max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
openspeech/modules/add_normalization.py
CanYouImagine/openspeech
207
12778839
<filename>openspeech/modules/add_normalization.py # MIT License # # Copyright (c) 2021 <NAME> and <NAME> and <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch.nn as nn class AddNorm(nn.Module): """ Add & Normalization layer proposed in "Attention Is All You Need". Transformer employ a residual connection around each of the two sub-layers, (Multi-Head Attention & Feed-Forward) followed by layer normalization. """ def __init__(self, sublayer: nn.Module, d_model: int = 512) -> None: super(AddNorm, self).__init__() self.sublayer = sublayer self.layer_norm = nn.LayerNorm(d_model) def forward(self, *args): residual = args[0] outputs = self.sublayer(*args) if isinstance(outputs, tuple): return self.layer_norm(outputs[0] + residual), outputs[1] return self.layer_norm(outputs + residual)
external/iotivity/iotivity_1.2-rel/build_common/iotivityconfig/compiler/default_configuration.py
SenthilKumarGS/TizenRT
1,433
12778905
# ------------------------------------------------------------------------ # Copyright 2015 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------ from configuration import Configuration # Default (very simple) compiler configuration class DefaultConfiguration(Configuration): def __init__(self, context): Configuration.__init__(self, context) # ------------------------------------------------------------ # Return test program to be used when checking for basic C++11 # support. # ------------------------------------------------------------ def _c99_test_program(self): return """ // Some headers found in C99. #include <stdbool.h> #include <stdint.h> int main() { struct foo { bool b; // C99 type int i; uint64_t q; // C99 type }; // Designated initializer. struct foo bar = { .b = false, .q = UINT64_MAX }; // Implicitly initialized field. return bar.i != 0; } """ # -------------------------------------------------------------- # Get list of flags that could potentially enable C99 support. # # The default configuration assumes that no flag is needed to # enable C99 support. # -------------------------------------------------------------- def _c99_flags(self): return [] # ------------------------------------------------------------ # Return test program to be used when checking for basic C++11 # support. # ------------------------------------------------------------ def _cxx11_test_program(self): return """ int main() { int x = 3210; auto f = [x](){ return x; }; return f() != x; } """ # -------------------------------------------------------------- # Get list of flags that could potentially enable C++11 support. # # The default configuration assumes that no flag is needed to # enable C++11 support. # -------------------------------------------------------------- def _cxx11_flags(self): return []
tests/test_util.py
magicalyak/blinkpy
272
12778913
<gh_stars>100-1000 """Test various api functions.""" import unittest from unittest import mock import time from blinkpy.helpers.util import json_load, Throttle, time_to_seconds, gen_uid class TestUtil(unittest.TestCase): """Test the helpers/util module.""" def setUp(self): """Initialize the blink module.""" def tearDown(self): """Tear down blink module.""" def test_throttle(self): """Test the throttle decorator.""" calls = [] @Throttle(seconds=5) def test_throttle(): calls.append(1) now = int(time.time()) now_plus_four = now + 4 now_plus_six = now + 6 test_throttle() self.assertEqual(1, len(calls)) # Call again, still shouldn't fire test_throttle() self.assertEqual(1, len(calls)) # Call with force test_throttle(force=True) self.assertEqual(2, len(calls)) # Call without throttle, shouldn't fire test_throttle() self.assertEqual(2, len(calls)) # Fake time as 4 seconds from now with mock.patch("time.time", return_value=now_plus_four): test_throttle() self.assertEqual(2, len(calls)) # Fake time as 6 seconds from now with mock.patch("time.time", return_value=now_plus_six): test_throttle() self.assertEqual(3, len(calls)) def test_throttle_per_instance(self): """Test that throttle is done once per instance of class.""" class Tester: """A tester class for throttling.""" def test(self): """Test the throttle.""" return True tester = Tester() throttled = Throttle(seconds=1)(tester.test) self.assertEqual(throttled(), True) self.assertEqual(throttled(), None) def test_throttle_multiple_objects(self): """Test that function is throttled even if called by multiple objects.""" @Throttle(seconds=5) def test_throttle_method(): return True class Tester: """A tester class for throttling.""" def test(self): """Test function for throttle.""" return test_throttle_method() tester1 = Tester() tester2 = Tester() self.assertEqual(tester1.test(), True) self.assertEqual(tester2.test(), None) def test_throttle_on_two_methods(self): """Test that throttle works for multiple methods.""" class Tester: """A tester class for throttling.""" @Throttle(seconds=3) def test1(self): """Test function for throttle.""" return True @Throttle(seconds=5) def test2(self): """Test function for throttle.""" return True tester = Tester() now = time.time() now_plus_4 = now + 4 now_plus_6 = now + 6 self.assertEqual(tester.test1(), True) self.assertEqual(tester.test2(), True) self.assertEqual(tester.test1(), None) self.assertEqual(tester.test2(), None) with mock.patch("time.time", return_value=now_plus_4): self.assertEqual(tester.test1(), True) self.assertEqual(tester.test2(), None) with mock.patch("time.time", return_value=now_plus_6): self.assertEqual(tester.test1(), None) self.assertEqual(tester.test2(), True) def test_time_to_seconds(self): """Test time to seconds conversion.""" correct_time = "1970-01-01T00:00:05+00:00" wrong_time = "1/1/1970 00:00:03" self.assertEqual(time_to_seconds(correct_time), 5) self.assertFalse(time_to_seconds(wrong_time)) def test_json_load_bad_data(self): """Check that bad file is handled.""" self.assertEqual(json_load("fake.file"), None) with mock.patch("builtins.open", mock.mock_open(read_data="")): self.assertEqual(json_load("fake.file"), None) def test_gen_uid(self): """Test gen_uid formatting.""" val1 = gen_uid(8) val2 = gen_uid(8, uid_format=True) self.assertEqual(len(val1), 16) self.assertTrue(val2.startswith("BlinkCamera_")) val2_cut = val2.split("_") val2_split = val2_cut[1].split("-") self.assertEqual(len(val2_split[0]), 8) self.assertEqual(len(val2_split[1]), 4) self.assertEqual(len(val2_split[2]), 4) self.assertEqual(len(val2_split[3]), 4) self.assertEqual(len(val2_split[4]), 12)
Packs/Imperva_WAF/Integrations/ImpervaWAF/ImpervaWAF.py
diCagri/content
799
12778944
import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * ''' IMPORTS ''' import json import requests import traceback # Disable insecure warnings requests.packages.urllib3.disable_warnings() ''' CONSTANTS ''' INTEGRATION_CONTEXT_NAME = 'ImpervaWAF' class Client(BaseClient): """ Client will implement the service API, and should not contain any Demisto logic. Should only do requests and return data. """ session_id = '' def do_request(self, method, url_suffix, json_data=None): if not self.session_id: self.login() res = self._http_request(method, f'SecureSphere/api/v1/{url_suffix}', json_data=json_data, headers={'Cookie': self.session_id}, ok_codes=(200, 401, 406), resp_type='response') if res.status_code == 401: self.login() res = self._http_request(method, f'SecureSphere/api/v1/{url_suffix}', json_data=json_data, headers={'Cookie': self.session_id}, ok_codes=(200, 401, 406), resp_type='response') if res.text: res = res.json() else: res = {} extract_errors(res) return res def login(self): res = self._http_request('POST', 'SecureSphere/api/v1/auth/session', auth=self._auth) extract_errors(res) self.session_id = res.get('session-id') def get_ip_group_entities(self, group_name, table_name): raw_res = self.do_request('GET', f'conf/ipGroups/{group_name}') entries = [] for entry in raw_res.get('entries'): entries.append({'Type': entry.get('type'), 'IpAddressFrom': entry.get('ipAddressFrom'), 'IpAddressTo': entry.get('ipAddressTo'), 'NetworkAddress': entry.get('networkAddress'), 'CidrMask': entry.get('cidrMask')}) human_readable = tableToMarkdown(table_name, entries, removeNull=True, headers=['Type', 'IpAddressFrom', 'IpAddressTo', 'NetworkAddress', 'CidrMask']) entry_context = {f'{INTEGRATION_CONTEXT_NAME}.IpGroup(val.Name===obj.Name)': {'Name': group_name, 'Entries': entries}} return human_readable, entry_context, raw_res def get_custom_policy_outputs(self, policy_name, table_name): raw_res = self.do_request('GET', f'conf/policies/security/webServiceCustomPolicies/{policy_name}') policy = {'Name': policy_name, 'Enabled': raw_res.get('enabled'), 'OneAlertPerSession': raw_res.get('oneAlertPerSession'), 'DisplayResponsePage': raw_res.get('displayResponsePage'), 'Severity': raw_res.get('severity'), 'Action': raw_res.get('action'), 'FollowedAction': raw_res.get('followedAction'), 'ApplyTo': raw_res.get('applyTo'), 'MatchCriteria': raw_res.get('matchCriteria')} hr_policy = policy.copy() del hr_policy['MatchCriteria'] del hr_policy['ApplyTo'] human_readable = tableToMarkdown(table_name, hr_policy, removeNull=True) if raw_res.get('applyTo'): human_readable += '\n\n' + tableToMarkdown('Services to apply the policy to', raw_res.get('applyTo'), removeNull=True) for match in raw_res.get('matchCriteria', []): tmp_match = match.copy() operation = match['operation'] match_type = match['type'] # generate human readable for sourceIpAddresses type if match_type == 'sourceIpAddresses': if tmp_match.get('userDefined'): for i, element in enumerate(tmp_match['userDefined']): tmp_match['userDefined'][i] = {'IP Address': tmp_match['userDefined'][i]} human_readable += '\n\n' + tableToMarkdown(f'Match operation: {operation}\n Source IP addresses:', tmp_match['userDefined'], removeNull=True) if tmp_match.get('ipGroups'): for i, element in enumerate(tmp_match['ipGroups']): tmp_match['ipGroups'][i] = {'Group name': tmp_match['ipGroups'][i]} human_readable += '\n\n' + tableToMarkdown(f'Match operation: {operation}\n IP Groups:', tmp_match['ipGroups'], removeNull=True) # generate human readable for sourceGeolocation type elif match_type == 'sourceGeolocation': if tmp_match.get('values'): for i, element in enumerate(tmp_match['values']): tmp_match['values'][i] = {'Country name': tmp_match['values'][i]} human_readable += '\n\n' + tableToMarkdown(f'Match operation: {operation}\n Countries to match:', tmp_match['values'], removeNull=True) entry_context = {f'{INTEGRATION_CONTEXT_NAME}.CustomWebPolicy(val.Name===obj.Name)': policy} return human_readable, entry_context, raw_res def extract_errors(res): if not isinstance(res, list) and res.get('errors'): error_message = '' for err in res['errors']: error_message += f'error-code: {err.get("error-code")}, description: {err.get("description")}' raise Exception(error_message) def generate_policy_data_body(args): severity = args.get('severity') action = args.get('action') followed_action = args.get('followed-action') body = {} if args.get('enabled'): body['enabled'] = args['enabled'] == 'True' if args.get('one-alert-per-session'): body['oneAlertPerSession'] = args['one-alert-per-session'] == 'True' if args.get('display-response-page'): body['displayResponsePage'] = args['display-response-page'] == 'True' if severity: body['severity'] = severity if action: body['action'] = action if followed_action: body['followedAction'] = followed_action return body def generate_match_criteria(body, args): geo_location_criteria_operation = args.get('geo-location-criteria-operation') ip_addresses_criteria_operation = args.get('ip-addresses-criteria-operation') ip_groups = args.get('ip-groups', '') ip_addreses = args.get('ip-addresses', '') country_names = args.get('country-names', '') match_criteria = [] if geo_location_criteria_operation: if not country_names: raise Exception('country-names argument is empty') geo_location_match_item = {'type': 'sourceGeolocation', 'operation': geo_location_criteria_operation, 'values': country_names.split(',')} match_criteria.append(geo_location_match_item) if ip_addresses_criteria_operation: if not ip_groups and not ip_addreses: raise Exception('ip-groups and ip-addresses arguments are empty, please fill at least one of them') ip_addresses_match_item = {'type': 'sourceIpAddresses', 'operation': ip_addresses_criteria_operation} if ip_groups: ip_addresses_match_item['ipGroups'] = ip_groups.split(',') if ip_addreses: ip_addresses_match_item['userDefined'] = ip_addreses.split(',') match_criteria.append(ip_addresses_match_item) body['matchCriteria'] = match_criteria return body def generate_ip_groups_entries(args): entry_type = args.get('entry-type') ip_from = args.get('ip-address-from') ip_to = args.get('ip-address-to') network_address = args.get('network-address') cidr_mask = args.get('cidr-mask') operation = args.get('operation') json_entries = args.get('json-entries') if not json_entries: entry = {} if entry_type == 'single': entry['ipAddressFrom'] = ip_from elif entry_type == 'range': entry['ipAddressFrom'] = ip_from entry['ipAddressTo'] = ip_to elif entry_type == 'network': entry['networkAddress'] = network_address entry['cidrMask'] = cidr_mask else: raise Exception('entry-type argument is invalid') entry['type'] = entry_type entry['operation'] = operation body = {'entries': [entry]} else: try: json_entries = json.loads(json_entries) except Exception: raise Exception(f'Failed to parse json-entries as JSON data, 'f' received object:\n{json_entries}') body = {'entries': json_entries} return body @logger def test_module(client, args): raw_res = client.do_request('GET', 'conf/sites') if raw_res.get('sites'): demisto.results('ok') @logger def ip_group_list_command(client, args): raw_res = client.do_request('GET', 'conf/ipGroups') groups = [] if raw_res.get('names'): groups = raw_res['names'] for i, element in enumerate(groups): groups[i] = {'Name': groups[i]} human_readable = tableToMarkdown('IP groups', groups, removeNull=True) entry_context = {f'{INTEGRATION_CONTEXT_NAME}.IpGroup(val.Name===obj.Name)': groups} return_outputs(human_readable, entry_context, raw_res) @logger def ip_group_list_entries_command(client, args): group_name = args.get('ip-group-name') human_readable, entry_context, raw_res = \ client.get_ip_group_entities(group_name, f'IP group entries for {group_name}') return_outputs(human_readable, entry_context, raw_res) @logger def ip_group_remove_entries_command(client, args): group_name = args.get('ip-group-name') raw_res = client.do_request('DELETE', f'conf/ipGroups/{group_name}/clear') return_outputs(f'The IP group {group_name} is now empty', {}, raw_res) @logger def sites_list_command(client, args): raw_res = client.do_request('GET', 'conf/sites') sites = [{'Name': site} for site in raw_res.get('sites', [])] human_readable = tableToMarkdown('All sites in the system', sites, removeNull=True) entry_context = {f'{INTEGRATION_CONTEXT_NAME}.Site(val.Name===obj.Name)': sites} return_outputs(human_readable, entry_context, raw_res) @logger def server_groups_list_command(client, args): site = args.get('site-name') raw_res = client.do_request('GET', f'conf/serverGroups/{site}') server_groups = [] if raw_res.get('server-groups'): server_groups = raw_res['server-groups'] for i, element in enumerate(server_groups): server_groups[i] = {'Name': server_groups[i], 'SiteName': site} human_readable = tableToMarkdown(f'Server groups in {site}', server_groups, removeNull=True) entry_context = {f'{INTEGRATION_CONTEXT_NAME}.ServerGroup(val.Name===obj.Name)': server_groups} return_outputs(human_readable, entry_context, raw_res) @logger def server_group_policies_list_command(client, args): site = args.get('site-name') server_group = args.get('server-group-name') raw_res = client.do_request('GET', f'conf/serverGroups/{site}/{server_group}/securityPolicies') policies = [] for policy in raw_res: policies.append({'System': policy.get('system'), 'PolicyName': policy.get('policy-name'), 'PolicyType': policy.get('policy-type'), 'ServerGroup': server_group, 'SiteName': site}) human_readable = tableToMarkdown(f'Policies for {server_group}', policies, removeNull=True) entry_context = {f'{INTEGRATION_CONTEXT_NAME}.SecurityPolicy(val.PolicyName===obj.PolicyName)': policies} return_outputs(human_readable, entry_context, raw_res) @logger def custom_policy_list_command(client, args): raw_res = client.do_request('GET', 'conf/policies/security/webServiceCustomPolicies') policies = [] if raw_res.get('customWebPolicies'): policies = raw_res['customWebPolicies'] for i, element in enumerate(policies): policies[i] = {'Name': policies[i]} human_readable = tableToMarkdown('Custom web policies', policies, removeNull=True) entry_context = {f'{INTEGRATION_CONTEXT_NAME}.CustomWebPolicy(val.Name===obj.Name)': policies} return_outputs(human_readable, entry_context, raw_res) @logger def get_custom_policy_command(client, args): policy_name = args.get('policy-name') human_readable, entry_context, raw_res = \ client.get_custom_policy_outputs(policy_name, f'Policy data for {policy_name}') return_outputs(human_readable, entry_context, raw_res) @logger def create_ip_group_command(client, args): group_name = args.get('group-name') body = generate_ip_groups_entries(args) client.do_request('POST', f'conf/ipGroups/{group_name}', json_data=body) human_readable, entry_context, raw_res = \ client.get_ip_group_entities(group_name, f'Group {group_name} created successfully') return_outputs(human_readable, entry_context, raw_res) @logger def update_ip_group_command(client, args): group_name = args.get('group-name') body = generate_ip_groups_entries(args) client.do_request('PUT', f'conf/ipGroups/{group_name}/data', json_data=body) human_readable, entry_context, raw_res = \ client.get_ip_group_entities(group_name, f'Group {group_name} updated successfully') return_outputs(human_readable, entry_context, raw_res) @logger def delete_ip_group_command(client, args): group_name = args.get('group-name') raw_res = client.do_request('DELETE', f'conf/ipGroups/{group_name}') return_outputs(f'Group {group_name} deleted successfully', {}, raw_res) @logger def create_custom_policy_command(client, args): policy_name = args.get('policy-name') site = args.get('site-name-to-apply') server_group = args.get('server-group-name-to-apply') web_service = args.get('web-service-name-to-apply') match_criteria_json = args.get('match-criteria-json') body = generate_policy_data_body(args) if match_criteria_json and not isinstance(match_criteria_json, dict): try: match_criteria_json = json.loads(match_criteria_json) except Exception: raise Exception(f'Failed to parse match-criteria-json as JSON data,' f' received object:\n{match_criteria_json}') body['matchCriteria'] = match_criteria_json else: body = generate_match_criteria(body, args) body['applyTo'] = [{'siteName': site, 'serverGroupName': server_group, 'webServiceName': web_service}] client.do_request('POST', f'conf/policies/security/webServiceCustomPolicies/{policy_name}', json_data=body) human_readable, entry_context, raw_res = \ client.get_custom_policy_outputs(policy_name, f'Policy {policy_name} created successfully') return_outputs(human_readable, entry_context, raw_res) @logger def update_custom_policy_command(client, args): policy_name = args.get('policy-name') site = args.get('site-name-to-apply') server_group = args.get('server-group-name-to-apply', '') web_service = args.get('web-service-name-to-apply', '') apply_operation = args.get('apply-operation', '') match_criteria_json = args.get('match-criteria-json') body = generate_policy_data_body(args) if match_criteria_json and not isinstance(match_criteria_json, dict): try: match_criteria_json = json.loads(match_criteria_json) except Exception: raise DemistoException(f'Failed to parse match-criteria-json as JSON data,' f' received object:\n{match_criteria_json}') body['matchCriteria'] = match_criteria_json else: body = generate_match_criteria(body, args) if apply_operation: body['applyTo'] = [{'operation': apply_operation, 'siteName': site, 'serverGroupName': server_group, 'webServiceName': web_service}] client.do_request('PUT', f'conf/policies/security/webServiceCustomPolicies/{policy_name}', json_data=body) human_readable, entry_context, raw_res = \ client.get_custom_policy_outputs(policy_name, f'Policy {policy_name} updated successfully') return_outputs(human_readable, entry_context, raw_res) @logger def delete_custom_policy_command(client, args): policy_name = args.get('policy-name') raw_res = client.do_request('DELETE', f'conf/policies/security/webServiceCustomPolicies/{policy_name}') return_outputs(f'Policy {policy_name} deleted successfully', {}, raw_res) def main(): params = demisto.params() # get the service API url base_url = params.get('url') verify_certificate = not params.get('insecure', False) proxy = params.get('proxy', False) credentials = params.get('credentials') username = credentials['identifier'] if credentials else '' password = credentials['password'] if credentials else '' LOG(f'Command being called is {demisto.command()}') try: client = Client( base_url=base_url, verify=verify_certificate, auth=(username, password), proxy=proxy) command = demisto.command() args = demisto.args() commands = {'test-module': test_module, 'imperva-waf-ip-group-list': ip_group_list_command, 'imperva-waf-ip-group-list-entries': ip_group_list_entries_command, 'imperva-waf-ip-group-remove-entries': ip_group_remove_entries_command, 'imperva-waf-sites-list': sites_list_command, 'imperva-waf-server-group-list': server_groups_list_command, 'imperva-waf-server-group-list-policies': server_group_policies_list_command, 'imperva-waf-web-service-custom-policy-list': custom_policy_list_command, 'imperva-waf-web-service-custom-policy-get': get_custom_policy_command, 'imperva-waf-ip-group-create': create_ip_group_command, 'imperva-waf-ip-group-update-entries': update_ip_group_command, 'imperva-waf-ip-group-delete': delete_ip_group_command, 'imperva-waf-web-service-custom-policy-create': create_custom_policy_command, 'imperva-waf-web-service-custom-policy-update': update_custom_policy_command, 'imperva-waf-web-service-custom-policy-delete': delete_custom_policy_command, } if command in commands: commands[command](client, args) else: raise NotImplementedError(f'Command "{command}" is not implemented.') # Log exceptions except Exception as e: return_error(f'Unexpected error: {str(e)}', error=traceback.format_exc()) if __name__ in ('__main__', '__builtin__', 'builtins'): main()
example/trade/post_batch_create_order.py
bailzx5522/huobi_Python
611
12778947
<gh_stars>100-1000 import time from huobi.client.trade import TradeClient from huobi.constant import * from huobi.utils import * trade_client = TradeClient(api_key=g_api_key, secret_key=g_secret_key) client_order_id_header = str(int(time.time())) symbol_eosusdt = "eosusdt" client_order_id_eos_01 = client_order_id_header + symbol_eosusdt + "01" client_order_id_eos_02 = client_order_id_header + symbol_eosusdt + "02" client_order_id_eos_03 = client_order_id_header + symbol_eosusdt + "03" buy_limit_eos_01 = { "account_id":g_account_id, "symbol":symbol_eosusdt, "order_type":OrderType.BUY_LIMIT, "source":OrderSource.API, "amount":50, "price": 0.12, "client_order_id" : client_order_id_eos_01 } buy_limit_eos_02 = { "account_id":g_account_id, "symbol":symbol_eosusdt, "order_type":OrderType.BUY_LIMIT, "source": OrderSource.API, "amount":7, "price": 0.80, "client_order_id" : client_order_id_eos_02 } buy_limit_eos_03 = { "account_id":g_account_id, "symbol":symbol_eosusdt, "order_type":OrderType.BUY_LIMIT, "source": OrderSource.API, "amount":20, "price": 0.252, "client_order_id" : client_order_id_eos_03 } order_config_list = [ buy_limit_eos_01, buy_limit_eos_02, buy_limit_eos_03 ] create_result = trade_client.batch_create_order(order_config_list=order_config_list) LogInfo.output_list(create_result) order_id_list = [] if create_result and len(create_result): for item in create_result: order_id_list.append(item.order_id) result = trade_client.cancel_orders(symbol_eosusdt, order_id_list) result.print_object()
evosax/experimental/decodings/random.py
RobertTLange/evosax
102
12778956
import jax import chex from typing import Union, Optional from .decoder import Decoder from ...utils import ParameterReshaper class RandomDecoder(Decoder): def __init__( self, num_encoding_dims: int, placeholder_params: Union[chex.ArrayTree, chex.Array], rng: chex.PRNGKey = jax.random.PRNGKey(0), rademacher: bool = False, identity: bool = False, n_devices: Optional[int] = None, ): super().__init__( num_encoding_dims, placeholder_params, identity, n_devices ) self.rademacher = rademacher # Instantiate base reshaper class self.base_reshaper = ParameterReshaper( placeholder_params, identity, n_devices ) # Sample a random matrix - Gaussian or Rademacher (+1/-1) if not self.rademacher: self.project_matrix = jax.random.normal( rng, (self.num_encoding_dims, self.base_reshaper.total_params) ) else: self.project_matrix = jax.random.rademacher( rng, (self.num_encoding_dims, self.base_reshaper.total_params) ) def reshape(self, x: chex.Array) -> chex.ArrayTree: """Perform reshaping for random projection case.""" # 1. Project parameters to raw dimensionality using pre-sampled matrix project_x = ( x @ self.project_matrix ) # (popsize, num_enc_dim) x (num_enc_dim, num_dims) # 2. Reshape using base reshaper class x_reshaped = self.base_reshaper.reshape(project_x) return x_reshaped def reshape_single(self, x: chex.Array) -> chex.ArrayTree: """Reshape a single flat vector using random projection matrix.""" x_re = x.reshape(1, self.num_encoding_dims) # 1. Project parameters to raw dimensionality using pre-sampled matrix project_x = (x_re @ self.project_matrix).squeeze() # 2. Reshape using base reshaper class x_reshaped = self.base_reshaper.reshape_single(project_x) return x_reshaped
splashgen/components/CTAButton.py
ndejong/splashgen
246
12778993
from splashgen import Component class CTAButton(Component): def __init__(self, link: str, text: str) -> None: self.link = link self.text = text def render(self) -> str: return f'<a href="{self.link}" class="btn btn-primary btn-lg px-4">{self.text}</a>'
myia/operations/macro_embed.py
strint/myia
222
12779031
"""Implementation of the 'embed' operation.""" from ..lib import Constant, SymbolicKeyInstance, macro, sensitivity_transform @macro async def embed(info, x): """Return a constant that embeds the identity of the input node.""" typ = sensitivity_transform(await x.get()) key = SymbolicKeyInstance(x.node, typ) return Constant(key) __operation_defaults__ = { "name": "embed", "registered_name": "embed", "mapping": embed, "python_implementation": None, }
scripts/tldr_analyze_nuggets.py
allenai/scitldr
628
12779035
""" Some analysis of informational content of TLDR-Auth and TLDR-PR """ import os import csv from collections import Counter, defaultdict INFILE = 'tldr_analyze_nuggets/tldr_auth_pr_gold_nuggets_2020-03-31.csv' # Q1: How many nuggets do TLDRs contain? # A: Interesting, both author and PR have nearly identical distributions: # From most to least common: 3 nuggets -> 2 nuggets -> 4 nuggets -> 1 nugget -> ... # Auth proportions: (34%) (26%) (18%) (11%) # PR proportions: (32%) (30%) (26%) ( 9%) author_num_nuggets_to_count = {i: 0 for i in range(0,7)} pr_num_nuggets_to_count = {i: 0 for i in range(0,7)} with open(INFILE) as f_in: reader = csv.DictReader(f_in) for row in reader: num_nuggets = sum(map(int, [row['area_field_topic'], row['problem_motivation'], row['mode_of_contrib'], row['details_descrip'], row['results_findings'], row['value_signif']])) if row['auth_pr'] == 'auth_gold': author_num_nuggets_to_count[num_nuggets] += 1 if row['auth_pr'] == 'pr_gold': pr_num_nuggets_to_count[num_nuggets] += 1 print({k: f'{100*v/76:.2f}' for k, v in author_num_nuggets_to_count.items()}) print({k: f'{100*v/76:.2f}' for k, v in pr_num_nuggets_to_count.items()}) # Q2: What are the most common TLDR templates? # A: Interesting, the top 2 templates (total 42 occurrences) are same between Authors and PRs. # a) (area_field_topic, mode_of_contrib, details_descrip) # b) (area_field_topic, mode_of_contrib) # After that, next 3 starts deviating a bit, but still with the same base: # authors = (area_field_topic, mode_of_contrib, results_findings) # (area_field_topic, problem_motivation, mode_of_contrib) # (area_field_topic, mode_of_contrib, details_descrip, value_signif) # pr = (area_field_topic, problem_motivation, mode_of_contrib, details_descrip) # = (area_field_topic, details_descrip) # = (area_field_topic, mode_of_contrib, results_findings) # same as top 3rd in Auth author_template_to_count = Counter() pr_template_to_count = Counter() with open(INFILE) as f_in: reader = csv.DictReader(f_in) for row in reader: template = (row['area_field_topic'], row['problem_motivation'], row['mode_of_contrib'], row['details_descrip'], row['results_findings'], row['value_signif']) if row['auth_pr'] == 'auth_gold': author_template_to_count[template] += 1 if row['auth_pr'] == 'pr_gold': pr_template_to_count[template] += 1 print(author_template_to_count.most_common()) print(pr_template_to_count.most_common()) # Q3: How often does 'area_field_topic' and 'mode_of_contrib' co-occur? # n_auth = 48/76 = 63% # n_pr = 54/76 = 71% n_auth = 0 n_pr = 0 with open(INFILE) as f_in: reader = csv.DictReader(f_in) for row in reader: if row['area_field_topic'] == '1' and row['mode_of_contrib'] == '1': if row['auth_pr'] == 'auth_gold': n_auth += 1 if row['auth_pr'] == 'pr_gold': n_pr += 1 # Q4: Find examples with exactly the same nuggets but different styles # # H1-IBSgMz # B16yEqkCZ # SySpa-Z0Z # rJegl2C9K7 # HJWpQCa7z # rkgpCoRctm # rkxkHnA5tX # B1e9csRcFm # r1kj4ACp- # Hk91SGWR- # r1GaAjRcF7 # SkGMOi05FQ # pid_to_templates = defaultdict(set) with open(INFILE) as f_in: reader = csv.DictReader(f_in) for row in reader: template = (row['area_field_topic'], row['problem_motivation'], row['mode_of_contrib'], row['details_descrip'], row['results_findings'], row['value_signif']) pid_to_templates[row['paper_id']].add(template) for pid, templates in pid_to_templates.items(): if len(templates) == 1: print(pid)
SubredditBirthdays/sb.py
voussoir/redd
444
12779036
