.07898394, 4.06169498, 4.04985422, 4.04453139, 4.03288177, 4.02205301, 4.00664024, 3.98770613, 3.97358123, 3.96589571, 3.95946059, 3.94995533, 3.94128534, 3.93114789, 3.91870273, 3.90749163, 3.90064315, 3.8958719, 3.88847126, 3.88184277, 3.86841705, 3.85642932, 3.84721152, 3.84099201, 3.83689676, 3.8295672, 3.82234648, 3.81501541, 3.80286989, 3.79370807, 3.78728177, 3.78449351, 3.77865864, 3.76988501, 3.76230126, 3.75251025, 3.74474277, 3.73953663, 3.73534961, 3.72974059, 3.72466752, 3.71785112, 3.70903202, 3.70176221, 3.6976847, 3.6944938, 3.68996741, 3.68449851, 3.67888767, 3.67142884, 3.66522708, 3.65968721, 3.65649679, 3.65207508, 3.65156885, 3.643952, 3.63644572, 3.63029181, 3.62665696, 3.62527741, 3.62117738, 3.61789837, 3.6128686, 3.59904477, 3.5976517, 3.59678297, 3.59434356, 3.59116304, 3.58814574, 3.5835558, 3.57659985, 3.5726481, 3.56990393, 3.56879169, 3.56501955, 3.56127173, 3.55720436, 3.55194666, 3.54597713, 3.5436994, 3.54287161, 3.53974477, 3.53649679, 3.53314876, 3.52700997, 3.52175088, 3.51873367, 3.51846468, 3.51401711, 3.5106822, 3.50742162, 3.50113309, 3.49658758, 3.49376264, 3.49238249, 3.48979047, 3.48725107, 3.48341163, 3.47810608, 3.47381485, 3.47184685, 3.47110719, 3.46801712, 3.46472076, 3.45913659, 3.45209404, 3.4484684, 3.44587153, 3.44472549, 3.44242755, 3.43895355, 3.43549018, 3.43080058, 3.42621252, 3.42437516, 3.42371762, 3.42122891, 3.41861765, 3.41451447, 3.40936002, 3.4051931, 3.40307035, 3.40295986, 3.40052495, 3.39688763, 3.39279348, 3.38725208, 3.38421998, 3.38214471, 3.38133324, 3.37908335, 3.37689107, 3.37364203, 3.36937673, 3.36593888, 3.36250238, 3.36109704, 3.35878324, 3.35666501, 3.35305866, 3.34754255, 3.34364255, 3.34157534, 3.34085629, 3.33864193, 3.33563376, 3.33016843, 3.32687574, 3.32338656, 3.32166421, 3.32107266, 3.31861916, 3.31615129, 3.31334059, 3.30792367, 3.30479742, 3.30339238, 3.30296421, 3.30041534, ] ) assert np.allclose(my_bounds, expected) # if the calculation with max_nints takes longer than 10 seconds, something is most likely broken assert (time.time() - start_time) < 15 # Run a second time but with initial state from last run. start_time = time.time() results = sequential_bounds(np.array(t), alpha=0.003333333, sides=2, state=results.state) my_bounds = results.bounds assert np.allclose(my_bounds, expected) # if the calculation with max_nints takes longer than 10 seconds, something is most likely broken print(f"Time passed second round: {time.time() - start_time}") assert (time.time() - start_time) < 0.01 @pytest.mark.skip(reason="Skipping because this test is very slow") def test_many_days_fast_and_no_crash(): """ This is based on experiment 1735 on 26.11.2020. The calculation of the corresponding bounds takes many minutes without performance tweak. Therefore, this test only checks for absence of crashs and time constraints, but does not compare against the baseline without performance tweak. There is a Jupyter notebook making that comparison. """ t = [ 0.011404679673257933, 0.02292450819418779, 0.0356455988484443, 0.04835740420885424, 0.05971666577058213, 0.06976017458481187, 0.07984165086754545, 0.09002459314412276, 0.10026356929804565, 0.11129746744100509, 0.1222487922920801, 0.13250332796555583, 0.1418309168157694, 0.15072692856918676, 0.15940425274581055, 0.16819162796171988, 0.17766544268380677, 0.18725283769713902, 0.19600162922594835, 0.20386600701959812, 0.21159934032678884, 0.21916233120704773, 0.22688560894714668, 0.23509036348536208, 0.24366994698965522, 0.2515994198750076, 0.25875219123481424, 0.2659624389836802, 0.2731790169781248, 0.28051081384508175, 0.28822790138928306, 0.2962915558739476, 0.3037246366701631, 0.31063411372423433, 0.31767205835063517, 0.32464032826076655, 0.3318100596369355, 0.3397812253123048, 0.3476375502493003, 0.3550356746451523, 0.3616457394863339, 0.3683042335071859, 0.375005792804928, 0.38175551518794676, 0.3891222824602354, 0.39652683513644266, 0.40347332732118724, 0.4098512458112366, 0.4163205187081655, 0.42263992444151655, 0.42899148558161226, 0.43464157988476515, 0.43858871208254674, 0.44192382717460427, 0.44482627278235426, 0.4474605932759375, 0.44957511937869815, 0.4509048070694502, 0.45222422911858906, 0.45333747002744257, 0.45426598540713137, 0.4551955091445229, 0.45605329943533507, 0.456895460181754, 0.4578387508027823, 0.45881449093488524, 0.45965707183034693, 0.4603621239391219, 0.4610501740166303, 0.46173166976907054, 0.4624475477181825, 0.4632872155802805, 0.4641010162663083, 0.46481571779810027, 0.4654194019478082, 0.4660207332628762, 0.4666458170038323, 0.4672646265190821, 0.46791675385342846, 0.4685898046101078, 0.46918687841487516, 0.46969451649339183, 0.47019581032136176, 0.4706811945055765, 0.47116992587716583, 0.47170379526092326, 0.47227291514937425, 0.4727852448922026, 0.47322669549150526, 0.4736554715946826, 0.47408022827201673, 0.47450655350577753, 0.4749737592414058, 0.47545756086422586, 0.4759381553493523, 0.47630259262910407, 0.4766609657576709, 0.47699441004302984, 0.4773518028238301, 0.477775327063972, 0.4781977729215707, 0.47856485714029223, 0.47888037506649034, 0.47919262983512245, 0.47949520717080135, 0.47980748994936967, 0.4801789017032324, 0.4805627078538587, 0.48090167009664675, 0.4811904245288165, 0.48149113920373887, 0.4817901452725537, 0.4820966860142033, 0.48243977972257923, 0.4827841618880198, 0.48309197708176604, 0.4833586316742829, 0.4836129058750043, 0.4838654994795544, 0.4841171547512422, 0.48439948090305657, 0.48470691796266424, 0.4849764575786085, 0.4852081697757299, 0.48545255646897667, 0.4856974893559792, 0.48595208567096676, 0.48624575584693763, 0.4865416528128355, 0.4867930840050338, 0.4870117575768593, 0.4872274340855126, 0.4874240218226533, 0.4876215198827202, 0.4878617751103791, 0.488108108494191, 0.48831807097586183, 0.4884937072807334, 0.48866595438332605, 0.488852192449045, 0.48903411698459087, 0.4892522303576926, 0.4894829201921431, 0.4896802221826566, 0.4898457609055321, 0.49001188783706756, 0.4901847091433521, 0.4903469286887892, 0.4905345812562857, 0.49073597269748276, 0.49091467609036693, 0.4910691508884479, 0.4912115954189357, 0.49135658885361677, 0.49150574176382184, 0.49167835299558493, 0.49186735004001847, 0.49203167033066975, 0.49216849886895175, 0.4923075682021289, 0.4924506289512129, 0.49259525825672346, 0.49276396210238826, 0.49294465420074185, 0.4931019580023778, 0.49330306934421303, 0.4935200763248353, 0.49373208353184794, 0.4939721566949216, 0.4942334053697541, 0.4944958444668745, 0.4947262121870588, 0.49492469059489225, 0.4951192336066912, 0.495294323717807, 0.4954780829041733, 0.4956838158854796, 0.49592192835302007, 0.49614550366367866, 0.49633301618149417, 0.49652995404283723, 0.4967104500716375, 0.4969174855149766, 0.49712443692850716, 0.4973541744251272, 0.49756258235533957, 0.49772464784612763, 0.4978989396740621, 0.4980669292663541, 0.4982378038820735, 0.49843929335804726, 0.4986487236509305, 0.49883442952786183, 0.49899118713574214, 0.49915640374435144, 0.49932506557511197, ] alpha = 0.0033333333333333335 sides = 2 start_time = time.time() my_bounds = sequential_bounds(np.array(t), alpha=alpha, sides=sides).bounds expected = np.array( [ 5.0536015, 4.819334, 4.70702194, 4.60970036, 4.55329219, 4.5118919, 4.465161, 4.42168832, 4.37932413, 4.33343066, 4.29780246, 4.26550766, 4.2476601, 4.22343408, 4.20455427, 4.1834642, 4.15580542, 4.13352266, 4.1170148, 4.10326736, 4.08845795, 4.07496919, 4.05959646, 4.0417501, 4.02262887, 4.01056674, 4.00192679, 3.98996708, 3.97709149, 3.96442225, 3.95010566, 3.93456306, 3.92603865, 3.91801377, 3.90630556, 3.8975012, 3.88641115, 3.87143326, 3.85966246, 3.85112482, 3.84569926, 3.83714224, 3.82719647, 3.81910741, 3.80682977, 3.79652758, 3.78889289, 3.78428912, 3.77646938, 3.76966463, 3.76150223, 3.75820905, 3.76088934, 3.76171382, 3.76141619, 3.76079216, 3.76237742, 3.76725034, 3.76769877, 3.7690107, 3.7710916, 3.77168583, 3.76813708, 3.7705804, 3.76669411, 3.76711572, 3.76808636, 3.76962133, 3.76680748, 3.76844159, 3.76552364, 3.76210975, 3.76321355, 3.76471956, 3.76227721, 3.76424368, 3.76172169, 3.75923, 3.76099518, 3.75829319, 3.76028082, 3.75824824, 3.7562443, 3.76013739, 3.75818674, 3.7560594, 3.75379557, 3.75757852, 3.75582548, 3.75412511, 3.75244297, 3.75075688, 3.74891172, 3.75280489, 3.75090966, 3.7494744, 3.74806463, 3.75254602, 3.75114099, 3.74947802, 3.74782149, 3.74638383, 3.75092969, 3.74970739, 3.7485241, 3.74730404, 3.74585452, 3.74435839, 3.74303855, 3.74191532, 3.74074663, 3.73958567, 3.74415751, 3.74282592, 3.74149075, 3.74029857, 3.73926672, 3.73828357, 3.73730769, 3.7363362, 3.7352472, 3.73406243, 3.74020438, 3.7393112, 3.73836986, 3.73742713, 3.73644796, 3.73531947, 3.73418345, 3.73321896, 3.73238074, 3.73155456, 3.73080198, 3.73004637, 3.7291278, 3.72818669, 3.7273851, 3.72671496, 3.72605809, 3.72534827, 3.72465527, 3.72382494, 3.72294733, 3.73077145, 3.73014101, 3.72950865, 3.72885115, 3.7282343, 3.72752112, 3.72675617, 3.7260778, 3.7254917, 3.72495149, 3.72440186, 3.72383671, 3.723183, 3.72246763, 3.72184599, 3.7213286, 3.72080295, 3.72026245, 3.71971626, 3.71907946, 3.71839777, 3.71780463, 3.71704671, 3.7162294, 3.71543144, 3.71452847, 3.72065881, 3.71967136, 3.71880523, 3.71805949, 3.71732896, 3.71667185, 3.71598258, 3.71521135, 3.71431933, 3.71348235, 3.71278081, 3.71204444, 3.71136994, 3.7105967, 3.70982427, 3.70896735, 3.71527887, 3.71467395, 3.71402372, 3.71339733, 3.71276051, 3.71201001, 3.71123041, 3.71053954, 3.70995666, 3.70934263, 3.70871611, ] ) assert np.allclose(my_bounds, expected) # if the calculation with max_nints takes longer than 30 seconds, something is most likely broken assert (time.time() - start_time) < 30
