max_stars_repo_path
stringlengths 4
245
| max_stars_repo_name
stringlengths 7
115
| max_stars_count
int64 101
368k
| id
stringlengths 2
8
| content
stringlengths 6
1.03M
|
---|---|---|---|---|
tests/trac/test-trac-0132.py | eLBati/pyxb | 123 | 12776697 | # -*- coding: utf-8 -*-
from __future__ import unicode_literals
import logging
if __name__ == '__main__':
logging.basicConfig()
_log = logging.getLogger(__name__)
import sys
import pyxb
import unittest
class TestTrac0132 (unittest.TestCase):
message = 'bad character \u2620'
def testDecode (self):
e = pyxb.PyXBException(self.message)
if sys.version_info[:2] > (2, 4):
self.assertEqual(self.message, e.args[0])
if __name__ == '__main__':
unittest.main()
|
server/plugins/gatekeeper/gatekeeper.py | nathandarnell/sal | 215 | 12776699 | <gh_stars>100-1000
from django.db.models import Q
import sal.plugin
TITLES = {
'ok': 'Machines with Gatekeeper enabled',
'alert': 'Machines without Gatekeeper enabled',
'unknown': 'Machines with unknown Gatekeeper status'}
PLUGIN_Q = Q(pluginscriptsubmission__plugin='Gatekeeper')
SCRIPT_Q = Q(pluginscriptsubmission__pluginscriptrow__pluginscript_name='Gatekeeper')
class Gatekeeper(sal.plugin.Widget):
supported_os_families = [sal.plugin.OSFamilies.darwin]
def get_context(self, queryset, **kwargs):
queryset = queryset.filter(os_family='Darwin')
context = self.super_get_context(queryset, **kwargs)
context['ok'] = self._filter(queryset, 'ok').count()
context['alert'] = self._filter(queryset, 'alert').count()
context['unknown'] = queryset.count() - context['ok'] - context['alert']
return context
def filter(self, machines, data):
if data not in TITLES:
return None, None
return self._filter(machines, data), TITLES[data]
def _filter(self, machines, data):
machines = machines.filter(os_family='Darwin')
if data == 'ok':
machines = (
machines
.filter(PLUGIN_Q,
SCRIPT_Q,
pluginscriptsubmission__pluginscriptrow__pluginscript_data='Enabled'))
elif data == 'alert':
machines = (
machines
.filter(PLUGIN_Q,
SCRIPT_Q,
pluginscriptsubmission__pluginscriptrow__pluginscript_data='Disabled'))
elif data == 'unknown':
machines = (
machines
.exclude(pk__in=self._filter(machines, 'ok').values('pk'))
.exclude(pk__in=self._filter(machines, 'alert').values('pk')))
return machines
|
comicolorization/extensions/__init__.py | DwangoMediaVillage/Comicolorization | 122 | 12776700 | <gh_stars>100-1000
from .save_images import SaveGeneratedImageExtension, SaveRawImageExtension
|
bumblebee_status/util/algorithm.py | rosalogia/bumblebee-status | 1,089 | 12776702 | import copy
def merge(target, *args):
"""Merges arbitrary data - copied from http://blog.impressiver.com/post/31434674390/deep-merge-multiple-python-dicts
:param target: the data structure to fill
:param args: a list of data structures to merge into target
:return: target, with all data in args merged into it
:rtype: whatever type was originally passed in
"""
if len(args) > 1:
for item in args:
merge(target, item)
return target
item = args[0]
if not isinstance(item, dict):
return item
for key, value in item.items():
if key in target and isinstance(target[key], dict):
merge(target[key], value)
else:
if not key in target:
target[key] = copy.deepcopy(value)
return target
# vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4
|
alex/applications/PublicTransportInfoCS/slu/dailogregclassifier/download_models.py | oplatek/alex | 184 | 12776760 | <gh_stars>100-1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
if __name__ == '__main__':
import autopath
from alex.utils.config import online_update
if __name__ == '__main__':
online_update("applications/PublicTransportInfoCS/slu/dailogregclassifier/dailogreg.nbl.model.all")
|
tests/test_table_input.py | abcnishant007/sklearn-evaluation | 351 | 12776817 | <filename>tests/test_table_input.py
from unittest import TestCase
from sklearn_evaluation import table
class TestMissingInput(TestCase):
def test_feature_importances(self):
with self.assertRaisesRegex(ValueError, "needed to tabulate"):
table.feature_importances(None)
|
text_analysis_tools/api/sentiment/sentiment.py | yu3peng/text_analysis_tools | 149 | 12776822 | # -*- coding: utf-8 -*-
import os
import json
import jieba.analyse
import jieba
CURRENT_PATH = os.path.dirname(os.path.abspath(__file__))
sentiment_path = os.path.join(CURRENT_PATH, 'data', 'sentimentDict.json')
stopwords_path = os.path.join(CURRENT_PATH, 'data', 'stopwords.txt.json')
degree_path = os.path.join(CURRENT_PATH, 'data', 'degreeDict.json')
not_path = os.path.join(CURRENT_PATH, 'data', 'notDict.json')
jieba_dic_path = os.path.join(CURRENT_PATH, 'data', 'jieba.dic')
# 加载情感词典
jieba.load_userdict(jieba_dic_path)
class SentimentAnalysis():
def __init__(self):
self.sentiment_score_dic = self.load_json(sentiment_path)
self.degree_score = self.load_json(degree_path)
self.notwords = self.load_json(not_path)
def load_json(self, json_file_path):
with open(json_file_path, 'r', encoding='utf-8') as f:
return json.loads(f.read(), encoding='utf-8')
def analysis(self, sentence):
words = jieba.lcut(sentence)
score = self.sentiment_score_dic.get(words[0], 0)
if len(words) > 1:
score += self.sentiment_score_dic.get(words[1], 0) * self.notwords.get(words[0], 1) * self.degree_score.get(words[0], 1)
if len(words) > 2:
for i in range(2, len(words)):
score += self.sentiment_score_dic.get(words[i], 0) * self.notwords.get(words[i-1], 1) * \
self.degree_score.get(words[i-1], 1) * self.degree_score.get(words[i-2], 1) * \
self.notwords.get(words[i-2], 1)
if score < 0:
return {'negative': score}
if score > 0:
return {'positive': score}
return {'middle': score} |
cctbx/sgtbx/direct_space_asu/plane_group_reference_table.py | dperl-sol/cctbx_project | 155 | 12776844 | <filename>cctbx/sgtbx/direct_space_asu/plane_group_reference_table.py
from __future__ import absolute_import, division, print_function
from cctbx.sgtbx.direct_space_asu import direct_space_asu
from cctbx.sgtbx.direct_space_asu.short_cuts import *
from six.moves import range
def asu_01(): # p_1 (s.g. 1)
return (direct_space_asu('P 1')
& x0
& +x1
& y0
& +y1
& z0
& +z1
)
def asu_02(): # p_2 (s.g. 3)
return (direct_space_asu('P 2')
& x0(y2)
& x2(y2)
& y0
& +y1
& z0
& +z1
)
def asu_03(): # p_m (s.g. 6)
return (direct_space_asu('P -2x')
& x0
& x2
& y0
& +y1
& z0
& +z1
)
def asu_04(): # p_g (s.g. 7)
return (direct_space_asu('P -2xb')
& x0(+y2)
& x2(+y2)
& y0
& +y1
& z0
& +z1
)
def asu_05(): # c_m (s.g. 8)
return (direct_space_asu('C -2x')
& x0
& x2
& y0
& +y2
& z0
& +z1
)
def asu_06(): # p_2_m_m (s.g. 25)
return (direct_space_asu('P 2 -2')
& x0
& x2
& y0
& y2
& z0
& +z1
)
def asu_07(): # p_2_m_g (s.g. 28)
return (direct_space_asu('P 2 -2a')
& x0(y2)
& x4
& y0
& +y1
& z0
& +z1
)
def asu_08(): # p_2_g_g (s.g. 32)
return (direct_space_asu('P 2 -2ab')
& x0
& x2(-y0)
& y0
& +y2
& z0
& +z1
)
def asu_09(): # c_2_m_m (s.g. 35)
return (direct_space_asu('C 2 -2')
& x0
& x4(y4)
& y0
& y2
& z0
& +z1
)
def asu_10(): # p_4 (s.g. 75)
return (direct_space_asu('P 4')
& x0(-y0)
& x2
& y0
& y2(-x2)
& z0
& +z1
)
def asu_11(): # p_4_m_m (s.g. 99)
return (direct_space_asu('P 4 -2')
& x0
& y2
& -p0
& z0
& +z1
)
def asu_12(): # p_4_g_m (s.g. 100)
return (direct_space_asu('P 4 -2ab')
& x0(-y0)
& y0
& m2
& z0
& +z1
)
def asu_13(): # p_3 (s.g. 143)
return (direct_space_asu('P 3')
& x0(-y0)
& y0
& k1
& m1(-h1 | -k1)
& h1
& z0
& +z1
)
def asu_14(): # p_3_m_1 (s.g. 156)
return (direct_space_asu('P 3 -2"')
& h0
& m1
& k0
& z0
& +z1
)
def asu_15(): # p_3_1_m (s.g. 157)
return (direct_space_asu('P 3 -2')
& y0
& k1
& m1(y3)
& p0
& z0
& +z1
)
def asu_16(): # p_6 (s.g. 168)
return (direct_space_asu('P 6')
& y0
& k1
& m1(y3)
& p0(-y0)
& z0
& +z1
)
def asu_17(): # p_6_m_m (s.g. 183)
return (direct_space_asu('P 6 -2')
& y0
& k1
& -h0
& z0
& +z1
)
def get_asu(point_group_number):
return eval("asu_%02d" % point_group_number)()
if (__name__ == "__main__"):
for i in range(1,17+1):
get_asu(i).show_summary()
|
search_insert_position/solution.py | mahimadubey/leetcode-python | 528 | 12776852 | # -*- coding: utf-8 -*-
"""
Given a sorted array and a target value, return the index if the target is
found. If not, return the index where it would be if it were inserted in
order.
You may assume no duplicates in the array.
Here are few examples.