import argparse import bot3 import datetime import praw3 as praw import random import sqlite3 import string import subprocess import sys import time import tkinter import traceback import types from voussoirkit import betterhelp from voussoirkit import mutables from voussoirkit import operatornotify from voussoirkit import pipeable from voussoirkit import sqlhelpers from voussoirkit import vlogging log = vlogging.getLogger(__name__, 'sb') USERAGENT = ''' /u/GoldenSights SubredditBirthdays data collection: Gathering the creation dates of subreddits for visualization. More at https://github.com/voussoir/reddit/tree/master/SubredditBirthdays '''.replace('\n', ' ').strip() LOWERBOUND_STR = '2qh0j' LOWERBOUND_INT = 4594339 FORMAT_MEMBER = '{idstr:>5s}, {human}, {nsfw}, {name:<25s} {subscribers:>10,}' FORMAT_MESSAGE_NEW = 'New: {idstr:>5s} : {human} : {nsfw} : {name} : {subscribers}' FORMAT_MESSAGE_UPDATE = 'Upd: {idstr:>5s} : {human} : {nsfw} : {name} : {subscribers} ({subscriber_diff})' RANKS_UP_TO = 20000 # For the files sorted by subscriber count, display ranks up to this many. GOODCHARS = string.ascii_letters + string.digits + '_' DB_INIT = ''' BEGIN; -------------------------------------------------------------------------------- CREATE TABLE IF NOT EXISTS subreddits( idint INT, idstr TEXT, created INT, human TEXT, name TEXT, nsfw INT, subscribers INT, jumble INT, subreddit_type INT, submission_type INT, last_scanned INT ); CREATE INDEX IF NOT EXISTS index_subreddits_idstr ON subreddits(idstr); CREATE INDEX IF NOT EXISTS index_subreddits_name ON subreddits(name); CREATE INDEX IF NOT EXISTS index_subreddits_created ON subreddits(created); CREATE INDEX IF NOT EXISTS index_subreddits_subscribers ON subreddits(subscribers); --CREATE INDEX IF NOT EXISTS index_subreddits_idint ON subreddits(idint); --CREATE INDEX IF NOT EXISTS index_subreddits_last_scanned ON subreddits(last_scanned); -------------------------------------------------------------------------------- CREATE TABLE IF NOT EXISTS suspicious( idint INT, idstr TEXT, name TEXT, subscribers INT, noticed INT ); -------------------------------------------------------------------------------- CREATE TABLE IF NOT EXISTS popular( idstr TEXT, last_seen INT ); CREATE INDEX IF NOT EXISTS index_popular_idstr on popular(idstr); CREATE INDEX IF NOT EXISTS index_popular_last_seen on popular(last_seen); -------------------------------------------------------------------------------- CREATE TABLE IF NOT EXISTS jumble( idstr TEXT, last_seen INT ); CREATE INDEX IF NOT EXISTS index_jumble_idstr on jumble(idstr); CREATE INDEX IF NOT EXISTS index_jumble_last_seen on jumble(last_seen); -------------------------------------------------------------------------------- COMMIT; ''' sql = sqlite3.connect('D:\\git\\reddit\\subredditbirthdays\\sb.db') sqlhelpers.executescript(conn=sql, script=DB_INIT) cur = sql.cursor() # These numbers are used for interpreting the tuples that come from SELECT SQL_SUBREDDIT_COLUMNS = [ 'idint', 'idstr', 'created', 'human', 'name', 'nsfw', 'subscribers', 'subreddit_type', 'submission_type', 'last_scanned', ] SQL_SUSPICIOUS_COLUMNS = [ 'idint', 'idstr', 'name', 'subscribers', 'noticed', ] SQL_SUBREDDIT = {key: index for (index, key) in enumerate(SQL_SUBREDDIT_COLUMNS)} noinfolist = [] monthnumbers = { 'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12', } SUBREDDIT_TYPE = { 'public': 0, 'restricted': 1, 'private': 2, 'archived': 3, None: 4, 'employees_only': 5, 'gold_restricted': 6, 'gold_only': 7, 'user': 8, } SUBMISSION_TYPE = { 'any': 0, 'link': 1, 'self': 2, None: 3, } SUBREDDIT_TYPE_REVERSE = {v: k for (k, v) in SUBREDDIT_TYPE.items()} SUBMISSION_TYPE_REVERSE = {v: k for (k, v) in SUBMISSION_TYPE.items()} SUBMISSION_OBJ = praw.objects.Submission SUBREDDIT_OBJ = praw.objects.Subreddit COMMENT_OBJ = praw.objects.Comment r = None def login(): global r print('Logging in.') r = praw.Reddit(USERAGENT) bot3.login(r) def base36encode(number, alphabet='0123456789abcdefghijklmnopqrstuvwxyz'): '''Converts an integer to a base36 string.''' if not isinstance(number, (int)): raise TypeError('number must be an integer') base36 = '' sign = '' if number < 0: sign = '-' number = -number if 0 <= number < len(alphabet): return sign + alphabet[number] while number != 0: number, i = divmod(number, len(alphabet)) base36 = alphabet[i] + base36 return sign + base36 def base36decode(number): return int(number, 36) def b36(i): if type(i) == int: return base36encode(i) if type(i) == str: return base36decode(i) def chunklist(inputlist, chunksize): if len(inputlist) < chunksize: return [inputlist] else: outputlist = [] while len(inputlist) > 0: outputlist.append(inputlist[:chunksize]) inputlist = inputlist[chunksize:] return outputlist def completesweep(sleepy=0, orderby='subscribers desc', query=None): cur = sql.cursor() if query is None: if orderby is None: cur.execute('SELECT idstr FROM subreddits WHERE created > 0') else: cur.execute('SELECT idstr FROM subreddits WHERE created > 0 ORDER BY %s' % orderby) elif query == 'restricted': cur.execute('SELECT idstr FROM subreddits WHERE created > 0 AND subreddit_type != 0 ORDER BY subscribers DESC') else: cur.execute(query) try: while True: hundred = (cur.fetchone() for x in range(100)) hundred = (row for row in hundred if row is not None) hundred = [idstr for (idstr,) in hundred] if len(hundred) == 0: break for retry in range(20): try: processmega(hundred, commit=False) break except Exception: traceback.print_exc() time.sleep(sleepy) except KeyboardInterrupt: pass except Exception: traceback.print_exc() sql.commit() def fetchgenerator(cur): while True: fetch = cur.fetchone() if fetch is None: break yield fetch def get_jumble_subreddits(): cur.execute('SELECT idstr FROM jumble') fetch = [x[0] for x in cur.fetchall()] fetch = ['\'%s\'' % x for x in fetch] fetch = '(' + ','.join(fetch) + ')' query = 'SELECT * FROM subreddits WHERE idstr IN %s' % fetch cur.execute(query) subreddits = cur.fetchall() #subreddits = [] #for subreddit in fetch: # cur.execute('SELECT * FROM subreddits WHERE idstr == ?', [subreddit]) # subreddits.append(cur.fetchone()) return subreddits def get_newest_sub(): brandnewest = list(r.get_new_subreddits(limit=1))[0] return brandnewest.id def get_now(): return datetime.datetime.now(datetime.timezone.utc).timestamp() def humanize(timestamp): day = datetime.datetime.utcfromtimestamp(timestamp) human = datetime.datetime.strftime(day, "%b %d %Y %H:%M:%S UTC") return human def modernize(limit=None): cur.execute('SELECT * FROM subreddits ORDER BY created DESC LIMIT 1') finalitem = cur.fetchone() print('Current final item:') print(finalitem[SQL_SUBREDDIT['idstr']], finalitem[SQL_SUBREDDIT['human']], finalitem[SQL_SUBREDDIT['name']]) finalid = finalitem[SQL_SUBREDDIT['idint']] print('Newest item:') newestid = get_newest_sub() print(newestid) newestid = b36(newestid) if limit is not None: newestid = min(newestid, finalid+limit-1) modernlist = [b36(x) for x in range(finalid, newestid+1)] if len(modernlist) > 0: processmega(modernlist, commit=False) sql.commit() def modernize_forever(limit=10000): while True: try: modernize(limit=limit) except Exception: log.warning(traceback.format_exc()) time.sleep(300) def modsfromid(subid): if 't5_' not in subid: subid = 't5_' + subid subreddit = r.get_info(thing_id=subid) mods = list(subreddit.get_moderators()) for m in mods: print(m) return mods def normalize_subreddit_object(thing): ''' Given a string, Subreddit, Submission, or Comment object, return a Subreddit object. ''' if isinstance(thing, SUBREDDIT_OBJ): return thing if isinstance(thing, str): return r.get_subreddit(thing) if isinstance(thing, (SUBMISSION_OBJ, COMMENT_OBJ)): return thing.subreddit raise ValueError('Dont know how to normalize', type(thing)) def process( subreddit, commit=True, ): ''' Retrieve the API info for the subreddit and save it to the database subreddit: The subreddit(s) to process. Can be an individual or list of: strings or Subreddit, Submission, or Comment objects. ''' subreddits = [] processed_subreddits = [] if isinstance(subreddit, (tuple, list, set, types.GeneratorType)): subreddits = iter(subreddit) else: subreddits = [subreddit] for subreddit in subreddits: subreddit = normalize_subreddit_object(subreddit) processed_subreddits.append(subreddit) created = subreddit.created_utc created_human = humanize(subreddit.created_utc) idstr = subreddit.id is_nsfw = int(subreddit.over18 or 0) name = subreddit.display_name subscribers = subreddit.subscribers or 0 subreddit_type = SUBREDDIT_TYPE[subreddit.subreddit_type] submission_type = SUBMISSION_TYPE[subreddit.submission_type] now = int(get_now()) cur.execute('SELECT * FROM subreddits WHERE idstr == ?', [idstr]) f = cur.fetchone() if f is None: message = FORMAT_MESSAGE_NEW.format( idstr=idstr, human=created_human, nsfw=is_nsfw, name=name, subscribers=subscribers, ) print(message) data = { 'idint': b36(idstr), 'idstr': idstr, 'created': created, 'human': created_human, 'nsfw': is_nsfw, 'name': name, 'subscribers': subscribers, 'subreddit_type': subreddit_type, 'submission_type': submission_type, 'last_scanned': now, } (qmarks, bindings) = sqlhelpers.insert_filler(SQL_SUBREDDIT_COLUMNS, data) query = 'INSERT INTO subreddits VALUES(%s)' % qmarks cur.execute(query, bindings) else: old_subscribers = f[SQL_SUBREDDIT['subscribers']] subscriber_diff = subscribers - old_subscribers if subscribers == 0 and old_subscribers > 2 and subreddit_type != SUBREDDIT_TYPE['private']: print('SUSPICIOUS %s' % name) data = { 'idint': b36(idstr), 'idstr': idstr, 'name': name, 'subscribers': old_subscribers, 'noticed': int(get_now()), } (qmarks, bindings) = sqlhelpers.insert_filler(SQL_SUSPICIOUS_COLUMNS, data) query = 'INSERT INTO suspicious VALUES(%s)' % qmarks cur.execute(query, bindings) message = FORMAT_MESSAGE_UPDATE.format( idstr=idstr, human=created_human, nsfw=is_nsfw, name=name, subscribers=subscribers, subscriber_diff=subscriber_diff ) print(message) data = { 'idstr': idstr, 'subscribers': subscribers, 'subreddit_type': subreddit_type, 'submission_type': submission_type, 'last_scanned': now, } (query, bindings) = sqlhelpers.update_filler(data, where_key='idstr') query = 'UPDATE subreddits %s' % query cur.execute(query, bindings) #cur.execute(''' # UPDATE subreddits SET # subscribers = @subscribers, # subreddit_type = @subreddit_type, # submission_type = @submission_type, # last_scanned = @last_scanned # WHERE idstr == @idstr # ''', data) processed_subreddits.append(subreddit) if commit: sql.commit() return processed_subreddits def process_input(): while True: x = input('p> ') try: process(x) except KeyboardInterrupt: break except Exception: traceback.print_exc() def processmega(srinput, isrealname=False, chunksize=100, docrash=False, commit=True): ''' `srinput` can be a list of subreddit IDs or fullnames, or display names if `isrealname` is also True. isrealname: Interpret `srinput` as a list of actual subreddit names, not IDs. chunksize: The number of fullnames to get from api/info at once. docrash: If False, ignore HTTPExceptions and keep moving forward. ''' global noinfolist if type(srinput) == str: srinput = srinput.replace(' ', '') srinput = srinput.split(',') if isrealname: for subname in srinput: process(subname) return processed_subreddits = [] remaining = len(srinput) for x in range(len(srinput)): if 't5_' not in srinput[x]: srinput[x] = 't5_' + srinput[x] srinput = chunklist(srinput, chunksize) for subset in srinput: try: print(subset[0] + ' - ' + subset[-1], remaining) subreddits = r.get_info(thing_id=subset) try: for sub in subreddits: processed_subreddits.extend(process(sub, commit=commit)) except TypeError: traceback.print_exc() noinfolist = subset[:] if len(noinfolist) == 1: print('Received no info. See variable `noinfolist`') else: #for item in noinfolist: # processmega([item]) pass remaining -= len(subset) except praw.errors.HTTPException as e: traceback.print_exc() print(vars(e)) if docrash: raise return processed_subreddits def processrand(count, doublecheck=False, sleepy=0): ''' Gets random IDs between a known lower bound and the newest collection, and pass them into processmega(). count: How many you want doublecheck: Should it reroll duplicates before running sleepy: Used to sleep longer than the required 2 seconds ''' lower = LOWERBOUND_INT cur.execute('SELECT * FROM subreddits ORDER BY idstr DESC LIMIT 1') upper = cur.fetchone()[SQL_SUBREDDIT['idstr']] print('<' + b36(lower) + ',', upper + '>', end=', ') upper = b36(upper) totalpossible = upper - lower print(totalpossible, 'possible') rands = set() for x in range(count): rand = random.randint(lower, upper) rand = b36(rand) if doublecheck: while rand in rands: rand = random.randint(lower, upper) rand = b36(rand) rands.add(rand) processmega(rands) def show(): file_all_time = open('show\\all-time.txt', 'w') file_all_name = open('show\\all-name.txt', 'w') file_all_subscribers = open('show\\all-subscribers.txt', 'w') file_dirty_time = open('show\\dirty-time.txt', 'w') file_dirty_name = open('show\\dirty-name.txt', 'w') file_dirty_subscribers = open('show\\dirty-subscribers.txt', 'w') file_jumble_sfw = open('show\\jumble.txt', 'w') file_jumble_nsfw = open('show\\jumble-nsfw.txt', 'w') file_duplicates = open('show\\duplicates.txt', 'w') file_missing = open('show\\missing.txt', 'w') file_stats = open('show\\statistics.txt', 'w') file_readme = open('README.md', 'r') cur.execute('SELECT COUNT(idstr) FROM subreddits WHERE created != 0') itemcount_valid = cur.fetchone()[0] itemcount_nsfw = 0 name_lengths = {} print(itemcount_valid, 'subreddits') print('Writing time files.') cur.execute('SELECT * FROM subreddits WHERE created !=0 ORDER BY created ASC') for item in fetchgenerator(cur): itemf = memberformat(item) print(itemf, file=file_all_time) if int(item[SQL_SUBREDDIT['nsfw']]) == 1: print(itemf, file=file_dirty_time) itemcount_nsfw += 1 file_all_time.close() file_dirty_time.close() print('Writing name files and duplicates.') previousitem = None inprogress = False cur.execute('SELECT * FROM subreddits WHERE created != 0 ORDER BY LOWER(name) ASC') for item in fetchgenerator(cur): if previousitem is not None and item[SQL_SUBREDDIT['name']] == previousitem[SQL_SUBREDDIT['name']]: print(memberformat(previousitem), file=file_duplicates) inprogress = True elif inprogress: print(memberformat(previousitem), file=file_duplicates) inprogress = False previousitem = item name_length = len(item[SQL_SUBREDDIT['name']]) name_lengths[name_length] = name_lengths.get(name_length, 0) + 1 itemf = memberformat(item) print(itemf, file=file_all_name) if int(item[SQL_SUBREDDIT['nsfw']]) == 1: print(itemf, file=file_dirty_name) file_duplicates.close() file_all_name.close() file_dirty_name.close() name_lengths = {'%02d'%k: v for (k, v) in name_lengths.items()} print('Writing subscriber files.') ranks = {'all': 1, 'nsfw': 1} def write_with_rank(itemf, ranktype, filehandle): index = ranks[ranktype] if index <= RANKS_UP_TO: itemf += '{:>9,}'.format(index) print(itemf, file=filehandle) ranks[ranktype] += 1 cur.execute('SELECT * FROM subreddits WHERE created != 0 ORDER BY subscribers DESC') for item in fetchgenerator(cur): itemf = memberformat(item) write_with_rank(itemf, 'all', file_all_subscribers) if int(item[SQL_SUBREDDIT['nsfw']]) == 1: write_with_rank(itemf, 'nsfw', file_dirty_subscribers) file_all_subscribers.close() file_dirty_subscribers.close() print('Writing jumble.') for item in get_jumble_subreddits(): itemf = memberformat(item) if int(item[SQL_SUBREDDIT['nsfw']]) == 0: print(itemf, file=file_jumble_sfw) else: print(itemf, file=file_jumble_nsfw) file_jumble_sfw.close() file_jumble_nsfw.close() print('Writing missing.') cur.execute('SELECT * FROM subreddits WHERE created == 0 ORDER BY idstr ASC') for item in fetchgenerator(cur): print(item[SQL_SUBREDDIT['idstr']], file=file_missing) file_missing.close() print('Writing statistics.') headline = 'Collected {0:,} subreddits\n'.format(itemcount_valid) statisticoutput = headline + '\n\n' statisticoutput += ' SFW: {0:,}\n'.format(itemcount_valid - itemcount_nsfw) statisticoutput += 'NSFW: {0:,}\n\n\n'.format(itemcount_nsfw) statisticoutput += 'Subreddit type:\n' subreddit_types = list(SUBREDDIT_TYPE_REVERSE.keys()) subreddit_types.sort() subreddit_types = [SUBREDDIT_TYPE_REVERSE[k] for k in subreddit_types] for subreddit_type in subreddit_types: index = SUBREDDIT_TYPE[subreddit_type] cur.execute('SELECT COUNT(*) FROM subreddits WHERE created != 0 AND subreddit_type == ?', [index]) count = cur.fetchone()[0] statisticoutput += '{:>16s}: {:,}\n'.format(str(subreddit_type), count) statisticoutput += '\n' statisticoutput += 'Submission type (None means approved submitters only or inaccessible):\n' submission_types = list(SUBMISSION_TYPE_REVERSE.keys()) submission_types.sort() submission_types = [SUBMISSION_TYPE_REVERSE[k] for k in submission_types] for submission_type in submission_types: index = SUBMISSION_TYPE[submission_type] cur.execute('SELECT COUNT(*) FROM subreddits WHERE created != 0 AND submission_type == ?', [index]) count = cur.fetchone()[0] statisticoutput += '{:>16s}: {:,}\n'.format(str(submission_type), count) statisticoutput += '\n\n' cur.execute('SELECT * FROM subreddits WHERE created != 0 ORDER BY created DESC limit 20000') last20k = cur.fetchall() timediff = last20k[0][SQL_SUBREDDIT['created']] - last20k[-1][SQL_SUBREDDIT['created']] statisticoutput += 'Over the last 20,000 subreddits:\n' statisticoutput += '%.2f subs are created each hour\n' % (20000 / (timediff/3600)) statisticoutput += '%.2f subs are created each day\n\n\n' % (20000 / (timediff/86400)) ################################ # Breakdown by time period # hour of day, day of week, day of month, month of year, month-year, year def datetimedict(statsdict, strf): statsdict[strf] = statsdict.get(strf, 0) + 1 hoddict = {} dowdict = {} domdict = {} moydict = {} myrdict = {} yerdict = {} print(' performing time breakdown') cur.execute('SELECT * FROM subreddits WHERE created != 0') for item in fetchgenerator(cur): dt = datetime.datetime.utcfromtimestamp(item[SQL_SUBREDDIT['created']]) datetimedict(hoddict, dt.strftime('%H')) # 01 datetimedict(dowdict, dt.strftime('%A')) # Monday datetimedict(domdict, dt.strftime('%d')) # 01 datetimedict(moydict, dt.strftime('%B')) # January datetimedict(myrdict, dt.strftime('%b%Y')) # Jan2015 datetimedict(yerdict, dt.strftime('%Y')) # 2015 print(' forming columns') plotnum = 0 mapping = [ {'label': 'hour of day', 'specialsort': None, 'dict': hoddict}, {'label': 'day of week', 'specialsort': 'day', 'dict': dowdict}, {'label': 'day of month', 'specialsort': None, 'dict': domdict}, {'label': 'month of year', 'specialsort': 'month', 'dict': moydict}, {'label': 'year', 'specialsort': None, 'dict': yerdict}, {'label': 'month-year', 'specialsort': 'monthyear', 'dict': myrdict}, {'label': 'name length', 'specialsort': None, 'dict': name_lengths}, ] for (index, collection) in enumerate(mapping): d = collection['dict'] dkeys_primary = list(d.keys()) dkeys_primary.sort(key=d.get) dkeys_secondary = specialsort(dkeys_primary, collection['specialsort']) dvals = [d[x] for x in dkeys_secondary] statisticoutput += collection['label'] + '\n' for (keyindex, key) in enumerate(dkeys_primary): val = d[key] val = '{0:,}'.format(val) spacer = 34 - (len(key) + len(val)) spacer = '.' * spacer statisticoutput += key + spacer + val statisticoutput += ' ' * 8 key = dkeys_secondary[keyindex] val = d[key] val = '{0:,}'.format(val) spacer = 34 - (len(key) + len(val)) spacer = '.' * spacer statisticoutput += key + spacer + val statisticoutput += '\n' statisticoutput += '\n' if d is name_lengths: upperlabel = 'Name Lengths' else: upperlabel = 'Subreddits created - %s' % collection['label'] plotbars( filename=upperlabel, upperlabel=upperlabel, inputdata=[dkeys_secondary, dvals], colormid='#43443a', forcezero=True, ) plotnum += 1 if d is myrdict: # In addition to the total month graph, plot the last 15 months plotbars( filename=upperlabel + ' short', upperlabel=upperlabel + ' short', inputdata=[dkeys_secondary[-15:], dvals[-15:]], colorbg='#272822', colorfg='#000', colormid='#43443a', forcezero=True, ) plotnum += 1 # # Breakdown by time period ################################ print(statisticoutput, file=file_stats) file_stats.close() print('Updating Readme') readmelines = file_readme.readlines() file_readme.close() readmelines[3] = '#####' + headline readmelines[5] = '#####[Today\'s jumble](http://reddit.com/r/%s)\n' % jumble(nsfw=False) file_readme = open('README.md', 'w') file_readme.write(''.join(readmelines)) file_readme.close() time.sleep(2) subprocess.call('PNGCREATOR.bat', shell=True, cwd='spooky') print() def memberformat(member): member = FORMAT_MEMBER.format( idstr=member[SQL_SUBREDDIT['idstr']], human=member[SQL_SUBREDDIT['human']], nsfw=member[SQL_SUBREDDIT['nsfw']], name=member[SQL_SUBREDDIT['name']], subscribers=member[SQL_SUBREDDIT['subscribers']], ) return member def dictadding(targetdict, item): if item not in targetdict: targetdict[item] = 1 else: targetdict[item] = targetdict[item] + 1 return targetdict def specialsort(inlist, mode=None): if mode == 'month': return [ 'January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December' ] if mode == 'day': return [ 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday' ] if mode == 'monthyear': td = {} for item in inlist: nitem = item nitem = item.replace(item[:3], monthnumbers[item[:3]]) nitem = nitem[3:] + nitem[:3] td[item] = nitem tdkeys = list(td.keys()) #print(td) tdkeys.sort(key=td.get) #print(tdkeys) return tdkeys if mode is None: return sorted(inlist) def search( query='', casesense=False, filterout=[], subscribers=0, nsfwmode=2, doreturn=False, sort=None, ): ''' Search for a subreddit by name *str query = The search query "query" = results where "query" is in the name "*query" = results where "query" is at the end of the name "query*" = results where "query" is at the beginning of the name "*query*" = results where "query" is in the middle of the name bool casesense = is the search case sensitive list filterout = [list, of, words] to omit from search. Follows casesense int subscribers = minimum number of subscribers int nsfwmode = 0 - Clean only 1 - Dirty only 2 - All int sort = The integer representing the sql column to sort by. Defaults to no sort. ''' querys = ''.join([c for c in query if c in GOODCHARS]) queryx = '%%{term}%%'.format(term=querys) if '!' in query: cur.execute('SELECT * FROM subreddits WHERE name LIKE ?', [querys]) return cur.fetchone() if nsfwmode in [0, 1]: cur.execute('SELECT * FROM subreddits WHERE name LIKE ? AND subscribers > ? AND nsfw=?', [queryx, subscribers, nsfwmode]) else: cur.execute('SELECT * FROM subreddits WHERE name LIKE ? AND subscribers > ?', [queryx, subscribers]) results = [] if casesense is False: querys = querys.lower() filterout = [x.lower() for x in filterout] if '*' in query: positional = True front = query[-1] == '*' back = query[0] == '*' if front and back: mid = True front = False back = False else: mid = False else: positional = False lenq = len(querys) for item in fetchgenerator(cur): name = item[SQL_SUBREDDIT['name']] if casesense is False: name = name.lower() if querys not in name: #print('%s not in %s' % (querys, name)) continue if (positional and front) and (name[:lenq] != querys): #print('%s not front %s (%s)' % (querys, name, name[:lenq])) continue if (positional and back) and (name[-lenq:] != querys): #print('%s not back %s (%s)' % (querys, name, name[-lenq:])) continue if (positional and mid) and (querys not in name[1:-1]): #print('%s not mid %s (%s)' % (querys, name, name[1:-1])) continue if any(filters in name for filters in filterout): #print('%s not filter %s' % (querys, name)) continue results.append(item) if len(results) == 0: if doreturn: return [] else: return if sort is not None: is_numeric = isinstance(results[0][sort], int) if is_numeric: results.sort(key=lambda x: x[sort], reverse=True) else: results.sort(key=lambda x: x[sort].lower()) if doreturn is True: return results else: for item in results: print(item) def findwrong(): cur.execute('SELECT * FROM subreddits WHERE name != ?', ['?']) fetch = cur.fetchall() fetch.sort(key=lambda x: x[SQL_SUBREDDIT['idstr']]) #sorted by ID fetch = fetch[25:] pos = 0 wrongs = [] while pos < len(fetch)-5: if fetch[pos][1] > fetch[pos+1][1]: wrongs.append(str(fetch[pos-1])) wrongs.append(str(fetch[pos])) wrongs.append(str(fetch[pos+1]) + "\n") pos += 1 for wrong in wrongs: print(wrong) def processjumble(count, nsfw=False): for x in range(count): sub = r.get_random_subreddit(nsfw=nsfw) process(sub, commit=False) last_seen = int(get_now()) cur.execute('SELECT * FROM jumble WHERE idstr == ?', [sub.id]) if cur.fetchone() is None: cur.execute('INSERT INTO jumble VALUES(?, ?)', [sub.id, last_seen]) else: cur.execute( 'UPDATE jumble SET last_seen = ? WHERE idstr == ?', [sub.id, last_seen] ) sql.commit() def processpopular(count, sort='hot'): subreddit = r.get_subreddit('popular') if sort == 'hot': submissions = subreddit.get_hot(limit=count) elif sort == 'new': submissions = subreddit.get_new(limit=count) else: raise ValueError(sort) submissions = list(submissions) subreddit_ids = list({submission.subreddit_id for submission in submissions}) subreddits = processmega(subreddit_ids, commit=False) last_seen = int(get_now()) for subreddit in subreddits: cur.execute('SELECT * FROM popular WHERE idstr == ?', [subreddit.id]) if cur.fetchone() is None: cur.execute('INSERT INTO popular VALUES(?, ?)', [subreddit.id, last_seen]) else: cur.execute( 'UPDATE popular SET last_seen = ? WHERE idstr == ?', [last_seen, subreddit.id] ) sql.commit() def jumble(count=20, nsfw=False): subreddits = get_jumble_subreddits() if nsfw is not None: subreddits = [x for x in subreddits if x[SQL_SUBREDDIT['nsfw']] == int(bool(nsfw))] random.shuffle(subreddits) subreddits = subreddits[:count] subreddits = [f[:-1] for f in subreddits] jumble_string = [x[SQL_SUBREDDIT['name']] for x in subreddits] jumble_string = '+'.join(jumble_string) output = [jumble_string, subreddits] return jumble_string def rounded(x, rounding=100): return int(round(x/rounding)) * rounding def plotbars( filename, inputdata, upperlabel='Subreddits created', colorbg="#fff", colorfg="#000", colormid="#888", forcezero=False, ): ''' Create postscript vectors of data filename = Name of the file without extension inputdata = A list of two lists. First list has the x axis labels, second list has the y axis data. x label 14 coresponds to y datum 14, etc. ''' print(' Printing', filename) t=tkinter.Tk() canvas = tkinter.Canvas(t, width=3840, height=2160, bg=colorbg) canvas.pack() #Y axis canvas.create_line(430, 250, 430, 1755, width=10, fill=colorfg) #X axis canvas.create_line(430, 1750, 3590, 1750, width=10, fill=colorfg) dkeys = inputdata[0] dvals = inputdata[1] entrycount = len(dkeys) availablespace = 3140 availableheight= 1490 entrywidth = availablespace / entrycount #print(dkeys, dvals, "Width:", entrywidth) smallest = min(dvals) bottom = int(smallest*0.75) - 5 bottom = 0 if bottom < 8 else rounded(bottom, 10) if forcezero: bottom = 0 largest = max(dvals) top = int(largest + (largest / 5)) top = rounded(top, 10) print(bottom, top) span = top - bottom perpixel = span / availableheight curx = 445 cury = 1735 labelx = 420 labely = 255 #canvas.create_text(labelx, labely, text=str(top), font=("Consolas", 72), anchor="e") labelspan = 130 canvas.create_text(175, 100, text=upperlabel, font=("Consolas", 72), anchor="w", fill=colorfg) for x in range(12): value = int(top -((labely - 245) * perpixel)) value = rounded(value, 10) value = '{0:,}'.format(value) canvas.create_text(labelx, labely, text=value, font=("Consolas", 72), anchor="e", fill=colorfg) canvas.create_line(430, labely, 3590, labely, width=2, fill=colormid) labely += labelspan for entrypos in range(entrycount): entry = dkeys[entrypos] entryvalue = dvals[entrypos] entryx0 = curx + 10 entryx1 = entryx0 + (entrywidth-10) curx += entrywidth entryy0 = cury entryy1 = entryvalue - bottom entryy1 = entryy1/perpixel #entryy1 -= bottom #entryy1 /= perpixel entryy1 = entryy0 - entryy1 #print(perpixel, entryy1) #print(entry, entryx0,entryy0, entryx1, entryy1) canvas.create_rectangle(entryx0, entryy0, entryx1, entryy1, fill=colorfg, outline=colorfg) font0x = entryx0 + (entrywidth / 2) font0y = entryy1 - 5 font1y = 1760 entryvalue = round(entryvalue) fontsize0 = len(str(entryvalue)) fontsize0 = round(entrywidth / fontsize0) + 3 fontsize0 = 100 if fontsize0 > 100 else fontsize0 fontsize1 = len(str(entry)) fontsize1 = round(1.5 * entrywidth / fontsize1) + 5 fontsize1 = 60 if fontsize1 > 60 else fontsize1 canvas.create_text(font0x, font0y, text=entryvalue, font=("Consolas", fontsize0), anchor="s", fill=colorfg) canvas.create_text(font0x, font1y, text=entry, font=("Consolas", fontsize1), anchor="n", fill=colorfg) canvas.update() print(' Done') canvas.postscript(file=f'spooky\\{filename}.ps', width=3840, height=2160) t.geometry("1x1+1+1") t.update() t.destroy() def _idle(): while True: try: modernize() processpopular(100, 'new') processjumble(30, nsfw=False) processjumble(30, nsfw=True) print('Great job!') except Exception: traceback.print_exc() time.sleep(180) # Command line ##################################################################################### DOCSTRING = ''' Subreddit Birthdays =================== {modernize_forever} {modernize_once} ''' SUB_DOCSTRINGS = dict( modernize_forever=''' modernize_forever: Gather new subreddits forever. ''', modernize_once=''' modernize_once: Gather new subreddits once. ''', ) DOCSTRING = betterhelp.add_previews(DOCSTRING, SUB_DOCSTRINGS) NOTIFY_EVERY_LINE = mutables.Boolean(False) @pipeable.ctrlc_return1 def modernize_once_argparse(args): login() modernize(limit=args.limit) return 0 @pipeable.ctrlc_return1 def modernize_forever_argparse(args): login() NOTIFY_EVERY_LINE.set(True) modernize_forever() return 0 @operatornotify.main_decorator(subject='sb', notify_every_line=NOTIFY_EVERY_LINE) @vlogging.main_decorator def main(argv): parser = argparse.ArgumentParser(description=DOCSTRING) subparsers = parser.add_subparsers() p_modernize_once = subparsers.add_parser('modernize_once', aliases=['modernize-once']) p_modernize_once.add_argument('--limit', default=None) p_modernize_once.set_defaults(func=modernize_once_argparse) p_modernize_forever = subparsers.add_parser('modernize_forever', aliases=['modernize-forever']) p_modernize_forever.set_defaults(func=modernize_forever_argparse) return betterhelp.subparser_main(argv, parser, DOCSTRING, SUB_DOCSTRINGS) if __name__ == '__main__': raise SystemExit(main(sys.argv[1:]))
src/promnesia/__init__.py
halhenke/promnesia
1,327
12779090
from pathlib import Path from .common import PathIsh, Visit, Source, last, Loc, Results, DbVisit, Context, Res # add deprecation warning so eventually this may converted to a namespace package? import warnings warnings.warn("DEPRECATED! Please import directly from 'promnesia.common', e.g. 'from promnesia.common import Visit, Source, Results'", DeprecationWarning)
examples/fantom/rename.py
pkuksa/FILER_giggle
210
12779108
import sys if len(sys.argv) != 4: sys.stderr.write('usage:\t' + \ sys.argv[0] + \ ' <name2library file>' + \ ' <expression count matrix file>' + \ ' <out dir>\n') sys.exit(1) name2library_file=sys.argv[1] expression_count_matrix_file=sys.argv[2] out_dir=sys.argv[3] files={} names = {} for l in open(name2library_file, 'r'): A = l.rstrip().split('\t') names[A[1]] = A[0] header = [] for l in open(expression_count_matrix_file, 'r'): A = l.rstrip().split() if A[0] == 'Id': header = A[1:] print len(header) 0/1 else: i = 0 for a in A[1:]: if a != '0': if names[header[i]] not in files: files[names[header[i]]] = \ open(out_dir + \ '/' + \ names[header[i]] + \ '.bed', 'w') files[names[header[i]]].write( \ A[0].replace(':','\t').replace('-','\t') + \ '\t' + a + '\n') i+=1
plots/lasium_paper/plot_accuracy_based_on_gan.py
siavash-khodadadeh/MetaLearning-TF2.0
102
12779122
<gh_stars>100-1000 import cv2 import matplotlib.pyplot as plt from matplotlib.offsetbox import OffsetImage, AnnotationBbox import numpy as np def plot_img(img_name, location, index, zoom=0.1): plt.scatter(index, accs[epochs.index(index)] + 1, color='#0D7377', linewidths=0.5, marker='v') plt.plot((index, location[0]), (accs[epochs.index(index)], location[1]), '--', color='#0D7377', alpha=1) img = plt.imread(f'./gan_images/{img_name}.png') img = cv2.resize(img, (350, 350)) # img = img[50:-50, 50:-50, :] ax = plt.gca() im = OffsetImage(img, zoom=zoom) ab = AnnotationBbox(im, location, xycoords='data', frameon=True, pad=0.2) ax.add_artist(ab) ax.update_datalim(np.column_stack(list(location))) ax.autoscale() return ab def smooth_data(accs, weight): last = accs[0] for i in range(1, len(accs)): accs[i] = last * weight + (1 - weight) * accs[i] last = accs[i] return accs epochs = [0, 10, 20, 30, 40, 50, 100, 150, 200, 300, 400, 500] accs = [51.95, 67.50, 71.26, 77.34, 77.67, 77.35, 78.14, 79.99, 78.21, 77.94, 80.51, 76.49] accs = smooth_data(accs, 0.7) accs_ci = [0.66, 0.71, 0.68, 0.62, 0.63, 0.64, 0.63, 0.60, 0.63, 0.64, 0.60, 0.67] training_from_scratch = [51.64] * len(accs) bottom = [acc - ci for acc, ci in zip(accs, accs_ci)] top = [acc + ci for acc, ci in zip(accs, accs_ci)] plt.plot(epochs, accs, color='b', label='LASIUM-N') plt.plot(epochs, bottom, '--', color='#32E0C4', alpha=0.2) plt.plot(epochs, top, '--', color='#32E0C4', alpha=0.2) plt.plot(epochs, training_from_scratch, '--', color='r', alpha=0.5, label='baseline') plt.fill_between(epochs, bottom, top, color='#32E0C4', alpha=.1) plt.xticks([10, 30, 50, 100, 200, 300, 400, 500]) plt.xlabel('# GAN training epochs', fontsize=14) plt.yticks([40, 50, 60, 70, 80, 100]) plt.ylabel('Accuracy (%)', fontsize=14) # plt images plot_img('00_4', location=(10, 85), index=0) plot_img('10_4', location=(40, 90), index=10) plot_img('30_4', location=(70, 85), index=30) plot_img('50_4', location=(100, 90), index=50) plot_img('100_4', location=(130, 85), index=100) plot_img('200_4', location=(190, 90), index=200) plot_img('300_4', location=(300, 85), index=300) plot_img('400_4', location=(400, 90), index=400) plot_img('500_4', location=(500, 85), index=500) plt.scatter( 0, accs[epochs.index(0)] + 1, color='#0D7377', linewidths=0.5, marker='v', label='Generated image at epoch' ) plt.subplots_adjust(bottom=0.1, top=0.9, right= 0.98, left=0.1) plt.legend(loc='best') # plt.show() plt.savefig('./outputs/accuracy_based_on_gan.pdf', dpi=300)
WebMirror/management/rss_parser_funcs/feed_parse_extractKitchennovelCom.py
fake-name/ReadableWebProxy
193
12779136
def extractKitchennovelCom(item): ''' Parser for 'kitchennovel.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('Strange World Alchemist Chef', 'Strange World Alchemist Chef', 'translated'), ('Imperial Chef Rookie', 'Imperial Chef Rookie', 'translated'), ('Daddy Fantasy World', 'Daddy Fantasy World', 'translated'), ('Here Comes the Lady Chef', 'Here Comes the Lady Chef', 'translated'), ('Different World Okonomiyaki Chain Store', 'Different World Okonomiyaki Chain Store', 'translated'), ('Strange World Little Cooking Saint', 'Strange World Little Cooking Saint', 'translated'), ('Fine Food Broadcastor', 'Fine Food Broadcaster', 'translated'), ('Kitchen Xiuzhen', 'Kitchen Xiuzhen', 'translated'), ('Reborn - Super Chef', 'Reborn - Super Chef', 'translated'), ('The Taming of the Black Bellied Scholar', 'The Taming of the Black Bellied Scholar', 'translated'), ('The Feast', 'The Feast', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
week7/lecture13/test2.py
nobodysshadow/edX_MITx_6.00.1x
622
12779153
<filename>week7/lecture13/test2.py # -*- coding: utf-8 -*- """ Created on Sun Jun 12 07:17:17 2016 @author: ericgrimson """ #import numpy as np import pylab as plt mySamples = [] myLinear = [] myQuadratic = [] myCubic = [] myExponential = [] for i in range(0, 30): mySamples.append(i) myLinear.append(i) myQuadratic.append(i**2) myCubic.append(i**3) myExponential.append(1.5**i) # first trial plt.plot(mySamples, myLinear) plt.plot(mySamples, myQuadratic) plt.plot(mySamples, myCubic) plt.plot(mySamples, myExponential) # second trial #plt.figure('lin') #plt.plot(mySamples, myLinear) #plt.figure('quad') #plt.plot(mySamples, myQuadratic) #plt.figure('cube') #plt.plot(mySamples, myCubic) #plt.figure('expo') #plt.plot(mySamples, myExponential) # third trial #plt.figure('lin') #plt.xlabel('sample points') #plt.ylabel('linear function') #plt.plot(mySamples, myLinear) #plt.figure('quad') #plt.plot(mySamples, myQuadratic) #plt.figure('cube') #plt.plot(mySamples, myCubic) #plt.figure('expo') #plt.plot(mySamples, myExponential) #plt.figure('quad') #plt.ylabel('quadratic function') # fourth trial #plt.figure('lin') #plt.plot(mySamples, myLinear) #plt.figure('quad') #plt.plot(mySamples, myQuadratic) #plt.figure('cube') #plt.plot(mySamples, myCubic) #plt.figure('expo') #plt.plot(mySamples, myExponential) #plt.figure('lin') #plt.title('Linear') #plt.figure('quad') #plt.title('Quadratic') #plt.figure('cube') #plt.title('Cubic') #plt.figure('expo') #plt.title('Exponential') # fifth trial #plt.figure('lin') #plt.clf() #plt.plot(mySamples, myLinear) #plt.figure('quad') #plt.clf() #plt.plot(mySamples, myQuadratic) #plt.figure('cube') #plt.clf() #plt.plot(mySamples, myCubic) #plt.figure('expo') #plt.clf() #plt.plot(mySamples, myExponential) #plt.figure('lin') #plt.title('Linear') #plt.figure('quad') #plt.title('Quadratic') #plt.figure('cube') #plt.title('Cubic') #plt.figure('expo') #plt.title('Exponential') # sixth trial #plt.figure('lin') #plt.clf() #plt.ylim(0,1000) #plt.plot(mySamples, myLinear) #plt.figure('quad') #plt.clf() #plt.ylim(0,1000) #plt.plot(mySamples, myQuadratic) #plt.figure('lin') #plt.title('Linear') #plt.figure('quad') #plt.title('Quadratic') # seventh trial #plt.figure('lin quad') #plt.clf() #plt.plot(mySamples, myLinear) #plt.plot(mySamples, myQuadratic) #plt.figure('cube exp') #plt.clf() #plt.plot(mySamples, myCubic) #plt.plot(mySamples, myExponential) #plt.figure('lin quad') #plt.title('Linear vs. Quadratic') #plt.figure('cube exp') #plt.title('Cubic vs. Exponential') # eighth trial #plt.figure('lin quad') #plt.clf() #plt.plot(mySamples, myLinear, label = 'linear') #plt.plot(mySamples, myQuadratic, label = 'quadratic') #plt.legend(loc = 'upper left') #plt.title('Linear vs. Quadratic') #plt.figure('cube exp') #plt.clf() #plt.plot(mySamples, myCubic, label = 'cubic') #plt.plot(mySamples, myExponential, label = 'exponential') #plt.legend() #plt.title('Cubic vs. Exponential') # ninth trial #plt.figure('lin quad') #plt.clf() #plt.plot(mySamples, myLinear, 'b-', label = 'linear') #plt.plot(mySamples, myQuadratic,'ro', label = 'quadratic') #plt.legend(loc = 'upper left') #plt.title('Linear vs. Quadratic') #plt.figure('cube exp') #plt.clf() #plt.plot(mySamples, myCubic, 'g^', label = 'cubic') #plt.plot(mySamples, myExponential, 'r--',label = 'exponential') #plt.legend() #plt.title('Cubic vs. Exponential') # tenth trial #plt.figure('lin quad') #plt.clf() #plt.plot(mySamples, myLinear, 'b-', label = 'linear', linewidth = 2.0) #plt.plot(mySamples, myQuadratic,'r', label = 'quadratic', linewidth = 3.0) #plt.legend(loc = 'upper left') #plt.title('Linear vs. Quadratic') #plt.figure('cube exp') #plt.clf() #plt.plot(mySamples, myCubic, 'g--', label = 'cubic', linewidth = 4.0) #plt.plot(mySamples, myExponential, 'r',label = 'exponential', linewidth = 5.0) #plt.legend() #plt.title('Cubic vs. Exponential') # eleventh trial #plt.figure('lin quad') #plt.clf() #plt.subplot(211) #plt.ylim(0, 900) #plt.plot(mySamples, myLinear, 'b-', label = 'linear', linewidth = 2.0) #plt.subplot(212) #plt.ylim(0, 900) #plt.plot(mySamples, myQuadratic,'r', label = 'quadratic', linewidth = 3.0) #plt.legend(loc = 'upper left') #plt.title('Linear vs. Quadratic') #plt.figure('cube exp') #plt.clf() #plt.subplot(121) #plt.ylim(0, 140000) #plt.plot(mySamples, myCubic, 'g--', label = 'cubic', linewidth = 4.0) #plt.subplot(122) #plt.ylim(0, 140000) #plt.plot(mySamples, myExponential, 'r',label = 'exponential', linewidth = 5.0) #plt.legend() #plt.title('Cubic vs. Exponential') # twelfth trial #plt.figure('cube exp log') #plt.clf() #plt.plot(mySamples, myCubic, 'g--', label = 'cubic', linewidth = 2.0) #plt.plot(mySamples, myExponential, 'r',label = 'exponential', linewidth = 4.0) #plt.yscale('log') #plt.legend() #plt.title('Cubic vs. Exponential') #plt.figure('cube exp linear') #plt.clf() #plt.plot(mySamples, myCubic, 'g--', label = 'cubic', linewidth = 2.0) #plt.plot(mySamples, myExponential, 'r',label = 'exponential', linewidth = 4.0) #plt.legend() #plt.title('Cubic vs. Exponential')