m2-modified/ims/common/agentless-system-crawler/tests/functional/test_functional_plugins.py
CCI-MOC/ABMI
108
12784538
<reponame>CCI-MOC/ABMI import shutil import tempfile import unittest import docker import requests.exceptions from plugins.systems.cpu_container_crawler import CpuContainerCrawler from plugins.systems.cpu_host_crawler import CpuHostCrawler from plugins.systems.memory_container_crawler import MemoryContainerCrawler from plugins.systems.memory_host_crawler import MemoryHostCrawler from plugins.systems.os_container_crawler import OSContainerCrawler from plugins.systems.process_container_crawler import ProcessContainerCrawler # Tests the FeaturesCrawler class # Throws an AssertionError if any test fails # Tests conducted with a single container running. class HostAndContainerPluginsFunctionalTests(unittest.TestCase): image_name = 'alpine:latest' def setUp(self): self.docker = docker.Client( base_url='unix://var/run/docker.sock', version='auto') try: if len(self.docker.containers()) != 0: raise Exception( "Sorry, this test requires a machine with no docker" "containers running.") except requests.exceptions.ConnectionError: print ("Error connecting to docker daemon, are you in the docker" "group? You need to be in the docker group.") self.docker.pull(repository='alpine', tag='latest') self.container = self.docker.create_container( image=self.image_name, command='/bin/sleep 60') self.tempd = tempfile.mkdtemp(prefix='crawlertest.') self.docker.start(container=self.container['Id']) def tearDown(self): self.docker.stop(container=self.container['Id']) self.docker.remove_container(container=self.container['Id']) shutil.rmtree(self.tempd) def test_crawl_invm_cpu(self): fc = CpuHostCrawler() cores = len(list(fc.crawl())) assert cores > 0 def test_crawl_invm_mem(self): fc = MemoryHostCrawler() cores = len(list(fc.crawl())) assert cores > 0 def test_crawl_outcontainer_cpu(self): fc = CpuContainerCrawler() for key, feature, t in fc.crawl(self.container['Id']): print key, feature cores = len(list(fc.crawl(self.container['Id']))) assert cores > 0 def test_crawl_outcontainer_os(self): fc = OSContainerCrawler() assert len(list(fc.crawl(self.container['Id']))) == 1 def test_crawl_outcontainer_processes(self): fc = ProcessContainerCrawler() # sleep + crawler assert len(list(fc.crawl(self.container['Id']))) == 2 def test_crawl_outcontainer_processes_mmapfiles(self): fc = ProcessContainerCrawler() output = "%s" % list(fc.crawl(self.container['Id'], get_mmap_files='True')) assert '/bin/busybox' in output def test_crawl_outcontainer_mem(self): fc = MemoryContainerCrawler() output = "%s" % list(fc.crawl(self.container['Id'])) assert 'memory_used' in output if __name__ == '__main__': unittest.main()
src/std/rfc4566.py
ojimary/titus
108
12784562
<reponame>ojimary/titus<gh_stars>100-1000 # Copyright (c) 2007, <NAME>. All rights reserved. See LICENSING for details. # @implements RFC4566 (SDP) import socket, time class attrs(object): '''A generic class that allows uniformly accessing the attribute and items, and returns None for invalid attribute instead of throwing an acception.''' def __init__(self, **kwargs): for n,v in kwargs.items(): self[n] = v # attribute access: use container if not found def __getattr__(self, name): return self.__getitem__(name) # container access: use key in __dict__ def __getitem__(self, name): return self.__dict__.get(name, None) def __setitem__(self, name, value): self.__dict__[name] = value def __contains__(self, name): return name in self.__dict__ #def __repr__(self): return repr(self.__dict__) # @implements RFC4566 P3L3-P3L21 class SDP(attrs): '''A SDP packet with dynamic properties. The header names can be accessed as attributes or items. Accessing an unavailable header gives None instead of exception. ''' # header names that can appear multiple times. _multiple = 'tramb' def __init__(self, value=None): if value: self._parse(value) # @implements RFC4566 P11L1-P12L10 class originator(attrs): '''Represents a o= line with attributes username (str), sessionid (long), version (long), nettype (str), addrtype (str), address (str).''' def __init__(self, value=None): if value: self.username, self.sessionid, self.version, self.nettype, self.addrtype, self.address = value.split(' ') self.sessionid = int(self.sessionid) self.version = int(self.version) else: hostname = socket.gethostname() self.username, self.sessionid, self.version, self.nettype, self.addrtype, self.address = \ '-', int(time.time()), int(time.time()), 'IN', 'IP4', (hostname.find('.')>0 and hostname or socket.gethostbyname(hostname)) def __repr__(self): return ' '.join(map(lambda x: str(x), [self.username, self.sessionid, self.version, self.nettype, self.addrtype, self.address])) # @implements RFC4566 P14L7-P16L9 class connection(attrs): '''Represents a c= line with attributes nettype (str), addrtype (str), address (str) and optionally ttl (int) and count (int).''' def __init__(self, value=None, **kwargs): if value: self.nettype, self.addrtype, rest = value.split(' ') rest = rest.split('/') if len(rest) == 1: self.address = rest[0] elif len(rest) == 2: self.address, self.ttl = rest[0], int(rest[1]) else: self.address, self.ttl, self.count = rest[0], int(rest[1]), int(rest[2]) elif 'address' in kwargs: self.address = kwargs.get('address') self.nettype = kwargs.get('nettype', 'IN') self.addrtype = kwargs.get('addrtype', 'IP4') if 'ttl' in kwargs: self.ttl = int(kwargs.get('ttl')) if 'count' in kwargs: self.count = int(kwargs.get('count')) def __repr__(self): return self.nettype + ' ' + self.addrtype + ' ' + self.address + ('/' + str(self.ttl) if self.ttl else '') + ('/' + str(self.count) if self.count else '') # @implements RFC4566 P22L17-P24L33 class media(attrs): '''Represents a m= line and all subsequent lines until next m= or end. It has attributes such as media (str), port (int), proto (str), fmt (list).''' def __init__(self, value=None, **kwargs): if value: self.media, self.port, self.proto, rest = value.split(' ', 3) self.port = int(self.port) self.fmt = [] for f in rest.split(' '): a = attrs() try: a.pt = int(f) # if payload type is numeric except: a.pt = f self.fmt.append(a) elif 'media' in kwargs: self.media = kwargs.get('media') self.port = int(kwargs.get('port', 0)) self.proto = kwargs.get('proto', 'RTP/AVP') self.fmt = kwargs.get('fmt', []) def __repr__(self): result = self.media + ' ' + str(self.port) + ' ' + self.proto + ' ' + ' '.join(map(lambda x: str(x.pt), self.fmt)) for k in filter(lambda x: x in self, 'icbka'): # order is important if k not in SDP._multiple: # single header result += '\r\n' + k + '=' + str(self[k]) else: for v in self[k]: result += '\r\n' + k + '=' + str(v) for f in self.fmt: if f.name: result += '\r\n' + 'a=rtpmap:' + str(f.pt) + ' ' + f.name + '/' + str(f.rate) + (f.params and ('/'+f.params) or '') return result def dup(self): # use this method instead of SDP.media(str(m)) to duplicate m. Otherwise, fmt will be incomplete result = SDP.media(media=self.media, port=self.port, proto=self.proto, fmt=map(lambda f: attrs(pt=f.pt, name=f.name, rate=f.rate, params=f.params), self.fmt)) for k in filter(lambda x: x in self, 'icbka'): result[k] = self[k][:] if isinstance(self[k], list) else