[1,3,5,6], 5 → 2
[1,3,5,6], 2 → 1
[1,3,5,6], 7 → 4
[1,3,5,6], 0 → 0
"""
class Solution(object):
def searchInsert(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
n = len(nums)
if not nums:
return 0
else:
left = 0
right = n - 1
while left <= right:
mid = (left + right) / 2
if nums[mid] == target:
return mid
elif (mid < n - 1 and nums[mid] < target
and nums[mid + 1] > target):
return mid + 1
elif target < nums[mid]:
right = mid - 1
else:
left = mid + 1
if left > n - 1:
return n
elif right < 0:
return 0
a = [1, 3, 5, 6]
s = Solution()
print(s.searchInsert(a, 5))
print(s.searchInsert(a, 2))
print(s.searchInsert(a, 7))
print(s.searchInsert(a, 0))
|
thespian/system/transport/test/test_resultcallback.py | dendron2000/Thespian | 210 | 12776871 | from thespian.system.transport import ResultCallback
from datetime import datetime, timedelta
from time import sleep
class TestUnitResultCallback(object):
def _good(self, result, value):
if not hasattr(self, 'goods'): self.goods = []
self.goods.append( (result, value) )
def _fail(self, result, value):
if not hasattr(self, 'fails'): self.fails = []
self.fails.append( (result, value) )
def testGoodCallback(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc.resultCallback(True, 5)
assert self.goods == [(True, 5)]
assert self.fails == []
def testFailCallback(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc.resultCallback(False, 9)
assert self.goods == []
assert self.fails == [(False, 9)]
def testGoodCallbackReCall(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc.resultCallback(True, 5)
assert self.goods == [(True, 5)]
assert self.fails == []
rc.resultCallback(True, 4)
assert self.goods == [(True, 5)]
assert self.fails == []
def testFailCallbackReCall(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc.resultCallback(False, 9)
assert self.goods == []
assert self.fails == [(False, 9)]
rc.resultCallback(False, 8)
assert self.goods == []
assert self.fails == [(False, 9)]
def testGoodCallbackReCallFail(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc.resultCallback(True, 5)
assert self.goods == [(True, 5)]
assert self.fails == []
rc.resultCallback(False, 4)
assert self.goods == [(True, 5)]
assert self.fails == []
def testFailCallbackReCallGood(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc.resultCallback(False, 9)
assert self.goods == []
assert self.fails == [(False, 9)]
rc.resultCallback(True, 8)
assert self.goods == []
assert self.fails == [(False, 9)]
def testManyGoodCallbacks(self):
self.goods = []
self.fails = []
rc = [ResultCallback(self._good, self._fail) for N in range(20)]
for num,each in enumerate(rc):
each.resultCallback(True, num)
assert self.goods == [(True, N) for N in range(20)]
assert self.fails == []
def testManyFailCallbacks(self):
self.goods = []
self.fails = []
rc = [ResultCallback(self._good, self._fail) for N in range(20)]
for num,each in enumerate(rc):
each.resultCallback(False, num)
assert self.goods == []
assert self.fails == [(False, N) for N in range(20)]
def testManyGoodAndFailCallbacks(self):
self.goods = []
self.fails = []
rc = [ResultCallback(self._good, self._fail) for N in range(20)]
for num,each in enumerate(rc):
each.resultCallback(0 == num % 3, num)
assert self.goods == [(True, N) for N in range(20) if N % 3 == 0]
assert self.fails == [(False, N) for N in range(20) if N % 3]
def testChainedGoodCallbacks(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc2 = ResultCallback(self._good, self._fail, rc)
rc3 = ResultCallback(self._good, self._fail, rc2)
rc3.resultCallback(True, 'good')
assert self.goods == [(True, 'good')] * 3
assert self.fails == []
def testChainedFailCallbacks(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc2 = ResultCallback(self._good, self._fail, rc)
rc3 = ResultCallback(self._good, self._fail, rc2)
rc3.resultCallback(False, 'oops')
assert self.goods == []
assert self.fails == [(False, 'oops')] * 3
def testChainedGoodCallbacksDoNotDuplicate(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc2 = ResultCallback(self._good, self._fail, rc)
rc3 = ResultCallback(self._good, self._fail, rc2)
rc2.resultCallback(True, 'ok')
assert self.goods == [(True, 'ok'), (True, 'ok')]
assert self.fails == []
rc3.resultCallback(True, 'good')
assert self.goods == [(True, 'ok'), (True, 'ok'), (True, 'good')]
assert self.fails == []
def testChainedFailCallbacksDoNotDuplicate(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc2 = ResultCallback(self._good, self._fail, rc)
rc3 = ResultCallback(self._good, self._fail, rc2)
rc2.resultCallback(False, 'bad')
assert self.goods == []
assert self.fails == [(False, 'bad'), (False, 'bad')]
rc3.resultCallback(False, 'oops')
assert self.goods == []
assert self.fails == [(False, 'bad'), (False, 'bad'), (False, 'oops')]
def testChainedGoodCallbacksDoNotDuplicateOnFail(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc2 = ResultCallback(self._good, self._fail, rc)
rc3 = ResultCallback(self._good, self._fail, rc2)
rc2.resultCallback(True, 'ok')
assert self.goods == [(True, 'ok'), (True, 'ok')]
assert self.fails == []
rc3.resultCallback(False, 'bad')
assert self.goods == [(True, 'ok'), (True, 'ok')]
assert self.fails == [(False, 'bad')]
def testChainedFailCallbacksDoNotDuplicateOnGood(self):
self.goods = []
self.fails = []
rc = ResultCallback(self._good, self._fail)
rc2 = ResultCallback(self._good, self._fail, rc)
rc3 = ResultCallback(self._good, self._fail, rc2)
rc2.resultCallback(False, 'bad')
assert self.goods == []
assert self.fails == [(False, 'bad'), (False, 'bad')]
rc3.resultCallback(True, 'yippee')
assert self.goods == [(True, 'yippee')]
assert self.fails == [(False, 'bad'), (False, 'bad')]
|
pykeyvi/src/converters/__init__.py | remusao/keyvi | 147 | 12776876 | from .pykeyvi_autowrap_conversion_providers import *
from autowrap.ConversionProvider import special_converters
def register_converters():
special_converters.append(MatchIteratorPairConverter())
|
evidently/telemetry/__init__.py | alex-zenml/evidently | 2,212 | 12776888 | <reponame>alex-zenml/evidently<filename>evidently/telemetry/__init__.py
from .sender import TelemetrySender
|
mindarmour/adv_robustness/defenses/__init__.py | hboshnak/mindarmour | 139 | 12776896 | # Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module includes classical defense algorithms in defencing adversarial
examples and enhancing model security and trustworthy.
"""
from .adversarial_defense import AdversarialDefense
from .adversarial_defense import AdversarialDefenseWithAttacks
from .adversarial_defense import EnsembleAdversarialDefense
from .natural_adversarial_defense import NaturalAdversarialDefense
from .projected_adversarial_defense import ProjectedAdversarialDefense
__all__ = ['AdversarialDefense',
'AdversarialDefenseWithAttacks',
'NaturalAdversarialDefense',
'ProjectedAdversarialDefense',
'EnsembleAdversarialDefense']
|
recipes/Python/496825_Game_theory_payoff_matrix_solver/recipe-496825.py | tdiprima/code | 2,023 | 12776901 | ''' Approximate the strategy oddments for 2 person zero-sum games of perfect information.
Applies the iterative solution method described by <NAME> in his classic
book, The Compleat Strategyst, ISBN 0-486-25101-2. See chapter 5, page 180 for details. '''
from operator import add, neg
def solve(payoff_matrix, iterations=100):
'Return the oddments (mixed strategy ratios) for a given payoff matrix'
transpose = zip(*payoff_matrix)
numrows = len(payoff_matrix)
numcols = len(transpose)
row_cum_payoff = [0] * numrows
col_cum_payoff = [0] * numcols
colpos = range(numcols)
rowpos = map(neg, xrange(numrows))
colcnt = [0] * numcols
rowcnt = [0] * numrows
active = 0
for i in xrange(iterations):
rowcnt[active] += 1
col_cum_payoff = map(add, payoff_matrix[active], col_cum_payoff)
active = min(zip(col_cum_payoff, colpos))[1]
colcnt[active] += 1
row_cum_payoff = map(add, transpose[active], row_cum_payoff)
active = -max(zip(row_cum_payoff, rowpos))[1]
value_of_game = (max(row_cum_payoff) + min(col_cum_payoff)) / 2.0 / iterations
return rowcnt, colcnt, value_of_game
###########################################
# Example solutions to two pay-off matrices
print solve([[2,3,1,4], [1,2,5,4], [2,3,4,1], [4,2,2,2]]) # Example on page 185
print solve([[4,0,2], [6,7,1]]) # Exercise 2 number 3
|
src/genie/libs/parser/iosxe/tests/ShowEthernetServiceInstance/cli/equal/golden_output_1_expected.py | balmasea/genieparser | 204 | 12776912 | <filename>src/genie/libs/parser/iosxe/tests/ShowEthernetServiceInstance/cli/equal/golden_output_1_expected.py
expected_output = {
"service_instance": {
501: {
"interfaces": {
"TenGigabitEthernet0/3/0": {"state": "Up", "type": "Static"},
"TenGigabitEthernet0/1/0": {"state": "Up", "type": "Static"},
}
},
502: {
"interfaces": {"TenGigabitEthernet0/3/0": {"state": "Up", "type": "Static"}}
},
}
}
|
setup.py | SeanNobel/d4rl-pybullet | 130 | 12776953 | <gh_stars>100-1000
from setuptools import setup, find_packages
setup(name="d4rl_pybullet",
version="0.1",
license="MIT",
description="Datasets for data-driven deep reinforcement learnig with Pybullet environments",
url="https://github.com/takuseno/d4rl-pybullet",
install_requires=["gym", "pybullet", "h5py"],
packages=["d4rl_pybullet"])
|
repokid/plugin.py | boost-entropy-repos-org/repokid | 999 | 12776958 | # Copyright 2021 Netflix, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import logging
from typing import Any
from typing import Dict
from typing import Optional
from repokid import CONFIG
from repokid.types import RepokidConfig
logger = logging.getLogger("repokid")
class RepokidPlugin:
def __init__(self, config: Optional[RepokidConfig] = None):
if config:
self.config = config
else:
self.config = CONFIG
class M_A(type):
pass
class Singleton(M_A):
_instances: Dict[str, Singleton] = {}
def __call__(cls, *args: Any, **kwargs: Any) -> Singleton:
if cls.__name__ not in cls._instances:
cls._instances[cls.__name__] = super(Singleton, cls).__call__(
*args, **kwargs
)
return cls._instances[cls.__name__]
|
gaphor/C4Model/c4model.py | mrmonkington/gaphor | 867 | 12776963 | <reponame>mrmonkington/gaphor