atx/record/scene_detector.py
jamjven/ATX
1,132
12779179
#-*- encoding: utf-8 -*- import os import cv2 import yaml import numpy as np from collections import defaultdict def find_match(img, tmpl, rect=None, mask=None): if rect is not None: h, w = img.shape[:2] x, y, x1, y1 = rect if x1 > w or y1 > h: return 0, None img = img[y:y1, x:x1, :] if mask is not None: img = img.copy() img[mask!=0] = 0 tmpl = tmpl.copy() tmpl[mask!=0] = 0 s_bgr = cv2.split(tmpl) # Blue Green Red i_bgr = cv2.split(img) weight = (0.3, 0.3, 0.4) resbgr = [0, 0, 0] for i in range(3): # bgr resbgr[i] = cv2.matchTemplate(i_bgr[i], s_bgr[i], cv2.TM_CCOEFF_NORMED) match = resbgr[0]*weight[0] + resbgr[1]*weight[1] + resbgr[2]*weight[2] min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(match) confidence = max_val x, y = max_loc h, w = tmpl.shape[:2] if rect is None: rect = (x, y, x+w, y+h) # cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0) ,2) # cv2.imshow('test', img) # cv2.waitKey(20) return confidence, rect def get_mask(img1, img2, thresh=20): if img1.shape != img2.shape: return diff = cv2.absdiff(img1, img2) diff = np.mean(diff, axis=2) diff[diff<=thresh] = 0 diff[diff>thresh] = 255 mask = np.dstack([diff]*3) return mask def get_match_confidence(img1, img2, mask=None): if img1.shape != img2.shape: return False ## first try, using absdiff # diff = cv2.absdiff(img1, img2) # h, w, d = diff.shape # total = h*w*d # num = (diff<20).sum() # print 'is_match', total, num # return num > total*0.90 if mask is not None: img1 = img1.copy() img1[mask!=0] = 0 img2 = img2.copy() img2[mask!=0] = 0 ## using match match = cv2.matchTemplate(img1, img2, cv2.TM_CCOEFF_NORMED) _, confidence, _, _ = cv2.minMaxLoc(match) # print confidence return confidence class SceneDetector(object): '''detect game scene from screen image''' def __init__(self, scene_directory): self.scene_touches = {} self.scene_directory = scene_directory self.build_tree(scene_directory) def build_tree(self, directory): '''build scene tree from images''' confile = os.path.join(directory, 'config.yml') conf = {} if os.path.exists(confile): conf = yaml.load(open(confile).read()) class node(defaultdict): name = '' parent = None tmpl = None rect = None mask = None def __str__(self): obj = self names = [] while obj.parent is not None: names.append(obj.name) obj = obj.parent return '-'.join(names[::-1]) def tree(): return node(tree) root = tree() for s in os.listdir(directory): if not s.endswith('.png') or s.endswith('_mask.png'): continue obj = root for i in s[:-4].split('-'): obj[i].name = i obj[i].parent = obj obj = obj[i] obj.tmpl = cv2.imread(os.path.join(directory, s)) obj.rect = conf.get(s[:-4], {}).get('rect') maskimg = conf.get(s[:-4], {}).get('mask') if maskimg is not None: maskimg = os.path.join(directory, maskimg) if os.path.exists(maskimg): obj.mask = cv2.imread(maskimg) self.tree = root self.current_scene = [] self.confile = confile self.conf = conf def match_child(self, img, node): c, s, r = (0, None, None) for scene in node.itervalues(): if scene.tmpl is None: continue print str(scene), scene.rect, img.shape confidence, rect = find_match(img, scene.tmpl, scene.rect, scene.mask) # print scene.name, confidence, rect if confidence > c: c, s, r = (confidence, scene, rect) if c > 0.95: key = str(s) if key not in self.conf: self.conf[key] = {} changed = False if c > self.conf[key].get('confidence', 0): s.rect = r self.conf[key]['confidence'] = c self.conf[key]['rect'] = list(r) changed = True if changed or s.mask is None: x, y, x1, y1 = r s.mask = get_mask(img[y:y1, x:x1, :], s.tmpl, 20) maskimg = os.path.join(self.scene_directory, '%s_mask.png' % key) cv2.imwrite(maskimg, s.mask) self.conf[key]['mask'] = maskimg changed = True if changed: self.save_config() return c, s, r def save_config(self): print 'save config', self.conf with open(self.confile, 'w') as f: yaml.dump(self.conf, f) def detect(self, img): # check current scene path # print 'checking current scene' if self.current_scene: for i in range(len(self.current_scene)): s, r = self.current_scene[i] x, y, x1, y1 = r c = get_match_confidence(img[y:y1, x:x1, :], s.tmpl, s.mask) if c < 0.75: break else: # print 'current scene ok' s = self.current_scene[-1][0] if len(s.values()) == 0: return s self.current_scene = self.current_scene[:i] # top scene has changed if not self.current_scene: c, s, r = self.match_child(img, self.tree) if c < 0.75: return self.current_scene = [(s, r)] s = self.current_scene[-1][0] while True: c, s, r = self.match_child(img, s) if c < 0.75: break self.current_scene.append((s, r)) return s
Giveme5W1H/extractor/extractors/action_extractor.py
bkrrr/Giveme5W
410
12779214
<reponame>bkrrr/Giveme5W import re from nltk.tree import ParentedTree from Giveme5W1H.extractor.candidate import Candidate from Giveme5W1H.extractor.extractors.abs_extractor import AbsExtractor class ActionExtractor(AbsExtractor): """ The ActionExtractor tries to extract the main actor and his action. """ def __init__(self, weights: (float, float, float) = (0.9, 0.095, 0.005), minimal_length_of_tokens: int = 3): self._minimal_length_of_tokens = minimal_length_of_tokens # weights used in the candidate evaluation: # (position, frequency, named entity) self.weights = weights def _extract_candidates(self, document): """ Extracts possible agents/actions pairs from a given document. Candidates are chosen if they belong to an coref-chain and is part of a NP-VP-NP pattern :param document: The Document to be analyzed. :type document: Document :return: A List of Tuples containing all agents, actions and their position in the document. """ # retrieve results from preprocessing corefs = document.get_corefs() trees = document.get_trees() candidates = [] for cluster in corefs: for mention in corefs[cluster]: # Check if mention is the subject of the sentence by matching the NP-VP-NP pattern. # # "One common way of defining the subject of a sentence S in English is as the noun phrase that is the # child of S and the sibling of VP" (http://www.nltk.org/book/ch08.html) for pattern in self._evaluate_tree(trees[mention['sentNum'] - 1]): np_string = ''.join([p[0]['nlpToken']['originalText'] for p in pattern[0]]) if re.sub(r'\s+', '', mention['text']) in np_string: candidate_object = Candidate() candidate_object.set_sentence_index(pattern[2]) candidate_object.set_raw([pattern[0], pattern[1], cluster, mention['id']]) candidates.append(candidate_object) document.set_candidates(self.get_id(), candidates) def _evaluate_tree(self, sentence_root): """ Examines the passed syntactic tree to determine if it matches a NP-VP-NP pattern This is executed per sentence :param sentence_root: A tree to be analyzed :type sentence_root: ParentedTree :return: A list of Tuples containing the agent and the action described in the sentence. """ candidates = [] for subtree in sentence_root.subtrees(): if subtree.label() == 'NP' and subtree.parent().label() == 'S': # Skip NPs containing a VP if any(list(subtree.subtrees(filter=lambda t: t.label() == 'VP'))): continue # check siblings for VP sibling = subtree.right_sibling() while sibling is not None: if sibling.label() == 'VP': # this gives a tuple to find the way from sentence to leaf # tree_position = subtree.leaf_treeposition(0) entry = [subtree.pos(), self.cut_what(sibling, self._minimal_length_of_tokens).pos(), sentence_root.stanfordCoreNLPResult['index']] candidates.append(entry) break sibling = sibling.right_sibling() return candidates def _evaluate_candidates(self, document): """ Calculate a confidence score based on number of mentions, position in text and entailment of named entities for extracted candidates. :param document: The parsed document :type document: Document :param candidates: Extracted candidates to evaluate. :type candidates:[([(String,String)], ([(String,String)])] :return: A list of evaluated and ranked candidates """ ranked_candidates = [] doc_len = document.get_len() doc_ner = document.get_ner() doc_coref = document.get_corefs() if any(doc_coref.values()): # get length of longest coref chain for normalization max_len = len(max(doc_coref.values(), key=len)) else: max_len = 1 for candidate in document.get_candidates(self.get_id()): candidateParts = candidate.get_raw() verb = candidateParts[1][0][0]['nlpToken']['originalText'].lower() # VP beginning with say/said often contain no relevant action and are therefor skipped. if verb.startswith('say') or verb.startswith('said'): continue coref_chain = doc_coref[candidateParts[2]] # first parameter used for ranking is the number of mentions, we use the length of the coref chain score = (len(coref_chain) / max_len) * self.weights[1] representative = None contains_ne = False mention_type = '' for mention in coref_chain: if mention['id'] == candidateParts[3]: mention_type = mention['type'] if mention['sentNum'] < doc_len: # The position (sentence number) is another important parameter for scoring. # This is inspired by the inverted pyramid. score += ((doc_len - mention['sentNum'] + 1) / doc_len) * self.weights[0] if mention['isRepresentativeMention']: # The representative name for this chain has been found. tmp = document._sentences[mention['sentNum'] - 1]['tokens'][mention['headIndex'] - 1] representative = ((tmp['originalText'], tmp), tmp['pos']) try: # these dose`t work, if some special characters are present if representative[-1][1] == 'POS': representative = representative[:-1] except IndexError: pass if not contains_ne: # If the current mention doesn't contain a named entity, check the other members of the chain for token in doc_ner[mention['sentNum'] - 1][mention['headIndex'] - 1:mention['endIndex'] - 1]: if token[1] in ['PERSON', 'ORGANIZATION', 'LOCATION']: contains_ne = True break if contains_ne: # the last important parameter is the entailment of a named entity score += self.weights[2] if score > 0: # normalize the scoring score /= sum(self.weights) if mention_type == 'PRONOMINAL': # use representing mention if the agent is only a pronoun rp_format_fix = [(({'nlpToken': representative[0][1]}, representative[0][1]['pos']))] ranked_candidates.append((rp_format_fix, candidateParts[1], score, candidate.get_sentence_index())) else: ranked_candidates.append((candidateParts[0], candidateParts[1], score, candidate.get_sentence_index())) # split results who = [(c[0], c[2], c[3]) for c in ranked_candidates] what = [(c[1], c[2], c[3]) for c in ranked_candidates] # Transform who to object oriented list o_who = self._filterAndConvertToObjectOrientedList(who) # Filter by text o_who_clean = self._filter_candidate_dublicates(o_who) document.set_answer('who', o_who_clean) # Transform who to object oriented list o_what = self._filterAndConvertToObjectOrientedList(what) # Filter by text o_what_clean = self._filter_candidate_dublicates(o_what) document.set_answer('what', o_what_clean) def _filterAndConvertToObjectOrientedList(self, list): max = 0 candidates = self._filter_duplicates(list) for candidate in candidates: if candidate.get_score() > max: max = candidate.get_score() # normalize for candidate in candidates: score = candidate.get_score() candidate.set_score(score / max) # sort candidates.sort(key=lambda x: x.get_score(), reverse=True) return candidates def cut_what(self, tree, min_length=0, length=0): """ This function is used to shorten verbphrases, it recursively traverses the parse tree depth first. :param tree: Tree to cut :type tree: ParentedTree :param min_length: Desired minimal length of tokens :type min_length: Integer :param length: Number of tokens already included by the upper level function :type length: Integer :return: A subtree """ if type(tree[0]) is not ParentedTree: # we found a leaf return ParentedTree(tree.label(), [tree[0]]) else: children = [] for sub in tree: child = self.cut_what(sub, min_length, length) length += len(child.leaves()) children.append(child) if sub.label() == 'NP': sibling = sub.right_sibling() if length < min_length and sibling is not None and sibling.label() == 'PP': children.append(sibling.copy(deep=True)) break return ParentedTree(tree.label(), children)
src/mcedit2/util/settings.py
elcarrion06/mcedit2
673
12779215
<gh_stars>100-1000 """ settings """ from __future__ import absolute_import, division, print_function, unicode_literals import json import os from PySide import QtCore import logging from mcedit2.util import directories log = logging.getLogger(__name__) _settings = None def Settings(): global _settings if _settings is None: _settings = MCESettings() return _settings class MCESettingsOption(QtCore.QObject): def __init__(self, settings, key, valueType=None, default=None, *args, **kwargs): super(MCESettingsOption, self).__init__(*args, **kwargs) self.settings = settings self.key = key self.valueType = valueType self.default = default def value(self, default=None): if default is None: default = self.default if self.valueType == "json": value = self.settings.jsonValue(self.key, default) else: value = self.settings.value(self.key, default) if self.valueType is bool: if isinstance(value, basestring): value = value.lower() == "true" elif self.valueType: value = self.valueType(value) return value def setValue(self, value): if self.valueType == "json": return self.settings.setJsonValue(self.key, value) else: return self.settings.setValue(self.key, value) valueChanged = QtCore.Signal(object) def jsonValue(self, default=None): return self.settings.jsonValue(self.key, default) def setJsonValue(self, value): return self.settings.setJsonValue(self.key, value) def connectAndCall(self, callback): """ Connect `callback` to this option's `valueChanged` signal, then call it with the value of this option. :param callback: :type callback: :return: :rtype: """ self.valueChanged.connect(callback) callback(self.value()) class MCESettingsNamespace(object): def __init__(self, rootSettings, prefix): self.rootSettings = rootSettings if not prefix.endswith("/"): prefix = prefix + "/" self.prefix = prefix def getOption(self, key, type=None, default=None): """ Parameters ---------- key: str type: bool | int | float | str default: Any Returns ------- option: MCESettingsOption """ return self.rootSettings.getOption(self.prefix + key, type, default) class MCESettings(QtCore.QSettings): def __init__(self, *args, **kwargs): """ Subclass of QSettings. Adds a `getOption` method which returns an individual option as its own object. Adds one signal for each setting, emitted when its value is changed. Also provides json encoded methods to work around a bug in PySide. QSettings, under PySide, does not reliably infer that a settings value should be read as a QStringList. jsonValue and setJsonValue methods are provided that will automatically encode/decode the given value to or from json :rtype: MCESettings """ dataDir = directories.getUserFilesDirectory() iniPath = os.path.join(dataDir, "mcedit2.ini") log.info("Loading app settings from %s", iniPath) super(MCESettings, self).__init__(iniPath, QtCore.QSettings.IniFormat, *args, **kwargs) self.options = {} #= defaultdict(lambda: QtCore.Signal(object)) def getNamespace(self, prefix): """ Return an MCESettingsNamespace object which can be used to access settings whose keys are all prefixed by the given prefix :param prefix: :type prefix: :return: :rtype: """ return MCESettingsNamespace(self, prefix) def getSignal(self, key): """ Returns a signal to be triggered when the setting `key` is changed. The signal handler receives one argument: the setting's new value. :param key: Settings key :type key: str :rtype: None """ return self.getOption(key).valueChanged def emitSignal(self, key, val): option = self.options.get(key) if option: option.valueChanged.emit(val) def setValue(self, key, val): old = self.value(key) if old != val: log.info("Setting %r changed to (%.40r)(...) (was (%.40r)(...))", key, val, old) super(MCESettings, self).setValue(key, val) self.emitSignal(key, val) def jsonValue(self, key, default=None): value = self.value(key, None) if value is not None: try: return json.loads(value) except ValueError as e: # No JSON object could be decoded log.error("Failed to decode setting %s: %s", key, e) return default else: return default def setJsonValue(self, key, value): self.setValue(key, json.dumps(value)) def getOption(self, key, type=None, default=None): """ Return an object that represents the setting at 'key'. The object may be used to get and set the value and get the value's valueChanged signal. Among other uses, the object's setValue attribute may be connected to the valueChanged signal of an input field. :param key: :type key: :return: :rtype: """ option = self.options.get(key) if option: return option option = MCESettingsOption(self, key, type, default) self.options[key] = option return option
scanners/zap-advanced/scanner/tests/test_zap_spider_http.py
kevin-yen/secureCodeBox
488
12779241
#!/usr/bin/env python # SPDX-FileCopyrightText: 2021 iteratec GmbH # # SPDX-License-Identifier: Apache-2.0 # -*- coding: utf-8 -*- import pytest from unittest.mock import MagicMock, Mock from unittest import TestCase from zapclient.configuration import ZapConfiguration class ZapSpiderHttpTests(TestCase): @pytest.mark.unit def test_has_spider_configurations(self): config = ZapConfiguration("./tests/mocks/context-with-overlay/", "https://www.secureCodeBox.io/") self.assertIsNone(config.get_active_spider_config) config = ZapConfiguration("./tests/mocks/scan-full-bodgeit-docker/", "http://bodgeit:8080/") self.assertIsNotNone(config.get_active_spider_config)
asv_oggm_plugin.py
skachuck/oggm
156
12779262
<reponame>skachuck/oggm import subprocess import requests import tempfile import os import logging from asv.plugins.conda import _find_conda, Conda from asv.console import log from asv import util logging.getLogger("requests").setLevel(logging.WARNING) OGGM_CONDA_ENV_URL = ("https://raw.githubusercontent.com/OGGM/" "OGGM-dependency-list/master/Linux-64/{0}") OGGM_CONDA_ENVS = { "36": "oggmdev-1.2.0.202002022248_20200202_py36.yml", "37": "oggmdev-1.2.0.202002022248_20200202_py37.yml", } class OggmVirtualenv(Conda): tool_name = "oggm_conda" def _setup(self): log.info("Creating oggm conda environment for {0}".format(self.name)) env_file = tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".yml") try: pyver = str(self._python).replace(".", "")[:2] oggm_env = OGGM_CONDA_ENVS[pyver] req = requests.get(OGGM_CONDA_ENV_URL.format(oggm_env)) req.raise_for_status() for line in req.text.splitlines(): if line.startswith("prefix:"): continue elif line.startswith("name:"): env_file.write("name: {0}\n".format(self.name)) else: env_file.write(line + "\n") env_file.close() self._conda_channels = ["conda-forge", "defaults"] self._conda_environment_file = env_file.name return super()._setup() except Exception as exc: if os.path.isfile(env_file.name): with open(env_file.name, "r") as f: text = f.read() log.info("oggm conda env create failed: in {} with:\n{}" .format(self._path, text)) raise finally: os.unlink(env_file.name)
dockerfiles/examples/read-bytes-seed/scale-job.py
kaydoh/scale
121
12779313
<gh_stars>100-1000 import argparse import datetime import json import logging import sys import os logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', level=logging.DEBUG, stream=sys.stdout) def run_algorithm(bytes_total, input_file, out_dir): """Read the indicated number of bytes from input file and store in output directory :param bytes_total: :param input_file: :param out_dir: :return: """ bytes_read = 0 chunk_size = 512 logging.info('Reading %s bytes from %s and storing at %s.' % (bytes_total, input_file, out_dir)) base_path = os.path.join(out_dir, 'output_file') start = datetime.datetime.utcnow().isoformat() os.makedirs(base_path) output_file = os.path.join(base_path, os.path.basename(input_file)) logging.info('Data being stored in %s' % output_file) with open(input_file, 'rb') as infile: with open(output_file, 'wb') as outfile: while bytes_read <= bytes_total: if bytes_read + chunk_size > bytes_total: chunk_size = bytes_total - bytes_read chunk = infile.read(chunk_size) # Break if EOF is encountered if not chunk: break outfile.write(chunk) bytes_read += chunk_size logging.info('Copy complete') end = datetime.datetime.utcnow().isoformat() # Output metadata file for testing capture metadata = { 'type': 'Feature', 'geometry': None, 'properties': { 'dataStarted': start + 'Z', 'dataEnded': end + 'Z' } } metadata_file = output_file + '.metadata.json' with open(metadata_file, 'w') as outfile: json.dump(metadata, outfile) logging.info('Metadata written to %s' % metadata_file) return output_file if __name__ == '__main__': for key in os.environ.keys(): print "%30s %s" % (key,os.environ[key]) parser = argparse.ArgumentParser(description='Copy x number of bytes from input file to output file.') parser.add_argument('bytes_total', type=int, help='number of bytes to copy from input to output file') parser.add_argument('input_file', help='absolute path to input file') parser.add_argument('output_dir', help='absolute output directory path') args = parser.parse_args() logging.debug('Bytes to copy: {}'.format(args.bytes_total)) logging.debug('Input file: {}'.format(args.input_file)) logging.debug('Output directory: {}'.format(args.output_dir)) output_file = run_algorithm(args.bytes_total, args.input_file, args.output_dir) # Write an output manifest for testing JSON property capture with open(os.path.join(args.output_dir, 'seed.outputs.json'), 'w') as output_json: input_size = os.path.getsize(args.input_file) contents = {'INPUT_FILE_NAME': args.input_file, 'INPUT_SIZE': input_size} json.dump(contents, output_json) sys.exit(0)
examples/notebooks/test_notebooks.py
mjc87/SHTOOLS
251
12779326
#!/usr/bin/env python3 """ This script will run all jupyter notebooks in order to test for errors. """ import sys import os import nbformat from nbconvert.preprocessors import ExecutePreprocessor if os.path.dirname(sys.argv[0]) != '': os.chdir(os.path.dirname(sys.argv[0])) notebooks = ('grids-and-coefficients.ipynb', 'localized-spectral-analysis.ipynb', 'gravity-and-magnetic-fields.ipynb', 'plotting-maps.ipynb', 'low-level-spherical-harmonic-analyses.ipynb', 'advanced-localized-spectral-analysis.ipynb', 'advanced-shcoeffs-and-shgrid-usage.ipynb', 'spherical-harmonic-normalizations.ipynb', 'advanced-shwindow-usage.ipynb', '3d-plots.ipynb') if sys.version_info.major == 3: kname = 'python3' else: raise ('Python version {:d} not supported.'.format(sys.version_info.major)) for i in range(len(notebooks)): with open(notebooks[i]) as f: nb = nbformat.read(f, as_version=4) ep = ExecutePreprocessor(timeout=240, kernel_name=kname) print('Processing file {:s}'.format(notebooks[i])) ep.preprocess(nb, {'metadata': {'path': '.'}})
networking-calico/networking_calico/timestamp.py
mikestephen/calico
3,973
12779383
# -*- coding: utf-8 -*- # Copyright (c) 2018 Tigera, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime ZERO = datetime.timedelta(0) class UTC(datetime.tzinfo): def utcoffset(self, dt): return ZERO def tzname(self, dt): return "UTC" def dst(self, dt): return ZERO utc = UTC() def timestamp_now(): utc_now = datetime.datetime.now(utc) return utc_now.strftime('%Y-%m-%dT%H:%M:%SZ') # e.g. 2015-05-19T20:32:12Z
PseudoGenerator.py
yxn-coder/Inf-Net
273
12779427
# -*- coding: utf-8 -*- """Preview Code for 'Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Scans' submit to Transactions on Medical Imaging, 2020. First Version: Created on 2020-05-13 (@author: <NAME>) """ # ---- base lib ----- import os import argparse from datetime import datetime import cv2 import numpy as np import random import shutil from scipy import misc # ---- torch lib ---- import torch from torch.autograd import Variable import torch.nn.functional as F # ---- custom lib ---- # NOTES: Here we nly provide Res2Net, you can also replace it with other backbones from Code.model_lung_infection.InfNet_Res2Net import Inf_Net as Network from Code.utils.dataloader_LungInf import get_loader, test_dataset from Code.utils.utils import clip_gradient, adjust_lr, AvgMeter from Code.utils.format_conversion import binary2edge def joint_loss(pred, mask): weit = 1 + 5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask) wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce='none') wbce = (weit*wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3)) pred = torch.sigmoid(pred) inter = ((pred * mask)*weit).sum(dim=(2, 3)) union = ((pred + mask)*weit).sum(dim=(2, 3)) wiou = 1 - (inter + 1)/(union - inter+1) return (wbce + wiou).mean() def trainer(train_loader, model, optimizer, epoch, opt, total_step): model.train() # ---- multi-scale training ---- size_rates = [0.75, 1, 1.25] # replace your desired scale loss_record1, loss_record2, loss_record3, loss_record4, loss_record5 = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter() for i, pack in enumerate(train_loader, start=1): for rate in size_rates: optimizer.zero_grad() # ---- data prepare ---- images, gts, edges = pack images = Variable(images).cuda() gts = Variable(gts).cuda() edges = Variable(edges).cuda() # ---- rescale ---- trainsize = int(round(opt.trainsize*rate/32)*32) if rate != 1: images = F.upsample(images, size=(trainsize, trainsize), mode='bilinear', align_corners=True) gts = F.upsample(gts, size=(trainsize, trainsize), mode='bilinear', align_corners=True) edges = F.upsample(edges, size=(trainsize, trainsize), mode='bilinear', align_corners=True) # ---- forward ---- lateral_map_5, lateral_map_4, lateral_map_3, lateral_map_2, lateral_edge = model(images) # ---- loss function ---- loss5 = joint_loss(lateral_map_5, gts) loss4 = joint_loss(lateral_map_4, gts) loss3 = joint_loss(lateral_map_3, gts) loss2 = joint_loss(lateral_map_2, gts) loss1 = torch.nn.BCEWithLogitsLoss()(lateral_edge, edges) loss = loss1 + loss2 + loss3 + loss4 + loss5 # ---- backward ---- loss.backward() clip_gradient(optimizer, opt.clip) optimizer.step() # ---- recording loss ---- if rate == 1: loss_record1.update(loss1.data, opt.batchsize) loss_record2.update(loss2.data, opt.batchsize) loss_record3.update(loss3.data, opt.batchsize) loss_record4.update(loss4.data, opt.batchsize) loss_record5.update(loss5.data, opt.batchsize) # ---- train visualization ---- if i % 5 == 0 or i == total_step: print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], [lateral-edge: {:.4f}, ' 'lateral-2: {:.4f}, lateral-3: {:0.4f}, lateral-4: {:0.4f}, lateral-5: {:0.4f}]'. format(datetime.now(), epoch, opt.epoch, i, total_step, loss_record1.show(), loss_record2.show(), loss_record3.show(), loss_record4.show(), loss_record5.show())) # ---- save model_lung_infection ---- save_path = 'Snapshots/{}/'.format(opt.train_save) os.makedirs(save_path, exist_ok=True) if (epoch+1) % 10 == 0: torch.save(model.state_dict(), save_path + 'Semi-Inf-Net-%d.pth' % (epoch+1)) print('[Saving Snapshot:]', save_path + 'Semi-Inf-Net-%d.pth' % (epoch+1)) def train_module(_train_path, _train_save, _resume_snapshot): parser = argparse.ArgumentParser() parser.add_argument('--epoch', type=int, default=10, help='epoch number') parser.add_argument('--lr', type=float, default=3e-4, help='learning rate') parser.add_argument('--batchsize', type=int, default=16, help='training batch size') parser.add_argument('--trainsize', type=int, default=352, help='training dataset size') parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin') parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate') parser.add_argument('--decay_epoch', type=int, default=50, help='every n epochs decay learning rate') parser.add_argument('--train_path', type=str, default=_train_path) parser.add_argument('--train_save', type=str, default=_train_save) parser.add_argument('--resume_snapshot', type=str, default=_resume_snapshot) opt = parser.parse_args() # ---- build models ---- torch.cuda.set_device(0) model = Network(channel=32, n_class=1).cuda() model.load_state_dict(torch.load(opt.resume_snapshot)) params = model.parameters() optimizer = torch.optim.Adam(params, opt.lr) image_root = '{}/Imgs/'.format(opt.train_path) gt_root = '{}/GT/'.format(opt.train_path) edge_root = '{}/Edge/'.format(opt.train_path) train_loader = get_loader(image_root, gt_root, edge_root, batchsize=opt.batchsize, trainsize=opt.trainsize) total_step = len(train_loader) print("#"*20, "Start Training", "#"*20) for epoch in range(1, opt.epoch): adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch) trainer(train_loader=train_loader, model=model, optimizer=optimizer, epoch=epoch, opt=opt, total_step=total_step) def inference_module(_data_path, _save_path, _pth_path): model = Network(channel=32, n_class=1) model.load_state_dict(torch.load(_pth_path)) model.cuda() model.eval() os.makedirs(_save_path, exist_ok=True) # FIXME image_root = '{}/'.format(_data_path) # gt_root = '{}/mask/'.format(data_path) test_loader = test_dataset(image_root, image_root, 352) for i in range(test_loader.size): image, name = test_loader.load_data() #gt = np.asarray(gt, np.float32) #gt /= (gt.max() + 1e-8) image = image.cuda() lateral_map_5, lateral_map_4, lateral_map_3, lateral_map_2, lateral_edge = model(image) res = lateral_map_2 # final segmentation #res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False) res = res.sigmoid().data.cpu().numpy().squeeze() res = (res - res.min()) / (res.max() - res.min() + 1e-8) misc.imsave(_save_path + '/' + name, res) def movefiles(_src_dir, _dst_dir): os.makedirs(_dst_dir, exist_ok=True) for file_name in os.listdir(_src_dir): shutil.copyfile(os.path.join(_src_dir, file_name), os.path.join(_dst_dir, file_name)) if __name__ == '__main__': slices = './Dataset/TrainingSet/LungInfection-Train/Pseudo-label/DataPrepare' slices_dir = slices + '/Imgs_split' slices_pred_seg_dir = slices + '/pred_seg_split' slices_pred_edge_dir = slices + '/pred_edge_split' # NOTES: Hybrid-label = Doctor-label + Pseudo-label semi = './Dataset/TrainingSet/LungInfection-Train/Pseudo-label/DataPrepare/Hybrid-label' semi_img = semi + '/Imgs' semi_mask = semi + '/GT' semi_edge = semi + '/Edge' if (not os.path.exists(semi_img)) or (len(os.listdir(semi_img)) != 50): shutil.copytree('Dataset/TrainingSet/LungInfection-Train/Doctor-label/Imgs', semi_img) shutil.copytree('Dataset/TrainingSet/LungInfection-Train/Doctor-label/GT', semi_mask) shutil.copytree('Dataset/TrainingSet/LungInfection-Train/Doctor-label/Edge', semi_edge) print('Copy done') else: print('Check done') slices_lst = os.listdir(slices_dir) random.shuffle(slices_lst) print("#" * 20, "\nStart Training (Inf-Net)\nThis code is written for 'Inf-Net: Automatic COVID-19 Lung " "Infection Segmentation from CT Scans', 2020, arXiv.\n" "----\nPlease cite the paper if you use this code and dataset. " "And any questions feel free to contact me " "via E-mail (<EMAIL>)\n----\n", "#" * 20) for i, split_name in enumerate(slices_lst): print('\n[INFO] {} ({}/320)'.format(split_name, i)) # ---- inference ---- test_aux_dir = os.path.join(slices_dir, split_name) test_aux_save_dir = os.path.join(slices_pred_seg_dir, split_name) if i == 0: snapshot_dir = './Snapshots/save_weights/Inf-Net/Inf-Net-100.pth' else: snapshot_dir = './Snapshots/semi_training/Semi-Inf-Net_{}/Semi-Inf-Net-10.pth'.format(i-1) inference_module(_data_path=test_aux_dir, _save_path=test_aux_save_dir, _pth_path=snapshot_dir) os.makedirs(os.path.join(slices_pred_edge_dir, split_name), exist_ok=True) for pred_name in os.listdir(test_aux_save_dir): edge_tmp = binary2edge(os.path.join(test_aux_save_dir, pred_name)) cv2.imwrite(os.path.join(slices_pred_edge_dir, split_name, pred_name), edge_tmp) # ---- move generation ---- movefiles(test_aux_dir, semi_img) movefiles(test_aux_save_dir, semi_mask) movefiles(os.path.join(slices_pred_edge_dir, split_name), semi_edge) # ---- training ---- train_module(_train_path=semi, _train_save='semi_training/Semi-Inf-Net_{}'.format(i), _resume_snapshot=snapshot_dir) # move img/pseudo-label into `./Dataset/TrainingSet/LungInfection-Train/Pseudo-label` shutil.copytree(semi_img, './Dataset/TrainingSet/LungInfection-Train/Pseudo-label/Imgs') shutil.copytree(semi_mask, './Dataset/TrainingSet/LungInfection-Train/Pseudo-label/GT') shutil.copytree(semi_edge, 'Dataset/TrainingSet/LungInfection-Train/Pseudo-label/Edge') print('Pseudo Label Generated!')