self[k] return result # @implements RFC4566 P8L17-P10L5 def _parse(self, text): g = True # whether we are in global line or per media line? for line in text.replace('\r\n', '\n').split('\n'): k, sep, v = line.partition('=') if k == 'o': v = SDP.originator(v) elif k == 'c': v = SDP.connection(v) elif k == 'm': v = SDP.media(v) if k == 'm': # new m= line if not self['m']: self['m'] = [] self['m'].append(v) obj = self['m'][-1] elif self['m']: # not in global obj = self['m'][-1] # @implements RFC4566 P25L41-P27L7 if k == 'a' and v.startswith('rtpmap:'): pt, rest = v[7:].split(' ', 1) name, sep, rest = rest.partition('/') rate, sep, params = rest.partition('/') for f in filter(lambda x: str(x.pt) == str(pt), obj.fmt): f.name = name; f.rate = int(rate); f.params = params or None else: obj[k] = (k in SDP._multiple and ((k in obj) and (obj[k]+[v]) or [v])) or v else: # global obj = self obj[k] = ((k in SDP._multiple) and ((k in obj) and (obj[k]+[v]) or [v])) or v def __repr__(self): result = '' for k in filter(lambda x: x in self, 'vosiuepcbtam'): # order is important if k not in SDP._multiple: # single header result += k + '=' + str(self[k]) + '\r\n' else: for v in self[k]: result += k + '=' + str(v) + '\r\n' return result #--------------------------- Testing -------------------------------------- # @implements RFC4566 P10L7-P10L21 def testSDP(): s = '''v=0\r o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5\r s=SDP Seminar\r i=A Seminar on the session description protocol\r u=http://www.example.com/seminars/sdp.pdf\r e=<EMAIL> (<NAME>)\r c=IN IP4 172.16.31.10/127\r t=2873397496 2873404696\r a=recvonly\r m=audio 49170 RTP/AVP 0\r m=video 51372 RTP/AVP 99\r a=rtpmap:99 h263-1998/90000\r ''' sdp = SDP(s) assert str(sdp) == s if __name__ == '__main__': import doctest doctest.testmod() testSDP()
alipay/aop/api/response/AlipayFundTransAacollectBatchQueryResponse.py
snowxmas/alipay-sdk-python-all
213
12784568
<filename>alipay/aop/api/response/AlipayFundTransAacollectBatchQueryResponse.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.BatchDetailInfo import BatchDetailInfo from alipay.aop.api.domain.BatchDetailInfo import BatchDetailInfo from alipay.aop.api.domain.BatchDetailInfo import BatchDetailInfo class AlipayFundTransAacollectBatchQueryResponse(AlipayResponse): def __init__(self): super(AlipayFundTransAacollectBatchQueryResponse, self).__init__() self._batch_memo = None self._batch_no = None self._batch_status = None self._biz_type = None self._create_date = None self._creater_user_id = None self._detail_list = None self._ext_param = None self._paid_detail_list = None self._pay_amount_single = None self._pay_amount_total = None self._pay_amount_total_for_receiver = None self._real_items_total = None self._show_items_total = None self._success_amount_total = None self._time_out_value = None self._unpaid_detail_list = None @property def batch_memo(self): return self._batch_memo @batch_memo.setter def batch_memo(self, value): self._batch_memo = value @property def batch_no(self): return self._batch_no @batch_no.setter def batch_no(self, value): self._batch_no = value @property def batch_status(self): return self._batch_status @batch_status.setter def batch_status(self, value): self._batch_status = value @property def biz_type(self): return self._biz_type @biz_type.setter def biz_type(self, value): self._biz_type = value @property def create_date(self): return self._create_date @create_date.setter def create_date(self, value): self._create_date = value @property def creater_user_id(self): return self._creater_user_id @creater_user_id.setter def creater_user_id(self, value): self._creater_user_id = value @property def detail_list(self): return self._detail_list @detail_list.setter def detail_list(self, value): if isinstance(value, list): self._detail_list = list() for i in value: if isinstance(i, BatchDetailInfo): self._detail_list.append(i) else: self._detail_list.append(BatchDetailInfo.from_alipay_dict(i)) @property def ext_param(self): return self._ext_param @ext_param.setter def ext_param(self, value): self._ext_param = value @property def paid_detail_list(self): return self._paid_detail_list @paid_detail_list.setter def paid_detail_list(self, value): if isinstance(value, list): self._paid_detail_list = list() for i in value: if isinstance(i, BatchDetailInfo): self._paid_detail_list.append(i) else: self._paid_detail_list.append(BatchDetailInfo.from_alipay_dict(i)) @property def pay_amount_single(self): return self._pay_amount_single @pay_amount_single.setter def pay_amount_single(self, value): self._pay_amount_single = value @property def pay_amount_total(self): return self._pay_amount_total @pay_amount_total.setter def pay_amount_total(self, value): self._pay_amount_total = value @property def pay_amount_total_for_receiver(self): return self._pay_amount_total_for_receiver @pay_amount_total_for_receiver.setter def pay_amount_total_for_receiver(self, value): self._pay_amount_total_for_receiver = value @property def real_items_total(self): return self._real_items_total @real_items_total.setter def real_items_total(self, value): self._real_items_total = value @property def show_items_total(self): return self._show_items_total @show_items_total.setter def show_items_total(self, value): self._show_items_total = value @property def success_amount_total(self): return self._success_amount_total @success_amount_total.setter def success_amount_total(self, value): self._success_amount_total = value @property def time_out_value(self): return self._time_out_value @time_out_value.setter def time_out_value(self, value): self._time_out_value = value @property def unpaid_detail_list(self): return self._unpaid_detail_list @unpaid_detail_list.setter def unpaid_detail_list(self, value): if isinstance(value, list): self._unpaid_detail_list = list() for i in value: if isinstance(i, BatchDetailInfo): self._unpaid_detail_list.append(i) else: self._unpaid_detail_list.append(BatchDetailInfo.from_alipay_dict(i)) def parse_response_content(self, response_content): response = super(AlipayFundTransAacollectBatchQueryResponse, self).parse_response_content(response_content) if 'batch_memo' in response: self.batch_memo = response['batch_memo'] if 'batch_no' in response: self.batch_no = response['batch_no'] if 'batch_status' in response: self.batch_status = response['batch_status'] if 'biz_type' in response: self.biz_type = response['biz_type'] if 'create_date' in response: self.create_date = response['create_date'] if 'creater_user_id' in response: self.creater_user_id = response['creater_user_id'] if 'detail_list' in response: self.detail_list = response['detail_list'] if 'ext_param' in response: self.ext_param = response['ext_param'] if 'paid_detail_list' in response: self.paid_detail_list = response['paid_detail_list'] if 'pay_amount_single' in response: self.pay_amount_single = response['pay_amount_single'] if 'pay_amount_total' in response: self.pay_amount_total = response['pay_amount_total'] if 'pay_amount_total_for_receiver' in response: self.pay_amount_total_for_receiver = response['pay_amount_total_for_receiver'] if 'real_items_total' in response: self.real_items_total = response['real_items_total'] if 'show_items_total' in response: self.show_items_total = response['show_items_total'] if 'success_amount_total' in response: self.success_amount_total = response['success_amount_total'] if 'time_out_value' in response: self.time_out_value = response['time_out_value'] if 'unpaid_detail_list' in response: self.unpaid_detail_list = response['unpaid_detail_list']
asymmetric_cryptography/asymmetric.py
elishahyousaf/Awesome-Python-Scripts
1,026
12784572
from Crypto import Random from Crypto.PublicKey import RSA import base64 def generate_keys(modulus_length=256*4): privatekey = RSA.generate(modulus_length, Random.new().read) publickey = privatekey.publickey() return privatekey, publickey def encryptit(message , publickey): encrypted_msg = publickey.encrypt(message, 32)[0] encoded_encrypted_msg = base64.b64encode(encrypted_msg) return encoded_encrypted_msg def decryptit(message, privatekey): decoded_encrypted_msg = base64.b64decode(message) decoded_decrypted_msg = privatekey.decrypt(decoded_encrypted_msg) return decoded_decrypted_msg if __name__ == '__main__': message = "This is a awesome message!" privatekey , publickey = generate_keys() encrypted_msg = encryptit(message.encode("utf-8"), publickey) decrypted_msg = decryptit(encrypted_msg, privatekey) print(f'{privatekey.exportKey()} - ({len(privatekey.exportKey())})') print(f'{publickey.exportKey()} - ({len(publickey.exportKey())})') print(f'Original: {message} - ({len(message)})') print(f'Encrypted: {encrypted_msg} - ({len(encrypted_msg)})') print(f'Decrypted: {decrypted_msg} - ({len(decrypted_msg)})')