# This file is generated by profile_coder.py. DO NOT EDIT!
from __future__ import annotations
from gaphor.core.modeling.properties import (
association,
attribute,
relation_many,
relation_one,
)
from gaphor.UML import Actor, Package
class C4Container(Package):
description: attribute[str]
location: attribute[str]
ownerContainer: relation_one[C4Container]
owningContainer: relation_many[C4Container]
technology: attribute[str]
type: attribute[str]
class C4Database(C4Container):
pass
class C4Person(Actor):
description: attribute[str]
location: attribute[str]
C4Container.description = attribute("description", str)
C4Container.location = attribute("location", str)
C4Container.ownerContainer = association(
"ownerContainer", C4Container, upper=1, opposite="owningContainer"
)
C4Container.owningContainer = association(
"owningContainer", C4Container, composite=True, opposite="ownerContainer"
)
C4Container.technology = attribute("technology", str)
C4Container.type = attribute("type", str)
C4Person.description = attribute("description", str)
C4Person.location = attribute("location", str)
C4Container.namespace.subsets.add(C4Container.ownerContainer) # type: ignore[attr-defined]
C4Container.ownedMember.subsets.add(C4Container.owningContainer) # type: ignore[attr-defined]
|
src/layoutparser/elements/utils.py | frankiert/layout-parser | 2,931 | 12776964 | <reponame>frankiert/layout-parser
# Copyright 2021 The Layout Parser team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union, Dict, Dict, Any, Optional, Tuple
import numpy as np
from PIL import Image
def cvt_coordinates_to_points(coords: Tuple[float, float, float, float]) -> np.ndarray:
x_1, y_1, x_2, y_2 = coords
return np.array(
[
[x_1, y_1], # Top Left
[x_2, y_1], # Top Right
[x_2, y_2], # Bottom Right
[x_1, y_2], # Bottom Left
]
)
def cvt_points_to_coordinates(points: np.ndarray) -> Tuple[float, float, float, float]:
x_1 = points[:, 0].min()
y_1 = points[:, 1].min()
x_2 = points[:, 0].max()
y_2 = points[:, 1].max()
return (x_1, y_1, x_2, y_2)
def perspective_transformation(
M: np.ndarray, points: np.ndarray, is_inv: bool = False
) -> np.ndarray:
if is_inv:
M = np.linalg.inv(M)
src_mid = np.hstack([points, np.ones((points.shape[0], 1))]).T # 3x4
dst_mid = np.matmul(M, src_mid)
dst = (dst_mid / dst_mid[-1]).T[:, :2] # 4x2
return dst
def vertice_in_polygon(vertice: np.ndarray, polygon_points: np.ndarray) -> bool:
# The polygon_points are ordered clockwise
# The implementation is based on the algorithm from
# https://demonstrations.wolfram.com/AnEfficientTestForAPointToBeInAConvexPolygon/
points = polygon_points - vertice # shift the coordinates origin to the vertice
edges = np.append(points, points[0:1, :], axis=0)
return all([np.linalg.det([e1, e2]) >= 0 for e1, e2 in zip(edges, edges[1:])])
# If the points are ordered clockwise, the det should <=0
def polygon_area(xs: np.ndarray, ys: np.ndarray) -> float:
"""Calculate the area of polygons using
`Shoelace Formula <https://en.wikipedia.org/wiki/Shoelace_formula>`_.
Args:
xs (`np.ndarray`): The x coordinates of the points
ys (`np.ndarray`): The y coordinates of the points
"""
# Refer to: https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates
# The formula is equivalent to the original one indicated in the wikipedia
# page.
return 0.5 * np.abs(np.dot(xs, np.roll(ys, 1)) - np.dot(ys, np.roll(xs, 1))) |
tools/xdl/xdlrcviz.py | leonardt/magma | 167 | 12777011 | <filename>tools/xdl/xdlrcviz.py
import sexpr
import sys
import os
from pprint import pprint
from subprocess import Popen, PIPE
fname = sys.argv[1]
name = os.path.basename(fname).split('.')[0]
file = open(fname)
source = ""
for line in file.readlines():
if line[0] != "#":
source += line
sexpr.input(source)
s = sexpr.parse()
while len(s) == 1:
s = s[0]
table = {}
for x in s:
table[x[0]] = x[1:]
class Element():
def __init__(self,name):
self.name = name
self.cfg = []
self.inputs = []
self.outputs = []
def canelide(self):
if len(self.cfg) == 0:
if len(self.inputs) == 0 and len(self.outputs) == 1:
return self.outputs[0] == self.name
elif len(self.inputs) == 1 and len(self.outputs) == 0:
return self.inputs[0] == self.name
return False
class Primitive():
def __init__(self,sexpr):
self.name = sexpr[1]
#pprint(sexpr)
input,output = Element("input"),Element("output")
self.elements = [ input, output ]
self.connections = {} # (e0,outputpin,e1,inputpin) => true
for i in sexpr[4:]:
if i[0] == "pin":
if i[3] == "input":
input.outputs.append(i[2])
self.connections[ ("input",i[2],i[1],i[2]) ] = True
else:
output.inputs.append(i[2])
self.connections[ (i[1],i[2],"output",i[2]) ] = True
elif i[0] == "element":
e = Element(i[1])
self.elements.append(e)
for ii in i[2:]:
if isinstance(ii,list):
if ii[0] == "pin":
getattr(e,ii[2]+"s").append(ii[1])
elif ii[0] == "conn":
if ii[3] == "==>":
self.connections[ (ii[1],ii[2],ii[4],ii[5]) ] = True
else:
self.connections[ (ii[4],ii[5],ii[1],ii[2]) ] = True
elif ii[0] == "cfg":
e.cfg = ii[1:]
def save(self):
print("Saving %s" % self.name)
p = Popen(["dot","-Tpdf","-o","%s_%s.pdf" % (self.name,name)], stdin=PIPE)
f = p.stdin
def write(s):
f.write(s)
if self.name == "PCIE_3_0":
sys.stdout.write(s)
write("digraph G {\n")
write(" graph [rankdir = LR];\n")
write(" node[shape=record];\n")
for e in self.elements:
def namefmt(xs):
return "|".join([ "<%s>%s" % (x,x) for x in xs])
def quote(x):
return """ \\"%s\\" """ % x.replace("<","\\<").replace(">","\\>").replace("|","\\|")
cfgstring = '\\n'.join([quote(x) for x in e.cfg])
if e.canelide():
write(""" %s[label="<%s>%s"];\n""" % (e.name,e.name,e.name))
else:
write(""" %s[label="{ {%s} | %s\\n%s | {%s} }"];\n""" % (e.name,namefmt(e.inputs),e.name,cfgstring,namefmt(e.outputs)))
for t in self.connections.keys():
write(" %s:%s -> %s:%s;\n" % t)
write("}")
f.close()
if p.wait() != 0:
raise
for i in table["primitive_defs"]:
if i[0] == "primitive_def":
p = Primitive(i)
try:
p.save()
except:
print("Failed to save %s" % p.name)
|
microraiden/examples/ticker_client.py | andrevmatos/microraiden | 417 | 12777043 | <filename>microraiden/examples/ticker_client.py
from tkinter import ttk
import tkinter
import logging
import gevent
import click
import sys
from microraiden import Session
from microraiden import utils
log = logging.getLogger(__name__)
class ETHTickerClient(ttk.Frame):
def __init__(
self,
sender_privkey: str,
session: Session = None,
poll_interval: float = 5
) -> None:
self.poll_interval = poll_interval
self.root = tkinter.Tk()
ttk.Frame.__init__(self, self.root)
self.root.title('µRaiden ETH Ticker')
self.root.protocol('WM_DELETE_WINDOW', self.close)
self.pack()
self.pricevar = tkinter.StringVar(value='0.00 USD')
ttk.Label(self, textvariable=self.pricevar, font=('Helvetica', '72')).pack()
if session is None:
self.session = Session(
private_key=sender_privkey,
close_channel_on_exit=True,
endpoint_url='http://localhost:5000'
)
else:
self.session = session
self.active_query = False
self.running = False
def run(self):
self.running = True
self.root.after(0, self.query_price)
self.root.mainloop()
def query_price(self):
if not self.running:
return
self.active_query = True
response = self.session.get('http://localhost:5000/ETHUSD')
if response:
price = float(response.json()['last_price'])
log.info('New price received: {:.2f} USD'.format(price))
self.pricevar.set('{:.2f} USD'.format(price))
else:
log.warning('No response.')
if self.running:
self.root.after(int(self.poll_interval * 1000), self.query_price)
self.active_query = False
def close(self):
log.info('Shutting down gracefully.')
self.running = False
self.root.destroy()
# Sloppy handling of thread joining but works for this small demo.
while self.active_query:
gevent.sleep(1)
self.session.close()
@click.command()
@click.option(
'--private-key',
required=True,
help='Path to private key file of the proxy',
type=click.Path(exists=True, dir_okay=False, resolve_path=True)
)
@click.option(
'--private-key-password-file',
default=None,
help='Path to file containing password for the JSON-encoded private key',
type=click.Path(exists=True, dir_okay=False, resolve_path=True)
)
def main(
private_key,
private_key_password_file,
):
private_key = utils.get_private_key(private_key, private_key_password_file)
if private_key is None:
sys.exit(1)
ticker = None
try:
ticker = ETHTickerClient(private_key)
ticker.run()
except KeyboardInterrupt:
if ticker:
ticker.close()
if __name__ == '__main__':
from gevent import monkey
monkey.patch_all()
logging.basicConfig(level=logging.INFO)
main()
|
openapi_core/contrib/flask/responses.py | Yarn-e/openapi-core | 160 | 12777048 | <reponame>Yarn-e/openapi-core
"""OpenAPI core contrib flask responses module"""
from werkzeug.datastructures import Headers
from openapi_core.validation.response.datatypes import OpenAPIResponse
class FlaskOpenAPIResponseFactory:
@classmethod
def create(cls, response):
header = Headers(response.headers)
return OpenAPIResponse(
data=response.data,
status_code=response._status_code,
headers=header,
mimetype=response.mimetype,
)
|
system/tasks.py | topicgit/seal | 132 | 12777085 | import logging
import requests
import json
from celery import shared_task
from system.models import Users
from seal import settings
logger = logging.getLogger('system_celery')
@shared_task
def system_demo(one):
##因为开启了时区,所以django在数据库里面保存的为 utc 时间, 调用的时候会帮你 转为 东八区, celery会自动识别时间
from django.utils import timezone
for i in Users.objects.all():
print(i.last_login) ## 直接读取时间,会是 utc时间,未转换,如果需要处理 请注意
print(timezone.localtime(i.last_login).strftime("%Y-%m-%d %H:%M:%S")) ## 时间格式化为 正常时间
print("celery定时任务demo 每分钟执行一遍",one)
return
@shared_task
def ding_ding_to_info(content,type=None):
"""
钉钉接口 异步调用 ding_ding_to_info.delay("报警1")
:param content: 文本内容
:param type:
:return:
"""
web_hook_url = getattr(settings, 'web_hook_url'),
headers = {'content-type': 'application/json'}
data = {
"msgtype": "text",
"text": {
"content": content
},
"at": {
"atMobiles": [
],
}
}
try:
r = requests.post(web_hook_url[0], data=json.dumps(data), headers=headers)
print(r.text)
except Exception as e:
logger.error(e) |
utils/decoder/model.py | gaoyiyeah/ZASR_tensorflow | 115 | 12777098 | """Contains DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
import time
import logging
import gzip
import copy
import numpy as np
import inspect
from utils.decoder.swig_wrapper import Scorer
from utils.decoder.swig_wrapper import ctc_greedy_decoder
from utils.decoder.swig_wrapper import ctc_beam_search_decoder_batch
class LM_decoder(object):
def __init__(self, beam_alpha, beam_beta, language_model_path,
vocab_list):
"""Initialize the external scorer.