tests/wrappers.py
blacksph3re/garage
1,500
12779452
"""Test environment wrapper.""" import gym class AutoStopEnv(gym.Wrapper): """Environment wrapper that stops episode at step max_episode_length.""" def __init__(self, env=None, env_name='', max_episode_length=100): """Create an AutoStepEnv. Args: env (gym.Env): Environment to be wrapped. env_name (str): Name of the environment. max_episode_length (int): Maximum length of the episode. """ if env_name: super().__init__(gym.make(env_name)) else: super().__init__(env) self._episode_step = 0 self._max_episode_length = max_episode_length def step(self, action): """Step the wrapped environment. Args: action (np.ndarray): the action. Returns: np.ndarray: Next observation float: Reward bool: Termination signal dict: Environment information """ self._episode_step += 1 next_obs, reward, done, info = self.env.step(action) if self._episode_step == self._max_episode_length: done = True self._episode_step = 0 return next_obs, reward, done, info def reset(self, **kwargs): """Reset the wrapped environment. Args: **kwargs: Keyword arguments. Returns: np.ndarray: Initial observation. """ return self.env.reset(**kwargs)
kmip/tests/integration/conftest.py
ondrap/PyKMIP
179
12779471
<reponame>ondrap/PyKMIP<filename>kmip/tests/integration/conftest.py<gh_stars>100-1000 # Copyright (c) 2015 The Johns Hopkins University/Applied Physics Laboratory # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import pytest from kmip.services import kmip_client from kmip.pie import client as pclient def pytest_addoption(parser): parser.addoption( "--config", action="store", default="client", help="Config file section name for client configuration settings") @pytest.fixture(scope="class") def client(request): config = request.config.getoption("--config") client = kmip_client.KMIPProxy(config=config) client.open() def finalize(): client.close() request.addfinalizer(finalize) request.cls.client = client @pytest.fixture(scope="class") def simple(request): config = request.config.getoption("--config") client = pclient.ProxyKmipClient(config=config) client.open() def finalize(): client.close() request.addfinalizer(finalize) request.cls.client = client
libtrellis/examples/graph.py
Keno/prjtrellis
256
12779485
#!/usr/bin/env python3 """ Testing the routing graph generator """ import pytrellis import sys pytrellis.load_database("../../database") chip = pytrellis.Chip("LFE5U-45F") rg = chip.get_routing_graph() tile = rg.tiles[pytrellis.Location(9, 71)] for wire in tile.wires: print("Wire {}:".format(rg.to_str(wire.key()))) for dh in wire.data().downhill: arc = rg.tiles[dh.loc].arcs[dh.id] print(" --> R{}C{}_{}".format(arc.sink.loc.y, arc.sink.loc.x, rg.to_str(arc.sink.id))) for bdh in wire.data().belsDownhill: print(" ->| R{}C{}_{}.{}".format(bdh.bel.loc.y, bdh.bel.loc.x, rg.to_str(bdh.bel.id), rg.to_str(bdh.pin))) print() for uh in wire.data().uphill: arc = rg.tiles[uh.loc].arcs[uh.id] print(" <-- R{}C{}_{}".format(arc.source.loc.y, arc.source.loc.x, rg.to_str(arc.source.id))) for buh in wire.data().belsUphill: print(" <-| R{}C{}_{}.{}".format(buh.bel.loc.y, buh.bel.loc.x, rg.to_str(buh.bel.id), rg.to_str(buh.pin))) print()
python/ql/test/query-tests/Summary/my_file.py
timoles/codeql
4,036
12779507
""" module level docstring is not included """ # this line is not code # `tty` was chosen for stability over python versions (so we don't get diffrent results # on different computers, that has different versions of Python). # # According to https://github.com/python/cpython/tree/master/Lib (at 2021-04-23) `tty` # was last changed in 2001, so chances of this being changed in the future are slim. import tty s = """ all these lines are code """ print(s) def func(): """ this string is a doc-string. Although the module-level docstring is not considered code, this one apparently is ¯\_(ツ)_/¯ """ pass
semseg/models/modules/common.py
Genevievekim/semantic-segmentation-1
196
12779536
<reponame>Genevievekim/semantic-segmentation-1<filename>semseg/models/modules/common.py import torch from torch import nn, Tensor class ConvModule(nn.Sequential): def __init__(self, c1, c2, k, s=1, p=0, d=1, g=1): super().__init__( nn.Conv2d(c1, c2, k, s, p, d, g, bias=False), nn.BatchNorm2d(c2), nn.ReLU(True) )
src/main/resources/resource/AndroidSpeechRecognition/AndroidSpeechRecognition.py
holgerfriedrich/myrobotlab
179
12779544
######################################### # AndroidSpeechRecognition.py # more info @: http://myrobotlab.org/service/AndroidSpeechRecognition ######################################### # start the service androidspeechrecognition = Runtime.start("androidspeechrecognition","AndroidSpeechRecognition") # start mouth marySpeech = Runtime.start("marySpeech", "MarySpeech") # shutdown microphone if robot speaking androidspeechrecognition.attach(marySpeech) # auto rearm microphone androidspeechrecognition.setAutoListen(True) androidspeechrecognition.addCommand("turn on the light", "python", "lightOn") androidspeechrecognition.addCommand("turn off the light", "python", "lightOff") def lightOn(): marySpeech.speakBlocking("light is on") def lightOff(): marySpeech.speakBlocking("light is off")
src/garage/torch/modules/cnn_module.py
blacksph3re/garage
1,500
12779546
"""CNN Module.""" import warnings import akro import numpy as np import torch from torch import nn from garage import InOutSpec from garage.torch import (expand_var, NonLinearity, output_height_2d, output_width_2d) # pytorch v1.6 issue, see https://github.com/pytorch/pytorch/issues/42305 # pylint: disable=abstract-method class CNNModule(nn.Module): """Convolutional neural network (CNN) model in pytorch. Args: spec (garage.InOutSpec): Specification of inputs and outputs. The input should be in 'NCHW' format: [batch_size, channel, height, width]. Will print a warning if the channel size is not 1 or 3. If output_space is specified, then a final linear layer will be inserted to map to that dimensionality. If output_space is None, it will be filled in with the computed output space. image_format (str): Either 'NCHW' or 'NHWC'. Should match the input specification. Gym uses NHWC by default, but PyTorch uses NCHW by default. hidden_channels (tuple[int]): Number of output channels for CNN. For example, (3, 32) means there are two convolutional layers. The filter for the first conv layer outputs 3 channels and the second one outputs 32 channels. kernel_sizes (tuple[int]): Dimension of the conv filters. For example, (3, 5) means there are two convolutional layers. The filter for first layer is of dimension (3 x 3) and the second one is of dimension (5 x 5). strides (tuple[int]): The stride of the sliding window. For example, (1, 2) means there are two convolutional layers. The stride of the filter for first layer is 1 and that of the second layer is 2. paddings (tuple[int]): Amount of zero-padding added to both sides of the input of a conv layer. padding_mode (str): The type of padding algorithm to use, i.e. 'constant', 'reflect', 'replicate' or 'circular' and by default is 'zeros'. hidden_nonlinearity (callable or torch.nn.Module): Activation function for intermediate dense layer(s). It should return a torch.Tensor. Set it to None to maintain a linear activation. hidden_b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a torch.Tensor. max_pool (bool): Bool for using max-pooling or not. pool_shape (tuple[int]): Dimension of the pooling layer(s). For example, (2, 2) means that all pooling layers are of the same shape (2, 2). pool_stride (tuple[int]): The strides of the pooling layer(s). For example, (2, 2) means that all the pooling layers have strides (2, 2). layer_normalization (bool): Bool for using layer normalization or not. hidden_w_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a torch.Tensor. enable_cudnn_benchmarks (bool): Whether to enable cudnn benchmarks in `torch`. If enabled, the backend selects the CNN benchamark algorithm with the best performance. """ def __init__( self, spec, image_format, hidden_channels, *, # Many things after this are ints or tuples of ints. kernel_sizes, strides, paddings=0, padding_mode='zeros', hidden_nonlinearity=nn.ReLU, hidden_w_init=nn.init.xavier_uniform_, hidden_b_init=nn.init.zeros_, max_pool=False, pool_shape=None, pool_stride=1, layer_normalization=False, enable_cudnn_benchmarks=True): super().__init__() assert len(hidden_channels) > 0 # PyTorch forces us to use NCHW internally. in_channels, height, width = _check_spec(spec, image_format) self._format = image_format kernel_sizes = expand_var('kernel_sizes', kernel_sizes, len(hidden_channels), 'hidden_channels') strides = expand_var('strides', strides, len(hidden_channels), 'hidden_channels') paddings = expand_var('paddings', paddings, len(hidden_channels), 'hidden_channels') pool_shape = expand_var('pool_shape', pool_shape, len(hidden_channels), 'hidden_channels') pool_stride = expand_var('pool_stride', pool_stride, len(hidden_channels), 'hidden_channels') self._cnn_layers = nn.Sequential() torch.backends.cudnn.benchmark = enable_cudnn_benchmarks # In case there are no hidden channels, handle output case. out_channels = in_channels for i, out_channels in enumerate(hidden_channels): conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_sizes[i], stride=strides[i], padding=paddings[i], padding_mode=padding_mode) height = output_height_2d(conv_layer, height) width = output_width_2d(conv_layer, width) hidden_w_init(conv_layer.weight) hidden_b_init(conv_layer.bias) self._cnn_layers.add_module(f'conv_{i}', conv_layer) if layer_normalization: self._cnn_layers.add_module( f'layer_norm_{i}', nn.LayerNorm((out_channels, height, width))) if hidden_nonlinearity: self._cnn_layers.add_module(f'non_linearity_{i}', NonLinearity(hidden_nonlinearity)) if max_pool: pool = nn.MaxPool2d(kernel_size=pool_shape[i], stride=pool_stride[i]) height = output_height_2d(pool, height) width = output_width_2d(pool, width) self._cnn_layers.add_module(f'max_pooling_{i}', pool) in_channels = out_channels output_dims = out_channels * height * width if spec.output_space is None: final_spec = InOutSpec( spec.input_space, akro.Box(low=-np.inf, high=np.inf, shape=(output_dims, ))) self._final_layer = None else: final_spec = spec # Checked at start of __init__ self._final_layer = nn.Linear(output_dims, spec.output_space.shape[0]) self.spec = final_spec # pylint: disable=arguments-differ def forward(self, x): """Forward method. Args: x (torch.Tensor): Input values. Should match image_format specified at construction (either NCHW or NCWH). Returns: List[torch.Tensor]: Output values """ # Transform single values into batch, if necessary. if len(x.shape) == 3: x = x.unsqueeze(0) # This should be the single place in torch that image normalization # happens if isinstance(self.spec.input_space, akro.Image): x = torch.div(x, 255.0) assert len(x.shape) == 4 if self._format == 'NHWC': # Convert to internal NCHW format x = x.permute((0, 3, 1, 2)) for layer in self._cnn_layers: x = layer(x) if self._format == 'NHWC': # Convert back to NHWC (just in case) x = x.permute((0, 2, 3, 1)) # Remove non-batch dimensions x = x.reshape(x.shape[0], -1) # Apply final linearity, if it was requested. if self._final_layer is not None: x = self._final_layer(x) return x def _check_spec(spec, image_format): """Check that an InOutSpec is suitable for a CNNModule. Args: spec (garage.InOutSpec): Specification of inputs and outputs. The input should be in 'NCHW' format: [batch_size, channel, height, width]. Will print a warning if the channel size is not 1 or 3. If output_space is specified, then a final linear layer will be inserted to map to that dimensionality. If output_space is None, it will be filled in with the computed output space. image_format (str): Either 'NCHW' or 'NHWC'. Should match the input specification. Gym uses NHWC by default, but PyTorch uses NCHW by default. Returns: tuple[int, int, int]: The input channels, height, and width. Raises: ValueError: If spec isn't suitable for a CNNModule. """ # pylint: disable=no-else-raise input_space = spec.input_space output_space = spec.output_space # Don't use isinstance, since akro.Space is guaranteed to inherit from # gym.Space if getattr(input_space, 'shape', None) is None: raise ValueError( f'input_space to CNNModule is {input_space}, but should be an ' f'akro.Box or akro.Image') elif len(input_space.shape) != 3: raise ValueError( f'Input to CNNModule is {input_space}, but should have three ' f'dimensions.') if (output_space is not None and not (hasattr(output_space, 'shape') and len(output_space.shape) == 1)): raise ValueError( f'output_space to CNNModule is {output_space}, but should be ' f'an akro.Box with a single dimension or None') if image_format == 'NCHW': in_channels = spec.input_space.shape[0] height = spec.input_space.shape[1] width = spec.input_space.shape[2] elif image_format == 'NHWC': height = spec.input_space.shape[0] width = spec.input_space.shape[1] in_channels = spec.input_space.shape[2] else: raise ValueError( f'image_format has value {image_format!r}, but must be either ' f"'NCHW' or 'NHWC'") if in_channels not in (1, 3): warnings.warn( f'CNNModule input has {in_channels} channels, but ' f'1 or 3 channels are typical. Consider changing the CNN ' f'image_format.') return in_channels, height, width
tensornetwork/backends/tensorflow/tensorflow_tensornetwork_test.py
khanhgithead/TensorNetwork
1,681
12779575
"""Tests for graphmode_tensornetwork.""" import numpy as np import tensorflow as tf from tensornetwork import (contract, connect, flatten_edges_between, contract_between, Node) import pytest class GraphmodeTensorNetworkTest(tf.test.TestCase): def test_basic_graphmode(self): # pylint: disable=not-context-manager with tf.compat.v1.Graph().as_default(): a = Node(tf.ones(10), backend="tensorflow") b = Node(tf.ones(10), backend="tensorflow") e = connect(a[0], b[0]) final_tensor = contract(e).get_tensor() sess = tf.compat.v1.Session() final_val = sess.run(final_tensor) self.assertAllClose(final_val, 10.0) def test_gradient_decent(self): # pylint: disable=not-context-manager with tf.compat.v1.Graph().as_default(): a = Node(tf.Variable(tf.ones(10)), backend="tensorflow") b = Node(tf.ones(10), backend="tensorflow") e = connect(a[0], b[0]) final_tensor = contract(e).get_tensor() opt = tf.compat.v1.train.GradientDescentOptimizer(0.001) train_op = opt.minimize(final_tensor) sess = tf.compat.v1.Session() sess.run(tf.compat.v1.global_variables_initializer()) self.assertAllClose(sess.run(final_tensor), 10.0) sess.run(train_op) self.assertLess(sess.run(final_tensor), 10.0) def test_dynamic_network_sizes(self): @tf.function def f(x, n): x_slice = x[:n] n1 = Node(x_slice, backend="tensorflow") n2 = Node(x_slice, backend="tensorflow") e = connect(n1[0], n2[0]) return contract(e).get_tensor() x = np.ones(10) self.assertAllClose(f(x, tf.convert_to_tensor(2)), 2.0) self.assertAllClose(f(x, tf.convert_to_tensor(3)), 3.0) @pytest.mark.skip(reason="Test fails due to probable bug in tensorflow 2.0.0") def test_dynamic_network_sizes_contract_between(self): @tf.function def f(x, n): x_slice = x[..., :n] n1 = Node(x_slice, backend="tensorflow") n2 = Node(x_slice, backend="tensorflow") connect(n1[0], n2[0]) connect(n1[1], n2[1]) connect(n1[2], n2[2]) return contract_between(n1, n2).get_tensor() x = tf.ones((3, 4, 5)) self.assertAllClose(f(x, tf.convert_to_tensor(2)), 24.0) self.assertAllClose(f(x, tf.convert_to_tensor(3)), 36.0) def test_dynamic_network_sizes_flatten_standard(self): @tf.function def f(x, n): x_slice = x[..., :n] n1 = Node(x_slice, backend="tensorflow") n2 = Node(x_slice, backend="tensorflow") connect(n1[0], n2[0]) connect(n1[1], n2[1]) connect(n1[2], n2[2]) return contract(flatten_edges_between(n1, n2)).get_tensor() x = np.ones((3, 4, 5)) self.assertAllClose(f(x, tf.convert_to_tensor(2)), 24.0) self.assertAllClose(f(x, tf.convert_to_tensor(3)), 36.0) def test_dynamic_network_sizes_flatten_trace(self): @tf.function def f(x, n): x_slice = x[..., :n] n1 = Node(x_slice, backend="tensorflow") connect(n1[0], n1[2]) connect(n1[1], n1[3]) return contract(flatten_edges_between(n1, n1)).get_tensor() x = np.ones((3, 4, 3, 4, 5)) self.assertAllClose(f(x, tf.convert_to_tensor(2)), np.ones((2,)) * 12) self.assertAllClose(f(x, tf.convert_to_tensor(3)), np.ones((3,)) * 12) def test_batch_usage(self,): def build_tensornetwork(tensors): a = Node(tensors[0], backend="tensorflow") b = Node(tensors[1], backend="tensorflow") e = connect(a[0], b[0]) return contract(e).get_tensor() tensors = [np.ones((5, 10)), np.ones((5, 10))] result = tf.map_fn(build_tensornetwork, tensors, dtype=tf.float64) np.testing.assert_allclose(result, np.ones(5) * 10) if __name__ == '__main__': tf.test.main()
runtests.py
prohfesor/tapiriik
1,445
12779581
<reponame>prohfesor/tapiriik import tapiriik.database tapiriik.database.db = tapiriik.database._connection["tapiriik_test"] tapiriik.database.cachedb = tapiriik.database._connection["tapiriik_cache_test"] from tapiriik.testing import * import unittest unittest.main() tapiriik.database._connection.drop_database("tapiriik_test") tapiriik.database._connection.drop_database("tapiriik_cache_test")
koku/providers/azure/client.py
rubik-ai/koku
157
12779586
# # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Azure Client Configuration.""" from azure.common.credentials import ServicePrincipalCredentials from azure.mgmt.costmanagement import CostManagementClient from azure.mgmt.resource import ResourceManagementClient from azure.mgmt.storage import StorageManagementClient from azure.storage.blob import BlobServiceClient from msrestazure.azure_cloud import AZURE_CHINA_CLOUD from msrestazure.azure_cloud import AZURE_GERMAN_CLOUD from msrestazure.azure_cloud import AZURE_PUBLIC_CLOUD from msrestazure.azure_cloud import AZURE_US_GOV_CLOUD class AzureClientFactory: """Azure client factory. This class holds the Azure credentials and can create Service Clients for querying the Azure Service APIs. Args: subscription_id (str): Subscription ID tenant_id (str): Tenant ID for your Azure Subscription client_id (str): Service Principal Application ID client_secret (str): Service Principal Password cloud (str): Cloud selector, must be one of ['china', 'germany', 'public', 'usgov'] """ def __init__(self, subscription_id, tenant_id, client_id, client_secret, cloud="public"): """Constructor.""" self._subscription_id = subscription_id clouds = { "china": AZURE_CHINA_CLOUD, "germany": AZURE_GERMAN_CLOUD, "public": AZURE_PUBLIC_CLOUD, "usgov": AZURE_US_GOV_CLOUD, } self._credentials = ServicePrincipalCredentials( client_id=client_id, secret=client_secret, tenant=tenant_id, cloud_environment=clouds.get(cloud, "public") ) @property def credentials(self): """Service Principal Credentials property.""" return self._credentials @property def cost_management_client(self): """Get cost management client with subscription and credentials.""" return CostManagementClient(self.credentials, self.subscription_id) @property def resource_client(self): """Return a resource client.""" return ResourceManagementClient(self.credentials, self.subscription_id) @property def storage_client(self): """Get storage client with subscription and credentials.""" return StorageManagementClient(self.credentials, self.subscription_id) @property def subscription_id(self): """Subscription ID property.""" return self._subscription_id def cloud_storage_account(self, resource_group_name, storage_account_name): """Get a BlobServiceClient.""" storage_account_keys = self.storage_client.storage_accounts.list_keys( resource_group_name, storage_account_name ) # Add check for keys and a get value key = storage_account_keys.keys[0] connect_str = ( f"DefaultEndpointsProtocol=https;" f"AccountName={storage_account_name};" f"AccountKey={key.value};" f"EndpointSuffix=core.windows.net" ) return BlobServiceClient.from_connection_string(connect_str)
high-availability-endpoint/python/region_lookup.py
fortunecookiezen/aws-health-tools
825
12779599
<filename>high-availability-endpoint/python/region_lookup.py # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import dns.resolver class RegionLookupError(Exception): """Rasied when there was a problem when looking up the active region""" pass def active_region(): qname = 'global.health.amazonaws.com' try: answers = dns.resolver.resolve(qname, 'CNAME') except Exception as e: raise RegionLookupError('Failed to resolve {}'.format(qname), e) if len(answers) != 1: raise RegionLookupError('Failed to get a single answer when resolving {}'.format(qname)) name = str(answers[0].target) # e.g. health.us-east-1.amazonaws.com. region_name = name.split('.')[1] # Region name is the 1st in split('.') -> ['health', 'us-east-1', 'amazonaws', 'com', ''] return region_name
Z - Tool Box/x2john/ccache2john.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1,290
12779605
#!/usr/bin/env python2 """ This script extracts crackable hashes from krb5's credential cache files (e.g. /tmp/krb5cc_1000). NOTE: This attack technique only works against MS Active Directory servers. This was tested with CentOS 7.4 client running krb5-1.15.1 software against a Windows 2012 R2 Active Directory server. Usage: python ccache2john.py ccache_file Upstream: https://github.com/rvazarkar/KrbCredExport Authors: <NAME> (main author), <NAME> (splitting support), and <NAME> (misc. glue) Resources, https://lapo.it/asn1js/ https://tools.ietf.org/html/rfc1510#section-5.8.1 https://github.com/CoreSecurity/impacket/tree/master/impacket/krb5 https://www.gnu.org/software/shishi/manual/html_node/The-Credential-Cache-Binary-File-Format.html https://github.com/wireshark/wireshark/blob/master/epan/dissectors/asn1/kerberos/KerberosV5Spec2.asn """ import sys import os.path import time import struct import datetime from pyasn1.codec.ber import decoder # LB is a single byte representing the length of the rest of the section # LT is a 3 byte structure consisting of the byte 82 followed by 2 bytes representing the length of the rest of the file # header { # uint16 tag # uint16 taglen # uint8[taglen] tagdata # } class Header: def __init__(self): self.tag = None self.taglen = None self.deltatime = DeltaTime() def parsefile(self, f): self.tag, self.taglen = struct.unpack(">HH", f.read(4)) self.deltatime.parsefile(f) def tostring(self): r = '' r += struct.pack(">HH", self.tag, self.taglen) r += self.deltatime.tostring() return r # deltatime { # uint32 time_offset # uint32 usec_offset # } class DeltaTime: def __init__(self): self.usec_offset = None self.time_offset = None def parsefile(self, f): self.time_offset, self.usec_offset = struct.unpack(">LL", f.read(8)) def tostring(self): r = '' r += struct.pack(">LL", self.time_offset, self.usec_offset) return r # ccacheheader { # uint16 version # uint16 header_len # header[] headers # principal primary_principal # } class CCacheHeader: def __init__(self): self.version = None self.header_length = None self.header = Header() def parsefile(self, f): self.version, = struct.unpack(">H", f.read(2)) self.header_length, = struct.unpack(">H", f.read(2)) # self.header.parsefile(f) # this is perhaps buggy? f.read(self.header_length) def tostring(self): r = '' r += struct.pack(">HH", self.version, self.header_length) r += self.header.tostring() return r # times { # uint32 authtime # uint32 starttime # uint32 endtime # uint32 renew_till # } class KerbTimes: def __init__(self): self.authtime = None self.starttime = None self.endtime = None self.renew_till = None def parsefile(self, f): self.authtime, self.starttime, self.endtime, self.renew_till = struct.unpack(">IIII", f.read(16)) def tostring(self): return struct.pack(">IIII", self.authtime, self.starttime, self.endtime, self.renew_till) # counted_octet { # uint32 length # uint8[char] data # } class CountedOctet: def __init__(self): self.length = None self.data = None def parsefile(self, f): self.length, = struct.unpack(">L", f.read(4)) self.data, = struct.unpack(">%ds" % self.length, f.read(self.length)) def tostring(self): r = b'' r += struct.pack(">L", self.length) r += struct.pack(">%ds" % self.length, self.data) return r # keyblock { # uint16 keytype # uint16 etype # uint16 keylen # uint8[keylen] key # } class Keyblock: def __init__(self): self.keytype = None self.etype = None self.keylen = None self.key = None def parsefile(self, f): self.keytype, self.etype, self.keylen = struct.unpack(">HHH", f.read(6)) self.key, = struct.unpack(">%ds" % self.keylen, f.read(self.keylen)) def tostring(self): r = '' r += struct.pack(">HHH", self.keytype, self.etype, self.keylen) r += struct.pack(">%ds" % self.keylen, self.key) return r # principal { # uint32 name_type # uint32 num_components # counted_octet realm # counted_octet[num_components] components # } class Principal: def __init__(self): self.name_type = None self.num_components = None self.realm = CountedOctet() self.components = [] def parsefile(self, f): self.name_type, self.num_components = struct.unpack(">LL", f.read(8)) self.realm.parsefile(f) for i in range(0, self.num_components): component = CountedOctet() component.parsefile(f) self.components.append(component.data) def tostring(self): r = '' r += struct.pack(">LL", self.name_type, self.num_components) r += self.realm.tostring() for i in self.components: r += struct.pack(">L", len(i)) r += i return r # address { # uint16 address_type # counted_octet address # } class Address: def __init__(self): self.address_type = None self.address = CountedOctet() def parsefile(self, f): self.address_type, = struct.unpack(">H", f.read(2)) self.address.parsefile(f) def tostring(self): r = '' r += struct.pack(">H", self.address_type) r += self.address.tostring() return r # authdata { # uint16 authtype # counted_octet authdata # } class AuthData: def __init__(self): self.authtype = None self.authdata = CountedOctet() def parsefile(self, f): self.authtype, = struct.unpack(">H", f.read(2)) self.authdata.parsefile(f) def tostring(self): r = '' r += struct.pack(">H", self.authtype) r += self.authdata.tostring() return r # credential { # principal client # principal server # keyblock key # times timedata # uint8 skey # uint32 tktFlags (Reverse Byte Order!) # uint32 num_address # address[num_address] addresses # uint32 num_authdata # authdata[num_authdata] auths # counted_octet ticket_1 # counted_octet ticket_2 (nothing here in what I've seen) # } class Credential: def __init__(self): self.client = Principal() self.server = Principal() self.keyblock = Keyblock() self.times = KerbTimes() self.is_skey = None self.tktFlags = None self.num_address = None self.address = [] self.num_authdata = None self.authdata = [] self.ticket = CountedOctet() self.secondticket = CountedOctet() def parsefile(self, f): self.client.parsefile(f) self.server.parsefile(f) self.keyblock.parsefile(f) self.times.parsefile(f) self.is_skey, = struct.unpack(">B", f.read(1)) self.tktFlags, = struct.unpack("<I", f.read(4)) self.num_address, = struct.unpack(">I", f.read(4)) for i in range(0, self.num_address): self.address.append(Address().parsefile(f)) self.num_authdata, = struct.unpack(">I", f.read(4)) for i in range(0, self.num_authdata): self.authdata.append(AuthData().parsefile(f)) self.ticket.parsefile(f) self.secondticket.parsefile(f) def tostring(self): r = '' r += self.client.tostring() r += self.server.tostring() r += self.keyblock.tostring() r += self.times.tostring() r += struct.pack(">B", self.is_skey) r += struct.pack("<I", self.tktFlags) r += struct.pack(">I", self.num_address) for i in self.address: r += i.tostring() r += struct.pack(">I", self.num_authdata) for i in self.authdata: r += i.tostring() r += self.ticket.tostring() r += self.secondticket.tostring() return r # Prepend, shortened for convenience def p(a, b): return b + a # Returns the length of s as a single byte def clen(s): return chr(len(s)) # key { # 0xA0 LB # 0x30 LB # 0xA0 0x03 0x02 0x01 # uint8 key_type # 0xA1 LB # 0x03 LB # keydata # } class Key: def __init__(self): self.key = None self.keytype = None def parsefile(self, f): f.read(8) self.keytype, = struct.unpack('>B', f.read(1)) f.read(3) keylen, = struct.unpack('>B', f.read(1)) self.key, = struct.unpack(">%ds" % keylen, f.read(keylen)) def tostring(self): r = '' r += self.key r = p(r, clen(r)) r = p(r, '\x04') r = p(r, clen(r)) r = p(r, '\xA1') r = p(r, chr(self.keytype)) r = p(r, '\xA0\x03\x02\x01') r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA0') return r # This section represents the primary principal realm. Corresponds to the domain name # prealm { # 0xA1 LB # 0x1B LB # Primary Principal Realm # } class PRealm: def __init__(self): self.principal_realm = None def parsefile(self, f): f.read(3) length, = struct.unpack(">b", f.read(1)) self.principal_realm, = struct.unpack(">%ds" % length, f.read(length)) def tostring(self): r = '' r += self.principal_realm r = p(r, clen(r)) r = p(r, '\x1B') r = p(r, clen(r)) r = p(r, '\xA1') return r # This section represents the primary principal realm # pname { # 0xA2 LB # 0x30 LB # 0xA0 0x03 0x02 0x01 # uint8 name_type # 0xA1 LB # 0x30 LB # 0x1B LB # Primary Principal Name # } class PName: def __init__(self): self.principal_components = [] self.principal_name_type = None def parsefile(self, f): f.read(8) self.principal_name_type, = struct.unpack(">B", f.read(1)) f.read(3) rem_length, = struct.unpack(">B", f.read(1)) while (rem_length > 0): f.read(1) l, = struct.unpack(">B", f.read(1)) component, = struct.unpack("%ds" % l, f.read(l)) self.principal_components.append(component) rem_length -= (2 + l) def tostring(self): r = '' for s in self.principal_components: r += '\x1B' + chr(len(s)) + s r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA1') r = p(r, chr(self.principal_name_type)) r = p(r, '\xA0\x03\x02\x01') r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA2') return r # This section details flags for the ticket # tktflags { # 0xA3 LB # 0x03 LB # 0x00 Always 0, apparently number of unused bytes. tktFlags is always a uint32 # uint32 Ticket Flags # } class TicketFlags: def __init__(self): self.ticket_flags = None def parsefile(self, f): f.read(5) self.ticket_flags, = struct.unpack("I", f.read(4)) def tostring(self): r = '' r += struct.pack("I", self.ticket_flags) r = p(r, '\x00') r = p(r, clen(r)) r = p(r, '\x03') r = p(r, clen(r)) r = p(r, '\xA3') return r # These sections contain the ticket timestamps. Note that the timestamps are in a consistent format, so length tags are always the same # Timestamp format is YYYYmmddHHMMSSZ and must be UTC! # 0xA5 is starttime, 0xA6 is endtime, 0xA7 is renew_till # time { # uint8 Identifier # LB (Always 0x11) # 0x18 LB (Always 0x0F) # start_time # } class Time: def __init__(self, identifier): self.identifier = identifier self.time = None @staticmethod def convert_to_unix(timestr): epoch = datetime.datetime(1970, 1, 1) t = datetime.datetime.strptime(timestr[:-1], '%Y%m%d%H%M%S') td = t - epoch return int((td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / 1e6) @staticmethod def convert_to_kerbtime(unixtime): t = datetime.datetime.utcfromtimestamp(unixtime) t = ''.join([t.strftime('%Y'), t.strftime('%m'), t.strftime('%d'), t.strftime('%H'), t.strftime('%M'), t.strftime('%S'), 'Z']) return t def parsefile(self, f): self.identifier, = struct.unpack(">B", f.read(1)) f.read(3) strtime, = struct.unpack(">15s", f.read(15)) self.time = Time.convert_to_unix(strtime) def tostring(self): r = '' r += struct.pack(">15s", Time.convert_to_kerbtime(self.time)) r = p(r, '\x11\x18\x0F') r = p(r, chr(self.identifier)) return r # This section represents the server realm (domain) # srealm { # 0xA8 LB # 0x1B LB # server_realm (domain name of server) # } class SRealm: def __init__(self): self.server_realm = None def parsefile(self, f): f.read(3) length, = struct.unpack(">B", f.read(1)) self.server_realm, = struct.unpack(">%ds" % length, f.read(length)) def tostring(self): r = '' r += self.server_realm r = p(r, clen(r)) r = p(r, '\x1B') r = p(r, clen(r)) r = p(r, '\xA8') return r # This section represents the server name components # sname { # 0xA9 LB # 0x30 LB # 0xA0 0x03 0x02 0x01 # uint8 server_name_type # 0xA1 LB # 0x30 LB # components[] # } # # components { # 0x1B # uint8 Component Length # Component # } class SName: def __init__(self): self.server_components = [] self.server_name_type = None def parsefile(self, f): f.read(8) self.server_name_type, = struct.unpack(">B", f.read(1)) f.read(3) rem_length, = struct.unpack(">B", f.read(1)) while rem_length > 0: f.read(1) l, = struct.unpack(">B", f.read(1)) component, = struct.unpack(">%ds" % l, f.read(l)) self.server_components.append(component) rem_length -= (2 + l) def tostring(self): r = '' for s in self.server_components: r += '\x1B' + chr(len(s)) + s r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA1') r = p(r, chr(self.server_name_type)) r = p(r, '\xA0\x03\x02\x01') r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA9') return r # header { # 0x7D LT # 0x30 LT # 0xA0 LT # 0x30 LT # 0x30 LT # } class KrbCredInfo: def __init__(self): self.krbcredinfo = None self.key = Key() self.prealm = PRealm() self.pname = PName() self.flags = TicketFlags() self.starttime = Time(165) self.endtime = Time(166) self.renew_till = Time(167) self.srealm = SRealm() self.sname = SName() def parsefile(self, f): f.read(20) self.key.parsefile(f) self.prealm.parsefile(f) self.pname.parsefile(f) self.flags.parsefile(f) self.starttime.parsefile(f) self.endtime.parsefile(f) self.renew_till.parsefile(f) self.srealm.parsefile(f) self.sname.parsefile(f) self.krbcredinfo = self.key.tostring() + self.prealm.tostring() + self.pname.tostring() + self.flags.tostring() + \ self.starttime.tostring() + self.endtime.tostring() + \ self.renew_till.tostring() + self.srealm.tostring() + \ self.sname.tostring() def tostring(self): r = self.krbcredinfo r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\xA0\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x7D\x82') return r def createkrbcrdinfo(self): self.krbcredinfo = self.key.tostring() + self.prealm.tostring() + self.pname.tostring() + self.flags.tostring() + \ self.starttime.tostring() + self.endtime.tostring() + \ self.renew_till.tostring() + self.srealm.tostring() + \ self.sname.tostring() # The encpart serves as a sort of header for the EncKrbCredPart # encpart { # 0xA0 0x03 0x02 0x01 # uint8 etype (Seems to always be 0 in my testing) # 0xA2 LT # 0x04 LT # } class EncPart: def __init__(self): self.krbcredinfo = KrbCredInfo() self.etype = None def parsefile(self, f): f.read(4) self.etype, = struct.unpack(">B", f.read(1)) f.read(8) self.krbcredinfo.parsefile(f) def tostring(self): r = self.krbcredinfo.tostring() r = p(r, struct.pack(">H", len(r))) r = p(r, '\x04\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\xA2\x82') r = p(r, chr(self.etype)) r = p(r, '\xA0\x03\x02\x01') return r # This section represents the tickets section of the overall KrbCred # tickets { # 0xA2 0x82 # uint16 ticket_length + 4 # 0x30 0x82 # uint16 ticket_length # ticket # 0xA3 LT # 0x30 LT # } class TicketPart: def __init__(self): self.ticket = None self.encpart = EncPart() def parsefile(self, f): f.read(6) ticketlen, = struct.unpack(">H", f.read(2)) self.ticket, = struct.unpack(">%ds" % ticketlen, f.read(ticketlen)) f.read(8) self.encpart.parsefile(f) def tostring(self): r = self.encpart.tostring() r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\xA3\x82') r = p(r, self.ticket) r = p(r, struct.pack(">H", len(self.ticket))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(self.ticket) + 4)) r = p(r, '\xA2\x82') return r # This is the header for the kerberos ticket, and the final section # header { # 0x76 LT # 0x30 LT # 0xA0 0x03 0x02 0x01 # uint8 pvno (Protocol Version, always 0x05) # 0xA1 0x03 0x02 0x01 # uint8 msg-type (Always 0x16 for krbcred) # } class KrbCredHeader: def __init__(self): self.ticketpart = TicketPart() def parsefile(self, f): f.read(18) self.ticketpart.parsefile(f) def tostring(self): r = self.ticketpart.tostring() r = p(r, '\xA1\x03\x02\x01\x16') r = p(r, '\xA0\x03\x02\x01\x05') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x76\x82') return r # borrowed from https://stackoverflow.com def swap32(i): return struct.unpack("<I", struct.pack(">I", i))[0] # src/include/krb5/krb5.h """ #define TKT_FLG_FORWARDABLE 0x40000000 #define TKT_FLG_FORWARDED 0x20000000 #define TKT_FLG_PROXIABLE 0x10000000 #define TKT_FLG_PROXY 0x08000000 #define TKT_FLG_MAY_POSTDATE 0x04000000 #define TKT_FLG_POSTDATED 0x02000000 #define TKT_FLG_INVALID 0x01000000 #define TKT_FLG_RENEWABLE 0x00800000 #define TKT_FLG_PRE_AUTH 0x00200000 #define TKT_FLG_HW_AUTH 0x00100000 #define TKT_FLG_TRANSIT_POLICY_CHECKED 0x00080000 #define TKT_FLG_OK_AS_DELEGATE 0x00040000 #define TKT_FLG_ENC_PA_REP 0x00010000 #define TKT_FLG_ANONYMOUS 0x00008000 """ TKT_FLG_INITIAL = 0x00400000 if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: {0} <input credential cache file>".format(sys.argv[0])) print("\nExample: {0} /tmp/krb5cc_1000".format(sys.argv[0])) sys.exit(0) with open(sys.argv[1], 'rb') as f: fileid, = struct.unpack(">B", f.read(1)) if fileid == 0x5: # Credential Cache (ccache) f.seek(0) header = CCacheHeader() primary_principal = Principal() credential = Credential() header.parsefile(f) primary_principal.parsefile(f) i = 0 sys.stderr.write("WARNING: Not all the hashes generated by this program are crackable. Please select the relevant hashes manually!