airflow/providers/trino/transfers/gcs_to_trino.py
npodewitz/airflow
8,092
12784619
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module contains Google Cloud Storage to Trino operator.""" import csv import json from tempfile import NamedTemporaryFile from typing import TYPE_CHECKING, Iterable, Optional, Sequence, Union from airflow.models import BaseOperator from airflow.providers.google.cloud.hooks.gcs import GCSHook from airflow.providers.trino.hooks.trino import TrinoHook if TYPE_CHECKING: from airflow.utils.context import Context class GCSToTrinoOperator(BaseOperator): """ Loads a csv file from Google Cloud Storage into a Trino table. Assumptions: 1. CSV file should not have headers 2. Trino table with requisite columns is already created 3. Optionally, a separate JSON file with headers can be provided :param source_bucket: Source GCS bucket that contains the csv :param source_object: csv file including the path :param trino_table: trino table to upload the data :param trino_conn_id: destination trino connection :param gcp_conn_id: (Optional) The connection ID used to connect to Google Cloud and interact with the Google Cloud Storage service. :param schema_fields: The names of the columns to fill in the table. If schema_fields is provided, any path provided in the schema object will be :param schema_object: JSON file with schema fields :param delegate_to: The account to impersonate using domain-wide delegation of authority, if any. For this to work, the service account making the request must have domain-wide delegation enabled. :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account. """ template_fields: Sequence[str] = ( 'source_bucket', 'source_object', 'trino_table', ) def __init__( self, *, source_bucket: str, source_object: str, trino_table: str, trino_conn_id: str = "trino_default", gcp_conn_id: str = "google_cloud_default", schema_fields: Optional[Iterable[str]] = None, schema_object: Optional[str] = None, delegate_to: Optional[str] = None, impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.source_bucket = source_bucket self.source_object = source_object self.trino_table = trino_table self.trino_conn_id = trino_conn_id self.gcp_conn_id = gcp_conn_id self.schema_fields = schema_fields self.schema_object = schema_object self.delegate_to = delegate_to self.impersonation_chain = impersonation_chain def execute(self, context: 'Context') -> None: gcs_hook = GCSHook( gcp_conn_id=self.gcp_conn_id, delegate_to=self.delegate_to, impersonation_chain=self.impersonation_chain, ) trino_hook = TrinoHook(trino_conn_id=self.trino_conn_id) with NamedTemporaryFile("w+") as temp_file: self.log.info("Downloading data from %s", self.source_object) gcs_hook.download( bucket_name=self.source_bucket, object_name=self.source_object, filename=temp_file.name, ) data = csv.reader(temp_file) rows = (tuple(row) for row in data) self.log.info("Inserting data into %s", self.trino_table) if self.schema_fields: trino_hook.insert_rows(table=self.trino_table, rows=rows, target_fields=self.schema_fields) elif self.schema_object: blob = gcs_hook.download( bucket_name=self.source_bucket, object_name=self.schema_object, ) schema_fields = json.loads(blob.decode("utf-8")) trino_hook.insert_rows(table=self.trino_table, rows=rows, target_fields=schema_fields) else: trino_hook.insert_rows(table=self.trino_table, rows=rows)
gtsfm/two_view_estimator.py
swershrimpy/gtsfm
122
12784624
<reponame>swershrimpy/gtsfm """Estimator which operates on a pair of images to compute relative pose and verified indices. Authors: <NAME>, <NAME> """ import logging from typing import Dict, Optional, Tuple import dask import numpy as np from dask.delayed import Delayed from gtsam import Cal3Bundler, Pose3, Rot3, Unit3 import gtsfm.utils.geometry_comparisons as comp_utils import gtsfm.utils.logger as logger_utils import gtsfm.utils.metrics as metric_utils from gtsfm.common.keypoints import Keypoints from gtsfm.common.two_view_estimation_report import TwoViewEstimationReport from gtsfm.frontend.inlier_support_processor import InlierSupportProcessor from gtsfm.frontend.matcher.matcher_base import MatcherBase from gtsfm.frontend.verifier.verifier_base import VerifierBase from gtsfm.evaluation.metrics import GtsfmMetric, GtsfmMetricsGroup logger = logger_utils.get_logger() mpl_logger = logging.getLogger("matplotlib") mpl_logger.setLevel(logging.WARNING) pil_logger = logging.getLogger("PIL") pil_logger.setLevel(logging.INFO) EPSILON = 1e-6 class TwoViewEstimator: """Wrapper for running two-view relative pose estimation on image pairs in the dataset.""" def __init__( self, matcher: MatcherBase, verifier: VerifierBase, inlier_support_processor: InlierSupportProcessor, eval_threshold_px: float, ) -> None: """Initializes the two-view estimator from matcher and verifier. Args: matcher: matcher to use. verifier: verifier to use. inlier_support_processor: post-processor that uses information about RANSAC support to filter out pairs. eval_threshold_px: distance threshold for marking a correspondence pair as inlier during evaluation (not during estimation). """ self._matcher = matcher self._verifier = verifier self.processor = inlier_support_processor self._corr_metric_dist_threshold = eval_threshold_px def get_corr_metric_dist_threshold(self) -> float: """Getter for the distance threshold used in the metric for correct correspondences.""" return self._corr_metric_dist_threshold def create_computation_graph( self, keypoints_i1_graph: Delayed, keypoints_i2_graph: Delayed, descriptors_i1_graph: Delayed, descriptors_i2_graph: Delayed, camera_intrinsics_i1_graph: Delayed, camera_intrinsics_i2_graph: Delayed, im_shape_i1_graph: Delayed, im_shape_i2_graph: Delayed, i2Ti1_expected_graph: Optional[Delayed] = None, ) -> Tuple[Delayed, Delayed, Delayed, Optional[Delayed], Optional[Delayed], Optional[Delayed]]: """Create delayed tasks for matching and verification. Args: keypoints_i1_graph: keypoints for image i1. keypoints_i2_graph: keypoints for image i2. descriptors_i1_graph: corr. descriptors for image i1. descriptors_i2_graph: corr. descriptors for image i2. camera_intrinsics_i1_graph: intrinsics for camera i1. camera_intrinsics_i2_graph: intrinsics for camera i2. im_shape_i1_graph: image shape for image i1. im_shape_i2_graph: image shape for image i2. i2Ti1_expected_graph (optional): ground truth relative pose, used for evaluation if available. Defaults to None. Returns: Computed relative rotation wrapped as Delayed. Computed relative translation direction wrapped as Delayed. Indices of verified correspondences wrapped as Delayed. Two view report w/ verifier metrics wrapped as Delayed. Two view report w/ post-processor metrics wrapped as Delayed. """ # graph for matching to obtain putative correspondences corr_idxs_graph = self._matcher.create_computation_graph( keypoints_i1_graph, keypoints_i2_graph, descriptors_i1_graph, descriptors_i2_graph, im_shape_i1_graph, im_shape_i2_graph, ) # verification on putative correspondences to obtain relative pose # and verified correspondences # TODO: name this verified_correspondence_idxs (add note: everything here is delayed) (i2Ri1_graph, i2Ui1_graph, v_corr_idxs_graph, inlier_ratio_est_model) = self._verifier.create_computation_graph( keypoints_i1_graph, keypoints_i2_graph, corr_idxs_graph, camera_intrinsics_i1_graph, camera_intrinsics_i2_graph, ) # if we have the expected GT data, evaluate the computed relative pose if i2Ti1_expected_graph is not None: R_error_deg, U_error_deg = dask.delayed(compute_relative_pose_metrics, nout=2)( i2Ri1_graph, i2Ui1_graph, i2Ti1_expected_graph ) num_inliers_gt_model, inlier_ratio_gt_model, v_corr_idxs_inlier_mask_gt = dask.delayed( compute_correspondence_metrics, nout=3 )( keypoints_i1_graph, keypoints_i2_graph, v_corr_idxs_graph, camera_intrinsics_i1_graph, camera_intrinsics_i2_graph, i2Ti1_expected_graph, self._corr_metric_dist_threshold, ) else: R_error_deg, U_error_deg = None, None num_inliers_gt_model, inlier_ratio_gt_model = None, None v_corr_idxs_inlier_mask_gt = None two_view_report_graph = dask.delayed(generate_two_view_report)( inlier_ratio_est_model, R_error_deg, U_error_deg, num_inliers_gt_model, inlier_ratio_gt_model, v_corr_idxs_inlier_mask_gt, v_corr_idxs_graph, ) # Note: We name the output as _pp, as it represents a post-processed quantity. ( i2Ri1_pp_graph, i2Ui1_pp_graph, v_corr_idxs_pp_graph, two_view_report_pp_graph, ) = self.processor.create_computation_graph( i2Ri1_graph, i2Ui1_graph, v_corr_idxs_graph, two_view_report_graph ) # We provide both, as we will create reports for both. return (i2Ri1_pp_graph, i2Ui1_pp_graph, v_corr_idxs_pp_graph, two_view_report_graph, two_view_report_pp_graph) def generate_two_view_report( inlier_ratio_est_model: float, R_error_deg: float, U_error_deg: float, num_inliers_gt_model: int, inlier_ratio_gt_model: float, v_corr_idxs_inlier_mask_gt: np.ndarray, v_corr_idxs: np.ndarray, ) -> TwoViewEstimationReport: """Wrapper around class constructor for Dask.""" two_view_report = TwoViewEstimationReport( inlier_ratio_est_model=inlier_ratio_est_model, num_inliers_est_model=v_corr_idxs.shape[0], num_inliers_gt_model=num_inliers_gt_model, inlier_ratio_gt_model=inlier_ratio_gt_model, v_corr_idxs_inlier_mask_gt=v_corr_idxs_inlier_mask_gt, v_corr_idxs=v_corr_idxs, R_error_deg=R_error_deg, U_error_deg=U_error_deg, ) return two_view_report def compute_correspondence_metrics( keypoints_i1: Keypoints, keypoints_i2: Keypoints, corr_idxs_i1i2: np.ndarray, intrinsics_i1: Cal3Bundler, intrinsics_i2: Cal3Bundler, i2Ti1: Pose3, epipolar_distance_threshold: float, ) -> Tuple[int, float, Optional[np.ndarray]]: """Compute the metrics for the generated verified correspondence. Args: keypoints_i1: detected keypoints in image i1. keypoints_i2: detected keypoints in image i2. corr_idxs_i1i2: indices of correspondences. intrinsics_i1: intrinsics for i1. intrinsics_i2: intrinsics for i2. i2Ti1: relative pose. epipolar_distance_threshold: max epipolar distance to qualify as a correct match. Returns: Number of inlier correspondences to ground truth epipolar geometry, i.e. #correct correspondences. Inlier Ratio, i.e. ratio of correspondences which are correct w.r.t. given relative pose. Mask of which verified correspondences are classified as correct under Sampson error (using GT epipolar geometry). """ if corr_idxs_i1i2.size == 0: return 0, float("Nan"), None v_corr_idxs_inlier_mask_gt = metric_utils.count_correct_correspondences( keypoints_i1.extract_indices(corr_idxs_i1i2[:, 0]), keypoints_i2.extract_indices(corr_idxs_i1i2[:, 1]), intrinsics_i1, intrinsics_i2, i2Ti1, epipolar_distance_threshold, ) num_inliers_gt_model = np.count_nonzero(v_corr_idxs_inlier_mask_gt) inlier_ratio_gt_model = num_inliers_gt_model / corr_idxs_i1i2.shape[0] return num_inliers_gt_model, inlier_ratio_gt_model, v_corr_idxs_inlier_mask_gt def compute_relative_pose_metrics( i2Ri1_computed: Optional[Rot3], i2Ui1_computed: Optional[Unit3], i2Ti1_expected: Pose3 ) -> Tuple[Optional[float], Optional[float]]: """Compute the metrics on relative camera pose. Args: i2Ri1_computed: computed relative rotation. i2Ui1_computed: computed relative translation direction. i2Ti1_expected: expected relative pose. Returns: Rotation error, in degrees Unit translation error, in degrees """ R_error_deg = comp_utils.compute_relative_rotation_angle(i2Ri1_computed, i2Ti1_expected.rotation()) U_error_deg = comp_utils.compute_relative_unit_translation_angle( i2Ui1_computed, Unit3(i2Ti1_expected.translation()) ) return (R_error_deg, U_error_deg) def aggregate_frontend_metrics( two_view_reports_dict: Dict[Tuple[int, int], Optional[TwoViewEstimationReport]], angular_err_threshold_deg: float, metric_group_name: str, ) -> None: """Aggregate the front-end metrics to log summary statistics. We define "pose error" as the maximum of the angular errors in rotation and translation, per: SuperGlue, CVPR 2020: https://arxiv.org/pdf/1911.11763.pdf Learning to find good correspondences. CVPR 2018: OA-Net, ICCV 2019: NG-RANSAC, ICCV 2019: Args: two_view_report_dict: report containing front-end metrics for each image pair. angular_err_threshold_deg: threshold for classifying angular error metrics as success. metric_group_name: name we will assign to the GtsfmMetricGroup returned by this fn. """ num_image_pairs = len(two_view_reports_dict.keys()) # all rotational errors in degrees rot3_angular_errors = [] trans_angular_errors = [] inlier_ratio_gt_model_all_pairs = [] inlier_ratio_est_model_all_pairs = [] num_inliers_gt_model_all_pairs = [] num_inliers_est_model_all_pairs = [] # populate the distributions for report in two_view_reports_dict.values(): if report is None: continue rot3_angular_errors.append(report.R_error_deg) trans_angular_errors.append(report.U_error_deg) inlier_ratio_gt_model_all_pairs.append(report.inlier_ratio_gt_model) inlier_ratio_est_model_all_pairs.append(report.inlier_ratio_est_model) num_inliers_gt_model_all_pairs.append(report.num_inliers_gt_model) num_inliers_est_model_all_pairs.append(report.num_inliers_est_model) rot3_angular_errors = np.array(rot3_angular_errors, dtype=float) trans_angular_errors = np.array(trans_angular_errors, dtype=float) # count number of rot3 errors which are not None. Should be same in rot3/unit3 num_valid_image_pairs = np.count_nonzero(~np.isnan(rot3_angular_errors)) # compute pose errors by picking the max error from rot3 and unit3 errors pose_errors = np.maximum(rot3_angular_errors, trans_angular_errors) # check errors against the threshold success_count_rot3 = np.sum(rot3_angular_errors < angular_err_threshold_deg) success_count_unit3 = np.sum(trans_angular_errors < angular_err_threshold_deg) success_count_pose = np.sum(pose_errors < angular_err_threshold_deg) # count image pair entries where inlier ratio w.r.t. GT model == 1. all_correct = np.count_nonzero( [report.inlier_ratio_gt_model == 1.0 for report in two_view_reports_dict.values() if report is not None] ) logger.debug( "[Two view optimizer] [Summary] Rotation success: %d/%d/%d", success_count_rot3, num_valid_image_pairs, num_image_pairs, ) logger.debug( "[Two view optimizer] [Summary] Translation success: %d/%d/%d", success_count_unit3, num_valid_image_pairs, num_image_pairs, ) logger.debug( "[Two view optimizer] [Summary] Pose success: %d/%d/%d", success_count_pose, num_valid_image_pairs, num_image_pairs, ) logger.debug( "[Two view optimizer] [Summary] # Image pairs with 100%% inlier ratio:: %d/%d", all_correct, num_image_pairs ) # TODO(akshay-krishnan): Move angular_err_threshold_deg and num_total_image_pairs to metadata. frontend_metrics = GtsfmMetricsGroup( metric_group_name, [ GtsfmMetric("angular_err_threshold_deg", angular_err_threshold_deg), GtsfmMetric("num_total_image_pairs", int(num_image_pairs)), GtsfmMetric("num_valid_image_pairs", int(num_valid_image_pairs)), GtsfmMetric("rotation_success_count", int(success_count_rot3)), GtsfmMetric("translation_success_count", int(success_count_unit3)), GtsfmMetric("pose_success_count", int(success_count_pose)), GtsfmMetric("num_all_inlier_correspondences_wrt_gt_model", int(all_correct)), GtsfmMetric("rot3_angular_errors_deg", rot3_angular_errors), GtsfmMetric("trans_angular_errors_deg", trans_angular_errors), GtsfmMetric("pose_errors_deg", pose_errors), GtsfmMetric("inlier_ratio_wrt_gt_model", inlier_ratio_gt_model_all_pairs), GtsfmMetric("inlier_ratio_wrt_est_model", inlier_ratio_est_model_all_pairs), GtsfmMetric("num_inliers_est_model", num_inliers_est_model_all_pairs), GtsfmMetric("num_inliers_gt_model", num_inliers_gt_model_all_pairs), ], ) return frontend_metrics
filters/tests/test_mixins.py
jof/drf-url-filters
176
12784644
<filename>filters/tests/test_mixins.py import unittest from filters.mixins import FiltersMixin class MyTest(unittest.TestCase): def test(self): self.assertEqual(4, 4)
tower_cli/cli/action.py
kedark3/tower-cli
363
12784652