:param beam_alpha: Parameter associated with language model.
:type beam_alpha: float
:param beam_beta: Parameter associated with word count.
:type beam_beta: float
:param language_model_path: Filepath for language model. If it is
empty, the external scorer will be set to
None, and the decoding method will be pure
beam search without scorer.
:type language_model_path: basestring|None
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
"""
if language_model_path != '':
print("begin to initialize the external scorer "
"for decoding")
self._ext_scorer = Scorer(beam_alpha, beam_beta,
language_model_path, vocab_list)
lm_char_based = self._ext_scorer.is_character_based()
lm_max_order = self._ext_scorer.get_max_order()
lm_dict_size = self._ext_scorer.get_dict_size()
print("language model: "
"is_character_based = %d," % lm_char_based +
" max_order = %d," % lm_max_order +
" dict_size = %d" % lm_dict_size)
print("end initializing scorer")
else:
self._ext_scorer = None
print("no language model provided, "
"decoding by pure beam search without scorer.")
def decode_batch_beam_search(self, probs_split, beam_alpha, beam_beta,
beam_size, cutoff_prob, cutoff_top_n,
vocab_list, num_processes):
"""Decode by beam search for a batch of probs matrix input.
:param probs_split: List of 2-D probability matrix, and each consists
of prob vectors for one speech utterancce.
:param probs_split: List of matrix
:param beam_alpha: Parameter associated with language model.
:type beam_alpha: float
:param beam_beta: Parameter associated with word count.
:type beam_beta: float
:param beam_size: Width for Beam search.
:type beam_size: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
characters with highest probs in vocabulary will be
used in beam search, default 40.
:type cutoff_top_n: int
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
:param num_processes: Number of processes (CPU) for decoder.
:type num_processes: int
:return: List of transcription texts.
:rtype: List of basestring
"""
if self._ext_scorer != None:
self._ext_scorer.reset_params(beam_alpha, beam_beta)
# beam search decode
num_processes = min(num_processes, np.shape(probs_split)[0])
beam_search_results = ctc_beam_search_decoder_batch(
probs_split=probs_split,
vocabulary=vocab_list,
beam_size=beam_size,
num_processes=num_processes,
ext_scoring_func=self._ext_scorer,
cutoff_prob=cutoff_prob,
cutoff_top_n=cutoff_top_n)
results = [result[0][1] for result in beam_search_results]
return results
def _adapt_feeding_dict(self, feeding_dict):
"""Adapt feeding dict according to network struct.
To remove impacts from padding part, we add scale_sub_region layer and
sub_seq layer. For sub_seq layer, 'sequence_offset' and
'sequence_length' fields are appended. For each scale_sub_region layer
'convN_index_range' field is appended.
:param feeding_dict: Feeding is a map of field name and tuple index
of the data that reader returns.
:type feeding_dict: dict|list
:return: Adapted feeding dict.
:rtype: dict|list
"""
adapted_feeding_dict = copy.deepcopy(feeding_dict)
if isinstance(feeding_dict, dict):
adapted_feeding_dict["sequence_offset"] = len(adapted_feeding_dict)
adapted_feeding_dict["sequence_length"] = len(adapted_feeding_dict)
for i in xrange(self._num_conv_layers):
adapted_feeding_dict["conv%d_index_range" %i] = \
len(adapted_feeding_dict)
elif isinstance(feeding_dict, list):
adapted_feeding_dict.append("sequence_offset")
adapted_feeding_dict.append("sequence_length")
for i in xrange(self._num_conv_layers):
adapted_feeding_dict.append("conv%d_index_range" % i)
else:
raise ValueError("Type of feeding_dict is %s, not supported." %
type(feeding_dict))
return adapted_feeding_dict
def _adapt_data(self, data):
"""Adapt data according to network struct.
For each convolution layer in the conv_group, to remove impacts from
padding data, we can multiply zero to the padding part of the outputs
of each batch normalization layer. We add a scale_sub_region layer after
each batch normalization layer to reset the padding data.
For rnn layers, to remove impacts from padding data, we can truncate the
padding part before output data feeded into the first rnn layer. We use
sub_seq layer to achieve this.
:param data: Data from data_provider.
:type data: list|function
:return: Adapted data.
:rtype: list|function
"""
def adapt_instance(instance):
if len(instance) < 2 or len(instance) > 3:
raise ValueError("Size of instance should be 2 or 3.")
padded_audio = instance[0]
text = instance[1]
# no padding part
if len(instance) == 2:
audio_len = padded_audio.shape[1]
else:
audio_len = instance[2]
adapted_instance = [padded_audio, text]
# Stride size for conv0 is (3, 2)
# Stride size for conv1 to convN is (1, 2)
# Same as the network, hard-coded here
padded_conv0_h = (padded_audio.shape[0] - 1) // 2 + 1
padded_conv0_w = (padded_audio.shape[1] - 1) // 3 + 1
valid_w = (audio_len - 1) // 3 + 1
adapted_instance += [
[0], # sequence offset, always 0
[valid_w], # valid sequence length
# Index ranges for channel, height and width
# Please refer scale_sub_region layer to see details
[1, 32, 1, padded_conv0_h, valid_w + 1, padded_conv0_w]
]
pre_padded_h = padded_conv0_h
for i in xrange(self._num_conv_layers - 1):
padded_h = (pre_padded_h - 1) // 2 + 1
pre_padded_h = padded_h
adapted_instance += [
[1, 32, 1, padded_h, valid_w + 1, padded_conv0_w]
]
return adapted_instance
if isinstance(data, list):
return map(adapt_instance, data)
elif inspect.isgeneratorfunction(data):
def adapted_reader():
for instance in data():
yield map(adapt_instance, instance)
return adapted_reader
else:
raise ValueError("Type of data is %s, not supported." % type(data))
def _create_parameters(self, model_path=None):
"""Load or create model parameters."""
if model_path is None:
self._parameters = paddle.parameters.create(self._loss)
else:
self._parameters = paddle.parameters.Parameters.from_tar(
gzip.open(model_path))
def _create_network(self, vocab_size, num_conv_layers, num_rnn_layers,
rnn_layer_size, use_gru, share_rnn_weights):
"""Create data layers and model network."""
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram",
type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(vocab_size))
seq_offset_data = paddle.layer.data(
name='sequence_offset',
type=paddle.data_type.integer_value_sequence(1))
seq_len_data = paddle.layer.data(
name='sequence_length',
type=paddle.data_type.integer_value_sequence(1))
index_range_datas = []
for i in xrange(num_rnn_layers):
index_range_datas.append(
paddle.layer.data(
name='conv%d_index_range' % i,
type=paddle.data_type.dense_vector(6)))
self._log_probs, self._loss = deep_speech_v2_network(
audio_data=audio_data,
text_data=text_data,
seq_offset_data=seq_offset_data,
seq_len_data=seq_len_data,
index_range_datas=index_range_datas,
dict_size=vocab_size,
num_conv_layers=num_conv_layers,
num_rnn_layers=num_rnn_layers,
rnn_size=rnn_layer_size,
use_gru=use_gru,
share_rnn_weights=share_rnn_weights)
|
tests/core/pyspec/eth2spec/utils/hash_function.py | MicahZoltu/eth2.0-specs | 2,161 | 12777113 | from hashlib import sha256
from remerkleable.byte_arrays import Bytes32
from typing import Union
ZERO_BYTES32 = b'\x00' * 32
def hash(x: Union[bytes, bytearray, memoryview]) -> Bytes32:
return Bytes32(sha256(x).digest())
|
tfjs_graph_converter/quirks.py | httpsgithu/tfjs-to-tf | 114 | 12777127 | # SPDX-License-Identifier: MIT
# Copyright © 2020 <NAME>
"""Functions to fix various known issues with exported TFJS models"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import base64
from typing import Any, Dict, List, Optional
import tfjs_graph_converter.common as common
def _find_if_has_key(obj: Dict[str, Any], key: str,
of_type: Optional[type] = None) -> List[Any]:
"""
Recursively find all objects with a given key in a dictionary
Args:
obj: Dictionary to search
key: Key to find
of_type: [optional] Type of the referenced item
Returns:
List of all objects that contain an item with the given key
and matching type
"""
def get_children(item: Any) -> List[Any]:
return [val for val in item.values() if isinstance(val, dict)]
found = []
stack = get_children(obj)
while len(stack) > 0:
item = stack.pop()
if key in item and (of_type is None or isinstance(item[key], of_type)):
found.append(item)
stack.extend(get_children(item))
return found
def _convert_string_attrs(node: Dict[str, Any]) -> None:
"""
Deep search string attributes (labelled "s" in GraphDef proto)
and convert ascii code lists to base64-encoded strings if necessary
"""
attr_key = common.TFJS_NODE_ATTR_KEY
str_key = common.TFJS_ATTR_STRING_VALUE_KEY
# some layers (e.g. PReLU) don't contain the `attr` key,
# so test for its presence
attrs: list = []
if attr_key in node:
attrs = _find_if_has_key(node[attr_key], key=str_key, of_type=list)
for attr in attrs:
array = attr[str_key]
# check if conversion is actually necessary
if (len(array) > 0) and isinstance(array, list) \
and isinstance(array[0], int):
string = ''.join(map(chr, array))
binary = string.encode('utf8')
attr[str_key] = base64.encodebytes(binary)
elif len(array) == 0:
attr[str_key] = None
def _fix_dilation_attrs(node: Dict[str, Any]) -> None:
"""
Search dilations-attribute and convert
misaligned dilation rates if necessary see
https://github.com/patlevin/tfjs-to-tf/issues/1
"""
path = ['attr', 'dilations', 'list']
values = node
found = True
for key in path:
if key in values:
values = values[key]
else:
found = False
break
# if dilations are present, they're stored in 'values' now
ints = common.TFJS_ATTR_INT_VALUE_KEY
if found and ints in values and isinstance(values[ints], list):
value = values[ints]
if len(value) != 4:
# must be NCHW-formatted 4D tensor or else TF can't handle it
raise ValueError("Unsupported 'dilations'-attribute in node "
f'{node[common.TFJS_NAME_KEY]}')
# check for [>1,>1,1,1], which is likely a mistranslated [1,>1,>1,1]
if int(value[0], 10) > 1:
values[ints] = ['1', value[0], value[1], '1']
def fix_node_attributes(message_dict: Dict[str, Any]) -> Dict[str, Any]:
"""
Fix various known issues found "in the wild":
• Node attributes in deserialised JSON may contain strings as lists of
ascii codes when the TF GraphDef proto expects base64 encoded strings
• 'dilation' attributes may be misaligned in a way unsupported by TF
Further fixes will be added as issues are reported.