\n") time.sleep(2) # Check if you've reached the end of the file. If not get the next credential while(f.read(1) != ''): f.seek(-1, 1) credential.parsefile(f) out = [] KrbCred = KrbCredHeader() KrbCred.ticketpart.ticket = credential.ticket.data # extract hash from here! try: # this code is terrible! etype = str(decoder.decode(credential.ticket.data)[0][3][0]) data = str(decoder.decode(credential.ticket.data)[0][3][2]) if etype != "23": sys.stderr.write("Unsupported etype %s found. Such hashes can't be cracked it seems.\n" % etype) continue except: continue # print(credential.ticket.data.encode("hex")) KrbCred.ticketpart.encpart.etype = credential.keyblock.etype krbcredinfo = KrbCred.ticketpart.encpart.krbcredinfo krbcredinfo.key.key = credential.keyblock.key krbcredinfo.key.keytype = credential.keyblock.keytype # print(credential.keyblock.keytype) krbcredinfo.prealm.principal_realm = primary_principal.realm.data # print(primary_principal.realm.data) krbcredinfo.pname.principal_components = primary_principal.components # print(primary_principal.components) krbcredinfo.pname.principal_name_type = primary_principal.name_type krbcredinfo.flags.ticket_flags = credential.tktFlags tktFlags = swap32(credential.tktFlags) if tktFlags & TKT_FLG_INITIAL: continue krbcredinfo.starttime.time = credential.times.starttime krbcredinfo.endtime.time = credential.times.endtime krbcredinfo.renew_till.time = credential.times.renew_till krbcredinfo.srealm.server_realm = credential.server.realm.data # print(credential.server.realm.data) krbcredinfo.sname.server_components = credential.server.components for c in credential.server.components: # dirty hack if c not in ['krbtgt', 'krb5_ccache_conf_data', 'pa_type']: out.append(c) name = b"-".join(out[-2:]) krbcredinfo.sname.server_name_type = credential.server.name_type krbcredinfo.createkrbcrdinfo() sys.stdout.write("%s:$krb5tgs$%s$%s$%s\n" % (os.path.basename(name), etype, data[:16].encode("hex"), data[16:].encode("hex"))) """ # Write seperate files for each ticket found. postfix is just a number for now. with open(sys.argv[2] + "_" + str(i), 'wb') as o: o.write(KrbCred.tostring()) i = i + 1 """ sys.exit(0) elif fileid == 0x76: # untested code, don't use! f.seek(0) KrbCred = KrbCredHeader() KrbCred.parsefile(f) header = CCacheHeader() primary_principal = Principal() credential = Credential() header.version = 0x504 header.header_length = 0xC header.header.deltatime.time_offset = 4294967295 header.header.deltatime.usec_offset = 0 header.header.tag = 0x01 header.header.taglen = 0x08 KrbCredInfo_ = KrbCred.ticketpart.encpart.krbcredinfo primary_principal.name_type = KrbCredInfo_.pname.principal_name_type primary_principal.components = KrbCredInfo_.pname.principal_components primary_principal.num_components = len(primary_principal.components) primary_principal.realm.data = KrbCredInfo.prealm.principal_realm primary_principal.realm.length = len(primary_principal.realm.data) credential.client.name_type = KrbCredInfo.pname.principal_name_type credential.client.components = KrbCredInfo.pname.principal_components credential.client.num_components = len(credential.client.components) credential.client.realm.data = KrbCredInfo.prealm.principal_realm credential.client.realm.length = len(credential.client.realm.data) credential.server.name_type = KrbCredInfo.sname.server_name_type credential.server.components = KrbCredInfo.sname.server_components credential.server.num_components = len(credential.server.components) credential.server.realm.data = KrbCredInfo.srealm.server_realm credential.server.realm.length = len(credential.server.realm.data) credential.keyblock.etype = KrbCred.ticketpart.encpart.etype credential.keyblock.key = KrbCredInfo.key.key credential.keyblock.keylen = len(credential.keyblock.key) credential.keyblock.keytype = KrbCredInfo.key.keytype credential.times.authtime = KrbCredInfo.starttime.time credential.times.starttime = KrbCredInfo.starttime.time credential.times.endtime = KrbCredInfo.endtime.time credential.times.renew_till = KrbCredInfo.renew_till.time credential.is_skey = 0 credential.tktFlags = KrbCredInfo.flags.ticket_flags credential.num_address = 0 credential.address = [] credential.num_authdata = 0 credential.authdata = [] credential.ticket.data = KrbCred.ticketpart.ticket credential.ticket.length = len(credential.ticket.data) credential.secondticket.length = 0 credential.secondticket.data = '' with open(sys.argv[2], 'wb') as o: o.write(header.tostring()) o.write(primary_principal.tostring()) o.write(credential.tostring()) sys.exit(0) else: print('Unknown File Type!') sys.exit(0)
dual_encoder/keras_layers_test.py
garyxcheng/federated
330
12779623
# Copyright 2021, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest import tensorflow as tf from dual_encoder import keras_layers l2_normalize_fn = lambda x: tf.keras.backend.l2_normalize(x, axis=-1) class KerasLayersTest(absltest.TestCase): def test_masked_average_3d(self): masked_average_layer = keras_layers.MaskedAverage(1) inputs = tf.constant([ [[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]], [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], ]) mask = tf.constant([[True, True, True], [False, False, True], [True, False, False], [False, False, False]]) output_average = masked_average_layer.call(inputs, mask=mask) output_mask = masked_average_layer.compute_mask(inputs, mask=mask) expected_average = tf.constant([ [1.3 / 3, 0.5 / 3], [0.4, 0.1], [0.9, 0.4], [0.0, 0.0] ]) expected_mask = None tf.debugging.assert_near(expected_average, output_average) self.assertEqual(expected_mask, output_mask) def test_masked_average_4d(self): masked_average_layer = keras_layers.MaskedAverage(2) inputs = tf.constant([ [[[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]]], [[[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]]], [[[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]]], [[[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]]], ]) mask = tf.constant([[[True, True, True], [True, False, True]], [[False, False, True], [False, False, False]], [[True, False, False], [True, True, True]], [[False, False, False], [True, False, False]]]) output_average = masked_average_layer.call(inputs, mask=mask) output_mask = masked_average_layer.compute_mask(inputs, mask=mask) expected_average = tf.constant([ [[1.3 / 3, 0.5 / 3], [0.5, 0.45]], [[0.4, 0.1], [0.0, 0.0]], [[0.9, 0.4], [0.5, 1.3 / 3]], [[0.0, 0.0], [0.6, 0.8]], ]) expected_mask = tf.constant([[True, True], [True, False], [True, True], [False, True]]) tf.debugging.assert_near(expected_average, output_average) tf.debugging.assert_equal(expected_mask, output_mask) def test_masked_average_raises_error(self): masked_average_layer = keras_layers.MaskedAverage(1) inputs = tf.constant([ [[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]], [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], ]) mask = None with self.assertRaises(ValueError): masked_average_layer.call(inputs, mask=mask) with self.assertRaises(ValueError): masked_average_layer.compute_mask(inputs, mask=mask) def test_masked_reshape(self): masked_reshape_layer = keras_layers.MaskedReshape((4, 4, 2, 1), (4, 4, 2)) inputs = tf.constant([ [[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[0.4], [0.1], [0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4], [0.5], [3.0], [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8], [0.4], [0.1], [0.0], [0.0]], ]) mask = tf.constant( [[True, False, True, True, True, False, False, False], [True, False, True, True, True, True, False, True], [False, True, True, False, True, True, True, True], [False, True, True, True, True, False, False, True]]) output = masked_reshape_layer.call(inputs, mask=mask) output_mask = masked_reshape_layer.compute_mask(inputs, mask=mask) expected_output = tf.constant([ [[[1.0], [2.0]], [[0.5], [0.4]], [[0.4], [0.1]], [[0.0], [0.0]]], [[[0.4], [0.1]], [[0.0], [0.0]], [[0.0], [0.0]], [[0.6], [0.8]]], [[[0.9], [0.4]], [[0.5], [3.0]], [[0.9], [0.4]], [[0.5], [3.0]]], [[[0.0], [0.0]], [[0.6], [0.8]], [[0.4], [0.1]], [[0.0], [0.0]]], ]) expected_mask = tf.constant( [[[True, False], [True, True], [True, False], [False, False]], [[True, False], [True, True], [True, True], [False, True]], [[False, True], [True, False], [True, True], [True, True]], [[False, True], [True, True], [True, False], [False, True]]]) tf.debugging.assert_near(expected_output, output) tf.debugging.assert_equal(expected_mask, output_mask) def test_masked_reshape_unknown_batch_size(self): masked_reshape_layer = keras_layers.MaskedReshape((-1, 4, 2, 1), (-1, 4, 2)) inputs = tf.constant([ [[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[0.4], [0.1], [0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4], [0.5], [3.0], [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8], [0.4], [0.1], [0.0], [0.0]], ]) mask = tf.constant( [[True, False, True, True, True, False, False, False], [True, False, True, True, True, True, False, True], [False, True, True, False, True, True, True, True], [False, True, True, True, True, False, False, True]]) output = masked_reshape_layer.call(inputs, mask=mask) output_mask = masked_reshape_layer.compute_mask(inputs, mask=mask) expected_output = tf.constant([ [[[1.0], [2.0]], [[0.5], [0.4]], [[0.4], [0.1]], [[0.0], [0.0]]], [[[0.4], [0.1]], [[0.0], [0.0]], [[0.0], [0.0]], [[0.6], [0.8]]], [[[0.9], [0.4]], [[0.5], [3.0]], [[0.9], [0.4]], [[0.5], [3.0]]], [[[0.0], [0.0]], [[0.6], [0.8]], [[0.4], [0.1]], [[0.0], [0.0]]], ]) expected_mask = tf.constant( [[[True, False], [True, True], [True, False], [False, False]], [[True, False], [True, True], [True, True], [False, True]], [[False, True], [True, False], [True, True], [True, True]], [[False, True], [True, True], [True, False], [False, True]]]) tf.debugging.assert_near(expected_output, output) tf.debugging.assert_equal(expected_mask, output_mask) def test_masked_reshape_raises_error(self): masked_reshape_layer = keras_layers.MaskedReshape((-1, 4, 2, 1), (-1, 4, 2)) inputs = tf.constant([ [[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[0.4], [0.1], [0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4], [0.5], [3.0], [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8], [0.4], [0.1], [0.0], [0.0]], ]) mask = None with self.assertRaises(ValueError): masked_reshape_layer.call(inputs, mask=mask) with self.assertRaises(ValueError): masked_reshape_layer.compute_mask(inputs, mask=mask) def test_embedding_spreadout_regularizer_dot_product(self): weights = tf.constant( [[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, 1.0, 0.0]]) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.1, normalization_fn=None, l2_regularization=0.0) # Similarities without diagonal looks like: # 0.0 2.0 0.1 0.3 0.0 # 2.0 0.0 1.2 1.2 2.0 # 0.1 1.2 0.0 0.1 0.2 # 0.3 1.2 0.1 0.0 0.2 # 0.0 2.0 0.2 0.2 0.0 loss = regularizer(weights) # L2 norm of above similarities. expected_loss = 0.47053161424 tf.debugging.assert_near(expected_loss, loss) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.1, normalization_fn=None, l2_regularization=1.0) l2_regularizer = tf.keras.regularizers.l2(1.0) loss = regularizer(weights) expected_loss = 0.47053161424 + l2_regularizer(weights) tf.debugging.assert_near(expected_loss, loss) def test_embedding_spreadout_regularizer_cosine_similarity(self): weights = tf.constant( [[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, 1.0, 0.0]]) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.1, normalization_fn=l2_normalize_fn, l2_regularization=0.0) loss = regularizer(weights) # L2 norm of above similarities. expected_loss = 0.2890284 tf.debugging.assert_near(expected_loss, loss) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.1, normalization_fn=l2_normalize_fn, l2_regularization=1.0) l2_regularizer = tf.keras.regularizers.l2(1.0) loss = regularizer(weights) expected_loss = 0.2890284 + l2_regularizer(weights) tf.debugging.assert_near(expected_loss, loss) def test_embedding_spreadout_regularizer_no_spreadout(self): weights = tf.constant( [[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, 1.0, 0.0]]) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.0, normalization_fn=None, l2_regularization=0.0) loss = regularizer(weights) expected_loss = 0.0 tf.debugging.assert_near(expected_loss, loss) # Test that L2 normalization behaves normally. regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.0, normalization_fn=None, l2_regularization=0.1) l2_regularizer = tf.keras.regularizers.l2(0.1) loss = regularizer(weights) l2_loss = l2_regularizer(weights) tf.debugging.assert_near(l2_loss, loss) # Test that normalization_fn has no effect. regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.0, normalization_fn=l2_normalize_fn, l2_regularization=0.1) l2_regularizer = tf.keras.regularizers.l2(0.1) loss = regularizer(weights) l2_loss = l2_regularizer(weights) tf.debugging.assert_near(l2_loss, loss) def test_embedding_spreadout_regularizer_get_config(self): weights = tf.constant( [[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, 1.0, 0.0]]) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.0, normalization_fn=l2_normalize_fn, l2_regularization=0.1) config = regularizer.get_config() expected_config = { 'spreadout_lambda': 0.0, 'normalization_fn': l2_normalize_fn, 'l2_regularization': 0.1 } new_regularizer = ( keras_layers.EmbeddingSpreadoutRegularizer.from_config(config)) l2_regularizer = tf.keras.regularizers.l2(0.1) loss = new_regularizer(weights) l2_loss = l2_regularizer(weights) self.assertEqual(config, expected_config) tf.debugging.assert_near(l2_loss, loss) if __name__ == '__main__': absltest.main()
pcbmode/utils/footprint.py
Hylian/pcbmode
370
12779628
#!/usr/bin/python import os import re import json from lxml import etree as et import pcbmode.config as config from . import messages as msg # pcbmode modules from . import svg from . import utils from . import place import copy from .style import Style from .point import Point from .shape import Shape class Footprint(): """ """ def __init__(self, footprint): self._footprint = footprint self._shapes = {'conductor': {}, 'pours': {}, 'soldermask': {}, 'silkscreen': {}, 'assembly': {}, 'solderpaste': {}, 'drills': {}} self._processPins() self._processPours() self._processShapes() self._processAssemblyShapes() def getShapes(self): return self._shapes def _processPins(self): """ Converts pins into 'shapes' """ pins = self._footprint.get('pins') or {} for pin in pins: pin_location = pins[pin]['layout']['location'] or [0, 0] try: pad_name = pins[pin]['layout']['pad'] except: msg.error("Each defined 'pin' must have a 'pad' name that is defined in the 'pads' dection of the footprint.") try: pad_dict = self._footprint['pads'][pad_name] except: msg.error("There doesn't seem to be a pad definition for pad '%s'." % pad_name) # Get the pin's rotation, if any pin_rotate = pins[pin]['layout'].get('rotate') or 0 shapes = pad_dict.get('shapes') or [] for shape_dict in shapes: shape_dict = shape_dict.copy() # Which layer(s) to place the shape on layers = utils.getExtendedLayerList(shape_dict.get('layers') or ['top']) # Add the pin's location to the pad's location shape_location = shape_dict.get('location') or [0, 0] shape_dict['location'] = [shape_location[0] + pin_location[0], shape_location[1] + pin_location[1]] # Add the pin's rotation to the pad's rotation shape_dict['rotate'] = (shape_dict.get('rotate') or 0) + pin_rotate # Determine if and which label to show show_name = pins[pin]['layout'].get('show-label') or True if show_name == True: pin_label = pins[pin]['layout'].get('label') or pin for layer in layers: shape = Shape(shape_dict) style = Style(shape_dict, 'conductor') shape.setStyle(style) try: self._shapes['conductor'][layer].append(shape) except: self._shapes['conductor'][layer] = [] self._shapes['conductor'][layer].append(shape) for stype in ['soldermask','solderpaste']: # Get a custom shape specification if it exists sdict_list = shape_dict.get(stype) # Not defined; default if sdict_list == None: # Use default settings for shape based on # the pad shape sdict = shape_dict.copy() # Which shape type is the pad? shape_type = shape.getType() # Apply modifier based on shape type if shape_type == 'path': sdict['scale'] = shape.getScale()*config.brd['distances'][stype]['path-scale'] elif shape_type in ['rect', 'rectangle']: sdict['width'] += config.brd['distances'][stype]['rect-buffer'] sdict['height'] += config.brd['distances'][stype]['rect-buffer'] elif shape_type in ['circ', 'circle']: sdict['diameter'] += config.brd['distances'][stype]['circle-buffer'] else: pass # Create shape based on new dictionary sshape = Shape(sdict) # Define style sstyle = Style(sdict, stype) # Apply style sshape.setStyle(sstyle) # Add shape to footprint's shape dictionary #self._shapes[stype][layer].append(sshape) try: self._shapes[stype][layer].append(sshape) except: self._shapes[stype][layer] = [] self._shapes[stype][layer].append(sshape) # Do not place shape elif (sdict_list == {}) or (sdict_list == []): pass # Custom shape definition else: # If dict (as before support of multiple # shapes) then append to a single element # list if type(sdict_list) is dict: sdict_list = [sdict_list] # Process list of shapes for sdict_ in sdict_list: sdict = sdict_.copy() shape_loc = utils.toPoint(sdict.get('location') or [0, 0]) # Apply rotation sdict['rotate'] = (sdict.get('rotate') or 0) + pin_rotate # Rotate location shape_loc.rotate(pin_rotate, Point()) sdict['location'] = [shape_loc.x + pin_location[0], shape_loc.y + pin_location[1]] # Create new shape sshape = Shape(sdict) # Create new style sstyle = Style(sdict, stype) # Apply style sshape.setStyle(sstyle) # Add shape to footprint's shape dictionary #self._shapes[stype][layer].append(sshape) try: self._shapes[stype][layer].append(sshape) except: self._shapes[stype][layer] = [] self._shapes[stype][layer].append(sshape) # Add pin label if (pin_label != None): shape.setLabel(pin_label) drills = pad_dict.get('drills') or [] for drill_dict in drills: drill_dict = drill_dict.copy() drill_dict['type'] = drill_dict.get('type') or 'drill' drill_location = drill_dict.get('location') or [0, 0] drill_dict['location'] = [drill_location[0] + pin_location[0], drill_location[1] + pin_location[1]] shape = Shape(drill_dict) style = Style(drill_dict, 'drills') shape.setStyle(style) try: self._shapes['drills']['top'].append(shape) except: self._shapes['drills']['top'] = [] self._shapes['drills']['top'].append(shape) def _processPours(self): """ """ try: shapes = self._footprint['layout']['pours']['shapes'] except: return for shape_dict in shapes: layers = utils.getExtendedLayerList(shape_dict.get('layers') or ['top']) for layer in layers: shape = Shape(shape_dict) style = Style(shape_dict, 'conductor', 'pours') shape.setStyle(style) try: self._shapes['pours'][layer].append(shape) except: self._shapes['pours'][layer] = [] self._shapes['pours'][layer].append(shape) def _processShapes(self): """ """ sheets = ['conductor', 'silkscreen', 'soldermask'] for sheet in sheets: try: shapes = self._footprint['layout'][sheet]['shapes'] except: shapes = [] for shape_dict in shapes: layers = utils.getExtendedLayerList(shape_dict.get('layers') or ['top']) for layer in layers: # Mirror the shape if it's text and on bottom later, # but let explicit shape setting override if layer == 'bottom': if shape_dict['type'] == 'text': shape_dict['mirror'] = shape_dict.get('mirror') or 'True' shape = Shape(shape_dict) style = Style(shape_dict, sheet) shape.setStyle(style) try: self._shapes[sheet][layer].append(shape) except: self._shapes[sheet][layer] = [] self._shapes[sheet][layer].append(shape) def _processAssemblyShapes(self): """ """ try: shapes = self._footprint['layout']['assembly']['shapes'] except: return for shape_dict in shapes: layers = utils.getExtendedLayerList(shape_dict.get('layer') or ['top']) for layer in layers: shape = Shape(shape_dict) style = Style(shape_dict, 'assembly') shape.setStyle(style) try: self._shapes['assembly'][layer].append(shape) except: self._shapes['assembly'][layer] = [] self._shapes['assembly'][layer].append(shape)
tests/test_examples.py
banesullivan/localtileserver
105
12779642
from localtileserver import examples def test_get_blue_marble(): client = examples.get_blue_marble() assert client.metadata() def test_get_virtual_earth(): client = examples.get_virtual_earth() assert client.metadata() def test_get_arcgis(): client = examples.get_arcgis() assert client.metadata() def test_get_elevation(): client = examples.get_elevation() assert client.metadata() def test_get_bahamas(): client = examples.get_bahamas() assert client.metadata() def test_get_pine_gulch(): client = examples.get_pine_gulch() assert client.metadata() def test_get_landsat(): client = examples.get_landsat() assert client.metadata() def test_get_san_francisco(): client = examples.get_san_francisco() assert client.metadata() def test_get_oam2(): client = examples.get_oam2() assert client.metadata() def test_get_elevation_us(): client = examples.get_elevation_us() assert client.metadata()
tools/clang/scripts/generate_compdb.py
zipated/src
2,151
12779656
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Helper for generating compile DBs for clang tooling. On non-Windows platforms, this is pretty straightforward. On Windows, the tool does a bit of extra work to integrate the content of response files, force clang tooling to run in clang-cl mode, etc. """ import argparse import json import os import sys script_dir = os.path.dirname(os.path.realpath(__file__)) tool_dir = os.path.abspath(os.path.join(script_dir, '../pylib')) sys.path.insert(0, tool_dir) from clang import compile_db def main(argv): parser = argparse.ArgumentParser() parser.add_argument( '-p', required=True, help='Path to build directory') args = parser.parse_args() print json.dumps(compile_db.GenerateWithNinja(args.p)) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
utility_scripts/configureCMK.py
jjk-dev/aws-qnabot
197
12779704
<reponame>jjk-dev/aws-qnabot import boto3 from botocore.config import Config import argparse import json import base64 import sys parser = argparse.ArgumentParser(description='Uses a specified CMK to encrypt QnABot Lambdas and Parameter Store settings') parser.add_argument("region", help="AWS Region") parser.add_argument("stack_arn", help="the arn of the QnABot CloudFormation Stack") parser.add_argument("cmk_arn", help="the ARN of the Customer Master Key to use for encryption") parser.add_argument("target_s3_bucket", help="the Name of the S3 bucket to use for server access logs") args = type('', (), {})() args = parser.parse_args() client_config = Config( region_name = args.region ) lambda_client = boto3.client('lambda', config=client_config) iam_client = boto3.client('iam', config=client_config) role_paginator = iam_client.get_paginator('list_role_policies') kms_client = boto3.client("kms", config=client_config) cloudformation_client = boto3.client('cloudformation', config=client_config) ssm_client = boto3.client('ssm', config=client_config) s3_client = boto3.client('s3', config=client_config) ddb_client = boto3.client('dynamodb', config=client_config) sts_client = boto3.client('sts', config=client_config) kinesis_client = boto3.client('firehose', config=client_config) policy_name = "CMKPolicy4" policy_document = { "Version":"2012-10-17", "Statement":[ { "Effect":"Allow", "Action":[ "kms:Decrypt", "kms:Encrypt", "kms:GenerateDataKey" ], "Resource":args.cmk_arn } ] } cmk_roles_logical_ids = [ 'S3AccessRole', 'FirehoseESS3Role', 'AdminRole', 'ExportRole', 'ImportRole', 'ApiGatewayRole', 'ESCognitoRole', 'KibanaRole', ] cmk_roles_physical_ids = [] def assign_role(role_name): role_iterator = role_paginator.paginate( RoleName=role_name, PaginationConfig={ 'MaxItems': 1000, 'PageSize': 1000 } ) print(f"Updating role {role_name}...") cmk_policy_exists = False for role in role_iterator: if policy_name in role["PolicyNames"]: cmk_policy_exists = True break if not cmk_policy_exists: iam_client.put_role_policy(RoleName=role_name, PolicyName = policy_name,PolicyDocument=json.dumps(policy_document)) def put_key_policy (stackname,roles): response = kms_client.get_key_policy(KeyId = args.cmk_arn, PolicyName='default') policy = response['Policy'].replace("\n","") policy = json.loads(policy) caller_identity = sts_client.get_caller_identity() new_statement = [] for statement in policy["Statement"]: if(statement["Sid"] != stackname): new_statement.append(statement) policy["Statement"] = new_statement formatted_roles = [] for role in roles: formatted_roles.append(f"arn:aws:iam::{caller_identity['Account']}:role/{role}") policy["Statement"].append( { "Sid": stackname, "Effect": "Allow", "Principal": { "AWS": formatted_roles }, "Action": [ "kms:Encrypt", "kms:Decrypt", "kms:GenerateDataKey" ], "Resource": "*" } ) print(f"Updating policy for key {args.cmk_arn}") kms_client.put_key_policy( KeyId = args.cmk_arn, PolicyName = "default", Policy = json.dumps(policy) ) print(f"Policy for key {args.cmk_arn} updated.") def process_stacks(stackname): paginator = cloudformation_client.get_paginator('list_stack_resources') response_iterator = paginator.paginate( StackName=stackname, PaginationConfig={ 'MaxItems': 10000#, } ) for response in response_iterator: lambda_resources = filter(lambda x: x["ResourceType"] == "AWS::Lambda::Function",response["StackResourceSummaries"]) for lambda_func in lambda_resources: lambda_client.update_function_configuration(FunctionName=lambda_func["PhysicalResourceId"],KMSKeyArn=args.cmk_arn) print(f"Updated function {lambda_func['PhysicalResourceId']} in stack {stackname}") lambda_configuration = lambda_client.get_function_configuration(FunctionName=lambda_func["PhysicalResourceId"]) role_name = lambda_configuration["Role"].split("/")[-1] assign_role(role_name) ssm_parameters = filter(lambda x: x["ResourceType"] == "AWS::SSM::Parameter",response["StackResourceSummaries"]) for parameter in ssm_parameters: parameter_name = parameter["PhysicalResourceId"] parameter_response = ssm_client.get_parameter( Name=parameter_name, WithDecryption=True ) parameter_value = parameter_response['Parameter']['Value'] description = parameter_response['Parameter']["Description"] if "Decription" in parameter_response['Parameter'] else "" ssm_client.put_parameter( Name=parameter_name, Description=description, Value=parameter_value, Type='SecureString', KeyId=args.cmk_arn, Overwrite=True, ) s3_buckets = filter(lambda x: x["ResourceType"] == "AWS::S3::Bucket",response["StackResourceSummaries"]) for bucket in s3_buckets: s3_client.put_bucket_encryption( Bucket=bucket["PhysicalResourceId"], ServerSideEncryptionConfiguration={ 'Rules': [ { 'ApplyServerSideEncryptionByDefault': { 'SSEAlgorithm': 'aws:kms', 'KMSMasterKeyID': args.cmk_arn } }, ] } ) print(f"Encryption set for {bucket['PhysicalResourceId']}") s3_client.put_bucket_logging( Bucket=bucket["PhysicalResourceId"], BucketLoggingStatus={ 'LoggingEnabled': { 'TargetBucket': args.target_s3_bucket, 'TargetPrefix': bucket["PhysicalResourceId"] + '/' } } ) print(f"Access Logs set for {bucket['PhysicalResourceId']}") ddb_tables = filter(lambda x: x["ResourceType"] == "AWS::DynamoDB::Table",response["StackResourceSummaries"]) for table in ddb_tables: table_description = ddb_client.describe_table(TableName = table["PhysicalResourceId"]) if('SSEDescription' not in table_description["Table"] or 'KMSMasterKeyArn' not in table_description["Table"]['SSEDescription'] or table_description["Table"]['SSEDescription']['KMSMasterKeyArn']!= args.cmk_arn ): ddb_client.update_table( TableName = table["PhysicalResourceId"], SSESpecification ={ 'Enabled': True, 'SSEType': 'KMS', 'KMSMasterKeyId': args.cmk_arn } ) kinesis_streams = filter(lambda x: x["ResourceType"] == "AWS::KinesisFirehose::DeliveryStream",response["StackResourceSummaries"]) for stream in kinesis_streams: stream_response = kinesis_client.describe_delivery_stream( DeliveryStreamName=stream["PhysicalResourceId"]) if('KeyType' not in stream_response['DeliveryStreamDescription']['DeliveryStreamEncryptionConfiguration'] or ( stream_response['DeliveryStreamDescription']['DeliveryStreamEncryptionConfiguration']['KeyType'] != "CUSTOMER_MANAGED_CMK" and stream_response['DeliveryStreamDescription']['DeliveryStreamEncryptionConfiguration']['KeyARN'] != args.cmk_arn)): kinesis_client.start_delivery_stream_encryption( DeliveryStreamName=stream["PhysicalResourceId"], DeliveryStreamEncryptionConfigurationInput={ 'KeyARN': args.cmk_arn, 'KeyType': 'CUSTOMER_MANAGED_CMK'}) role_resources = filter(lambda x: 'LambdaRole' in x["LogicalResourceId"] or x["LogicalResourceId"] in cmk_roles_logical_ids , response["StackResourceSummaries"]) for role_resource in role_resources: print(f"role_resource: {role_resource['PhysicalResourceId']}") cmk_roles_physical_ids.append(role_resource["PhysicalResourceId"]) assign_role(role_resource["PhysicalResourceId"]) process_stacks(args.stack_arn) paginator = cloudformation_client.get_paginator('list_stack_resources') response_iterator = paginator.paginate( StackName=args.stack_arn, PaginationConfig={ 'MaxItems': 10000, } ) for response in response_iterator: stacks = filter(lambda x: x["ResourceType"] == "AWS::CloudFormation::Stack",response["StackResourceSummaries"]) for stack in stacks: print(f"Processing stack {stack['PhysicalResourceId']}") process_stacks(stack["PhysicalResourceId"]) put_key_policy(args.stack_arn,cmk_roles_physical_ids)
baiduocr.py
wangtonghe/hq-answer-assist
119
12779725
# coding=utf-8 from aip import AipOcr import re opt_aux_word = ['《', '》'] def get_file_content(file): with open(file, 'rb') as fp: return fp.read() def image_to_str(name, client): image = get_file_content(name) text_result = client.basicGeneral(image) print(text_result) result = get_question_and_options(text_result) return result def init_baidu_ocr(baidu_ocr_config): app_id, api_key, secret_key = baidu_ocr_config client = AipOcr(app_id, api_key, secret_key) return client # {'words_result': [{'words': '11.代表作之一是《蒙娜丽莎的眼'}, # {'words': '泪》的歌手是?'}, {'words': '林志颖'}, # {'words': '林志炫'}, {'words': '林志玲'}], # 'log_id': 916087026228727188, 'words_result_num': 5} def get_question_and_options(text): if 'error_code' in text: print('请确保百度OCR配置正确') exit(-1) if text['words_result_num'] == 0: return '', [] result_arr = text['words_result'] option_arr = [] question_str = '' question_obj, options_obj = get_question(result_arr) for question in question_obj: word = question['words'] word = re.sub('^\d+\.*', '', word) question_str += word for option in options_obj: word = option['words'] if word.startswith('《'): word = word[1:] if word.endswith('》'): word = word[:-1] print(word) option_arr.append(word) print(question_str) print(option_arr) return question_str, option_arr # 先按'?'分割问题和答案,若无问号,用索引分割 def get_question(result_arr): result_num = len(result_arr) index = -1 question_obj, options_obj = [], [] for i, result in enumerate(result_arr): if '?' in result['words']: index = i break if index > -1: question_obj = result_arr[:index + 1] options_obj = result_arr[index + 1:] return question_obj, options_obj else: # 按照经验,4个结果为1行问题,5、6个为2行问题,8个以上为公布答案 if result_num <= 4: question_obj = result_arr[:1] options_obj = result_arr[1:] elif result_num == 5: question_obj = result_arr[:2] options_obj = result_arr[2:] elif result_num == 6: # 暂时 question_obj = result_arr[:2] options_obj = result_arr[2:] elif result_num == 7 or result_num == 8: question_obj = result_arr[:3] options_obj = result_arr[3:] return question_obj, options_obj
src/gat.py
simoneazeglio/DeepInf
258
12779735