<filename>tower_cli/cli/action.py<gh_stars>100-1000 # Copyright 2017, Ansible by Red Hat # <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import click from click.formatting import join_options from tower_cli.conf import SETTINGS_PARMS class ActionSubcommand(click.Command): """A Command subclass that adds support for the concept that invocation without arguments assumes `--help`. This code is adapted by taking code from click.MultiCommand and placing it here, to get just the --help functionality and nothing else. """ def __init__(self, name=None, no_args_is_help=True, **kwargs): self.no_args_is_help = no_args_is_help super(ActionSubcommand, self).__init__(name=name, **kwargs) def parse_args(self, ctx, args): """Parse arguments sent to this command. The code for this method is taken from MultiCommand: https://github.com/mitsuhiko/click/blob/master/click/core.py It is Copyright (c) 2014 by <NAME>. See the license: https://github.com/mitsuhiko/click/blob/master/LICENSE """ if not args and self.no_args_is_help and not ctx.resilient_parsing: click.echo(ctx.get_help()) ctx.exit() return super(ActionSubcommand, self).parse_args(ctx, args) def format_options(self, ctx, formatter): """Monkey-patch click's format_options method to support option categorization. """ field_opts = [] global_opts = [] local_opts = [] other_opts = [] for param in self.params: if param.name in SETTINGS_PARMS: opts = global_opts elif getattr(param, 'help', None) and param.help.startswith('[FIELD]'): opts = field_opts param.help = param.help[len('[FIELD]'):] else: opts = local_opts rv = param.get_help_record(ctx) if rv is None: continue else: opts.append(rv) if self.add_help_option: help_options = self.get_help_option_names(ctx) if help_options: other_opts.append([join_options(help_options)[0], 'Show this message and exit.']) if field_opts: with formatter.section('Field Options'): formatter.write_dl(field_opts) if local_opts: with formatter.section('Local Options'): formatter.write_dl(local_opts) if global_opts: with formatter.section('Global Options'): formatter.write_dl(global_opts) if other_opts: with formatter.section('Other Options'): formatter.write_dl(other_opts)
codegen_sources/test_generation/test_runners/python_test_runner.py
AlexShypula/CodeGen
241
12784664
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import subprocess import sys import uuid from pathlib import Path, PosixPath from subprocess import Popen from .evosuite_test_runners import ( EvosuiteTestRunner, TestRuntimeError, CompilationError, InvalidTest, clean_firejail, FIREJAIL_PROFILE, ) from ...model.src.utils import ( TREE_SITTER_ROOT, limit_virtual_memory, MAX_VIRTUAL_MEMORY, ) from ...preprocessing.lang_processors.lang_processor import LangProcessor sys.path.append(str(Path(__file__).parents[3])) print("adding to path", str(Path(__file__).parents[3])) python_processor = LangProcessor.processors["python"](root_folder=TREE_SITTER_ROOT) class PythonTestRunner(EvosuiteTestRunner): def __init__( self, tmp_folder=Path( Path.home().joinpath("data/CodeGen/automatic_tests/tmp_tests_folder/python") ), timeout=15, ): super().__init__(tmp_folder=tmp_folder, timeout=timeout) def _run_tests( self, function: str, test: str, tmp_path: PosixPath, classname: str = None, scaffolding: str = None, ): assert ( scaffolding is None ), f"Scaffolding should be None for python tests, was {scaffolding}" if "#TOFILL" not in test: raise InvalidTest("Missing #TOFILL") try: f_name = python_processor.get_function_name(function) except (ValueError, IndexError): raise CompilationError("No function definition") function = python_processor.detokenize_code( function.replace(f" {f_name.strip()} ", " f_filled ") ) filled_test = test.replace("#TOFILL", function) test_path = self.write_test(filled_test, classname, tmp_path) assert test_path.is_file() test_cmd = f"{limit_virtual_memory(MAX_VIRTUAL_MEMORY)}; firejail --profile={FIREJAIL_PROFILE} python {test_path}" test_proc = Popen( test_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, executable="/bin/bash", preexec_fn=os.setsid, ) return test_proc, tmp_path def _eval_proc_state(self, out, err): stderr = err.decode("utf-8", errors="replace") stderr = clean_firejail(stderr) res_line = stderr.splitlines() if len(res_line) <= 2 or not ( res_line[-1].startswith("OK") or res_line[-1].startswith("FAILED") ): raise TestRuntimeError(stderr) assert res_line[-3].startswith("Ran ") number_of_tests = int(res_line[-3].replace("Ran ", "").split(" ")[0]) res_line = res_line[-1] if res_line.startswith("OK"): return "success", number_of_tests, 0 else: assert res_line.startswith("FAILED (errors=") or res_line.startswith( "FAILED (failures=" ) number_failures = int(res_line.split("=")[-1].replace(")", "")) return "failure", number_of_tests, number_failures @staticmethod def write_test(test, classname, out_folder): if classname is None: classname = "a" test_path = out_folder.joinpath(f"python_test_{classname}.py") with open(test_path, "w", encoding="utf-8") as o: o.write(test) return test_path
bin/generate_sitemap.py
gaybro8777/CiteSeerX
108
12784671
#!/usr/bin/python # Script to generate sitemaps # <NAME> # Requires mysql-python import MySQLdb import argparse import logging import os import sys import subprocess from config import db logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument("sitemapdir") args = parser.parse_args() try: sitemapdir = args.sitemapdir except: logging.error("sitemap dir not set. run python generate_sitemap.py -h") sys.exit(0) # clear sitemapdir if it is there already if os.path.exists(sitemapdir): subprocess.call(['rm','-rfv',sitemapdir+"/*"]) else: os.makedirs(sitemapdir) MAX_PER_FILE = 49999 db = MySQLdb.connect(host=db["dbhost"], user=db["dbuser"], passwd=db["dbpass"], db="citeseerx") cur = db.cursor() i = 0 file = 1 header = '<?xml version="1.0" encoding="UTF-8"?>\n<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">\n' cur.execute("SELECT id FROM papers WHERE public = 1") for row in cur.fetchall(): if i == 0: f = open(os.path.join(sitemapdir,"sitemap%d.xml" % file), 'w+') f.write(header) f.write('<url>\n\t<loc>http://citeseerx.ist.psu.edu/viewdoc/download?doi=%s&amp;rep=rep1&amp;type=pdf</loc>\n</url>\n' % row[0]) i = i + 1 if i == MAX_PER_FILE: file = file + 1 i = 0 f.write('</urlset>') f.close() logging.info("sitemap generated: {}".format(f.name)) if not f.closed: f.write('</urlset>') f.close() logging.info("sitemap generated: {}".format(f.name)) f = open(os.path.join(sitemapdir,'sitemap_index.xml'), 'w+') f.write('<?xml version="1.0" encoding="UTF-8"?>\n<sitemapindex xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">\n') for i in range(1, file+1): f.write('<sitemap>\n\t<loc>http://citeseerx.ist.psu.edu/sitemap%d.xml</loc>\n</sitemap>\n' % i) f.write('</sitemapindex>'); f.close() logging.info("sitemap index file: {}".format(f.name))
OpenDataCatalog/contest/views.py
runonthespot/Open-Data-Catalog
105
12784676
from django.shortcuts import render_to_response, redirect from django.template import RequestContext from django.template.loader import render_to_string from django.core.mail import send_mail, mail_managers, EmailMessage from django.contrib.auth.decorators import login_required from django.contrib import messages from OpenDataCatalog.contest.models import * from datetime import datetime def get_entries(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) entries = Entry.objects.filter(contest=contest, is_visible=True) if not request.GET.__contains__('sort'): entries = entries.order_by('-vote_count') return render_to_response('contest/entries.html', {'contest': contest, 'entries': entries}, context_instance=RequestContext(request)) def get_entries_table(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) entries = Entry.objects.filter(contest=contest) if not request.GET.