Args:
message_dict: Graph model formatted as parsed JSON dictionary
Returns:
Updated message dictionary with fixes applied if necessary
"""
if common.TFJS_NODE_KEY in message_dict:
nodes = message_dict[common.TFJS_NODE_KEY]
for node in nodes:
_convert_string_attrs(node)
_fix_dilation_attrs(node)
return message_dict
|
spectre/trading/stopmodel.py | rajach/spectre | 302 | 12777154 | <filename>spectre/trading/stopmodel.py
"""
@author: Heerozh (<NAME>)
@copyright: Copyright 2019-2020, Heerozh. All rights reserved.
@license: Apache 2.0
@email: <EMAIL>
"""
import math
def sign(x):
return math.copysign(1, x)
class PriceTracker:
def __init__(self, current_price, recorder=max):
self.last_price = current_price
self.recorder = recorder
self.recorded_price = current_price
self.tracking_position = None
def update_price(self, last_price):
self.recorded_price = self.recorder(self.recorded_price, last_price)
self.last_price = last_price
def process_split(self, inverse_ratio: float):
self.recorded_price /= inverse_ratio
# -----------------------------------------------------------------------------
class StopTracker(PriceTracker):
def __init__(self, current_price, stop_price, callback):
super().__init__(current_price, lambda _, x: x)
self._stop_price = stop_price
self.stop_loss = stop_price < current_price
self.callback = callback
@property
def stop_price(self):
return self._stop_price
def fire(self, *args):
if callable(self.callback):
return self.callback(*args)
else:
return self.callback
def check_trigger(self, *args):
if self.stop_loss:
if self.last_price <= self.stop_price:
return self.fire(*args)
else:
if self.last_price >= self.stop_price:
return self.fire(*args)
return False
class StopModel:
def __init__(self, ratio: float, callback=None):
self.ratio = ratio
self.callback = callback
def new_tracker(self, current_price, inverse):
if inverse:
stop_price = current_price * (1 - self.ratio)
else:
stop_price = current_price * (1 + self.ratio)
return StopTracker(current_price, stop_price, self.callback)
# -----------------------------------------------------------------------------
class TrailingStopTracker(StopTracker):
def __init__(self, current_price, ratio, callback):
self.ratio = ratio
stop_price = current_price * (1 + self.ratio)
StopTracker.__init__(self, current_price, stop_price, callback=callback)
PriceTracker.__init__(self, current_price, recorder=max if ratio < 0 else min)
@property
def stop_price(self):
return self.recorded_price * (1 + self.ratio)
class TrailingStopModel(StopModel):
"""
Unlike trailing stop order, the ratio in this model is relative to the highest / lowest price,
so -0.1 means stop price is 90% of the highest price from now to the future; 0.1 means stop
price is 110% of the lowest price from now to the future.
"""
def new_tracker(self, current_price, inverse):
ratio = -self.ratio if inverse else self.ratio
return TrailingStopTracker(current_price, ratio, self.callback)
# -----------------------------------------------------------------------------
class DecayTrailingStopTracker(TrailingStopTracker):
def __init__(self, current_price, ratio, target, decay_rate, max_decay, callback):
self.initial_ratio = ratio
self.max_decay = max_decay
self.decay_rate = decay_rate
self.target = target
super().__init__(current_price, ratio, callback)
@property
def current(self):
raise NotImplementedError("abstractmethod")
@property
def stop_price(self):
decay = max(self.decay_rate ** (self.current / self.target), self.max_decay)
self.ratio = self.initial_ratio * decay
return self.recorded_price * (1 + self.ratio)
class PnLDecayTrailingStopTracker(DecayTrailingStopTracker):
@property
def current(self):
pos = self.tracking_position
pnl = (self.recorded_price / pos.average_price - 1) * sign(pos.shares)
pnl = max(pnl, 0) if self.target > 0 else min(pnl, 0)
return pnl
class PnLDecayTrailingStopModel(StopModel):
"""
Exponential decay to the stop ratio: `ratio * decay_rate ^ (PnL% / PnL_target%)`.
If it's stop gain model, `PnL_target` should be Loss Target (negative).
So, the lower the `ratio` when PnL% approaches the target, and if PnL% exceeds PnL_target%,
any small opposite changes will trigger stop.
"""
def __init__(self, ratio: float, pnl_target: float, callback=None,
decay_rate=0.05, max_decay=0):
super().__init__(ratio, callback)
self.decay_rate = decay_rate
self.pnl_target = pnl_target
self.max_decay = max_decay
def new_tracker(self, current_price, inverse):
ratio = -self.ratio if inverse else self.ratio
return PnLDecayTrailingStopTracker(
current_price, ratio, self.pnl_target, self.decay_rate, self.max_decay, self.callback)
class TimeDecayTrailingStopTracker(DecayTrailingStopTracker):
@property
def current(self):
pos = self.tracking_position
return pos.period
class TimeDecayTrailingStopModel(StopModel):
def __init__(self, ratio: float, period_target: 'pd.Timedelta', callback=None,
decay_rate=0.05, max_decay=0):
super().__init__(ratio, callback)
self.decay_rate = decay_rate
self.period_target = period_target
self.max_decay = max_decay
def new_tracker(self, current_price, inverse):
ratio = -self.ratio if inverse else self.ratio
return TimeDecayTrailingStopTracker(
current_price, ratio, self.period_target, self.decay_rate, self.max_decay,
self.callback)
|
conan/recipes/android-sdk-tools/conanfile.py | alexa/aac-sdk | 139 | 12777170 | <reponame>alexa/aac-sdk
from conans import ConanFile, tools, RunEnvironment
import os, logging
class AndroidSdkToolsConanFile(ConanFile):
name = "android-sdk-tools"
version = "4.0"
user = "aac-sdk"
channel = "stable"
no_copy_source = True
exports_sources = ["cmake-wrapper.cmd", "cmake-wrapper"]
settings = "os", "arch", "compiler", "build_type"
requires = ["zulu-openjdk/11.0.8"]
options = {
"sdk_version": "ANY",
"ndk_version": "ANY",
"android_stl": ["c++_shared","c++_static"]
}
default_options = {
"sdk_version": "7302050",
"ndk_version": "20.0.5594570",
"android_stl": "c++_shared"
}
@staticmethod
def chmod_plus_x(filename):
if os.name == "posix":
os.chmod(filename, os.stat(filename).st_mode | 0o111)
def fix_permissions(self,root_folder):
if os.name != "posix":
return
for root, _, files in os.walk(root_folder):
for filename in files:
filename = os.path.join(root, filename)
with open(filename, "rb") as f:
sig = f.read(4)
if type(sig) is str:
sig = [ord(s) for s in sig]
else:
sig = [s for s in sig]
if len(sig) > 2 and sig[0] == 0x23 and sig[1] == 0x21:
logging.info(f"chmod on script file: {filename}")
self.chmod_plus_x(filename)
elif sig == [0x7F, 0x45, 0x4C, 0x46]:
logging.info(f"chmod on ELF file: {filename}")
self.chmod_plus_x(filename)
elif sig == [0xCA, 0xFE, 0xBA, 0xBE] or \
sig == [0xBE, 0xBA, 0xFE, 0xCA] or \
sig == [0xFE, 0xED, 0xFA, 0xCF] or \
sig == [0xCF, 0xFA, 0xED, 0xFE] or \
sig == [0xFE, 0xEF, 0xFA, 0xCE] or \
sig == [0xCE, 0xFA, 0xED, 0xFE]:
logging.info(f"chmod on Mach-O file: {filename}")
self.chmod_plus_x(filename)
@property
def _build_os(self):
settings_build = getattr(self,"settings_build",None)
return settings_build.os if settings_build else self.settings.os
def source(self):
if self._build_os == "Macos":
package = f"commandlinetools-mac-{self.options.sdk_version}_latest"
elif self._build_os == "Linux":
package = f"commandlinetools-linux-{self.options.sdk_version}_latest"
else:
raise Exception( f"settings.os not supported: {self._build_os}" )
#download the command line tools package
tools.get( f"https://dl.google.com/android/repository/{package}.zip" )
def package(self):
self.copy( "*", src="cmdline-tools", dst="cmdline-tools" )
self.copy( "cmake-wrapper.cmd" )
self.copy( "cmake-wrapper" )
# fix executable permisions for command line tools
self.fix_permissions(self.package_folder)
# check the license -- needs to be accepted once
sdk_manager = os.path.join( self.package_folder, "cmdline-tools", "bin", "sdkmanager" )
auto_accept_licenses = os.getenv("BUILDER_ACCEPT_LICENSES", "False").lower() == "true"
env_run = RunEnvironment(self)
with tools.environment_append( env_run.vars ):
# check the license -- needs to be accepted once
check_yes_opt = f"yes | {sdk_manager}" if auto_accept_licenses else sdk_manager
self.run( f"{check_yes_opt} --sdk_root={self.package_folder} --licenses", run_environment=True )
# install android sdk
self.run( f"{sdk_manager} --sdk_root={self.package_folder} 'platform-tools' 'platforms;android-{self.settings_target.os.api_level}'", run_environment=True )
# install android ndk
self.run( f"{sdk_manager} --sdk_root={self.package_folder} --install 'ndk;{self.options.ndk_version}'", run_environment=True )
@property
def _platform(self):
return {"Windows": "windows",
"Macos": "darwin",
"Linux": "linux"}.get(str(self._build_os))
@property
def _android_abi(self):
return {"x86": "x86",
"x86_64": "x86_64",
"armv7hf": "armeabi-v7a",
"armv8": "arm64-v8a"}.get(str(self.settings_target.arch))
@property
def _llvm_triplet(self):
arch = {'armv7hf': 'arm',
'armv8': 'aarch64',
'x86': 'i686',
'x86_64': 'x86_64'}.get(str(self.settings_target.arch))
abi = 'androideabi' if self.settings_target.arch == 'armv7hf' else 'android'
return f"{arch}-linux-{abi}"
@property
def _clang_triplet(self):
arch = {'armv7hf': 'armv7a',
'armv8': 'aarch64',
'x86': 'i686',
'x86_64': 'x86_64'}.get(str(self.settings_target.arch))
abi = 'androideabi' if self.settings_target.arch == 'armv7hf' else 'android'
return f"{arch}-linux-{abi}"
@property
def _sdk_home(self):
return os.path.join( self.package_folder )
@property
def _ndk_home(self):
return os.path.join( self.package_folder, "ndk", str(self.options.ndk_version) )
@property
def _ndk_root(self):
return os.path.join(self._ndk_home, "toolchains", "llvm", "prebuilt", f"{self._platform}-x86_64")
def _tool_name(self, tool):
if 'clang' in tool:
suffix = '.cmd' if self._build_os == 'Windows' else ''
return f"{self._clang_triplet}{self.settings_target.os.api_level}-{tool}{suffix}"
else:
suffix = '.exe' if self._build_os == 'Windows' else ''
return f"{self._llvm_triplet}-{tool}{suffix}"
def _define_tool_var(self, name, value):
ndk_bin = os.path.join(self._ndk_root, 'bin')
path = os.path.join(ndk_bin, self._tool_name(value))
logging.info(f"Creating {name} environment variable: {path}")
return path
def package_info(self):
# set the android sdk environment variables
logging.info(f"Creating ANDROID_SDK_ROOT environment variable: {self._sdk_home}")
self.env_info.ANDROID_SDK_ROOT = self._sdk_home
# test shall pass, so this runs also in the build as build requirement context
# ndk-build: https://developer.android.com/ndk/guides/ndk-build
self.env_info.PATH.append( self._ndk_home )