<reponame>simoneazeglio/DeepInf #!/usr/bin/env python # encoding: utf-8 # File Name: gat.py # Author: <NAME> # Create Time: 2017/12/18 21:40 # TODO: from __future__ import absolute_import from __future__ import unicode_literals from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from gat_layers import BatchMultiHeadGraphAttention class BatchGAT(nn.Module): def __init__(self, pretrained_emb, vertex_feature, use_vertex_feature, n_units=[1433, 8, 7], n_heads=[8, 1], dropout=0.1, attn_dropout=0.0, fine_tune=False, instance_normalization=False): super(BatchGAT, self).__init__() self.n_layer = len(n_units) - 1 self.dropout = dropout self.inst_norm = instance_normalization if self.inst_norm: self.norm = nn.InstanceNorm1d(pretrained_emb.size(1), momentum=0.0, affine=True) # https://discuss.pytorch.org/t/can-we-use-pre-trained-word-embeddings-for-weight-initialization-in-nn-embedding/1222/2 self.embedding = nn.Embedding(pretrained_emb.size(0), pretrained_emb.size(1)) self.embedding.weight = nn.Parameter(pretrained_emb) self.embedding.weight.requires_grad = fine_tune n_units[0] += pretrained_emb.size(1) self.use_vertex_feature = use_vertex_feature if self.use_vertex_feature: self.vertex_feature = nn.Embedding(vertex_feature.size(0), vertex_feature.size(1)) self.vertex_feature.weight = nn.Parameter(vertex_feature) self.vertex_feature.weight.requires_grad = False n_units[0] += vertex_feature.size(1) self.layer_stack = nn.ModuleList() for i in range(self.n_layer): # consider multi head from last layer f_in = n_units[i] * n_heads[i - 1] if i else n_units[i] self.layer_stack.append( BatchMultiHeadGraphAttention(n_heads[i], f_in=f_in, f_out=n_units[i + 1], attn_dropout=attn_dropout) ) def forward(self, x, vertices, adj): emb = self.embedding(vertices) if self.inst_norm: emb = self.norm(emb.transpose(1, 2)).transpose(1, 2) x = torch.cat((x, emb), dim=2) if self.use_vertex_feature: vfeature = self.vertex_feature(vertices) x = torch.cat((x, vfeature), dim=2) bs, n = adj.size()[:2] for i, gat_layer in enumerate(self.layer_stack): x = gat_layer(x, adj) # bs x n_head x n x f_out if i + 1 == self.n_layer: x = x.mean(dim=1) else: x = F.elu(x.transpose(1, 2).contiguous().view(bs, n, -1)) x = F.dropout(x, self.dropout, training=self.training) return F.log_softmax(x, dim=-1)
models/pose/loss/pose_modules.py
raviv/torchcv
308
12779791
<reponame>raviv/torchcv #!/usr/bin/env python # -*- coding:utf-8 -*- # Author: <NAME>(<EMAIL>) # Loss function for Pose Estimation. import torch import torch.nn as nn from torch.autograd import Variable class OPMseLoss(nn.Module): def __init__(self, configer): super(OPMseLoss, self).__init__() self.configer = configer reduction = 'elementwise_mean' if self.configer.exists('loss', 'params') and 'mse_reduction' in self.configer.get('loss', 'params'): reduction = self.configer.get('loss', 'params')['mse_reduction'] self.mse_loss = nn.MSELoss(reduction=reduction) def forward(self, inputs, *targets, mask=None, weights=None): loss = 0.0 if isinstance(inputs, list): if weights is not None: for i in range(len(inputs)): if mask is not None: loss += weights[i] * self.mse_loss(inputs[i]*mask, targets) else: loss += weights[i] * self.mse_loss(inputs[i], targets) else: for i in range(len(inputs)): if mask is not None: loss += self.mse_loss(inputs[i]*mask, targets) else: loss += self.mse_loss(inputs[i], targets) else: if mask is not None: loss = self.mse_loss(inputs*mask, targets) else: loss = self.mse_loss(inputs, targets) if self.configer.get('mse_loss', 'reduction') == 'sum': loss = loss / targets.size(0) return loss class PartLoss(nn.Module): def __init__(self, configer): super(PartLoss, self).__init__() self.configer = configer self.mse_loss = nn.MSELoss(size_average=False) def forward(self, inputs, targets, mask=None): inputs = inputs.view(inputs.size(0), -1, 6, inputs.size(2), inputs.size(3)) targets = targets.view(targets.size(0), -1, 6, targets.size(2), targets.size(3)) paf_loss = self.mse_loss(inputs[:, :, 0:2, :, :], targets[:, :, 0:2, :, :]) part_loss = self.mse_loss(inputs[:, :, 2:6, :, :], targets[:, :, 2:6, :, :]) loss = paf_loss + part_loss * 6.0 loss = loss / targets.size(0) return loss class CapsuleLoss(nn.Module): def __init__(self, configer): super(CapsuleLoss, self).__init__() self.configer = configer self.mse_loss = nn.MSELoss(reduction=self.configer.get('capsule_loss', 'reduction')) def forward(self, inputs, targets, masks=None, is_focal=False): preds = torch.sqrt((inputs**2).sum(dim=1, keepdim=False)) if masks is not None: preds = preds * masks if is_focal: loss = self.mse_loss(preds, targets) else: diff = preds - targets diff = diff ** 2 alpha = 2.0 weights = targets * alpha weights = torch.exp(weights) diff = weights * diff loss = diff.mean() return loss class EmbeddingLoss(nn.Module): def __init__(self, configer): super(EmbeddingLoss, self).__init__() self.configer = configer self.num_keypoints = self.configer.get('data', 'num_keypoints') self.l_vec = self.configer.get('capsule', 'l_vec') self.mse_loss = nn.MSELoss(size_average=False) def forward(self, inputs, tags, numH, sigma=0.1): batch_size = inputs.size(0) h_tag_means = [[Variable(torch.zeros(self.l_vec,), requires_grad=True).cuda() for h in range(numH[b].numpy()[0])] for b in range(inputs.size()[0])] for b in range(batch_size): for n in range(numH[b].numpy()[0]): valik = 0 for k in range(self.num_keypoints): tag = inputs[b].masked_select(tags[b][k].eq(n+1).unsqueeze(0)) if tag.size() != torch.Size([]): h_tag_means[b][n] += tag valik = valik + 1 h_tag_means[b][n] = h_tag_means[b][n] / max(valik, 1) loss_list = list() for b in range(batch_size): for n in range(numH[b].numpy()[0]): for k in range(self.num_keypoints): tag = inputs[b].masked_select(tags[b][k].eq(n+1).unsqueeze(0)) if tag.size() != torch.Size([]): loss_list.append(self.mse_loss(tag, h_tag_means[b][n])) for b in range(batch_size): for n1 in range(numH[b].numpy()[0]): for n2 in range(numH[b].numpy()[0]): if n1 != n2: loss_same = torch.exp(-self.mse_loss(h_tag_means[b][n1], h_tag_means[b][n2]) / sigma / sigma) loss_list.append(loss_same) if len(loss_list) == 0: loss = 0.0 else: loss = loss_list[0] for i in range(len(loss_list)-1): loss += loss_list[i+1] return loss
tools/tensorflow/cnn/alexnet/unpickle.py
feifeibear/dlbench
181
12779820
<gh_stars>100-1000 import cPickle import numpy as np import tensorflow as tf PATH = './cifar-10-batches-py' TARGETPATH = '/home/comp/csshshi/tensorflow/cifar-10-batches-py' TEST_FILES = ['test_batch'] FILES = ['data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4', 'data_batch_5'] TRAIN_COUNT = 50000 EVAL_COUNT = 10000 IMAGE_SIZE = 32 NUM_CLASSES = 10 unpickled = {} def unpickle(file): dict = unpickled.get(file) if dict: return dict fo = open(file, 'rb') dict = cPickle.load(fo) fo.close() unpickled[file] = dict return dict def get_next_batch(batch_size, step, is_test=False): files = FILES if is_test: files = TEST_FILES file_index = step % len(FILES) filename = files[file_index] filename = '%s/%s'%(PATH, filename) dict = unpickle(filename) data_index = step/len(files) * batch_size images = dict['data'][data_index:data_index+batch_size] labels = dict['labels'][data_index:data_index+batch_size] reshaped_images = [np.reshape(image, (IMAGE_SIZE, IMAGE_SIZE, 3)) for image in images] return reshaped_images, labels
workshop_sections/extras/lstm_text_classification/trainer/task.py
CharleyGuo/tensorflow-workshop
691
12779822
import model import tensorflow as tf import utils def train(target, num_param_servers, is_chief, lstm_size=64, input_filenames=None, sentence_length=128, vocab_size=2**15, learning_rate=0.01, output_dir=None, batch_size=1024, embedding_size=128, num_epochs=2): graph = tf.Graph() with graph.as_default(): sentences, scores = model.get_inputs( input_filenames, batch_size, num_epochs, sentence_length) with tf.device(tf.train.replica_device_setter()): lstm = model.BasicRegressionLSTM( sentences, scores, num_param_servers, vocab_size, learning_rate, embedding_size, lstm_size ) tf.contrib.learn.train( graph, output_dir, lstm.train_op, lstm.loss, global_step_tensor=lstm.global_step, supervisor_is_chief=is_chief, supervisor_master=target ) if __name__ == "__main__": parser = utils.base_parser() parser.add_argument( '--learning-rate', type=float, default=0.01 ) utils.dispatch( train, **parser.parse_args().__dict__ )
extractor/open163.py
pwh19920920/spiders
390
12779839
<filename>extractor/open163.py # pylint: disable=W0123 import re import requests def get(url: str) -> dict: """ videos """ data = {} data["videos"] = [] headers = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" } re_url = r'mid:(.*?),.*?mp4SdUrlOrign:(.*?),.*?mp4HdUrlOrign:(.*?),.*?mp4ShdUrlOrign:(.*?),' rep = requests.get(url, headers=headers, timeout=10) items = re.findall(re_url, rep.text) for item in items: # 倒序取最高画质 for video_url in item[::-1]: # type: str # print(url) if "http" in video_url: video_url = eval(video_url).replace("\\u002F", "/") data["videos"].append(video_url) break return data if __name__ == "__main__": url = "http://open.163.com/newview/movie/free?pid=M8LI1JCE6&mid=M8LI3BQ60" print(get(url))
examples/apps/kinesis-analytics-process-kpl-record/aws_kinesis_agg/__init__.py
eugeniosu/serverless-application-model
326
12779877
#Kinesis Aggregation/Deaggregation Libraries for Python # #Copyright 2014, Amazon.com, Inc. or its affiliates. All Rights Reserved. # #Licensed under the Amazon Software License (the "License"). #You may not use this file except in compliance with the License. #A copy of the License is located at # # http://aws.amazon.com/asl/ # #or in the "license" file accompanying this file. This file is distributed #on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either #express or implied. See the License for the specific language governing #permissions and limitations under the License. import md5 #Message aggregation protocol-specific constants #(https://github.com/awslabs/amazon-kinesis-producer/blob/master/aggregation-format.md) MAGIC = '\xf3\x89\x9a\xc2' DIGEST_SIZE = md5.digest_size #Kinesis Limits #(https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html) MAX_BYTES_PER_RECORD = 1024*1024 # 1 MB
geocoder/geolytica.py
termim/geocoder
1,506
12779894
#!/usr/bin/python # coding: utf8 from __future__ import absolute_import import logging from geocoder.base import OneResult, MultipleResultsQuery class GeolyticaResult(OneResult): def __init__(self, json_content): # create safe shortcuts self._standard = json_content.get('standard', {}) # proceed with super.__init__ super(GeolyticaResult, self).__init__(json_content) @property def lat(self): lat = self.raw.get('latt', '').strip() if lat: return float(lat) @property def lng(self): lng = self.raw.get('longt', '').strip() if lng: return float(lng) @property def postal(self): return self.raw.get('postal', '').strip() @property def housenumber(self): return self._standard.get('stnumber', '').strip() @property def street(self): return self._standard.get('staddress', '').strip() @property def city(self): return self._standard.get('city', '').strip() @property def state(self): return self._standard.get('prov', '').strip() @property def address(self): if self.street_number: return u'{0} {1}, {2}'.format(self.street_number, self.route, self.locality) elif self.route and self.route != 'un-known': return u'{0}, {1}'.format(self.route, self.locality) else: return self.locality class GeolyticaQuery(MultipleResultsQuery): """ Geocoder.ca =========== A Canadian and US location geocoder. API Reference ------------- http://geocoder.ca/?api=1 """ provider = 'geolytica' method = 'geocode' _URL = 'http://geocoder.ca' _RESULT_CLASS = GeolyticaResult _KEY_MANDATORY = False def _build_params(self, location, provider_key, **kwargs): params = { 'json': 1, 'locate': location, 'geoit': 'xml' } if 'strictmode' in kwargs: params.update({'strictmode': kwargs.pop('strictmode')}) if 'strict' in kwargs: params.update({'strict': kwargs.pop('strict')}) if 'auth' in kwargs: params.update({'auth': kwargs.pop('auth')}) return params def _adapt_results(self, json_response): return [json_response] if __name__ == '__main__': logging.basicConfig(level=logging.INFO) g = GeolyticaQuery('1552 Payette dr., Ottawa') g.debug()
lib/python/frugal/tests/transport/test_http_transport.py
ariasheets-wk/frugal
144
12779997
<gh_stars>100-1000 # Copyright 2017 Workiva # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from base64 import b64encode from struct import pack_into import unittest from mock import Mock from mock import patch from thrift.transport.TTransport import TTransportException from frugal.exceptions import TTransportExceptionType from frugal.transport.http_transport import THttpTransport @patch('frugal.transport.http_transport.requests') class TestTHttpTransport(unittest.TestCase): def test_request(self, mock_requests): url = 'http://localhost:8080/frugal' headers = {'foo': 'bar'} resp = Mock(status_code=200) response = b'response' buff = bytearray(4) pack_into('!I', buff, 0, len(response)) resp.content = b64encode(buff + response) mock_requests.post.return_value = resp def get_headers(): return {'baz': 'qux'} tr = THttpTransport(url, headers=headers, get_headers=get_headers, response_capacity=500) tr.open() self.assertTrue(tr.isOpen()) data = b'helloworld' buff = bytearray(4) pack_into('!I', buff, 0, len(data)) encoded_frame = b64encode(buff + data) tr.write(data) tr.flush() mock_requests.post.assert_called_once_with( url, data=encoded_frame, timeout=None, headers={'foo': 'bar', 'baz': 'qux', 'Content-Length': '20', 'Content-Type': 'application/x-frugal', 'Content-Transfer-Encoding': 'base64', 'User-Agent': 'Python/TBaseHttpTransport', 'x-frugal-payload-limit': '500'}) resp = tr.read(len(response)) self.assertEqual(response, resp) tr.close() self.assertTrue(tr.isOpen()) # open/close are no-ops def test_request_timeout(self, mock_requests): url = 'http://localhost:8080/frugal' headers = {'foo': 'bar'} resp = Mock(status_code=200) response = b'response' buff = bytearray(4) pack_into('!I', buff, 0, len(response)) resp.content = b64encode(buff + response) mock_requests.post.return_value = resp def get_headers(): return {'baz': 'qux'} tr = THttpTransport(url, headers=headers, get_headers=get_headers, response_capacity=500) tr.open() self.assertTrue(tr.isOpen()) data = b'helloworld' buff = bytearray(4) pack_into('!I', buff, 0, len(data)) encoded_frame = b64encode(buff + data) tr.set_timeout(5000) tr.write(data) tr.flush() mock_requests.post.assert_called_once_with( url, data=encoded_frame, timeout=5, headers={'foo': 'bar', 'baz': 'qux', 'Content-Length': '20', 'Content-Type': 'application/x-frugal', 'Content-Transfer-Encoding': 'base64', 'User-Agent': 'Python/TBaseHttpTransport', 'x-frugal-payload-limit': '500'}) resp = tr.read(len(response)) self.assertEqual(response, resp) tr.close() self.assertTrue(tr.isOpen()) # open/close are no-ops def test_flush_no_body(self, mock_requests): url = 'http://localhost:8080/frugal' tr = THttpTransport(url) tr.flush() self.assertFalse(mock_requests.post.called) def test_flush_bad_response(self, mock_requests): url = 'http://localhost:8080/frugal' resp = Mock(status_code=500) mock_requests.post.return_value = resp tr = THttpTransport(url) data = b'helloworld' buff = bytearray(4) pack_into('!I', buff, 0, len(data)) encoded_frame = b64encode(buff + data) tr.write(data) with self.assertRaises(TTransportException): tr.flush() mock_requests.post.assert_called_once_with( url, data=encoded_frame, timeout=None, headers={'Content-Length': '20', 'Content-Type': 'application/x-frugal', 'Content-Transfer-Encoding': 'base64', 'User-Agent': 'Python/TBaseHttpTransport'}) def test_flush_bad_oneway_response(self, mock_requests): url = 'http://localhost:8080/frugal' resp = Mock(status_code=200) buff = bytearray(4) pack_into('!I', buff, 0, 10) resp.content = b64encode(buff) mock_requests.post.return_value = resp tr = THttpTransport(url) data = b'helloworld' buff = bytearray(4) pack_into('!I', buff, 0, len(data)) encoded_frame = b64encode(buff + data) tr.write(data) with self.assertRaises(TTransportException): tr.flush() mock_requests.post.assert_called_once_with( url, data=encoded_frame, timeout=None, headers={'Content-Length': '20', 'Content-Type': 'application/x-frugal', 'Content-Transfer-Encoding': 'base64', 'User-Agent': 'Python/TBaseHttpTransport'}) def test_flush_oneway(self, mock_requests): url = 'http://localhost:8080/frugal' resp = Mock(status_code=200) buff = bytearray(4) pack_into('!I', buff, 0, 0) resp.content = b64encode(buff) mock_requests.post.return_value = resp tr = THttpTransport(url) data = b'helloworld' buff = bytearray(4) pack_into('!I', buff, 0, len(data)) encoded_frame = b64encode(buff + data) tr.write(data) tr.flush() mock_requests.post.assert_called_once_with( url, data=encoded_frame, timeout=None, headers={'Content-Length': '20', 'Content-Type': 'application/x-frugal', 'Content-Transfer-Encoding': 'base64', 'User-Agent': 'Python/TBaseHttpTransport'}) resp = tr.read(10) self.assertEqual(b'', resp) def test_write_limit_exceeded(self, mock_requests): url = 'http://localhost:8080/frugal' resp = Mock(status_code=200) buff = bytearray(4) pack_into('!I', buff, 0, 0) resp.content = b64encode(buff) mock_requests.post.return_value = resp tr = THttpTransport(url, request_capacity=5) data = b'helloworld' with self.assertRaises(TTransportException) as cm: tr.write(data) self.assertEqual(TTransportExceptionType.REQUEST_TOO_LARGE, cm.exception.type) self.assertFalse(mock_requests.post.called)
alipay/aop/api/domain/InsCoverage.py
snowxmas/alipay-sdk-python-all
213
12780018
<filename>alipay/aop/api/domain/InsCoverage.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class InsCoverage(object): def __init__(self): self._coverage_name = None self._coverage_no = None self._effect_end_time = None self._effect_start_time = None self._iop = None self._iop_premium = None self._premium = None self._sum_insured = None @property def coverage_name(self): return self._coverage_name @coverage_name.setter def coverage_name(self, value): self._coverage_name = value @property def coverage_no(self): return self._coverage_no @coverage_no.setter def coverage_no(self, value): self._coverage_no = value @property def effect_end_time(self): return self._effect_end_time @effect_end_time.setter def effect_end_time(self, value): self._effect_end_time = value @property def effect_start_time(self): return self._effect_start_time @effect_start_time.setter def effect_start_time(self, value): self._effect_start_time = value @property def iop(self): return self._iop @iop.setter def iop(self, value): self._iop = value @property def iop_premium(self): return self._iop_premium @iop_premium.setter def iop_premium(self, value): self._iop_premium = value @property def premium(self): return self._premium @premium.setter def premium(self, value): self._premium = value @property def sum_insured(self): return self._sum_insured @sum_insured.setter def sum_insured(self, value): self._sum_insured = value def to_alipay_dict(self): params = dict() if self.coverage_name: if hasattr(self.coverage_name, 'to_alipay_dict'): params['coverage_name'] = self.coverage_name.to_alipay_dict() else: params['coverage_name'] = self.coverage_name if self.coverage_no: if hasattr(self.coverage_no, 'to_alipay_dict'): params['coverage_no'] = self.coverage_no.to_alipay_dict() else: params['coverage_no'] = self.coverage_no if self.effect_end_time: if hasattr(self.effect_end_time, 'to_alipay_dict'): params['effect_end_time'] = self.effect_end_time.to_alipay_dict() else: params['effect_end_time'] = self.effect_end_time if self.effect_start_time: if hasattr(self.effect_start_time, 'to_alipay_dict'): params['effect_start_time'] = self.effect_start_time.to_alipay_dict() else: params['effect_start_time'] = self.effect_start_time if self.iop: if hasattr(self.iop, 'to_alipay_dict'): params['iop'] = self.iop.to_alipay_dict() else: params['iop'] = self.iop if self.iop_premium: if hasattr(self.iop_premium, 'to_alipay_dict'): params['iop_premium'] = self.iop_premium.to_alipay_dict() else: params['iop_premium'] = self.iop_premium if self.premium: if hasattr(self.premium, 'to_alipay_dict'): params['premium'] = self.premium.to_alipay_dict() else: params['premium'] = self.premium if self.sum_insured: if hasattr(self.sum_insured, 'to_alipay_dict'): params['sum_insured'] = self.sum_insured.to_alipay_dict() else: params['sum_insured'] = self.sum_insured return params @staticmethod def from_alipay_dict(d): if not d: return None o = InsCoverage() if 'coverage_name' in d: o.coverage_name = d['coverage_name'] if 'coverage_no' in d: o.coverage_no = d['coverage_no'] if 'effect_end_time' in d: o.effect_end_time = d['effect_end_time'] if 'effect_start_time' in d: o.effect_start_time = d['effect_start_time'] if 'iop' in d: o.iop = d['iop'] if 'iop_premium' in d: o.iop_premium = d['iop_premium'] if 'premium' in d: o.premium = d['premium'] if 'sum_insured' in d: o.sum_insured = d['sum_insured'] return o
python/searching/interpolation.py
nikitanamdev/AlgoBook
191
12780063
<gh_stars>100-1000 #Interpolation search is an improved version of binary search. #Its time complexity is O(log(log n)) as compared to log(n) of binary search. #following is the code of interpolation search: # Python program to implement interpolation search #Variable naming: """ 1) lys - our input array 2) val - the element we are searching for 2) index - the probable index of the search element. This is computed to be a higher value when val is closer in value to the element at the end of the array (lys[high]), and lower when val is closer in value to the element at the start of the array (lys[low]) 4) low - the starting index of the array 5) high - the last index of the array""" def InterpolationSearch(lys, val): low = 0 high = (len(lys) - 1) while low <= high and val >= lys[low] and val <= lys[high]: index = low + int(((float(high - low) / ( lys[high] - lys[low])) * ( val - lys[low]))) if lys[index] == val: return index if lys[index] < val: low = index + 1 else: high = index - 1 return -1 print(InterpolationSearch([1,2,3,4,5,6,7,8], 6))
Drake-Z/0015/0015.py
saurabh896/python-1
3,976
12780086
#!/usr/bin/env python3 # -*- coding: utf-8 -*- '''第 0015 题: 纯文本文件 city.txt为城市信息, 里面的内容(包括花括号)如下所示: { "1" : "上海", "2" : "北京", "3" : "成都" } 请将上述内容写到 city.xls 文件中。''' __author__ = 'Drake-Z' import json from collections import OrderedDict from openpyxl import Workbook def txt_to_xlsx(filename): file = open(filename, 'r', encoding = 'UTF-8') file_cintent = json.load(file, encoding = 'UTF-8') print(file_cintent) workbook = Workbook() worksheet = workbook.worksheets[0] for i in range(1, len(file_cintent)+1): worksheet.cell(row = i, column = 1).value = i worksheet.cell(row = i, column = 2).value = file_cintent[str(i)] workbook.save(filename = 'city.xls') if __name__ == '__main__': txt_to_xlsx('city.txt')
veles/ocl_blas.py
AkshayJainG/veles
1,007
12780102
# -*- coding: utf-8 -*- """ .. invisible: _ _ _____ _ _____ _____ | | | | ___| | | ___/ ___| | | | | |__ | | | |__ \ `--. | | | | __|| | | __| `--. \ \ \_/ / |___| |___| |___/\__/ / \___/\____/\_____|____/\____/ Created on Apr 13, 2015 BLAS class to use with ocl backend. ███████████████████████████████████████████████████████████████████████████████ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ███████████████████████████████████████████████████████████████████████████████ """ from cuda4py.blas import CUBLAS_OP_N, CUBLAS_OP_T import numpy import opencl4py.blas as clblas import os import threading import weakref from zope.interface import implementer from veles.accelerated_units import AcceleratedUnit, IOpenCLUnit from veles.config import root from veles.dummy import DummyWorkflow from veles.logger import Logger from veles.numpy_ext import roundup @implementer(IOpenCLUnit) class Builder(AcceleratedUnit): """Dummy unit for building OpenCL kernels. """ def __init__(self, workflow, **kwargs): super(Builder, self).__init__(workflow, **kwargs) self.source = kwargs["source"] self.defines = kwargs["defines"] self.kernel_name = kwargs["kernel_name"] self.cache_file_name = kwargs["cache_file_name"] self.dtype = kwargs["dtype"] @property def kernel(self): return self._kernel_ def ocl_init(self): self.sources_[self.source] = {} self.build_program(self.defines, self.cache_file_name, self.dtype) self.assign_kernel(self.kernel_name) def ocl_run(self): pass class OCLBLAS(Logger): """Class with BLAS functionality similar to CUBLAS. It uses CLBLAS when available or custom kernels otherwise. """ @staticmethod def attach_to_device(device): if device.blas is None: device.blas = OCLBLAS(device) def __init__(self, device): super(OCLBLAS, self).__init__() self._lock_ = threading.Lock() self._device = weakref.ref(device) self.kernels = {} self._const_i = numpy.zeros(3, dtype=numpy.uint64) try: if (root.common.engine.ocl.clBLAS is not True or root.common.engine.precision_level > 0): raise ValueError() if "CLBLAS_STORAGE_PATH" not in os.environ: found = False for dirnme in root.common.engine.device_dirs: for path, _, files in os.walk(dirnme): for f in files: if f.endswith(".kdb"): found = True os.environ["CLBLAS_STORAGE_PATH"] = path break if found: break if found: break self.blas = clblas.CLBLAS() self._sgemm = self.clblas_sgemm self._dgemm = self.clblas_dgemm self.debug("Using clBLAS for matrix multiplication") except (OSError, RuntimeError, ValueError): self._sgemm = self.veles_gemm self._dgemm = self.veles_gemm self.debug("Using Veles OpenCL kernels for matrix multiplication") @property def device(self): return self._device() @staticmethod def gemm(dtype): if dtype == numpy.float32: return OCLBLAS.sgemm if dtype == numpy.float64: return OCLBLAS.dgemm raise ValueError("Invalid dtype %s" % dtype) def sgemm(self, transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA=0, offsetB=0, offsetC=0): return self._sgemm( transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA=offsetA, offsetB=offsetB, offsetC=offsetC) def dgemm(self, transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA=0, offsetB=0, offsetC=0): return self._dgemm( transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA=offsetA, offsetB=offsetB, offsetC=offsetC) def clblas_sgemm(self, transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA=0, offsetB=0, offsetC=0): """Does a matrix multiplication like in CUBLAS using clBLAS. Matricies are assumed to be tightly packed and stored like in CUBLAS. Single precision (float) version. """ self.blas.sgemm((self.device.queue_,), clblas.clblasColumnMajor, transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA=offsetA, offsetB=offsetB, offsetC=offsetC) def clblas_dgemm(self, transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA=0, offsetB=0, offsetC=0): """Does a matrix multiplication like in CUBLAS using clBLAS. Matricies are assumed to be tightly packed and stored like in CUBLAS. Double precision (double) version. """ self.blas.dgemm((self.device.queue_,), clblas.clblasColumnMajor, transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA=offsetA, offsetB=offsetB, offsetC=offsetC) def veles_gemm(self, transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA=0, offsetB=0, offsetC=0): """Does a matrix multiplication like in CUBLAS using custom kernel. Matricies are assumed to be tightly packed and stored like in CUBLAS. """ with self._lock_: self._veles_gemm(transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA, offsetB, offsetC) def _veles_gemm(self, transA, transB, rowsCountA, columnCountB, commonSideLength, alpha, A, B, beta, C, offsetA, offsetB, offsetC): dtype = alpha.dtype key = (transA, transB, rowsCountA, columnCountB, commonSideLength, dtype) krn_info = self.kernels.get(key) if krn_info is None: block_size, vector_opt = self.device.device_info.get_kernel_bs_vo( kernel="matrix_multiplication", dtype=dtype) defines = { "BLOCK_SIZE": block_size, "VECTOR_OPT": int(bool(vector_opt)), "B_WIDTH": rowsCountA, "A_WIDTH": columnCountB, "AB_COMMON": commonSideLength } if transB == CUBLAS_OP_T: defines["A_COL"] = 1 else: assert transB == CUBLAS_OP_N if transA == CUBLAS_OP_N: defines["B_COL"] = 1 else: assert transA == CUBLAS_OP_T global_size = (roundup(rowsCountA, block_size), roundup(columnCountB, block_size)) local_size = (block_size, block_size) w = DummyWorkflow() builder = Builder( w, source="gemm", defines=defines, kernel_name="gemm", cache_file_name=( "veles_gemm_%s" % "_".join(str(x) for x in key)), dtype=dtype) builder.initialize(self.device) krn_info = (builder.kernel, global_size, local_size) self.kernels[key] = krn_info del builder del w # Set the constants and execute the kernel krn = krn_info[0] self._const_i[0:3] = offsetA, offsetB, offsetC # Our kernel stores output in row-major order, so swap A and B krn.set_args(B, A, C, alpha, beta, self._const_i[1:2], self._const_i[0:1], self._const_i[2:3]) global_size = krn_info[1] local_size = krn_info[2] self.device.queue_.execute_kernel(krn, global_size, local_size, need_event=False)
codigo_das_aulas/aula_17/exemplo_09.py
VeirichR/curso-python-selenium
234
12780107
<gh_stars>100-1000 from selene.support.shared import browser from selene.support.conditions import be from selene.support.conditions import have browser.open('http://google.com') browser.element( 'input[name="q"]' ).should(be.blank).type('Envydust').press_enter()
tests/test_pycuda.py
karthik20122001/docker-python
2,030
12780109
<gh_stars>1000+ """Tests for general GPU support""" import unittest from common import gpu_test class TestPycuda(unittest.TestCase): @gpu_test def test_pycuda(self): import pycuda.driver pycuda.driver.init() gpu_name = pycuda.driver.Device(0).name() self.assertNotEqual(0, len(gpu_name))
pymatgen/io/cube.py
Crivella/pymatgen
921
12780119
<gh_stars>100-1000 """ Module for reading Gaussian cube files, which have become one of the standard file formats for volumetric data in quantum chemistry and solid state physics software packages (VASP being an exception). Some basic info about cube files (abridged info from http://paulbourke.net/dataformats/cube/ by <NAME>) The file consists of a header which includes the atom information and the size as well as orientation of the volumetric data. The first two lines of the header are comments. The third line has the number of atoms included in the file followed by the position of the origin of the volumetric data. The next three lines give the number of voxels along each axis (x, y, z) followed by the axis vector. The last section in the header is one line for each atom consisting of 5 numbers, the first is the atom number, the second is the charge, and the last three are the x,y,z coordinates of the atom center. The volumetric data is straightforward, one floating point number for each volumetric element. Example In the following example the volumetric data is a 40 by 40 by 40 grid, each voxel is 0.283459 units wide and the volume is aligned with the coordinate axis. There are three atoms. CPMD CUBE FILE. OUTER LOOP: X, MIDDLE LOOP: Y, INNER LOOP: Z 3 0.000000 0.000000 0.000000 40 0.283459 0.000000 0.000000 40 0.000000 0.283459 0.000000 40 0.000000 0.000000 0.283459 8 0.000000 5.570575 5.669178 5.593517 1 0.000000 5.562867 5.669178 7.428055 1 0.000000 7.340606 5.669178 5.111259 -0.25568E-04 0.59213E-05 0.81068E-05 0.10868E-04 0.11313E-04 0.35999E-05 : : : : : : : : : : : : : : : : : : In this case there will be 40 x 40 x 40 floating point values : : : : : : : : : : : : : : : : : : """ import numpy as np from monty.io import zopen from pymatgen.core.sites import Site from pymatgen.core.structure import Structure from pymatgen.core.units import bohr_to_angstrom # TODO: can multiprocessing be incorporated without causing issues during drone assimilation? class Cube: """ Class to read Gaussian cube file formats for volumetric data. Cube files are, by default, written in atomic units, and this class assumes that convention. """ def __init__(self, fname): """ Initialize the cube object and store the data as self.data Args: fname (str): filename of the cube to read """ f = zopen(fname, "rt") # skip header lines for i in range(2): f.readline() # number of atoms followed by the position of the origin of the volumetric data line = f.readline().split() self.natoms = int(line[0]) self.origin = np.array(list(map(float, line[1:]))) # The number of voxels along each axis (x, y, z) followed by the axis vector. line = f.readline().split() self.NX = int(line[0]) self.X = np.array([bohr_to_angstrom * float(l) for l in line[1:]]) self.dX = np.linalg.norm(self.X) line = f.readline().split() self.NY = int(line[0]) self.Y = np.array([bohr_to_angstrom * float(l) for l in line[1:]]) self.dY = np.linalg.norm(self.Y) line = f.readline().split() self.NZ = int(line[0]) self.Z = np.array([bohr_to_angstrom * float(l) for l in line[1:]]) self.dZ = np.linalg.norm(self.Z) self.voxel_volume = abs(np.dot(np.cross(self.X, self.Y), self.Z)) self.volume = abs(np.dot(np.cross(self.X.dot(self.NZ), self.Y.dot(self.NY)), self.Z.dot(self.NZ))) # The last section in the header is one line for each atom consisting of 5 numbers, # the first is the atom number, second is charge, # the last three are the x,y,z coordinates of the atom center. self.sites = [] for i in range(self.natoms): line = f.readline().split() self.sites.append(Site(line[0], np.multiply(bohr_to_angstrom, list(map(float, line[2:]))))) self.structure = Structure( lattice=[self.X * self.NX, self.Y * self.NY, self.Z * self.NZ], species=[s.specie for s in self.sites], coords=[s.coords for s in self.sites], coords_are_cartesian=True, ) # Volumetric data self.data = np.reshape(np.array(f.read().split()).astype(float), (self.NX, self.NY, self.NZ)) def mask_sphere(self, radius, cx, cy, cz): """ Create a mask for a sphere with radius=radius, centered at cx, cy, cz. Args: radius: (flaot) of the mask (in Angstroms) cx, cy, cz: (float) the fractional coordinates of the center of the sphere """ dx, dy, dz = ( np.floor(radius / np.linalg.norm(self.X)).astype(int), np.floor(radius / np.linalg.norm(self.Y)).astype(int), np.floor(radius / np.linalg.norm(self.Z)).astype(int), ) gcd = max(np.gcd(dx, dy), np.gcd(dy, dz), np.gcd(dx, dz)) sx, sy, sz = dx // gcd, dy // gcd, dz // gcd r = min(dx, dy, dz) x0, y0, z0 = int(np.round(self.NX * cx)), int(np.round(self.NY * cy)), int(np.round(self.NZ * cz)) centerx, centery, centerz = self.NX // 2, self.NY // 2, self.NZ // 2 a = np.roll(self.data, (centerx - x0, centery - y0, centerz - z0)) i, j, k = np.indices(a.shape, sparse=True) a = np.sqrt((sx * i - sx * centerx) ** 2 + (sy * j - sy * centery) ** 2 + (sz * k - sz * centerz) ** 2) indices = a > r a[indices] = 0 return a def get_atomic_site_averages(self, atomic_site_radii): """ Get the average value around each atomic site. Args: atomic_site_radii (dict): dictionary determining the cutoff radius (in Angstroms) for averaging around atomic sites (e.g. {'Li': 0.97, 'B': 0.77, ...}. If not provided, then the returns: Array of site averages, [Average around site 1, Average around site 2, ...] """ return [self._get_atomic_site_average(s, atomic_site_radii[s.species_string]) for s in self.structure.sites] def _get_atomic_site_average(self, site, radius): """ Helper function for get_atomic_site_averages. Args: site: Site in the structure around which to get the average radius: (float) the atomic_site_radius (in Angstroms) for given atomic species returns: Average around the atomic site """ mask = self.mask_sphere(radius, *site.frac_coords) return np.sum(self.data * mask) / np.count_nonzero(mask) def get_atomic_site_totals(self, atomic_site_radii): """ Get the integrated total in a sphere around each atomic site. Args: atomic_site_radii (dict): dictionary determining the cutoff radius (in Angstroms) for averaging around atomic sites (e.g. {'Li': 0.97, 'B': 0.77, ...}. If not provided, then the returns: Array of site averages, [Average around site 1, Average around site 2, ...] """ return [self._get_atomic_site_total(s, atomic_site_radii[s.species_string]) for s in self.structure.sites] def _get_atomic_site_total(self, site, radius): """ Helper function for get_atomic_site_averages. Args: site: Site in the structure around which to get the total radius: (float) the atomic_site_radius (in Angstroms) for given atomic species returns: Average around the atomic site """ mask = self.mask_sphere(radius, *site.frac_coords) return np.sum(self.data * mask) def get_axis_grid(self, ind): """ Modified from pymatgen.io.vasp.outputs Returns the grid for a particular axis. Args: ind (int): Axis index. """ ng = self.data.shape num_pts = ng[ind] lengths = self.structure.lattice.abc return [i / num_pts * lengths[ind] for i in range(num_pts)] def get_average_along_axis(self, ind): """ Modified from pymatgen.io.vasp.outputs Get the averaged total of the volumetric data a certain axis direction. For example, useful for visualizing Hartree Potentials. Args: ind (int): Index of axis. Returns: Average total along axis """ ng = self.data.shape m = self.data if ind == 0: total = np.sum(np.sum(m, axis=1), 1) elif ind == 1: total = np.sum(np.sum(m, axis=0), 1) else: total = np.sum(np.sum(m, axis=0), 0) return total / ng[(ind + 1) % 3] / ng[(ind + 2) % 3]