__contains__('sort'): entries = entries.order_by('-vote_count') return render_to_response('contest/entry_table.html', {'contest': contest, 'entries': entries}, context_instance=RequestContext(request)) def get_winners(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) entries = Entry.objects.filter(contest=contest, is_visible=True).order_by('-vote_count') return render_to_response('contest/winners.html', {'contest': contest, 'entries': entries}, context_instance=RequestContext(request)) def get_rules(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) return render_to_response('contest/rules.html', {'contest': contest}, context_instance=RequestContext(request)) def get_entry(request, entry_id): entry = Entry.objects.get(pk=entry_id) return render_to_response('contest/entry.html', {'contest': entry.contest, 'entry': entry}, context_instance=RequestContext(request)) #@login_required def add_entry(request, contest_id=1): contest = Contest.objects.get(pk=contest_id) if request.method == 'POST': form = EntryForm(request.POST) form.contest = contest_id if form.is_valid(): data = { #"submitter": request.user.username, "submit_date": datetime.now(), "org_name": form.cleaned_data.get("org_name"), "org_url": form.cleaned_data.get("org_url"), "contact_person": form.cleaned_data.get("contact_person"), "contact_phone": form.cleaned_data.get("contact_phone"), "contact_email": form.cleaned_data.get("contact_email"), "data_set": form.cleaned_data.get("data_set"), "data_use": form.cleaned_data.get("data_use"), "data_mission": form.cleaned_data.get("data_mission") } subject = 'OpenDataPhilly - Contest Submission' user_email = form.cleaned_data.get("contact_email") text_content = render_to_string('contest/submit_email.txt', data) text_content_copy = render_to_string('contest/submit_email_copy.txt', data) mail_managers(subject, text_content) msg = EmailMessage(subject, text_content_copy, to=[user_email]) msg.send() return render_to_response('contest/thanks.html', {'contest': contest}, context_instance=RequestContext(request)) else: form = EntryForm() return render_to_response('contest/submit_entry.html', {'contest': contest, 'form': form}, context_instance=RequestContext(request)) @login_required def add_vote(request, entry_id): entry = Entry.objects.get(pk=entry_id) contest = entry.contest user = User.objects.get(username=request.user) if contest.user_can_vote(user): new_vote = Vote(user=user, entry=entry) new_vote.save() entry.vote_count = entry.vote_set.count() entry.save() next_vote_date = contest.get_next_vote_date(user) if next_vote_date > contest.end_date: messages.success(request, '<div style="font-weight:bold;">Your vote has been recorded.</div>Thank you for your vote! You will not be able to vote again before the end of the contest. <br><br>Please encourage others to visit <a href="/">OpenDataPhilly</a> and to join the race toward more open data!') else: messages.success(request, '<div style="font-weight:bold;">Your vote has been recorded.</div>You may vote once per week, so come back and visit us again on ' + next_vote_date.strftime('%A, %b %d %Y, %I:%M%p') + '. <br><br>Until then, encourage others to visit <a href="/">OpenDataPhilly</a> and to join the race toward more open data!') else: next_vote_date = contest.get_next_vote_date(user) if next_vote_date > contest.end_date: messages.error(request, '<div style="font-weight:bold;">You have already voted.</div>You will not be able to vote again before the end of the contest. <br><br>Please encourage others to visit <a href="/">OpenDataPhilly</a> and to join the race toward more open data!') else: messages.error(request, '<div style="font-weight:bold;">You have already voted.</div>You may vote once per week, so come back and visit us again on ' + next_vote_date.strftime('%A, %b %d %Y, %I:%M%p') + '. <br><br>Until then, encourage others to visit <a href="/">OpenDataPhilly</a> and to join the race toward more open data!') return redirect('/contest/?sort=vote_count')
release/stubs.min/Tekla/Structures/ModelInternal_parts/dotBooleanPart_t.py
htlcnn/ironpython-stubs
182
12784741
<filename>release/stubs.min/Tekla/Structures/ModelInternal_parts/dotBooleanPart_t.py class dotBooleanPart_t(object): # no doc Boolean=None OperativePart=None Type=None
netdev/vendors/cisco/cisco_asa.py
maliciousgroup/netdev
199
12784744
<reponame>maliciousgroup/netdev """Subclass specific to Cisco ASA""" import re from netdev.logger import logger from netdev.vendors.ios_like import IOSLikeDevice class CiscoASA(IOSLikeDevice): """Class for working with Cisco ASA""" def __init__(self, *args, **kwargs): """ Initialize class for asynchronous working with network devices :param str host: device hostname or ip address for connection :param str username: username for logging to device :param str password: <PASSWORD> for logging to device :param str secret: secret password for privilege mode :param int port: ssh port for connection. Default is 22 :param str device_type: network device type :param known_hosts: file with known hosts. Default is None (no policy). With () it will use default file :param str local_addr: local address for binding source of tcp connection :param client_keys: path for client keys. Default in None. With () it will use default file in OS :param str passphrase: password for encrypted client keys :param float timeout: timeout in second for getting information from channel :param loop: asyncio loop object """ super().__init__(*args, **kwargs) self._multiple_mode = False _disable_paging_command = "terminal pager 0" @property def multiple_mode(self): """ Returning Bool True if ASA in multiple mode""" return self._multiple_mode async def connect(self): """ Async Connection method Using 5 functions: * _establish_connection() for connecting to device * _set_base_prompt() for finding and setting device prompt * _enable() for getting privilege exec mode * _disable_paging() for non interact output in commands * _check_multiple_mode() for checking multiple mode in ASA """ logger.info("Host {}: trying to connect to the device".format(self._host)) await self._establish_connection() await self._set_base_prompt() await self.enable_mode() await self._disable_paging() await self._check_multiple_mode() logger.info("Host {}: Has connected to the device".format(self._host)) async def _set_base_prompt(self): """ Setting two important vars for ASA base_prompt - textual prompt in CLI (usually hostname) base_pattern - regexp for finding the end of command. IT's platform specific parameter For ASA devices base_pattern is "prompt([\/\w]+)?(\(.*?\))?[#|>] """ logger.info("Host {}: Setting base prompt".format(self._host)) prompt = await self._find_prompt() # Cut off prompt from "prompt/context/other" if it exists # If not we get all prompt prompt = prompt[:-1].split("/") prompt = prompt[0] self._base_prompt = prompt delimiters = map(re.escape, type(self)._delimiter_list) delimiters = r"|".join(delimiters) base_prompt = re.escape(self._base_prompt[:12]) pattern = type(self)._pattern self._base_pattern = pattern.format(prompt=base_prompt, delimiters=delimiters) logger.debug("Host {}: Base Prompt: {}".format(self._host, self._base_prompt)) logger.debug("Host {}: Base Pattern: {}".format(self._host, self._base_pattern)) return self._base_prompt async def _check_multiple_mode(self): """Check mode multiple. If mode is multiple we adding info about contexts""" logger.info("Host {}:Checking multiple mode".format(self._host)) out = await self.send_command("show mode") if "multiple" in out: self._multiple_mode = True logger.debug( "Host {}: Multiple mode: {}".format(self._host, self._multiple_mode) )
examples/basic_observer.py
ddunmire/python-bleson
103
12784767
<reponame>ddunmire/python-bleson #!/usr/bin/env python3 import sys from time import sleep from bleson import get_provider, Observer # Get the wait time from the first script argument or default it to 10 seconds WAIT_TIME = int(sys.argv[1]) if len(sys.argv)>1 else 10 def on_advertisement(advertisement): print(advertisement) adapter = get_provider().get_adapter() observer = Observer(adapter) observer.on_advertising_data = on_advertisement observer.start() sleep(WAIT_TIME) observer.stop()
usaspending_api/download/tests/unit/test_zip_file.py
g4brielvs/usaspending-api
217
12784771
<filename>usaspending_api/download/tests/unit/test_zip_file.py import os import zipfile from tempfile import NamedTemporaryFile from usaspending_api.download.filestreaming.zip_file import append_files_to_zip_file def test_append_files_to_zip_file(): with NamedTemporaryFile() as zip_file: with NamedTemporaryFile() as include_file_1: with NamedTemporaryFile() as include_file_2: include_file_1.write(b"this is a test") include_file_1.flush() include_file_2.write(b"this is also a test") include_file_2.flush() append_files_to_zip_file([include_file_1.name, include_file_2.name], zip_file.name) with zipfile.ZipFile(zip_file.name, "r") as zf: assert [z.filename for z in zf.filelist] == [ os.path.basename(include_file_1.name), os.path.basename(include_file_2.name), ]
google/colab/_import_magics.py
figufema/TesteClone
1,521
12784861