# You should use the ANDROID_NDK_ROOT environment variable to indicate where the NDK is located.
# That's what most NDK-related scripts use (inside the NDK, and outside of it).
# https://groups.google.com/g/android-ndk/c/qZjhOaynHXc
logging.info(f"Creating ANDROID_NDK_ROOT environment variable: {self._ndk_home}")
self.env_info.ANDROID_NDK_ROOT = self._ndk_home
# Gradle is complaining about the ANDROID_NDK_HOME environment variable:
# WARNING: Support for ANDROID_NDK_HOME is deprecated and will be removed in the future.
# Use android.ndkVersion in build.gradle instead.
# logging.info(f"Creating ANDROID_NDK_HOME environment variable: {self._ndk_home}")
# self.env_info.ANDROID_NDK_HOME = self._ndk_home
logging.info(f"Creating NDK_ROOT environment variable: {self._ndk_root}")
self.env_info.NDK_ROOT = self._ndk_root
logging.info(f"Creating CHOST environment variable: {self._llvm_triplet}")
self.env_info.CHOST = self._llvm_triplet
ndk_sysroot = os.path.join(self._ndk_root, 'sysroot')
logging.info(f"Creating CONAN_CMAKE_FIND_ROOT_PATH environment variable: {ndk_sysroot}")
self.env_info.CONAN_CMAKE_FIND_ROOT_PATH = ndk_sysroot
logging.info(f"Creating SYSROOT environment variable: {ndk_sysroot}")
self.env_info.SYSROOT = ndk_sysroot
logging.info(f"Creating self.cpp_info.sysroot: {ndk_sysroot}")
self.cpp_info.sysroot = ndk_sysroot
logging.info(f"Creating ANDROID_NATIVE_API_LEVEL environment variable: {self.settings_target.os.api_level}")
self.env_info.ANDROID_NATIVE_API_LEVEL = str(self.settings_target.os.api_level)
self.chmod_plus_x(os.path.join(self.package_folder, "cmake-wrapper"))
cmake_wrapper = "cmake-wrapper.cmd" if self._build_os == "Windows" else "cmake-wrapper"
cmake_wrapper = os.path.join(self.package_folder, cmake_wrapper)
logging.info(f"Creating CONAN_CMAKE_PROGRAM environment variable: {cmake_wrapper}")
self.env_info.CONAN_CMAKE_PROGRAM = cmake_wrapper
toolchain = os.path.join(self._ndk_home, "build", "cmake", "android.toolchain.cmake")
logging.info(f"Creating CONAN_CMAKE_TOOLCHAIN_FILE environment variable: {toolchain}")
self.env_info.CONAN_CMAKE_TOOLCHAIN_FILE = toolchain
self.env_info.CC = self._define_tool_var('CC', 'clang')
self.env_info.CXX = self._define_tool_var('CXX', 'clang++')
self.env_info.LD = self._define_tool_var('LD', 'ld')
self.env_info.AR = self._define_tool_var('AR', 'ar')
self.env_info.AS = self._define_tool_var('AS', 'as')
self.env_info.RANLIB = self._define_tool_var('RANLIB', 'ranlib')
self.env_info.STRIP = self._define_tool_var('STRIP', 'strip')
self.env_info.ADDR2LINE = self._define_tool_var('ADDR2LINE', 'addr2line')
self.env_info.NM = self._define_tool_var('NM', 'nm')
self.env_info.OBJCOPY = self._define_tool_var('OBJCOPY', 'objcopy')
self.env_info.OBJDUMP = self._define_tool_var('OBJDUMP', 'objdump')
self.env_info.READELF = self._define_tool_var('READELF', 'readelf')
self.env_info.ELFEDIT = self._define_tool_var('ELFEDIT', 'elfedit')
self.env_info.ANDROID_PLATFORM = f"android-{self.settings_target.os.api_level}"
self.env_info.ANDROID_TOOLCHAIN = "clang"
self.env_info.ANDROID_ABI = self._android_abi
self.env_info.ANDROID_STL = f"{self.options.android_stl}"
# set the stl shared lib path if specified by the android_stl option
if self.options.android_stl == "c++_shared":
self.env_info.ANDROID_STL_SHARED_LIB = f"{os.path.join(ndk_sysroot, 'usr', 'lib', self._llvm_triplet, 'libc++_shared.so')}"
logging.info(f"Creating ANDROID_STL_SHARED_LIB environment variable: {self.env_info.ANDROID_STL_SHARED_LIB}")
self.env_info.CMAKE_FIND_ROOT_PATH_MODE_PROGRAM = "BOTH"
self.env_info.CMAKE_FIND_ROOT_PATH_MODE_LIBRARY = "BOTH"
self.env_info.CMAKE_FIND_ROOT_PATH_MODE_INCLUDE = "BOTH"
self.env_info.CMAKE_FIND_ROOT_PATH_MODE_PACKAGE = "BOTH"
|
Skoarcery/factoary/Code_Parser_Py.py | sofakid/Skoarcery | 343 | 12777248 | <filename>Skoarcery/factoary/Code_Parser_Py.py
import unittest
from Skoarcery import langoids, terminals, nonterminals, dragonsets, parsetable, emissions
from Skoarcery.langoids import Terminal, Nonterminal
class Code_Parser_Py(unittest.TestCase):
def setUp(self):
terminals.init()
nonterminals.init()
langoids.init()
dragonsets.init()
parsetable.init()
emissions.init()
def test_PY_rdpp(self):
from Skoarcery.dragonsets import FIRST, FOLLOW
from Skoarcery.terminals import Empty
fd = open("SkoarPyon/rdpp.py", "w")
PY = emissions.PY
PY.fd = fd
# Header
# Imports
# class SkoarParseException
# class SkoarParser:
# __init__
# fail
self.code_start()
PY.tab += 1
N = nonterminals.nonterminals.values()
# precompute desirables
PY.method("init_desirables")
for A in N:
R = A.production_rules
PY.nl()
PY.cmt(str(A))
# each production
for P in R:
if P.derives_empty:
continue
# A -> alpha
alpha = P.production
desires = FIRST(alpha)
if Empty in desires:
desires.discard(Empty)
desires.update(FOLLOW(A))
i = 0
n = len(desires)
PY.dict_set("self.desirables", str(P), "[", end="")
for toke in desires:
PY.raw(toke.toker_name)
i += 1
if i != n:
if i % 5 == 0:
PY.raw(",\n")
PY.stmt(" ", end="")
else:
PY.raw(", ")
else:
PY.raw("]\n")
PY.end()
# write each nonterminal as a function
for A in N:
R = A.production_rules
#PY.cmt(str(A))
PY.stmt("def " + A.name + "(self, parent):")
PY.tab += 1
PY.stmt("self.tab += 1")
if A.intermediate:
PY.var("noad", "parent")
else:
PY.var("noad", PY.v_new("SkoarNoad", PY.v_sym(A.name), "parent"))
PY.nl()
#PY.code_line("print('" + A.name + "')")
for P in R:
if P.derives_empty:
continue
# A -> alpha
alpha = P.production
PY.stmt("desires = " + PY.v_dict_get("self.desirables", str(P)))
PY.if_("self.toker.sees(desires)")
#PY.print(str(P))
for x in alpha:
if isinstance(x, Terminal):
PY.stmt("noad.add_toke('" + x.toker_name + "', self.toker.burn(" + x.toker_name + "))")
#PY.print("burning: " + x.name)
else:
if x.intermediate:
PY.stmt("self." + x.name + "(noad)")
else:
PY.stmt("noad.add_noad(self." + x.name + "(noad))")
else:
PY.return_("noad")
PY.tab -= 1
PY.nl()
if A.derives_empty:
PY.cmt("<e>")
#PY.print("burning empty")
PY.return_("noad")
else:
PY.cmt("Error State")
PY.stmt("self.fail()")
PY.tab -= 1
PY.nl()
PY.tab -= 1
fd.close()
def code_start(self):
from Skoarcery.terminals import Empty
PY = emissions.PY
PY.file_header("rdpp", "PyRDPP - Create Recursive Descent Predictive Parser")
s = "from Skoarcery.SkoarPyon.apparatus import SkoarNoad\n"\
"from Skoarcery.SkoarPyon.lex import "
T = terminals.tokens.values()
n = len(T)
i = 0
for t in T:
if t == Empty:
n -= 1
continue
s += t.toker_name
i += 1
if i < n:
if i % 5 == 0:
s += ", \\\n "
else:
s += ", "
PY.raw(s + """
class SkoarParseException(Exception):
pass
class SkoarParser:
def __init__(self, runtime):
self.runtime = runtime
self.toker = runtime.toker
self.tab = 0
self.desirables = dict()
self.init_desirables()
def fail(self):
self.toker.dump()
raise SkoarParseException
@property
def tabby(self):
if self.tab == 0:
return ""
return ("{:>" + str(self.tab * 2) + "}").format(" ")
def print(self, line, end):
print(self.tabby + line, end=end)
""")
|
httpolice/syntax/rfc3986.py | vfaronov/httpolice | 1,027 | 12777281 | from httpolice.citation import RFC
from httpolice.parse import (auto, empty, fill_names, literal, maybe_str,
octet_range, pivot, string, string1, string_times,
subst)
from httpolice.syntax.common import ALPHA, DIGIT, HEXDIG
pct_encoded = '%' + HEXDIG + HEXDIG > auto
sub_delims = (literal('!') | '$' | '&' | "'" | '(' | ')' | '*' | '+' |
',' | ';' | '=') > auto
unreserved = ALPHA | DIGIT | '-' | '.' | '_' | '~' > auto
pchar = unreserved | sub_delims | ':' | '@' | pct_encoded > auto
segment = string(pchar) > auto
segment_nz = string1(pchar) > auto
segment_nz_nc = string1(unreserved | sub_delims | '@' | pct_encoded) > auto
scheme = ALPHA + string(ALPHA | DIGIT | '+' | '-' | '.') > pivot
userinfo = string(unreserved | sub_delims | ':' | pct_encoded) > pivot
dec_octet = (DIGIT |
octet_range(0x31, 0x39) + DIGIT |
'1' + DIGIT + DIGIT |
'2' + octet_range(0x30, 0x34) + DIGIT |
'25' + octet_range(0x30, 0x35)) > auto
IPv4address = (dec_octet + '.' + dec_octet + '.' +
dec_octet + '.' + dec_octet) > pivot
h16 = string_times(1, 4, HEXDIG) > auto
ls32 = (h16 + ':' + h16) | IPv4address > auto
IPv6address = (