Python/SinglyLinkedList.py
Nikhil-Sharma-1/DS-Algo-Point
1,148
12780138
class Node: def __init__(self, data): self.data = data self.next = None class SinglyLinkedList: def __init__(self): self.head = None self.pos = None def insert(self, data): newNode = Node(data) if self.head == None: self.head = newNode self.pos = newNode else: tmp = self.pos.next self.pos.next = newNode self.pos = newNode if tmp != None: newNode.next = tmp def delete(self): if self.pos == self.head: self.pos = self.pos.next del self.head self.head = self.pos else: tmp = self.head while tmp.next != self.pos: tmp = tmp.next tmp.next = self.pos.next del self.pos self.pos = tmp def reset(self): self.pos = self.head def advance(self): if self.pos != None: self.pos = self.pos.next def out_of_list(self): if self.pos == None: return True else: return False def pos_position(self): if not (self.out_of_list()): return self.pos.data else: return "pos is out of list" def print_list(self): if self.head == None: print("List is empty") else: tmp = self.head while tmp != None: print(tmp.data) tmp = tmp.next run = True sll = SinglyLinkedList() while run: print( "\ni [insert] insert element") print( "d [delete] delete element") print( "o [out] out_of_list ?") print( "p [pos] current position of pos") print( "r [reset] pos-pointer") print( "a [advance] pos-pointer") print( "pr [print] print list") print( "q [quit] program") choice = input() if choice == "i": num = input("Enter Data for insertion: ") sll.insert(num) elif choice == "d": sll.delete() elif choice == "o": print(sll.out_of_list()) elif choice == "r": sll.reset() elif choice == "a": sll.advance() elif choice == "p": print(sll.pos_position()) elif choice == "q": run = False elif choice == "pr": sll.print_list() else: print("Invalid Input") """ Sample I/O: i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program i (Userinput) Enter Data for insertion: 10 i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program i (Userinput) Enter Data for insertion: 20 i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program pr (Userinput) 10 20 i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program p (Userinput) 20 i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program a (Userinput) i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program o (Userinput) True i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program r (Userinput) i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program p (Userinput) 10 i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program d (Userinput) i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program pr (Userinput) 20 i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program p (Userinput) 20 i [insert] insert element d [delete] delete element o [out] out_of_list ? p [pos] current position of pos r [reset] pos-pointer a [advance] pos-pointer pr [print] print list q [quit] program q (Userinput) Time Complexity: Insert: O(1) Delete: O(N) PrintList: O(N) Everything Else: O(1) """
Python/ds/Firstfit.py
Khushboo85277/NeoAlgo
897
12780139
""" First fit is the simplest of all the storage allocation strategies. Here the list of storages is searched and as soon as a free storage block of size >= N is found , the pointer of that block is sent to the calling program after retaining the residue space.Thus, for example, for a block of size 5k , 2k memory will be sent to the caller . The below program is a simulation of the first fit strategy using array data structure. """ # Block class is used as the fixed memory blocks for allocation class Block: def __init__(self): self.size = 0 self.ID = 0 self.fragment = 0 # process class is used for allocating memory for the requesting processes class process: def __init__(self): self.Num = 0 self.size = 0 self.block = None # initialiseBlocks function initializes all the blocks with sizes and id def initialiseBlocks(arr, sizes, n): for i in range(n): arr[i].size = sizes[i] arr[i].fragment = sizes[i] arr[i].ID = i + 1 # printResult function prints the result of the memory allocation strategy def printResult(arr2, numOfProcess): print( "Process No Process Size Block ID Block Size Block Fragment" ) for i in range(numOfProcess): print( str(arr2[i].Num) + " " + str(arr2[i].size) + " " + str(arr2[i].block.ID) + " " + str(arr2[i].block.size) + " " + str(arr2[i].block.fragment) ) # firstfit function allocates memory to processes using firstfit allocation algorithm def firstfit(arr, sizes, n, arr2, numOfProcess): initialiseBlocks(arr, sizes, n) for i in range(numOfProcess): for j in range(n): if arr2[i].size <= arr[j].fragment: arr[j].fragment -= arr2[i].size arr2[i].block = Block() arr2[i].block.size = arr[j].size arr2[i].block.ID = arr[j].ID arr2[i].block.fragment = arr[j].fragment break print("First Fit Allocation") printResult(arr2, numOfProcess) # Driver code if __name__ == "__main__": sizes = [60, 20, 12, 35, 64, 42, 31, 35, 40, 50] arr = [] for i in range(10): arr.append(Block()) initialiseBlocks(arr, sizes, 10) numOfProcess = int( input("Enter the number of process for memory to be allocated : ") ) print("Enter the sizes required by the processes in the order of requirement") psize = list(map(int, input().split(" "))) arr2 = [] for i in range(numOfProcess): arr2.append(process()) arr2[i].size = psize[i] arr2[i].Num = i + 1 firstfit(arr, sizes, 10, arr2, numOfProcess) """ Sample I/O: Enter the number of process for memory to be allocated : 5 Enter the sizes required by the processes in the order of requirement 15 12 13 20 11 First Fit Allocation Process No Process Size Block ID Block Size Block Fragment 1 15 1 60 45 2 12 1 60 33 3 13 1 60 20 4 20 1 60 0 5 11 2 20 9 Time complexity : O(n) space complexity : O(n) """
Python/test/currencies.py
yrtf/QuantLib-SWIG
231
12780165
""" Copyright (C) 2021 <NAME> This file is part of QuantLib, a free-software/open-source library for financial quantitative analysts and developers - http://quantlib.org/ QuantLib is free software: you can redistribute it and/or modify it under the terms of the QuantLib license. You should have received a copy of the license along with this program; if not, please email <<EMAIL>>. The license is also available online at <http://quantlib.org/license.shtml>. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the license for more details. """ import unittest import QuantLib as ql class CurrencyTest(unittest.TestCase): def test_default_currency_constructor(self): """Testing default currency constructor""" fail_msg = "Failed to create default currency." default_ccy = ql.Currency() self.assertTrue(default_ccy.empty(), fail_msg) def test_eur_constructor(self): """Testing EUR constructor""" fail_msg = "Failed to create EUR currency." eur = ql.EURCurrency() self.assertFalse(eur.empty(), fail_msg) def test_bespoke_currency_constructor(self): """Testing bespoke currency constructor""" fail_msg = "Failed to create bespoke currency." custom_ccy = ql.Currency( "CCY", "CCY", 100, "#", "", 100, ql.Rounding(), "") self.assertFalse(custom_ccy.empty(), fail_msg) if __name__ == '__main__': print('testing QuantLib ' + ql.__version__) suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(CurrencyTest, 'test')) unittest.TextTestRunner(verbosity=2).run(suite)
smt/SMT.py
jeanqasaur/jeeves
253
12780201
''' Translate expressions to SMT import format. ''' from Z3 import Z3 class UnsatisfiableException(Exception): pass # NOTE(JY): Think about if the solver needs to know about everything for # negative constraints. I don't think so because enough things should be # concrete that this doesn't matter. def solve(constraints, defaults, desiredVars): # NOTE(JY): This is just a sketch of what should go on... # Implement defaults by adding values to the model and #for v in jeeveslib.env.envVars: # jeeveslib.solver.push() # solver.assertConstraint(v = z3.BoolVal(True)) # if (solver.check() == solver.Unsat): # jeeveslib.solver.pop() # Now get the variables back from the solver by evaluating all # variables in question... # Now return the new environment... #return NotImplemented solver = Z3() result = {} for constraint in constraints: if constraint.type != bool: raise ValueError("constraints must be bools") solver.boolExprAssert(constraint) if not solver.check(): raise UnsatisfiableException("Constraints not satisfiable") for default in defaults: solver.push() if default.type != bool: raise ValueError("defaults must be bools") solver.boolExprAssert(default) if not solver.isSatisfiable(): solver.pop() assert solver.check() result = {} for var in desiredVars: result[var] = solver.evaluate(var) assert (result[var] is True) or (result[var] is False) return result
watchmen/pipeline/core/context/unit_context.py
Insurance-Metrics-Measure-Advisory/watchman-data-connector
125
12780202
<reponame>Insurance-Metrics-Measure-Advisory/watchman-data-connector from model.model.pipeline.pipeline import ProcessUnit from watchmen.monitor.model.pipeline_monitor import UnitRunStatus from watchmen.pipeline.core.context.stage_context import StageContext class UnitContext: stageContext: StageContext unit: ProcessUnit unitStatus: UnitRunStatus def __init__(self, stageContext, unit): self.stageContext = stageContext self.unit = unit self.unitStatus = UnitRunStatus()
tensorflow/python/distribute/distribute_coordinator_context.py
EricRemmerswaal/tensorflow
190,993
12780203
<filename>tensorflow/python/distribute/distribute_coordinator_context.py<gh_stars>1000+ # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The context retrieval method for distribute coordinator.""" import threading _worker_context = threading.local() def get_current_worker_context(): """Returns the current task context.""" try: return _worker_context.current except AttributeError: return None
plugins/quetz_content_trust/quetz_content_trust/repo_signer.py
maresb/quetz
108
12780213
import os import shutil from pathlib import Path import conda_content_trust.signing as cct_signing class RepoSigner: def sign_repodata(self, repodata_fn, pkg_mgr_key): final_fn = self.in_folder / "repodata_signed.json" print("copy", repodata_fn, final_fn) shutil.copyfile(repodata_fn, final_fn) cct_signing.sign_all_in_repodata(str(final_fn), pkg_mgr_key) print(f"Signed {final_fn}") def __init__(self, in_folder, pkg_mgr_key): self.in_folder = Path(in_folder).resolve() f = os.path.join(self.in_folder, "repodata.json") if os.path.isfile(f): self.sign_repodata(Path(f), pkg_mgr_key)
machine/storage/backends/base.py
drdarina/slack-machine
111
12780217
<reponame>drdarina/slack-machine<filename>machine/storage/backends/base.py class MachineBaseStorage: """Base class for storage backends Extending classes should implement the five methods in this base class. Slack Machine takes care of a lot of details regarding the persistent storage of data. So storage backends **do not** have to deal with the following, because Slack Machine takes care of these: - Serialization/Deserialization of data - Namespacing of keys (so data stored by different plugins doesn't clash) """ def __init__(self, settings): self.settings = settings def get(self, key): """Retrieve data by key :param key: key for which to retrieve data :return: the raw data for the provided key, as (byte)string. Should return ``None`` when the key is unknown or the data has expired. """ raise NotImplementedError def set(self, key, value, expires=None): """Store data by key :param key: the key under which to store the data :param value: data as (byte)string :param expires: optional expiration time in seconds, after which the data should not be returned any more. """ raise NotImplementedError def delete(self, key): """Delete data by key :param key: key for which to delete the data """ raise NotImplementedError def has(self, key): """Check if the key exists :param key: key to check :return: ``True/False`` wether the key exists """ raise NotImplementedError def size(self): """Calculate the total size of the storage :return: total size of storage in bytes (integer) """ raise NotImplementedError
tools/etnaviv/mmt.py
ilbers/etna_viv
121
12780222
import struct from collections import namedtuple def read_1(f): return f.read(1)[0] def read_2(f): return struct.unpack('<H', f.read(2))[0] def read_4(f): return struct.unpack('<I', f.read(4))[0] def read_8(f): return struct.unpack('<Q', f.read(8))[0] def read_buffer(f): length = read_4(f) return f.read(length) def read_str(f): s = read_buffer(f) assert(s[-1] == 0) return s[0:-1] LogMessage = namedtuple('LogMessage', ['msg']) Open = namedtuple('Open', ['flags', 'mode', 'fd', 'path']) Mmap = namedtuple('Mmap', ['offset', 'prot', 'flags', 'fd', 'region_id', 'start', 'length']) Munmap = namedtuple('Munmap', ['offset', 'region_id', 'start', 'length', 'unk1', 'unk2']) StoreInfo = namedtuple('StoreInfo', ['msg']) Store = namedtuple('Store', ['region_id', 'offset', 'data']) ProcessMap = namedtuple('ProcessMap', ['msg']) # etnaviv specific Commit = namedtuple('Commit', []) def parse_mmt_file(f): while True: ch = f.read(1) if ch == b'': return elif ch == b'=' or ch == b'-': # Comment s = b'' while True: # read until \n ch = f.read(1) if ch == b'\n': break else: s += ch yield LogMessage(s) elif ch == b'o': # open flags = read_4(f) mode = read_4(f) fd = read_4(f) path = read_str(f) assert(read_1(f) == 10) yield Open(flags, mode, fd, path) elif ch == b'M': # mmap offset = read_8(f) prot = read_4(f) flags = read_4(f) fd = read_4(f) region_id = read_4(f) start = read_8(f) length = read_8(f) assert(read_1(f) == 10) yield Mmap(offset, prot, flags, fd, region_id, start, length) elif ch == b'u': # munmap offset = read_8(f) region_id = read_4(f) start = read_8(f) length = read_8(f) unk1 = read_8(f) unk2 = read_8(f) assert(read_1(f) == 10) yield Munmap(offset, region_id, start, length, unk1, unk2) elif ch == b'x': # store_info info = read_str(f) assert(read_1(f) == 10) yield StoreInfo(info) elif ch == b'w': # store region_id = read_4(f) offset = read_4(f) length = read_1(f) data = f.read(length) assert(read_1(f) == 10) yield Store(region_id, offset, data) elif ch == b'c': # commit assert(read_1(f) == 10) yield Commit() elif ch == b'y': # process map assert(read_8(f) == 1) msg = read_buffer(f) assert(read_1(f) == 10) yield ProcessMap(msg) else: print('Unknown ', ch) exit(1)
segmenters/nlp/JiebaSegmenter/tests/test_jiebasegmenter.py
saoc90/jina-hub
106
12780230
<reponame>saoc90/jina-hub import os import numpy as np import pytest from .. import JiebaSegmenter cur_dir = os.path.dirname(os.path.abspath(__file__)) path_dict_file = os.path.join(cur_dir, 'dict.txt') def test_jieba_segmenter(): segmenter = JiebaSegmenter(mode='accurate') text = '今天是个大晴天!安迪回来以后,我们准备去动物园。' docs_chunks = segmenter.segment(np.stack([text, text])) assert len(docs_chunks) == 2 for chunks in docs_chunks: assert len(chunks) == 14 def test_jieba_user_dir(): segmenter = JiebaSegmenter() text = '今天是个大晴天!安迪回来以后,我们准备去动物园。thisisnotachineseword' docs_chunks = segmenter.segment(np.stack([text, text])) assert len(docs_chunks) == 2 for chunks in docs_chunks: assert len(chunks) == 15 segmenter = JiebaSegmenter(user_dict_file=path_dict_file) text = '今天是个大晴天!安迪回来以后,我们准备去动物园。thisisnotachineseword' docs_chunks = segmenter.segment(np.stack([text, text])) assert len(docs_chunks) == 2 for chunks in docs_chunks: assert len(chunks) == 20 def test_jieba_user_dir_file_not_found(): with pytest.raises(FileNotFoundError): JiebaSegmenter(user_dict_file='/this/path/does/not/exist.txt')
data/transcoder_evaluation_gfg/python/MINIMUM_PERIMETER_N_BLOCKS.py
mxl1n/CodeGen
241
12780252
<filename>data/transcoder_evaluation_gfg/python/MINIMUM_PERIMETER_N_BLOCKS.py # Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math def f_gold ( n ) : l = math.sqrt ( n ) sq = l * l if ( sq == n ) : return l * 4 else : row = n / l perimeter = 2 * ( l + row ) if ( n % l != 0 ) : perimeter += 2 return perimeter #TOFILL if __name__ == '__main__': param = [ (45,), (80,), (54,), (48,), (83,), (68,), (32,), (20,), (68,), (66,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
aa1_data_util/1_process_zhihu.py
sunshinenum/text_classification
7,723
12780308
# -*- coding: utf-8 -*- import sys #reload(sys) #sys.setdefaultencoding('utf8') #1.将问题ID和TOPIC对应关系保持到字典里:process question_topic_train_set.txt #from:question_id,topics(topic_id1,topic_id2,topic_id3,topic_id4,topic_id5) # to:(question_id,topic_id1) # (question_id,topic_id2) #read question_topic_train_set.txt import codecs #1.################################################################################################################ print("process question_topic_train_set.txt,started...") q_t='question_topic_train_set.txt' q_t_file = codecs.open(q_t, 'r', 'utf8') lines=q_t_file.readlines() question_topic_dict={} for i,line in enumerate(lines): if i%300000==0: print(i) #print(line) question_id,topic_list_string=line.split('\t') #print(question_id) #print(topic_list_string) topic_list=topic_list_string.replace("\n","").split(",") question_topic_dict[question_id]=topic_list #for ii,topic in enumerate(topic_list): # print(ii,topic) #print("=====================================") #if i>10: # print(question_topic_dict) # break print("process question_topic_train_set.txt,ended...") ################################################################################################################### ################################################################################################################### #2.处理问题--得到问题ID:问题的表示,存成字典。proces question. for every question form a a list of string to reprensent it. import codecs print("process question started11...") q='question_train_set.txt' q_file = codecs.open(q, 'r', 'utf8') q_lines=q_file.readlines() questionid_words_representation={} question_representation=[] length_desc=30 for i,line in enumerate(q_lines): #print("line:") #print(line) element_lists=line.split('\t') #['c324,c39','w305...','c'] question_id=element_lists[0] #print("question_id:",element_lists[0]) #for i,q_e in enumerate(element_lists): # print("e:",q_e) #question_representation=[x for x in element_lists[2].split(",")] #+ #TODO this is only for title's word. no more. title_words=[x for x in element_lists[2].strip().split(",")][-length_desc:] #print("title_words:",title_words) title_c=[x for x in element_lists[1].strip().split(",")][-length_desc:] #print("title_c:", title_c) desc_words=[x for x in element_lists[4].strip().split(",")][-length_desc:] #print("desc_words:", desc_words) desc_c=[x for x in element_lists[3].strip().split(",")][-length_desc:] #print("desc_c:", desc_c) question_representation =title_words+ title_c+desc_words+ desc_c question_representation=" ".join(question_representation) #print("question_representation:",question_representation) #print("question_representation:",question_representation) questionid_words_representation[question_id]=question_representation q_file.close() print("proces question ended2...") ##################################################################################################################### ################################################################################################################### # 3.获得模型需要的训练数据。以{问题的表示:TOPIC_ID}的形式的列表 # save training data,testing data: question __label__topic_id import codecs import random print("saving traininig data.started1...") count = 0 train_zhihu = 'train-zhihu6-title-desc.txt' test_zhihu = 'test-zhihu6-title-desc.txt' valid_zhihu = 'valid-zhihu6-title-desc.txt' data_list = [] multi_label_flag=True def split_list(listt): random.shuffle(listt) list_len = len(listt) train_len = 0.95 valid_len = 0.025 train = listt[0:int(list_len * train_len)] valid = listt[int(list_len * train_len):int(list_len * (train_len + valid_len))] test = listt[int(list_len * (train_len + valid_len)):] return train, valid, test for question_id, question_representation in questionid_words_representation.items(): # print("===================>") # print('question_id',question_id) # print("question_representation:",question_representation) # get label_id for this question_id by using:question_topic_dict topic_list = question_topic_dict[question_id] # print("topic_list:",topic_list) # if count>5: # ii=0 # ii/0 if not multi_label_flag: for topic_id in topic_list: data_list.append((question_representation, topic_id)) #single-label else: data_list.append((question_representation, topic_list)) #multi-label count = count + 1 # random shuffle list random.shuffle(data_list) def write_data_to_file_system(file_name, data): file = codecs.open(file_name, 'a', 'utf8') for d in data: # print(d) question_representation, topic_id = d question_representation_ = " ".join(question_representation) file.write(question_representation_ + " __label__" + str(topic_id) + "\n") file.close() def write_data_to_file_system_multilabel(file_name, data): file = codecs.open(file_name, 'a', 'utf8') for d in data: question_representation, topic_id_list = d topic_id_list_=" ".join(topic_id_list) file.write(question_representation + " __label__" + str(topic_id_list_) + "\n") file.close() train_data, valid_data, test_data = split_list(data_list) if not multi_label_flag:#single label write_data_to_file_system(train_zhihu, train_data) write_data_to_file_system(valid_zhihu, valid_data) write_data_to_file_system(test_zhihu, test_data) else:#multi-label write_data_to_file_system_multilabel(train_zhihu, train_data) write_data_to_file_system_multilabel(valid_zhihu, valid_data) write_data_to_file_system_multilabel(test_zhihu, test_data) print("saving traininig data.ended...") ######################################################################################################################
torchbenchmark/models/fastNLP/reproduction/Star_transformer/util.py
Chillee/benchmark
2,693
12780328
import fastNLP as FN import argparse import os import random import numpy import torch def get_argparser(): parser = argparse.ArgumentParser() parser.add_argument('--lr', type=float, required=True) parser.add_argument('--w_decay', type=float, required=True) parser.add_argument('--lr_decay', type=float, required=True) parser.add_argument('--bsz', type=int, required=True) parser.add_argument('--ep', type=int, required=True) parser.add_argument('--drop', type=float, required=True) parser.add_argument('--gpu', type=str, required=True) parser.add_argument('--log', type=str, default=None) return parser def add_model_args(parser): parser.add_argument('--nhead', type=int, default=6) parser.add_argument('--hdim', type=int, default=50) parser.add_argument('--hidden', type=int, default=300) return parser def set_gpu(gpu_str): os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ['CUDA_VISIBLE_DEVICES'] = gpu_str def set_rng_seeds(seed=None): if seed is None: seed = numpy.random.randint(0, 65536) random.seed(seed) numpy.random.seed(seed) torch.random.manual_seed(seed) torch.cuda.manual_seed_all(seed) # print('RNG_SEED {}'.format(seed)) return seed class TensorboardCallback(FN.Callback): """ 接受以下一个或多个字符串作为参数: - "model" - "loss" - "metric" """ def __init__(self, *options): super(TensorboardCallback, self).__init__() args = {"model", "loss", "metric"} for opt in options: if opt not in args: raise ValueError( "Unrecognized argument {}. Expect one of {}".format(opt, args)) self.options = options self._summary_writer = None self.graph_added = False def on_train_begin(self): save_dir = self.trainer.save_path if save_dir is None: path = os.path.join( "./", 'tensorboard_logs_{}'.format(self.trainer.start_time)) else: path = os.path.join( save_dir, 'tensorboard_logs_{}'.format(self.trainer.start_time)) self._summary_writer = SummaryWriter(path) def on_batch_begin(self, batch_x, batch_y, indices): if "model" in self.options and self.graph_added is False: # tesorboardX 这里有大bug,暂时没法画模型图 # from fastNLP.core.utils import _build_args # inputs = _build_args(self.trainer.model, **batch_x) # args = tuple([value for value in inputs.values()]) # args = args[0] if len(args) == 1 else args # self._summary_writer.add_graph(self.trainer.model, torch.zeros(32, 2)) self.graph_added = True def on_backward_begin(self, loss): if "loss" in self.options: self._summary_writer.add_scalar( "loss", loss.item(), global_step=self.trainer.step) if "model" in self.options: for name, param in self.trainer.model.named_parameters(): if param.requires_grad: self._summary_writer.add_scalar( name + "_mean", param.mean(), global_step=self.trainer.step) # self._summary_writer.add_scalar(name + "_std", param.std(), global_step=self.trainer.step) self._summary_writer.add_scalar(name + "_grad_mean", param.grad.mean(), global_step=self.trainer.step) def on_valid_end(self, eval_result, metric_key): if "metric" in self.options: for name, metric in eval_result.items(): for metric_key, metric_val in metric.items(): self._summary_writer.add_scalar("valid_{}_{}".format(name, metric_key), metric_val, global_step=self.trainer.step) def on_train_end(self): self._summary_writer.close() del self._summary_writer def on_exception(self, exception): if hasattr(self, "_summary_writer"): self._summary_writer.close() del self._summary_writer
contrib/frontends/django/nntpchan/nntpchan/frontend/templatetags/chanup.py
majestrate/nntpchan
233
12780360
<gh_stars>100-1000 from django import template from django.template.defaultfilters import stringfilter from django.utils.html import conditional_escape from django.utils.safestring import mark_safe from nntpchan.frontend.models import Newsgroup, Post import re from urllib.parse import urlparse from html import unescape register = template.Library() re_postcite = re.compile('>> ?([0-9a-fA-F]+)') re_boardlink = re.compile('>>> ?/([a-zA-Z0-9\.]+[a-zA-Z0-9])/') re_redtext = re.compile('== ?(.+) ?==') re_psytext = re.compile('@@ ?(.+) ?@@') def greentext(text, esc): return_text = '' f = False for line in text.split('\n'): line = line.strip() if len(line) < 2: continue if line[0] == '>' and line[1] != '>': return_text += '<span class="greentext">%s </span>' % esc ( line ) + '\n' f = True else: return_text += esc(line) + '\n' return return_text, f def blocktext(text, esc, delim='', css='', tag='span'): parts = text.split(delim) f = False if len(parts) > 1: parts.reverse() return_text = '' while len(parts) > 0: return_text += esc(parts.pop()) if len(parts) > 0: f = True return_text += '<{} class="{}">%s</{}>'.format(tag,css,tag) % esc(parts.pop()) return return_text, f else: return text, f redtext = lambda t, e : blocktext(t, e, '==', 'redtext') psytext = lambda t, e : blocktext(t, e, '@@', 'psy') codeblock = lambda t, e : blocktext(t, e, '[code]', 'code', 'pre') def postcite(text, esc): return_text = '' filtered = False for line in text.split('\n'): for word in line.split(' '): match = re_postcite.match(unescape(word)) if match: posthash = match.groups()[0] posts = Post.objects.filter(posthash__startswith=posthash) if len(posts) > 0: filtered = True return_text += '<a href="%s" class="postcite">&gt;&gt%s</a> ' % ( posts[0].get_absolute_url(), posthash) else: return_text += '<span class="greentext">&gt;&gt;%s</span> ' % match.string elif filtered: return_text += word + ' ' else: return_text += esc(word) + ' ' return_text += '\n' return return_text, filtered def boardlink(text, esc): return_text = '' filtered = False for line in text.split('\n'): for word in line.split(' '): match = re_boardlink.match(unescape(word)) if match: name = match.groups()[0] group = Newsgroup.objects.filter(name=name) if len(group) > 0: filtered = True return_text += '<a href="%s" class="boardlink">%s</a> ' % ( group[0].get_absolute_url(), esc(match.string ) ) else: return_text += '<span class="greentext">%s</span> ' % esc (match.string) else: return_text += esc(word) + ' ' return_text += '\n' return return_text, filtered def urlify(text, esc): return_text = '' filtered = False for line in text.split('\n'): for word in line.split(' '): u = urlparse(word) if u.scheme != '' and u.netloc != '': return_text += '<a href="%s">%s</a> ' % ( u.geturl(), esc(word) ) filtered = True else: return_text += esc(word) + ' ' return_text += '\n' return return_text, filtered line_funcs = [ greentext, redtext, urlify, psytext, codeblock, postcite, boardlink, ] @register.filter(needs_autoescape=True, name='memepost') def memepost(text, autoescape=True): text, _ = line_funcs[0](text, conditional_escape) for f in line_funcs[1:]: text, _ = f(text, lambda x : x) return mark_safe(text) @register.filter(name='truncate') @stringfilter def truncate(text, truncate=500): if len(text) > truncate: return text[:truncate] + '...' return text
examples/affect/affect_mfm.py
kapikantzari/MultiBench
148
12780388
import torch import sys import os sys.path.append(os.getcwd()) sys.path.append(os.path.dirname(os.path.dirname(os.getcwd()))) from unimodals.MVAE import TSEncoder, TSDecoder # noqa from utils.helper_modules import Sequential2 # noqa from objective_functions.objectives_for_supervised_learning import MFM_objective # noqa from torch import nn # noqa from unimodals.common_models import MLP # noqa from training_structures.Supervised_Learning import train, test # noqa from datasets.affect.get_data import get_dataloader # noqa from fusions.common_fusions import Concat # noqa classes = 2 n_latent = 256 dim_0 = 35 dim_1 = 74 dim_2 = 300 timestep = 50 # mosi_data.pkl, mosei_senti_data.pkl # mosi_raw.pkl, mosei_raw.pkl, sarcasm.pkl, humor.pkl # raw_path: mosi.hdf5, mosei.hdf5, sarcasm_raw_text.pkl, humor_raw_text.pkl traindata, validdata, test_robust = get_dataloader( '/home/paul/MultiBench/mosi_raw.pkl', task='classification', robust_test=False, max_pad=True, max_seq_len=timestep) encoders = [TSEncoder(dim_0, 30, n_latent, timestep, returnvar=False).cuda(), TSEncoder( dim_1, 30, n_latent, timestep, returnvar=False).cuda(), TSEncoder(dim_2, 30, n_latent, timestep, returnvar=False).cuda()] decoders = [TSDecoder(dim_0, 30, n_latent, timestep).cuda(), TSDecoder( dim_1, 30, n_latent, timestep).cuda(), TSDecoder(dim_2, 30, n_latent, timestep).cuda()] fuse = Sequential2(Concat(), MLP(3*n_latent, n_latent, n_latent//2)).cuda() intermediates = [MLP(n_latent, n_latent//2, n_latent//2).cuda(), MLP(n_latent, n_latent//2, n_latent//2).cuda(), MLP(n_latent, n_latent//2, n_latent//2).cuda()] head = MLP(n_latent//2, 20, classes).cuda() argsdict = {'decoders': decoders, 'intermediates': intermediates} additional_modules = decoders+intermediates objective = MFM_objective(2.0, [torch.nn.MSELoss( ), torch.nn.MSELoss(), torch.nn.MSELoss()], [1.0, 1.0, 1.0]) train(encoders, fuse, head, traindata, validdata, 200, additional_modules, objective=objective, objective_args_dict=argsdict, save='mosi_mfm_best.pt') print("Testing:") model = torch.load('mosi_mfm_best.pt').cuda() test(model=model, test_dataloaders_all=test_robust, dataset='mosi', is_packed=False, no_robust=True)
clinicadl/tests/test_classify.py
yogeshmj/AD-DL
112
12780391
<gh_stars>100-1000 # coding: utf8 import pytest import os from os.path import join, exists @pytest.fixture(params=[ 'classify_image', 'classify_slice', 'classify_patch' ]) def classify_commands(request): out_filename = 'fold-0/cnn_classification/best_balanced_accuracy/DB-TEST_image_level_prediction.tsv' if request.param == 'classify_image': data_folder = 'data/models/image_model_baseline_AD_CN_single_fold/' test_input = [ 'classify', 'data/classify/OASIS_test', 'data/classify/OASIS_test/data.tsv', data_folder, '--prefix_output', 'DB-TEST', '-cpu' ] output_files = join(data_folder, out_filename) elif request.param == 'classify_slice': data_folder = 'data/models/slice_model_baseline_AD_CN_single_fold/' test_input = [ 'classify', 'data/classify/OASIS_test', 'data/classify/OASIS_test/data.tsv', data_folder, '--prefix_output', 'DB-TEST', '-cpu' ] output_files = join(data_folder, out_filename) elif request.param == 'classify_patch': data_folder = 'data/models/patch_model_baseline_AD_CN_multicnn_single_fold/' test_input = [ 'classify', 'data/classify/OASIS_test', 'data/classify/OASIS_test/data.tsv', data_folder, '--prefix_output', 'DB-TEST', '-cpu' ] output_files = join(data_folder, out_filename) else: raise NotImplementedError( "Test %s is not implemented." % request.param) return test_input, output_files def test_classify(classify_commands): test_input = classify_commands[0] output_files = classify_commands[1] flag_error = not os.system("clinicadl " + " ".join(test_input)) assert flag_error assert exists(output_files)
configs/universenet/ablation/universenet50_2008_nosepc_fp16_4x4_mstrain_480_960_1x_coco.py
Jack-Hu-2001/UniverseNet
314
12780397
<gh_stars>100-1000 _base_ = [ '../../universenet/models/universenet50_2008.py', '../../_base_/datasets/coco_detection_mstrain_480_960.py', '../../_base_/schedules/schedule_1x.py', '../../_base_/default_runtime.py' ] model = dict( neck=dict( _delete_=True, type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), bbox_head=dict(type='GFLHead', stacked_convs=4)) data = dict(samples_per_gpu=4) optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) lr_config = dict(warmup_iters=1000) fp16 = dict(loss_scale=512.)