<filename>google/colab/_import_magics.py # Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Allow magics to be declared without forcing an import. This module allows us to declare a magic will be available while delaying the import of the associated package. The primary purpose is to avoid importing too many packages at startup, as it complicates package installation for users. Note that importing the original module will *replace* these registrations, as magics are still being registered in their original modules. In addition, the IPython getdoc() function allows us to lazily request help on a magic -- again, requesting help on a specific magic will import the module where that magic resides. For general Python objects or functions, this might be dangerous -- however, magics are special, in that they're not represented by a Python object, so there's no danger that overwriting the name -> function mapping will cause trouble later on. The only user-visible aspect is that the source reference in the help will update from this module to the actual importing module after the first use. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys # IPython requires get_ipython to be available as a local variable wherever you # want to register a magic, in an attempt to prevent you from registering # magics before the IPython magic machinery is loaded. So we need to directly # import the symbol, instead of just the module. from IPython import get_ipython from IPython.core import magic def _load_extension(module): get_ipython().extension_manager.load_extension(module) def _get_extension_magic(name, module, magic_type, magic_module_loader): magic_module_loader(module) m = get_ipython().magics_manager.magics[magic_type][name] if m.__module__ == __name__: raise ValueError('No %s magic named "%s" found in "%s"' % (magic_type, name, module)) return m def _declare_line_magic(name, module, magic_module_loader): """Declare a line magic called name in module.""" # If the module or extension has already been imported, don't overwrite the # existing definition. if module in sys.modules or module in get_ipython().extension_manager.loaded: return def impl(line, **kwargs): return _get_extension_magic(name, module, 'line', magic_module_loader)(line, **kwargs) # pylint: disable=g-long-lambda impl.getdoc = lambda: _get_extension_magic(name, module, 'line', magic_module_loader).__doc__ magic.register_line_magic(name)(impl) def _declare_cell_magic(name, module, magic_module_loader): """Declare a cell magic called name in module.""" # If the module or extension has already been imported, don't overwrite the # existing definition. if module in sys.modules or module in get_ipython().extension_manager.loaded: return def impl(line, cell, **kwargs): return _get_extension_magic(name, module, 'cell', magic_module_loader)(line, cell, **kwargs) # pylint: disable=g-long-lambda impl.getdoc = lambda: _get_extension_magic(name, module, 'cell', magic_module_loader).__doc__ magic.register_cell_magic(name)(impl) def _declare_colabx_magics(): if get_ipython(): _declare_cell_magic('bigquery', 'google.cloud.bigquery', _load_extension)
examples/composite_keys/testdata.py
NeolithEra/Flask-AppBuilder
3,862
12784877
import logging from app import db from app.models import Inventory, Datacenter, Rack, Item import random import string from datetime import datetime log = logging.getLogger(__name__) DC_RACK_MAX = 20 ITEM_MAX = 1000 cities = ["Lisbon", "Porto", "Madrid", "Barcelona", "Frankfurt", "London"] models = ["Server MX", "Server MY", "Server DL380", "Server x440", "Server x460"] datacenters = list() def get_random_name(names_list, size=1): return names_list[random.randrange(0, len(names_list))] def serial_generator(size=6, chars=string.ascii_uppercase + string.digits): return "".join(random.choice(chars) for _ in range(size)) for city in cities: datacenter = Datacenter() datacenter.name = "DC %s" % city datacenter.address = city datacenters.append(datacenter) db.session.add(datacenter) log.info(datacenter) try: db.session.commit() for num in range(1, DC_RACK_MAX): rack = Rack() rack.num = num rack.datacenter = datacenter db.session.add(rack) except Exception as e: log.error("Creating Datacenter: %s", e) db.session.rollback() for i in range(1, ITEM_MAX): item = Item() item.serial_number = serial_generator() item.model = get_random_name(models) db.session.add(item) log.info(item) try: db.session.commit() except Exception as e: log.error("Creating Item: %s", e) db.session.rollback()
fhir/resources/DSTU2/substance.py
cstoltze/fhir.resources
144
12784890
# -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/DSTU2/substance.html Release: DSTU2 Version: 1.0.2 Revision: 7202 """ from typing import List as ListType from pydantic import Field from . import domainresource, fhirtypes from .backboneelement import BackboneElement class Substance(domainresource.DomainResource): """A homogeneous material with a definite composition A homogeneous material with a definite composition. """ resource_type = Field("Substance", const=True) identifier: ListType[fhirtypes.IdentifierType] = Field( None, alias="identifier", title="List of Unique identifier (represented as 'dict' in JSON)", description="Unique identifier for the substance", element_property=True, ) category: ListType[fhirtypes.CodeableConceptType] = Field( None, alias="category", title="List of Type `CodeableConcept` (represented as `dict` in JSON).", description="What class/type of substance this is", element_property=True, ) code: fhirtypes.CodeableConceptType = Field( None, alias="code", title="Type `CodeableConcept` (represented as `dict` in JSON).", description="What substance this is", element_property=True, ) description: fhirtypes.String = Field( None, alias="description", title="Type `String` (represented as `dict` in JSON)", description="Textual description of the substance, comments", element_property=True, ) instance: ListType[fhirtypes.SubstanceInstanceType] = Field( None, alias="instance", title="List of Type `SubstanceInstance` (represented as `dict` in JSON).", description="If this describes a specific package/container of the substance", element_property=True, ) ingredient: ListType[fhirtypes.SubstanceIngredientType] = Field( None, alias="ingredient", title="List of Type `SubstanceIngredient` (represented as `dict` in JSON).", description="Composition information about the substance", element_property=True, ) class SubstanceInstance(BackboneElement): """If this describes a specific package/container of the substance If this describes a specific package/container of the substance. """ resource_type = Field("SubstanceInstance", const=True) identifier: fhirtypes.IdentifierType = Field( None, alias="identifier", title="Identifier of the package/container", description=( "Identifier associated with the package/container" " (usually a label affixed directly)" ), element_property=True, ) expiry: fhirtypes.DateTime = Field( None, alias="expiry", title="When no longer valid to use", description=( "When the substance is no longer valid to use. " "For some substances, a single arbitrary date is used for expiry." ), element_property=True, ) quantity: fhirtypes.QuantityType = Field( None, alias="quantity", title=( "Type `Quantity` referencing `SimpleQuantity` (represented as `dict` in " "JSON)." ), description="Amount of substance in the package", element_property=True, ) class SubstanceIngredient(BackboneElement): """Composition information about the substance A substance can be composed of other substances. """ resource_type = Field("SubstanceIngredient", const=True) quantity: fhirtypes.RatioType = Field( None, alias="quantity", title="Type `Ratio` (represented as `dict` in JSON).", description="Optional amount (concentration)", element_property=True, ) substance: fhirtypes.ReferenceType = Field( None, alias="substance", title=( "`Reference` items referencing `Substance` (represented as `dict` in" " JSON)" ), description="A component of the substance", enum_reference_types=["Substance"], element_property=True, )
fabric_bolt/projects/migrations/0003_auto_20150911_1911.py
jooni22/fabric-bolt
219
12784920
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('hosts', '0002_sshconfig'), ('projects', '0002_auto_20140912_1509'), ] operations = [ migrations.AddField( model_name='configuration', name='value_ssh_key', field=models.ForeignKey(verbose_name=b'Value', blank=True, to='hosts.SSHConfig', null=True), ), migrations.AlterField( model_name='configuration', name='data_type', field=models.CharField(default=b'string', max_length=10, null=True, blank=True, choices=[(b'boolean', b'Boolean'), (b'number', b'Number'), (b'string', b'String'), (b'ssk_key', b'SSH Key')]), ), ]
examples/text_scroll.py
paddywwoof/python-sense-hat
104
12784941
<reponame>paddywwoof/python-sense-hat<gh_stars>100-1000 #!/usr/bin/python from sense_hat import SenseHat sense = SenseHat() sense.set_rotation(180) red = (255, 0, 0) sense.show_message("One small step for Pi!", text_colour=red)