string_times(6, 6, h16 + ':') + ls32 |
'::' + string_times(5, 5, h16 + ':') + ls32 |
maybe_str(h16) + '::' + string_times(4, 4, h16 + ':') + ls32 |
maybe_str(string_times(0, 1, h16 + ':') + h16) +
'::' + string_times(3, 3, h16 + ':') + ls32 |
maybe_str(string_times(0, 2, h16 + ':') + h16) +
'::' + string_times(2, 2, h16 + ':') + ls32 |
maybe_str(string_times(0, 3, h16 + ':') + h16) + '::' + h16 + ':' + ls32 |
maybe_str(string_times(0, 4, h16 + ':') + h16) + '::' + ls32 |
maybe_str(string_times(0, 5, h16 + ':') + h16) + '::' + h16 |
maybe_str(string_times(0, 6, h16 + ':') + h16) + '::'
) > pivot
IPvFuture = ('v' + string1(HEXDIG) + '.' +
string1(unreserved | sub_delims | ':')) > pivot
# As updated by RFC 6874
ZoneID = string1(unreserved | pct_encoded) > pivot
IPv6addrz = IPv6address + '%25' + ZoneID > pivot
IP_literal = '[' + (IPv6address | IPv6addrz | IPvFuture) + ']' > pivot
reg_name = string(unreserved | sub_delims | pct_encoded) > pivot
host = IP_literal | IPv4address | reg_name > pivot
port = string(DIGIT) > pivot
authority = maybe_str(userinfo + '@') + host + maybe_str(':' + port) > pivot
path_abempty = string('/' + segment) > auto
path_absolute = '/' + maybe_str(segment_nz + string('/' + segment)) > auto
path_noscheme = segment_nz_nc + string('/' + segment) > auto
path_rootless = segment_nz + string('/' + segment) > auto
path_empty = subst(u'') << empty > auto
hier_part = ('//' + authority + path_abempty |
path_absolute | path_rootless | path_empty) > pivot
query = string(pchar | '/' | '?') > pivot
fragment = string(pchar | '/' | '?') > pivot
absolute_URI = scheme + ':' + hier_part + maybe_str('?' + query) > pivot
relative_part = ('//' + authority + path_abempty |
path_absolute | path_noscheme | path_empty) > pivot
URI = (scheme + ':' + hier_part +
maybe_str('?' + query) + maybe_str('#' + fragment)) > pivot
relative_ref = (relative_part +
maybe_str('?' + query) + maybe_str('#' + fragment)) > pivot
URI_reference = URI | relative_ref > pivot
fill_names(globals(), RFC(3986))
|
plot_sweep.py | yinghai/benchmark | 384 | 12777283 | <filename>plot_sweep.py
import argparse
import json
# import pandas as pd
import os
# import sys
# import re
import yaml
import itertools
# from bokeh.layouts import column, row, layout, gridplot
# from bokeh.plotting import figure, output_file, show
# from bokeh.sampledata.autompg import autompg
# from bokeh.transform import jitter
from bokeh.palettes import Category10
from bokeh.models import HoverTool, Div, Range1d, HoverTool
from bokeh.plotting import figure, output_file, show
# from bokeh.models import Legend
# from bokeh.models import ColumnDataSource, CategoricalTicker, Div
# from bokeh.models import ColumnDataSource, DataTable, DateFormatter, TableColumn
# from bokeh.transform import jitter
from collections import defaultdict
from datetime import datetime as dt
from torchbenchmark.util.data import load_data_dir, load_data_files
from torchbenchmark.score.compute_score import TorchBenchScore
TORCHBENCH_SCORE_VERSION = "v1"
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("data_dir", nargs='+',
help="One or more directories containing benchmark json files. "
"Each directory will be plotted as a separate series. "
"By default, the first file in the first directory will be used"
" to generate a score configuration with a target of 1000,"
" and everything else will be relative to that.")
parser.add_argument("--output_html", default='plot.html', help="html file to write")
parser.add_argument("--plot_all", action='store_true',
help="Plots the scores for each configuration")
parser.add_argument("--reference_json", required=True,
help="file defining score norm values, usually first json in first data_dir")
args = parser.parse_args()
plot_height = 800
plot_width = 1000
assert len(args.data_dir) > 0, "Must provide at least one data directory"
compare_datasets = [load_data_dir(d, most_recent_files=-1) for d in args.data_dir]
with open(args.reference_json) as f:
ref_data = json.load(f)
plot_all = args.plot_all
score_config = TorchBenchScore(ref_data=ref_data, version=TORCHBENCH_SCORE_VERSION)
p = figure(plot_width=plot_width, plot_height=plot_height,
x_axis_type='datetime')
xs = []
ys = []
zs = []
max_score = 0
for d in compare_datasets:
scores = {}
scores_db = defaultdict(list)
for i in range(len(d._json_raw)):
data = d._json_raw[i]
pytorch_ver = data['machine_info']['pytorch_version']
# Slice the portion after '+'
pytorch_ver_cuda_loc = pytorch_ver.rfind('+')
pytorch_ver = pytorch_ver[:pytorch_ver_cuda_loc]
date = dt.strptime(pytorch_ver[pytorch_ver.index("dev") + len("dev"):], "%Y%m%d")
score = score_config.compute_score(data)
scores[date] = score
dates = []
total_scores = []
all_scores = []
for date in sorted(scores.keys()):
dates.append(date)
total_scores.append(scores[date]["total"])
max_score = max(max_score, max(total_scores))
all_scores.append(scores[date])
xs.append(dates)
ys.append(total_scores)
if plot_all:
zs.append(all_scores)
colors = itertools.cycle(Category10[10])
basenames = map(os.path.basename, args.data_dir)
if plot_all:
for x, z in zip(xs, zs):
basename = next(basenames)
color = next(colors)
configs = z[0].keys()
for config in configs:
if not ("subscore" in config or "total" in config):
continue
color = next(colors)
scores = []
for s in z:
scores.append(s[config])
p.line(x, scores, color=color, line_width=2, legend_label=basename + '-' + config)
p.legend.click_policy = "hide"
else:
for x, y, color in zip(xs, ys, colors):
p.line(x, y, color=color, line_width=2, legend_label=next(basenames))
for x, y, color in zip(xs, ys, colors):
p.circle(x, y, color=color)
p.legend.location = "bottom_right"
p.y_range = Range1d(0, max_score * 1.25)
p.add_tools(HoverTool(
tooltips=[
('date', '@x{%F}'),
('score', '@y{0.00 a}'),
],
formatters={
'@x': 'datetime',
'@y': 'numeral',
},
))
output_file(args.output_html)
show(p)
|
package/awesome_streamlit/experiments/__init__.py | R-fred/awesome-streamlit | 1,194 | 12777301 | """Imports that should be exposed outside the package"""
from .hello_world import write as write_hello_world
|
algs4/symbol_graph.py | dumpmemory/algs4-py | 230 | 12777330 | <reponame>dumpmemory/algs4-py
"""
Execution: python symbol_graph.py filename.txt delimiter
Data files: https://algs4.cs.princeton.edu/41graph/routes.txt
https://algs4.cs.princeton.edu/41graph/movies.txt
https://algs4.cs.princeton.edu/41graph/moviestiny.txt
https://algs4.cs.princeton.edu/41graph/moviesG.txt
https://algs4.cs.princeton.edu/41graph/moviestopGrossing.txt
% python symbol_graph.py routes.txt " "
JFK
MCO
ATL
ORD
LAX
PHX
LAS
% python symbol_graph.py movies.txt "/"
Tin Men (1987)
Hershey, Barbara
Geppi, Cindy
<NAME> (II)
Herr, Marcia
...
Blumenfeld, Alan
DeBoy, David
Bacon, Kevin
Woodsman, The (2004)
Wild Things (1998)
Where the Truth Lies (2005)
Tremors (1990)
...
Apollo 13 (1995)
Animal House (1978)
Assumes that input file is encoded using UTF-8.
% iconv -f ISO-8859-1 -t UTF-8 movies-iso8859.txt > movies.txt
"""
from algs4.st import ST
from algs4.graph import Graph
class SymbolGraph:
def __init__(self, stream, sp):
self.st = ST()
for line in open(stream):
a = line.strip().split(sp)
for i in range(len(a)):
if not self.st.contains(a[i]):
self.st.put(a[i], self.st.size())
self.keys = ["" for _ in range(self.st.size())]
for key in self.st.keys():
self.keys[self.st.get(key)] = key
self.G = Graph(self.st.size())
for line in open(stream):
a = line.strip().split(sp)
v = self.st.get(a[0])
for i in range(1, len(a)):
self.G.add_edge(v, self.st.get(a[i]))
def contains(self, s):
return self.st.contains(s)
def index(self, s):
return self.st.get(s)
def name(self, v):
return self.keys[v]
def graph(self):
return self.G
if __name__ == "__main__":
import sys
filename, delimiter = sys.argv[1], sys.argv[2]
sg = SymbolGraph(filename, delimiter)
graph = sg.graph()
for line in sys.stdin:
source = line.strip()
if sg.contains(source):
s = sg.index(source)
for v in graph.adj[s]:
print(" ", sg.name(v), end='')
else:
print("input not contains source: ", source)
|
python/pmercury/protocols/dhcp.py | raj-apoorv/mercury | 299 | 12777333 | """
Copyright (c) 2019 Cisco Systems, Inc. All rights reserved.