tools/train_w2v.py
sketscripter/emotional-chatbot-cakechat
1,608
12780402
<reponame>sketscripter/emotional-chatbot-cakechat import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from cakechat.utils.text_processing import get_processed_corpus_path, load_processed_dialogs_from_json, \ FileTextLinesIterator, get_dialog_lines_and_conditions, ProcessedLinesIterator, get_flatten_dialogs from cakechat.utils.w2v.model import _get_w2v_model as get_w2v_model from cakechat.config import TRAIN_CORPUS_NAME, VOCABULARY_MAX_SIZE, WORD_EMBEDDING_DIMENSION, W2V_WINDOW_SIZE, \ USE_SKIP_GRAM if __name__ == '__main__': processed_corpus_path = get_processed_corpus_path(TRAIN_CORPUS_NAME) dialogs = load_processed_dialogs_from_json( FileTextLinesIterator(processed_corpus_path), text_field_name='text', condition_field_name='condition') training_dialogs_lines_for_w2v, _ = get_dialog_lines_and_conditions( get_flatten_dialogs(dialogs), text_field_name='text', condition_field_name='condition') tokenized_training_lines = ProcessedLinesIterator(training_dialogs_lines_for_w2v, processing_callbacks=[str.split]) get_w2v_model( tokenized_lines=tokenized_training_lines, corpus_name=TRAIN_CORPUS_NAME, voc_size=VOCABULARY_MAX_SIZE, vec_size=WORD_EMBEDDING_DIMENSION, window_size=W2V_WINDOW_SIZE, skip_gram=USE_SKIP_GRAM)
gubernator/pb_glance.py
Noahhoetger2001/test-infra
3,390
12780412
<gh_stars>1000+ #!/usr/bin/env python # Copyright 2016 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A tiny, minimal protobuf2 parser that's able to extract enough information to be useful. """ import cStringIO as StringIO def parse_protobuf(data, schema=None): """ Do a simple parse of a protobuf2 given minimal type information. Args: data: a string containing the encoded protocol buffer. schema: a dict containing information about each field number. The keys are field numbers, and the values represent: - str: the name of the field - dict: schema to recursively decode an embedded message. May contain a 'name' key to name the field. Returns: dict: mapping from fields to values. The fields may be strings instead of numbers if schema named them, and the value will *always* be a list of values observed for that key. """ if schema is None: schema = {} buf = StringIO.StringIO(data) def read_varint(): out = 0 shift = 0 c = 0x80 while c & 0x80: c = ord(buf.read(1)) out = out | ((c & 0x7f) << shift) shift += 7 return out values = {} while buf.tell() < len(data): key = read_varint() wire_type = key & 0b111 field_number = key >> 3 field_name = field_number if wire_type == 0: value = read_varint() elif wire_type == 1: # 64-bit value = buf.read(8) elif wire_type == 2: # length-delim length = read_varint() value = buf.read(length) if isinstance(schema.get(field_number), basestring): field_name = schema[field_number] elif field_number in schema: # yes, I'm using dynamic features of a dynamic language. # pylint: disable=redefined-variable-type value = parse_protobuf(value, schema[field_number]) field_name = schema[field_number].get('name', field_name) elif wire_type == 5: # 32-bit value = buf.read(4) else: raise ValueError('unhandled wire type %d' % wire_type) values.setdefault(field_name, []).append(value) return values
exercises/en/exc_02_02_02.py
Jette16/spacy-course
2,085
12780420
<filename>exercises/en/exc_02_02_02.py from spacy.lang.en import English nlp = English() doc = nlp("<NAME> is a PERSON") # Look up the hash for the string label "PERSON" person_hash = ____.____.____[____] print(person_hash) # Look up the person_hash to get the string person_string = ____.____.____[____] print(person_string)
utils/tool.py
Gagarinwjj/Coeus
139
12780482
<filename>utils/tool.py # coding: utf-8 __author__ = 'deff' import re class Tools: @staticmethod def xml_assent(word): symbola = re.compile('>') word = symbola.sub('&lt;', word) symbolb = re.compile('<') word = symbolb.sub('&gt;', word) symbolc = re.compile('&') word = symbolc.sub('&amp;', word) symbold = re.compile('\'') word = symbold.sub('&apos;', word) symbole = re.compile('\"') word = symbole.sub('&quot;', word) return word
test/test_pulljson.py
Teradata/PyTd
133
12780510
<filename>test/test_pulljson.py # The MIT License (MIT) # # Copyright (c) 2015 by Teradata # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from teradata import pulljson import unittest import sys if sys.version_info[0] == 2: from StringIO import StringIO # @UnresolvedImport #@UnusedImport else: from io import StringIO # @UnresolvedImport @UnusedImport @Reimport class TestJSONPullParser (unittest.TestCase): def testNextEvent(self): stream = StringIO("""{"key1":"value", "key2":100, "key3":null, "key4": true, "key5":false, "key6":-201.50E1, "key7":{"key8":"value2", "key9":null}, "key10":["value3", 10101010101010101010101, null, {} ] }""") reader = pulljson.JSONPullParser(stream) # Start of object event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) # Key1 - "value" event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key1") event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertEqual(event.value, "value") self.assertEqual(event.valueType, pulljson.STRING) # Key2 - 100 event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key2") event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertEqual(event.value, 100) self.assertEqual(event.valueType, pulljson.NUMBER) # Key3 - null event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key3") event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertIsNone(event.value) self.assertEqual(event.valueType, pulljson.NULL) # Key4 - true event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key4") event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertTrue(event.value) self.assertEqual(event.valueType, pulljson.BOOLEAN) # Key5 - false event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key5") event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertFalse(event.value) self.assertEqual(event.valueType, pulljson.BOOLEAN) # Key6 event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key6") event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertEqual(event.value, -2015) self.assertEqual(event.valueType, pulljson.NUMBER) # Key7 event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key7") # Start of key7 object event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) # Key8 - value2 event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key8") event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertEqual(event.value, "value2") self.assertEqual(event.valueType, pulljson.STRING) # Key9 - null event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key9") event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertIsNone(event.value) # End of key7 object event = reader.nextEvent() self.assertEqual(event.type, pulljson.END_OBJECT) # Key10 - array[0] - value3 event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key10") event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_ARRAY) # Key10 - array[0] - value3 event = reader.nextEvent() self.assertEqual(event.type, pulljson.ARRAY_VALUE) self.assertEqual(event.value, "value3") self.assertEqual(event.valueType, pulljson.STRING) self.assertEqual(event.arrayIndex, 0) # Key10 - array[1] - 10101010101010101010101 event = reader.nextEvent() self.assertEqual(event.type, pulljson.ARRAY_VALUE) self.assertEqual(event.value, 10101010101010101010101) self.assertEqual(event.valueType, pulljson.NUMBER) self.assertEqual(event.arrayIndex, 1) # Key10 - array[2] - null event = reader.nextEvent() self.assertEqual(event.type, pulljson.ARRAY_VALUE) self.assertIsNone(event.value) self.assertEqual(event.valueType, pulljson.NULL) self.assertEqual(event.arrayIndex, 2) # Key10 - array[3] - object event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) self.assertEqual(event.arrayIndex, 3) # Key10 - array[3] - object event = reader.nextEvent() self.assertEqual(event.type, pulljson.END_OBJECT) self.assertEqual(event.arrayIndex, 3) # End of key 10 array. event = reader.nextEvent() self.assertEqual(event.type, pulljson.END_ARRAY) # End of object event = reader.nextEvent() self.assertEqual(event.type, pulljson.END_OBJECT) event = reader.nextEvent() self.assertIsNone(event) def testDocumentIncomplete(self): stream = StringIO('{"key":"value"') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key") with self.assertRaises(pulljson.JSONParseError) as cm: event = reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_INCOMPLETE_ERROR, cm.exception.msg) def testEmptyName(self): stream = StringIO('{:"value"}') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) with self.assertRaises(pulljson.JSONParseError) as cm: event = reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testExtraWhiteSpace(self): stream = StringIO('{\n\t "key"\n\t\t: "\t value\n"} ') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, "key") event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertEqual(event.value, "\t value\n") event = reader.nextEvent() self.assertEqual(event.type, pulljson.END_OBJECT) event = reader.nextEvent() self.assertIsNone(event) def testEscapeCharacter(self): stream = StringIO('{"\\"ke\\"y\\\\" : "va\\"l\\"ue"} ') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) self.assertEqual(event.value, '"ke"y\\') event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_VALUE) self.assertEqual(event.value, 'va"l"ue') event = reader.nextEvent() self.assertEqual(event.type, pulljson.END_OBJECT) event = reader.nextEvent() self.assertIsNone(event) def testEmptyArray(self): stream = StringIO('[]') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_ARRAY) event = reader.nextEvent() self.assertEqual(event.type, pulljson.END_ARRAY) event = reader.nextEvent() self.assertIsNone(event) def testMissingColon(self): stream = StringIO('{"key" "value"}') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) with self.assertRaises(pulljson.JSONParseError) as cm: event = reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testCommaInsteadOfColon(self): stream = StringIO('{"key","value"}') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) with self.assertRaises(pulljson.JSONParseError) as cm: event = reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testColonInsteadOfComma(self): stream = StringIO('["key":"value"]') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_ARRAY) with self.assertRaises(pulljson.JSONParseError) as cm: event = reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testNumberLiteral(self): stream = StringIO('1') reader = pulljson.JSONPullParser(stream) with self.assertRaises(pulljson.JSONParseError) as cm: reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testStringLiteral(self): stream = StringIO('"This is a test"') reader = pulljson.JSONPullParser(stream) with self.assertRaises(pulljson.JSONParseError) as cm: reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testObjectMissingValue(self): stream = StringIO('{"key":}') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) event = reader.nextEvent() self.assertEqual(event.type, pulljson.FIELD_NAME) with self.assertRaises(pulljson.JSONParseError) as cm: event = reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testArrayMissingValue(self): stream = StringIO('[1, ,2}') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_ARRAY) event = reader.nextEvent() self.assertEqual(event.type, pulljson.ARRAY_VALUE) with self.assertRaises(pulljson.JSONParseError) as cm: event = reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testArrayInObject(self): stream = StringIO('{[]}') reader = pulljson.JSONPullParser(stream) event = reader.nextEvent() self.assertEqual(event.type, pulljson.START_OBJECT) with self.assertRaises(pulljson.JSONParseError) as cm: event = reader.nextEvent() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testReadObject(self): stream = StringIO( '{"key1":[0,1,2,3,4,{"value":"5"}], "key2":\ {"key1":[0,1,2,3,4,{"value":"5"}]}}') reader = pulljson.JSONPullParser(stream) obj = reader.readObject() self.assertEqual(len(obj), 2) for i in range(0, 2): self.assertEqual(len(obj["key1"]), 6) for i in range(0, 5): self.assertEqual(obj["key1"][i], i) self.assertEqual(obj["key1"][5]["value"], "5") if i == 1: obj = obj["key2"] self.assertEqual(len(obj), 1) def testReadArray(self): stream = StringIO('[0,1,2,3,4,[0,1,2,3,4,[0,1,2,3,4]],[0,1,2,3,4]]') reader = pulljson.JSONPullParser(stream) arr = reader.readArray() self.assertEqual(len(arr), 7) for i in range(0, 5): self.assertEqual(arr[i], i) for i in range(0, 5): self.assertEqual(arr[5][i], i) for i in range(0, 5): self.assertEqual(arr[5][5][i], i) for i in range(0, 5): self.assertEqual(arr[6][i], i) def testArraySyntaxError(self): stream = StringIO('[[0,1][0,1]]') reader = pulljson.JSONPullParser(stream) with self.assertRaises(pulljson.JSONParseError) as cm: reader.readArray() self.assertEqual( cm.exception.code, pulljson.JSON_SYNTAX_ERROR, cm.exception.msg) def testIterateArray(self): stream = StringIO( '[{"key0}":["}\\"","\\"}","}"]}, {"key1}":["}","\\"}","}"]}, ' '{"key2}":["}","}","\\"}"]}]') reader = pulljson.JSONPullParser(stream) i = 0 for x in reader.expectArray(): self.assertEqual(len(x["key" + str(i) + "}"]), 3) i += 1 if __name__ == '__main__': unittest.main()
src/blockdiag/imagedraw/__init__.py
flying-foozy/blockdiag
155
12780514
<filename>src/blockdiag/imagedraw/__init__.py<gh_stars>100-1000 # -*- coding: utf-8 -*- # Copyright 2011 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pkg_resources from blockdiag.utils.logging import warning drawers = {} def init_imagedrawers(debug=False): for drawer in pkg_resources.iter_entry_points('blockdiag_imagedrawers'): try: module = drawer.load() if hasattr(module, 'setup'): module.setup(module) except Exception as exc: if debug: warning('Failed to load %s: %r' % (drawer.module_name, exc)) def install_imagedrawer(ext, drawer): drawers[ext] = drawer def create(_format, filename, **kwargs): if len(drawers) == 0: init_imagedrawers(debug=kwargs.get('debug')) _format = _format.lower() if _format in drawers: drawer = drawers[_format](filename, **kwargs) else: msg = 'failed to load %s image driver' % _format raise RuntimeError(msg) if 'linejump' in kwargs.get('filters', []): from blockdiag.imagedraw.filters.linejump import LineJumpDrawFilter jumpsize = kwargs.get('jumpsize', 0) drawer = LineJumpDrawFilter(drawer, jumpsize) return drawer
myia/abstract/__init__.py
strint/myia
222
12780538
<reponame>strint/myia """Abstract data and type/shape inference.""" from .aliasing import * from .amerge import * from .data import * from .infer import * from .loop import * from .macro import * from .ref import * from .to_abstract import * from .utils import *
Chapter09/c9_52_impact_of_correlation_on_efficient_frontier_notWorking.py
John-ye666/Python-for-Finance-Second-Edition
236
12780545
<filename>Chapter09/c9_52_impact_of_correlation_on_efficient_frontier_notWorking.py """ Name : c9_52_impacto_of_correlation_on_efficient_frontier.py Book : Python for Finance (2nd ed.) Publisher: Packt Publishing Ltd. Author : <NAME> Date : 6/6/2017 email : <EMAIL> <EMAIL> """ from matplotlib.finance import quotes_historical_yahoo_ochl as getData import matplotlib.pyplot as plt import numpy as np, pandas as pd, scipy as sp from numpy.linalg import inv, pinv begYear,endYear = 2012,2016 stocks=['IBM','WMT'] def ret_monthly(ticker): # function 1 x = getData(ticker,(begYear,1,1),(endYear,12,31),asobject=True,adjusted=True) logret=np.log(x.aclose[1:]/x.aclose[:-1]) date=[] d0=x.date for i in range(0,np.size(logret)): date.append(''.join([d0[i].strftime("%Y"),d0[i].strftime("%m")])) y=pd.DataFrame(logret,date,columns=[ticker]) return y.groupby(y.index).sum() def std_f(ticker): x=ret_monthly(ticker) return sp.std(x) def objFunction(W, R, target_ret): stock_mean=np.mean(R,axis=0) port_mean=np.dot(W,stock_mean) # portfolio mean #cov=np.cov(R.T) # var-cov matrix cov=cov0 port_var=np.dot(np.dot(W,cov),W.T) # portfolio variance penalty = 2000*abs(port_mean-target_ret)# penalty 4 deviation return np.sqrt(port_var) + penalty # objective function R0=ret_monthly(stocks[0]) # starting from 1st stock n_stock=len(stocks) # number of stocks std1=std_f(stocks[0]) std2=std_f(stocks[1]) for jj in sp.arange(1): k=0.1*std1*std2 #cov0=sp.array([[0.00266285,0.00037303],[0.00037303,0.0021296]]) #cov0=sp.array([[std1**2,k],[k,std2**2]]) cov0=sp.array([[std1**2,0.00037303],[0.00037303,std2**2]]) for i in xrange(1,n_stock): # merge with other stocks x=ret_monthly(stocks[i]) R0=pd.merge(R0,x,left_index=True,right_index=True) R=np.array(R0) out_mean,out_std,out_weight=[],[],[] stockMean=np.mean(R,axis=0) for r in np.linspace(np.min(stockMean),np.max(stockMean),num=100): W = np.ones([n_stock])/n_stock # starting from equal weights b_ = [(0,1) for i in range(n_stock)] # bounds, here no short c_ = ({'type':'eq', 'fun': lambda W: sum(W)-1. })#constraint result=sp.optimize.minimize(objFunction,W,(R,r),method='SLSQP',constraints=c_, bounds=b_) if not result.success: # handle error raise BaseException(result.message) out_mean.append(round(r,4)) # 4 decimal places std_=round(np.std(np.sum(R*result.x,axis=1)),6) out_std.append(std_) out_weight.append(result.x) plt.title('Efficient Frontier') plt.xlabel('Standard Deviation of the porfolio (Risk))') plt.ylabel('Return of the portfolio') plt.figtext(0.5,0.75,str(n_stock)+' stock are used: ') plt.figtext(0.5,0.7,' '+str(stocks)) plt.figtext(0.5,0.65,'Time period: '+str(begYear)+' ------ '+str(endYear)) plt.plot(out_std,out_mean,'--') plt.show()
tests/core/test_oauth2/test_rfc7591.py
YPCrumble/authlib
3,172
12780555
from unittest import TestCase from authlib.oauth2.rfc7591 import ClientMetadataClaims from authlib.jose.errors import InvalidClaimError class ClientMetadataClaimsTest(TestCase): def test_validate_redirect_uris(self): claims = ClientMetadataClaims({'redirect_uris': ['foo']}, {}) self.assertRaises(InvalidClaimError, claims.validate) def test_validate_client_uri(self): claims = ClientMetadataClaims({'client_uri': 'foo'}, {}) self.assertRaises(InvalidClaimError, claims.validate) def test_validate_logo_uri(self): claims = ClientMetadataClaims({'logo_uri': 'foo'}, {}) self.assertRaises(InvalidClaimError, claims.validate) def test_validate_tos_uri(self): claims = ClientMetadataClaims({'tos_uri': 'foo'}, {}) self.assertRaises(InvalidClaimError, claims.validate) def test_validate_policy_uri(self): claims = ClientMetadataClaims({'policy_uri': 'foo'}, {}) self.assertRaises(InvalidClaimError, claims.validate) def test_validate_jwks_uri(self): claims = ClientMetadataClaims({'jwks_uri': 'foo'}, {}) self.assertRaises(InvalidClaimError, claims.validate)
backprop/models/st_model/model.py
lucky7323/backprop
200
12780625
from typing import Dict, List import torch from functools import partial from backprop.models import PathModel from torch.optim.adamw import AdamW from sentence_transformers import SentenceTransformer class STModel(PathModel): """ Class for models which are initialised from Sentence Transformers Attributes: model_path: path to ST model name: string identifier for the model. Lowercase letters and numbers. No spaces/special characters except dashes. max_length: Max supported token length for vectorisation description: String description of the model. tasks: List of supported task strings details: Dictionary of additional details about the model init_model: Class used to initialise model device: Device for model. Defaults to "cuda" if available. """ def __init__(self, model_path, init_model=SentenceTransformer, name: str = None, description: str = None, tasks: List[str] = None, details: Dict = None, max_length=512, device=None): init_model = partial(init_model, device=device) tasks = ["text-vectorisation"] PathModel.__init__(self, model_path, name=name, description=description, details=details, tasks=tasks, init_model=init_model, device=device) self.max_length = max_length @staticmethod def list_models(): from .models_list import models return models @torch.no_grad() def __call__(self, task_input, task="text-vectorisation", return_tensor=False): """ Uses the model for the text-vectorisation task Args: task_input: input dictionary according to the ``text-vectorisation`` task specification task: text-vectorisation """ is_list = False if task == "text-vectorisation": input_ids = None attention_mask = None text = task_input.get("text") if type(text) == list: is_list = True else: text = [text] features = self.model.tokenizer(text, truncation=True, padding=True, return_tensors="pt").to(self._model_device) text_vecs = self.vectorise(features) if not return_tensor: text_vecs = text_vecs.tolist() output = text_vecs if not is_list: output = output[0] return output else: raise ValueError(f"Unsupported task '{task}'") def training_step(self, params, task="text-vectorisation"): text = params["text"] return self.vectorise(text) def process_batch(self, params, task="text-vectorisation"): if task == "text-vectorisation": max_length = params["max_length"] or self.max_length if max_length > self.max_length: raise ValueError(f"This model has a max_length limit of {self.max_length}") text = params["text"] return self.model.tokenizer(text, truncation=True, padding="max_length", return_tensors="pt") def vectorise(self, features): return self.model.forward(features)["sentence_embedding"] def configure_optimizers(self): return AdamW(params=self.model.parameters(), lr=2e-5, eps=1e-6, correct_bias=False)
table_border_syntax.py
akrabat/SublimeTableEditor
313
12780627
<gh_stars>100-1000 # table_border_syntax.py - Base classes for table with borders: Pandoc, # Emacs Org mode, Simple, reStrucutredText # Copyright (C) 2012 Free Software Foundation, Inc. # Author: <NAME> # Package: SublimeTableEditor # Homepage: https://github.com/vkocubinsky/SublimeTableEditor # This file is part of SublimeTableEditor. # SublimeTableEditor is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # SublimeTableEditor is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with SublimeTableEditor. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function from __future__ import division import re try: from . import table_base as tbase except ValueError: import table_base as tbase class SeparatorRow(tbase.Row): def __init__(self, table, separator='-', size=0): tbase.Row.__init__(self, table) self.separator = separator for i in range(size): self.columns.append(SeparatorColumn(self, self.separator)) def new_empty_column(self): return SeparatorColumn(self, self.separator) def create_column(self, text): return SeparatorColumn(self, self.separator) def is_header_separator(self): return True def is_separator(self): return True def render(self): r = self.syntax.hline_out_border for ind, column in enumerate(self.columns): if ind != 0: r += self.syntax.hline_in_border r += column.render() r += self.syntax.hline_out_border return r class SeparatorColumn(tbase.Column): def __init__(self, row, separator): tbase.Column.__init__(self, row) self.separator = separator def min_len(self): # '---' or '===' return 3 def render(self): return self.separator * self.col_len class BorderTableDriver(tbase.TableDriver): def editor_insert_single_hline(self, table, table_pos): table.rows.insert(table_pos.row_num + 1, SeparatorRow(table, '-')) table.pack() return ("Single separator row inserted", tbase.TablePos(table_pos.row_num, table_pos.field_num)) def editor_insert_double_hline(self, table, table_pos): table.rows.insert(table_pos.row_num + 1, SeparatorRow(table, '=')) table.pack() return ("Double separator row inserted", tbase.TablePos(table_pos.row_num, table_pos.field_num)) def editor_insert_hline_and_move(self, table, table_pos): table.rows.insert(table_pos.row_num + 1, SeparatorRow(table, '-')) table.pack() if table_pos.row_num + 2 < len(table): if table[table_pos.row_num + 2].is_separator(): table.insert_empty_row(table_pos.row_num + 2) else: table.insert_empty_row(table_pos.row_num + 2) return("Single separator row inserted", tbase.TablePos(table_pos.row_num + 2, 0)) class BorderTableParser(tbase.BaseTableParser): def _is_single_row_separator(self, str_cols): if len(str_cols) == 0: return False for col in str_cols: if not re.match(r"^\s*[\-]+\s*$", col): return False return True def _is_double_row_separator(self, str_cols): if len(str_cols) == 0: return False for col in str_cols: if not re.match(r"^\s*[\=]+\s*$", col): return False return True def create_row(self, table, line): if self._is_single_row_separator(line.str_cols()): row = SeparatorRow(table, '-') elif self._is_double_row_separator(line.str_cols()): row = SeparatorRow(table, '=') else: row = self.create_data_row(table, line) return row def create_data_row(self, table, line): return tbase.DataRow(table)
runtime/python/Lib/asyncio/format_helpers.py
hwaipy/InteractionFreeNode
207
12780646
<filename>runtime/python/Lib/asyncio/format_helpers.py<gh_stars>100-1000 import functools import inspect import reprlib import sys import traceback from . import constants def _get_function_source(func): func = inspect.unwrap(func) if inspect.isfunction(func): code = func.__code__ return (code.co_filename, code.co_firstlineno) if isinstance(func, functools.partial): return _get_function_source(func.func) if isinstance(func, functools.partialmethod): return _get_function_source(func.func) return None def _format_callback_source(func, args): func_repr = _format_callback(func, args, None) source = _get_function_source(func) if source: func_repr += f' at {source[0]}:{source[1]}' return func_repr def _format_args_and_kwargs(args, kwargs): """Format function arguments and keyword arguments. Special case for a single parameter: ('hello',) is formatted as ('hello'). """ # use reprlib to limit the length of the output items = [] if args: items.extend(reprlib.repr(arg) for arg in args) if kwargs: items.extend(f'{k}={reprlib.repr(v)}' for k, v in kwargs.items()) return '({})'.format(', '.join(items)) def _format_callback(func, args, kwargs, suffix=''): if isinstance(func, functools.partial): suffix = _format_args_and_kwargs(args, kwargs) + suffix return _format_callback(func.func, func.args, func.keywords, suffix) if hasattr(func, '__qualname__') and func.__qualname__: func_repr = func.__qualname__ elif hasattr(func, '__name__') and func.__name__: func_repr = func.__name__ else: func_repr = repr(func) func_repr += _format_args_and_kwargs(args, kwargs) if suffix: func_repr += suffix return func_repr def extract_stack(f=None, limit=None): """Replacement for traceback.extract_stack() that only does the necessary work for asyncio debug mode. """ if f is None: f = sys._getframe().f_back if limit is None: # Limit the amount of work to a reasonable amount, as extract_stack() # can be called for each coroutine and future in debug mode. limit = constants.DEBUG_STACK_DEPTH stack = traceback.StackSummary.extract(traceback.walk_stack(f), limit=limit, lookup_lines=False) stack.reverse() return stack
bazel/aprutil.bzl
arunvc/incubator-pagespeed-mod
535
12780647
aprutil_build_rule = """ cc_library( name = "aprutil", srcs = [ "@mod_pagespeed//third_party/aprutil:aprutil_pagespeed_memcache_c", 'buckets/apr_brigade.c', 'buckets/apr_buckets.c', 'buckets/apr_buckets_alloc.c', 'buckets/apr_buckets_eos.c', 'buckets/apr_buckets_file.c', 'buckets/apr_buckets_flush.c', 'buckets/apr_buckets_heap.c', 'buckets/apr_buckets_mmap.c', 'buckets/apr_buckets_pipe.c', 'buckets/apr_buckets_pool.c', 'buckets/apr_buckets_refcount.c', 'buckets/apr_buckets_simple.c', 'buckets/apr_buckets_socket.c', 'crypto/apr_md5.c', 'crypto/getuuid.c', 'crypto/uuid.c', #'dbm/apr_dbm.c', #'dbm/apr_dbm_sdbm.c', #'dbm/sdbm/sdbm.c', #'dbm/sdbm/sdbm_hash.c', #'dbm/sdbm/sdbm_lock.c', #'dbm/sdbm/sdbm_pair.c', 'encoding/apr_base64.c', 'hooks/apr_hooks.c', #'ldap/apr_ldap_stub.c', #'ldap/apr_ldap_url.c', 'memcache/apr_memcache.c', 'misc/apr_date.c', 'misc/apr_queue.c', 'misc/apr_reslist.c', 'misc/apr_rmm.c', 'misc/apr_thread_pool.c', 'misc/apu_dso.c', 'misc/apu_version.c', 'strmatch/apr_strmatch.c', 'uri/apr_uri.c', 'xlate/xlate.c', ], hdrs = [ "@mod_pagespeed//third_party/aprutil:aprutil_pagespeed", "crypto/crypt_blowfish.h", #"test/test_apu.h", #"test/abts_tests.h", #"test/testutil.h", #"test/abts.h", "dbm/sdbm/sdbm_private.h", "dbm/sdbm/sdbm_pair.h", "dbm/sdbm/sdbm_tune.h", "include/apr_siphash.h", "include/apr_dbm.h", "include/apr_xlate.h", "include/apr_ldap_url.h", "include/apu_version.h", "include/apr_redis.h", "include/private/apr_dbd_odbc_v2.h", "include/private/apr_dbm_private.h", "include/private/apu_internal.h", "include/private/apr_dbd_internal.h", "include/private/apr_crypto_internal.h", "include/apr_md5.h", "include/apu_errno.h", "include/apr_xml.h", "include/apr_sdbm.h", "include/apr_md4.h", "include/apr_hooks.h", "include/apr_date.h", "include/apr_reslist.h", "include/apr_memcache.h", "include/apr_uuid.h", "include/apr_base64.h", "include/apr_sha1.h", "include/apr_uri.h", "include/apr_queue.h", "include/apr_ldap_option.h", "include/apr_optional.h", "include/apr_dbd.h", "include/apr_anylock.h", "include/apr_strmatch.h", "include/apr_optional_hooks.h", "include/apr_thread_pool.h", "include/apr_buckets.h", "include/apr_rmm.h", "include/apr_ldap_rebind.h", "include/apr_ldap_init.h", "include/apr_crypto.h", ], copts = [ "-Ithird_party/aprutil/gen/arch/linux/x64/include/", "-Ithird_party/aprutil/gen/arch/linux/x64/include/private", "-Iexternal/aprutil/include/", "-Iexternal/aprutil/include/private/", "-Iexternal/aprutil/include/arch/unix/", "-Iexternal/aprutil/", "-Iexternal/apr/include/", "-Iexternal/apr/include/arch/unix/", "-Ithird_party/apr/gen/arch/linux/x64/include/", ], deps = [ "@apr//:apr", ], visibility = ["//visibility:public"], ) """ # find | grep .h$ | while read line; do echo "\"$line\","; done
backpack/extensions/firstorder/batch_grad/batch_grad_base.py
jabader97/backpack
395
12780666
"""Calculates the batch_grad derivative.""" from __future__ import annotations from typing import TYPE_CHECKING, Callable, List, Tuple from torch import Tensor from torch.nn import Module from backpack.core.derivatives.basederivatives import BaseParameterDerivatives from backpack.extensions.firstorder.base import FirstOrderModuleExtension from backpack.utils.subsampling import subsample if TYPE_CHECKING: from backpack.extensions.firstorder import BatchGrad class BatchGradBase(FirstOrderModuleExtension): """Calculates the batch_grad derivative. Passes the calls for the parameters to the derivatives class. Implements functions with method names from params. If child class wants to overwrite these methods - for example to support an additional external module - it can do so using the interface for parameter "param1":: param1(ext, module, g_inp, g_out, bpQuantities): return batch_grads In this case, the method is not overwritten by this class. """ def __init__( self, derivatives: BaseParameterDerivatives, params: List[str] ) -> None: """Initializes all methods. If the param method has already been defined, it is left unchanged. Args: derivatives: Derivatives object used to apply parameter Jacobians. params: List of parameter names. """ self._derivatives = derivatives for param_str in params: if not hasattr(self, param_str): setattr(self, param_str, self._make_param_function(param_str)) super().__init__(params=params) def _make_param_function( self, param_str: str ) -> Callable[[BatchGrad, Module, Tuple[Tensor], Tuple[Tensor], None], Tensor]: """Creates a function that calculates batch_grad w.r.t. param. Args: param_str: Parameter name. Returns: Function that calculates batch_grad wrt param """ def param_function( ext: BatchGrad, module: Module, g_inp: Tuple[Tensor], g_out: Tuple[Tensor], bpQuantities: None, ) -> Tensor: """Calculates batch_grad with the help of derivatives object. Args: ext: extension that is used module: module that performed forward pass g_inp: input gradient tensors g_out: output gradient tensors bpQuantities: additional quantities for second order Returns: Scaled individual gradients """ subsampling = ext.get_subsampling() batch_axis = 0 return self._derivatives.param_mjp( param_str, module, g_inp, g_out, subsample(g_out[0], dim=batch_axis, subsampling=subsampling), sum_batch=False, subsampling=subsampling, ) return param_function
chinese-poem/probability.py
MashiMaroLjc/ML-and-DM-in-action
370
12780669
# coding:utf-8 # def two(words): """ :param words: :return: """ new = [] s = len(words) for index in range(s): w = words[index] for next_index in range(index + 1, s): next_w = words[next_index] new.append(frozenset([w, next_w])) return new poemfile = open("five_poem.txt").readlines() feature = [] n = 1 length = len(poemfile) for poemline in poemfile: print("finish:%.5f" % (n / length)) poemline = poemline.strip().replace("\n", "") sentences = poemline.split(".") temp = [] for sen in sentences: if len(sen) != 5: continue temp.append(sen[:2]) feature.append(temp) n += 1 size = len(feature) word_fre = dict() for fea in feature: for word in set(fea): word_fre[word] = word_fre.get(word, 0) + 1 / size two_fre = dict() two_feature = [] # for fea in feature: fea = list(set(fea)) two_feature.append(two(fea)) for fea in two_feature: for word in fea: two_fre[word] = two_fre.get(word, 0) + 1 / size # pro = dict() for k, v in two_fre.items(): event = list(k) # key = event[0] if key not in pro: pro[key] = [] pro[key].append( [event[1], two_fre[k] / word_fre[key]] ) key = event[1] if key not in pro: pro[key] = [] pro[key].append( [event[0], two_fre[k] / word_fre[key]] ) # import json out = open("pro.json", "w") json.dump(pro, out)
chapter4/pizza.py
sharad16j/Expert-Python-Programming-Third-Edition
112
12780687
<filename>chapter4/pizza.py class Pizza: def __init__(self, toppings): self.toppings = toppings def __repr__(self): return "Pizza with " + " and ".join(self.toppings) @classmethod def recommend(cls): """Recommend some pizza with arbitrary toppings,""" return cls(['spam', 'ham', 'eggs']) class VikingPizza(Pizza): @classmethod def recommend(cls): """Use same recommendation as super but add extra spam""" recommended = super(VikingPizza).recommend() recommended.toppings += ['spam'] * 5 return recommended if __name__ == "__main__": print("Ordinary pizza recomendation:", Pizza.recommend()) print("Viking pizza recomendation:", VikingPizza.recommend())
moya/context/sortmodifiers.py
moyaproject/moya
129
12780710
<reponame>moyaproject/moya """Hacked up script to sort modifiers""" # Couldn't find a tool for this """ import io with io.open('modifiers.py', 'rt') as f: iter_lines = iter(f) while 1: line = next(iter_lines, None) if line.startswith('class ExpressionModifiers('): break defs = [] while 1: line = next(iter_lines, None) if line is None: break if line.lstrip().startswith('def'): defs.append([]) if defs: defs[-1].append(line) for d in sorted(defs, key=lambda m: m[0]): print ''.join(d), """
example_evaluate_with_diff.py
ducha-aiki/manifold-diffusion
118
12780739
<gh_stars>100-1000 # EXAMPLE_EVALUATE Code to evaluate example results on ROxford and RParis datasets. # Revisited protocol has 3 difficulty setups: Easy (E), Medium (M), and Hard (H), # and evaluates the performance using mean average precision (mAP), as well as mean precision @ k (mP@k) # # More details about the revisited annotation and evaluation can be found in: # <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking, CVPR 2018 # # Authors: <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., 2018 # Added diffusion: <NAME>. import os import numpy as np from scipy.io import loadmat from dataset import configdataset from download import download_datasets, download_features from evaluate import compute_map #--------------------------------------------------------------------- # Set data folder and testing parameters #--------------------------------------------------------------------- # Set data folder, change if you have downloaded the data somewhere else data_root = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'data') # Check, and, if necessary, download test data (Oxford and Pairs), # revisited annotation, and example feature vectors for evaluation download_datasets(data_root) download_features(data_root) # Set test dataset: roxford5k | rparis6k test_dataset = 'roxford5k' #--------------------------------------------------------------------- # Evaluate #--------------------------------------------------------------------- print('>> {}: Evaluating test dataset...'.format(test_dataset)) # config file for the dataset # separates query image list from database image list, when revisited protocol used cfg = configdataset(test_dataset, os.path.join(data_root, 'datasets')) # load query and database features print('>> {}: Loading features...'.format(test_dataset)) features = loadmat(os.path.join(data_root, 'features', '{}_resnet_rsfm120k_gem.mat'.format(test_dataset))) Q = features['Q'] X = features['X'] K = 100 # approx 50 mutual nns QUERYKNN = 10 R = 2000 alpha = 0.9 from diffussion import * # perform search print('>> {}: Retrieval...'.format(test_dataset)) sim = np.dot(X.T, Q) qsim = sim_kernel(sim).T sortidxs = np.argsort(-qsim, axis = 1) for i in range(len(qsim)): qsim[i,sortidxs[i,QUERYKNN:]] = 0 qsim = sim_kernel(qsim) A = np.dot(X.T, X) W = sim_kernel(A).T W = topK_W(W, K) Wn = normalize_connection_graph(W) plain_ranks = np.argsort(-sim, axis=0) cg_ranks = cg_diffusion(qsim, Wn, alpha) cg_trunk_ranks = dfs_trunk(sim, A, alpha = alpha, QUERYKNN = QUERYKNN ) fast_spectral_ranks = fsr_rankR(qsim, Wn, alpha, R) alg_names = ['Plain', 'Diffusion cg', 'Diffusion trunkated', 'Spectral R=2000'] alg_ranks = [plain_ranks, cg_ranks,cg_trunk_ranks, fast_spectral_ranks ] for rn in range(len(alg_names)): ranks = alg_ranks[rn] name = alg_names[rn] # revisited evaluation gnd = cfg['gnd'] # evaluate ranks ks = [1, 5, 10] # search for easy gnd_t = [] for i in range(len(gnd)): g = {} g['ok'] = np.concatenate([gnd[i]['easy']]) g['junk'] = np.concatenate([gnd[i]['junk'], gnd[i]['hard']]) gnd_t.append(g) mapE, apsE, mprE, prsE = compute_map(ranks, gnd_t, ks) # search for easy & hard gnd_t = [] for i in range(len(gnd)): g = {} g['ok'] = np.concatenate([gnd[i]['easy'], gnd[i]['hard']]) g['junk'] = np.concatenate([gnd[i]['junk']]) gnd_t.append(g) mapM, apsM, mprM, prsM = compute_map(ranks, gnd_t, ks) # search for hard gnd_t = [] for i in range(len(gnd)): g = {} g['ok'] = np.concatenate([gnd[i]['hard']]) g['junk'] = np.concatenate([gnd[i]['junk'], gnd[i]['easy']]) gnd_t.append(g) mapH, apsH, mprH, prsH = compute_map(ranks, gnd_t, ks) print(name) print('>> {}: mAP E: {}, M: {}, H: {}'.format(test_dataset, np.around(mapE*100, decimals=2), np.around(mapM*100, decimals=2), np.around(mapH*100, decimals=2))) print('>> {}: mP@k{} E: {}, M: {}, H: {}'.format(test_dataset, np.array(ks), np.around(mprE*100, decimals=2), np.around(mprM*100, decimals=2), np.around(mprH*100, decimals=2)))
users/factories.py
bllli/Django-China-API
187
12780785
# factories that automatically create user data import factory from users.models import User class UserFactory(factory.DjangoModelFactory): class Meta: model = User username = factory.Sequence(lambda n: 'user%s' % n) email = factory.LazyAttribute(lambda o: <EMAIL>' % o.username) password = 'password' mugshot = factory.django.ImageField() @classmethod def _create(cls, model_class, *args, **kwargs): manager = cls._get_manager(model_class) return manager.create_user(*args, **kwargs)
xv_leak_tools/test_device/linux_device.py
UAEKondaya1/expressvpn_leak_testing
219
12780862
<filename>xv_leak_tools/test_device/linux_device.py import platform import signal from xv_leak_tools.exception import XVEx from xv_leak_tools.helpers import unused from xv_leak_tools.log import L from xv_leak_tools.test_device.desktop_device import DesktopDevice from xv_leak_tools.test_device.connector_helper import ConnectorHelper from xv_leak_tools.process import XVProcessException # TODO: consider a UnixDevice as ancestor of MacOSDevice, LinuxDevice class LinuxDevice(DesktopDevice): def __init__(self, config, connector): super().__init__(config, connector) self._connector_helper = ConnectorHelper(self) @staticmethod def local_ips(): raise XVEx("TODO: Local IPs for Linux") @staticmethod def open_app(binary_path, root=False): unused(root) if binary_path is None: L.debug('Application has no binary path; not opening') # TODO: open the application here @staticmethod def close_app(binary_path, root=False): unused(root) if binary_path is None: L.debug('Application has no binary path; not closing') # TODO: close the application here def os_name(self): return 'linux' def os_version(self): return " ".join(platform.linux_distribution()) def report_info(self): info = super().report_info() commands = [ ['uname', '-a'], ['lsb_release', '-a'], ['lscpu'], ] for command in commands: try: info += self._connector_helper.check_command(command)[0] except XVProcessException as ex: L.warning("Couldn't get system info using command {}:\n{}".format(command, ex)) return info def kill_process(self, pid): L.debug("Killing process {}".format(pid)) return self._connector_helper.execute_scriptlet( 'remote_os_kill.py', [pid, int(signal.SIGKILL)], root=True) def pgrep(self, process_name): L.debug("pgrep-ing for {}".format(process_name)) return self._connector_helper.execute_scriptlet('pgrep.py', [process_name], root=True) def command_line_for_pid(self, pid): return self._connector_helper.execute_scriptlet('command_line_for_pid.py', [pid], root=True)
Chapter24/apple_factory.py
DeeMATT/AdvancedPythonProgramming
278
12780886
MINI14 = '1.4GHz Mac mini' class AppleFactory: class MacMini14: def __init__(self): self.memory = 4 # in gigabytes self.hdd = 500 # in gigabytes self.gpu = 'Intel HD Graphics 5000' def __str__(self): info = (f'Model: {MINI14}', f'Memory: {self.memory}GB', f'Hard Disk: {self.hdd}GB', f'Graphics Card: {self.gpu}') return '\n'.join(info) def build_computer(self, model): if model == MINI14: return self.MacMini14() else: print(f"I don't know how to build {model}") if __name__ == '__main__': afac = AppleFactory() mac_mini = afac.build_computer(MINI14) print(mac_mini)
run-addon.py
chinedufn/landon
117
12780904
<reponame>chinedufn/landon # A script to temporarily install and run the addon. Useful for running # blender-mesh-to-json via blender CLI where you might be in a # continuous integration environment that doesn't have the addon # installed # # blender file.blend --python $(mesh2json) # -> becomes -> # blender file.blend --python /path/to/run-addon import bpy import os # Get the absolute path to the addon dir = os.path.dirname(__file__) addonFilePath = dir + '/blender-mesh-to-json.py' # Install and enable the addon temporarily (since we aren't saving our user preferences) # We just want to have access to the addon during this blender session bpy.ops.preferences.addon_install(filepath=addonFilePath) bpy.ops.preferences.addon_enable(module='blender-mesh-to-json') # Run our addon bpy.ops.import_export.mesh2json()
tests/data/aws/securityhub.py
ramonpetgrave64/cartography
2,322
12780949
GET_HUB = { 'HubArn': 'arn:aws:securityhub:us-east-1:000000000000:hub/default', 'SubscribedAt': '2020-12-03T11:05:17.571Z', 'AutoEnableControls': True, }
lib/python/treadmill/tests/syscall/__init__.py
vrautela/treadmill
133
12780960
<reponame>vrautela/treadmill """Tests for treadmill's linux direct system call interface."""
migrations/20211128_01_Mn7Ng-create-holdem-game-record-table.py
zw-g/Funny-Nation
126
12780971
""" Create holdem game record table """ from yoyo import step __depends__ = {'20211109_01_xKblp-change-comments-on-black-jack-record'} steps = [ step("CREATE TABLE `holdemGameRecord` ( `userID` BIGINT NOT NULL , `moneyInvested` BIGINT NOT NULL , `status` INT NOT NULL COMMENT '0 represent in progress; 1 represent lose or fold; 2 represent win;' , `tableID` BIGINT NOT NULL , `time` TIMESTAMP NOT NULL , `tableUUID` VARCHAR(64) NOT NULL ) ENGINE = InnoDB;") ]
chariot/transformer/text/lower_normalizer.py
Y-Kuro-u/chariot
134
12781046
<reponame>Y-Kuro-u/chariot<gh_stars>100-1000 from chariot.transformer.text.base import TextNormalizer class LowerNormalizer(TextNormalizer): def __init__(self, copy=True): super().__init__(copy) def apply(self, text): return text.lower()