License at https://github.com/cisco/mercury/blob/master/LICENSE
"""
import os
import sys
import functools
from socket import AF_INET, AF_INET6, inet_ntop
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(os.path.dirname(os.path.abspath(__file__))+'/../')
from pmercury.protocols.protocol import Protocol
MAX_CACHED_RESULTS = 2**24
class DHCP(Protocol):
def __init__(self, fp_database=None, config=None):
# populate fingerprint databases
self.fp_db = None
DHCP.static_data = set([0x35, 0x37])
DHCP.contextual_data = {0x03: ('router',lambda x: inet_ntop(AF_INET, x)),
0x06: ('domain_name_server',lambda x: inet_ntop(AF_INET, x)),
0x0c: ('hostname',lambda x: x.decode()),
0x0f: ('domain_name',lambda x: x.decode()),
0x32: ('requested_ip',lambda x: inet_ntop(AF_INET, x)),
0x3c: ('vendor_class_id',lambda x: x.decode())}
@staticmethod
def proto_identify(data, offset, data_len):
if data_len < 230:
return False
if (data[offset] != 0x01 or
data[offset+236] != 0x63 or
data[offset+237] != 0x82 or
data[offset+238] != 0x53 or
data[offset+239] != 0x63):
return False
return True
@staticmethod
def fingerprint(data, offset, data_len):
hardware_address_length = data[offset + 2]
cmac = data[offset+28:offset+28+hardware_address_length].hex()
context = [{'name': 'client_mac_address', 'data': '%s' % ':'.join(a+b for a,b in zip(cmac[::2], cmac[1::2]))}]
offset += 240
fp_ = '('
while offset < data_len:
kind = data[offset]
if kind == 0xff or kind == 0x00: # End / Padding
fp_ += '(%02x)' % kind
break
length = data[offset+1]
if kind in DHCP.contextual_data:
name_, transform_ = DHCP.contextual_data[kind]
context.append({'name':name_,
'data':transform_(data[offset+2:offset+2+length])})
if offset+length+2 >= data_len:
return None
if kind not in DHCP.static_data:
fp_ += '(%02x)' % kind
offset += length+2
continue
fp_ += '(%s)' % data[offset:offset+2+length].hex()
offset += length+2
fp_ += ')'
return fp_, context
|
astroNN/__init__.py | igomezv/astroNN | 156 | 12777350 | r"""
Deep Learning for Astronomers with Tensorflow
"""
from pkg_resources import get_distribution
version = __version__ = get_distribution('astroNN').version
|
renderer/render_utils.py | archonic/frankmocap | 1,612 | 12777443 | # Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
# vertices: frames x meshVerNum x 3
# trifaces: facePolygonNum x 3 = 22800 x 3
def ComputeNormal(vertices, trifaces):
if vertices.shape[0] > 5000:
print('ComputeNormal: Warning: too big to compute {0}'.format(vertices.shape) )
return
#compute vertex Normals for all frames
U = vertices[:,trifaces[:,1],:] - vertices[:,trifaces[:,0],:] #frames x faceNum x 3
V = vertices[:,trifaces[:,2],:] - vertices[:,trifaces[:,1],:] #frames x faceNum x 3
originalShape = U.shape #remember: frames x faceNum x 3
U = np.reshape(U, [-1,3])
V = np.reshape(V, [-1,3])
faceNormals = np.cross(U,V) #frames x 13776 x 3
from sklearn.preprocessing import normalize
if np.isnan(np.max(faceNormals)):
print('ComputeNormal: Warning nan is detected {0}')
return
faceNormals = normalize(faceNormals)
faceNormals = np.reshape(faceNormals, originalShape)
if False: #Slow version
vertex_normals = np.zeros(vertices.shape) #(frames x 11510) x 3
for fIdx, vIdx in enumerate(trifaces[:,0]):
vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:]
for fIdx, vIdx in enumerate(trifaces[:,1]):
vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:]
for fIdx, vIdx in enumerate(trifaces[:,2]):
vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:]
else: #Faster version
# Computing vertex normals, much faster (and obscure) replacement
index = np.vstack((np.ravel(trifaces), np.repeat(np.arange(len(trifaces)), 3))).T
index_sorted = index[index[:,0].argsort()]
vertex_normals = np.add.reduceat(faceNormals[:,index_sorted[:, 1],:][0],
np.concatenate(([0], np.cumsum(np.unique(index_sorted[:, 0],
return_counts=True)[1])[:-1])))[None, :]
vertex_normals = vertex_normals.astype(np.float64)
originalShape = vertex_normals.shape
vertex_normals = np.reshape(vertex_normals, [-1,3])
vertex_normals = normalize(vertex_normals)
vertex_normals = np.reshape(vertex_normals,originalShape)
return vertex_normals
def ComputeNormal_gpu(vertices, trifaces):
import torch
import torch.nn.functional as F
if vertices.shape[0] > 5000:
print('ComputeNormal: Warning: too big to compute {0}'.format(vertices.shape) )
return
#compute vertex Normals for all frames
#trifaces_cuda = torch.from_numpy(trifaces.astype(np.long)).cuda()
vertices_cuda = torch.from_numpy(vertices.astype(np.float32)).cuda()
U_cuda = vertices_cuda[:,trifaces[:,1],:] - vertices_cuda[:,trifaces[:,0],:] #frames x faceNum x 3
V_cuda = vertices_cuda[:,trifaces[:,2],:] - vertices_cuda[:,trifaces[:,1],:] #frames x faceNum x 3
originalShape = list(U_cuda.size()) #remember: frames x faceNum x 3
U_cuda = torch.reshape(U_cuda, [-1,3])#.astype(np.float32)
V_cuda = torch.reshape(V_cuda, [-1,3])#.astype(np.float32)
faceNormals = U_cuda.cross(V_cuda)
faceNormals = F.normalize(faceNormals,dim=1)
faceNormals = torch.reshape(faceNormals, originalShape)
# trifaces has duplicated vertex index, so cannot be parallazied
# vertex_normals = torch.zeros(vertices.shape,dtype=torch.float32).cuda() #(frames x 11510) x 3
# for fIdx, vIdx in enumerate(trifaces[:,0]):
# vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:]
# for fIdx, vIdx in enumerate(trifaces[:,1]):
# vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:]
# for fIdx, vIdx in enumerate(trifaces[:,2]):
# vertex_normals[:,vIdx,:] += faceNormals[:,fIdx,:]
# Computing vertex normals, much faster (and obscure) replacement
index = np.vstack((np.ravel(trifaces), np.repeat(np.arange(len(trifaces)), 3))).T
index_sorted = index[index[:,0].argsort()]
vertex_normals = np.add.reduceat(faceNormals[:,index_sorted[:, 1],:][0],
np.concatenate(([0], np.cumsum(np.unique(index_sorted[:, 0],
return_counts=True)[1])[:-1])))[None, :]
vertex_normals = torch.from_numpy(vertex_normals).float().cuda()
vertex_normals = F.normalize(vertex_normals,dim=2)
vertex_normals = vertex_normals.data.cpu().numpy() #(batch, chunksize, dim)
return vertex_normals
|
rlgraph/agents/sac_agent.py | RLGraph/RLGraph | 290 | 12777480 | # Copyright 2018/2019 The RLgraph authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import, division, print_function
import numpy as np
from rlgraph import get_backend
from rlgraph.agents import Agent
from rlgraph.components import Component, Synchronizable, Memory, ValueFunction, ContainerMerger, PrioritizedReplay
from rlgraph.components.loss_functions.sac_loss_function import SACLossFunction
from rlgraph.spaces import FloatBox, BoolBox, IntBox, ContainerSpace
from rlgraph.spaces.space_utils import sanity_check_space
from rlgraph.utils import RLGraphError
from rlgraph.utils.decorators import rlgraph_api, graph_fn
from rlgraph.utils.ops import flatten_op, DataOpTuple
from rlgraph.utils.util import strip_list, force_list
if get_backend() == "tf":
import tensorflow as tf
elif get_backend() == "pytorch":
import torch
class SyncSpecification(object):
"""Describes a synchronization schedule, used to update the target value weights. The target values are gradually
updates using exponential moving average as suggested by the paper."""
def __init__(self, sync_interval=None, sync_tau=None):
"""
Arguments:
sync_interval: How often to update the target.
sync_tau: The smoothing constant to use in the averaging. Setting to 1 replaces the values each iteration.
"""
self.sync_interval = sync_interval
self.sync_tau = sync_tau
class SACAgentComponent(Component):
def __init__(self, agent, policy, q_function, preprocessor, memory, discount, initial_alpha, target_entropy,
optimizer, vf_optimizer, alpha_optimizer, q_sync_spec, num_q_functions=2):
super(SACAgentComponent, self).__init__(nesting_level=0)
self.agent = agent
self._policy = policy
self._preprocessor = preprocessor
self._memory = memory
self._q_functions = [q_function]
self._q_functions += [q_function.copy(scope="{}-{}".format(q_function.scope, i + 1), trainable=True)
for i in range(num_q_functions - 1)]
# Set number of return values for get_q_values graph_fn.
self.graph_fn_num_outputs["_graph_fn_get_q_values"] = num_q_functions
for q in self._q_functions:
# TODO: is there a better way to do this?
if "synchronizable" not in q.sub_components:
q.add_components(Synchronizable(), expose_apis="sync")
self._target_q_functions = [q.copy(scope="target-" + q.scope, trainable=True) for q in self._q_functions]
for target_q in self._target_q_functions:
# TODO: is there a better way to do this?
if "synchronizable" not in target_q.sub_components:
target_q.add_components(Synchronizable(), expose_apis="sync")
self._optimizer = optimizer
self.vf_optimizer = vf_optimizer
self.alpha_optimizer = alpha_optimizer
self.initial_alpha = initial_alpha
self.log_alpha = None
self.target_entropy = target_entropy
self.loss_function = SACLossFunction(target_entropy=target_entropy, discount=discount,
num_q_functions=num_q_functions)
memory_items = ["states", "actions", "rewards", "next_states", "terminals"]
self._merger = ContainerMerger(*memory_items)
q_names = ["q_{}".format(i) for i in range(len(self._q_functions))]
self._q_vars_merger = ContainerMerger(*q_names, scope="q_vars_merger")
self.add_components(policy, preprocessor, memory, self._merger, self.loss_function,
optimizer, vf_optimizer, self._q_vars_merger) # , self._q_vars_splitter)
self.add_components(*self._q_functions)
self.add_components(*self._target_q_functions)
if self.alpha_optimizer is not None:
self.add_components(self.alpha_optimizer)
self.steps_since_last_sync = None
self.q_sync_spec = q_sync_spec
self.env_action_space = None
self.episode_reward = None
def check_input_spaces(self, input_spaces, action_space=None):
for s in ["states", "actions", "env_actions", "preprocessed_states", "rewards", "terminals"]:
sanity_check_space(input_spaces[s], must_have_batch_rank=True)
self.env_action_space = input_spaces["env_actions"].flatten()
def create_variables(self, input_spaces, action_space=None):
self.steps_since_last_sync = self.get_variable("steps_since_last_sync", dtype="int", initializer=0)
self.log_alpha = self.get_variable("log_alpha", dtype="float", initializer=np.log(self.initial_alpha))
self.episode_reward = self.get_variable("episode_reward", shape=(), initializer=0.0)
@rlgraph_api
def get_policy_weights(self):
return self._policy.variables()
@rlgraph_api
def get_q_weights(self):
merged_weights = self._q_vars_merger.merge(*[q.variables() for q in self._q_functions])
return merged_weights
@rlgraph_api(must_be_complete=False)
def set_policy_weights(self, weights):
return self._policy.sync(weights)
""" TODO: need to define the input space
@rlgraph_api(must_be_complete=False)
def set_q_weights(self, q_weights):
split_weights = self._q_vars_splitter.call(q_weights)
assert len(split_weights) == len(self._q_functions)
update_ops = [q.sync(q_weights) for q_weights, q in zip(split_weights, self._q_functions)]
update_ops.extend([q.sync(q_weights) for q_weights, q in zip(split_weights, self._target_q_functions)])
return tuple(update_ops)
"""
@rlgraph_api
def preprocess_states(self, states):
return self._preprocessor.preprocess(states)
@rlgraph_api
def insert_records(self, preprocessed_states, env_actions, rewards, next_states, terminals):
records = self._merger.merge(preprocessed_states, env_actions, rewards, next_states, terminals)
return self._memory.insert_records(records)
@rlgraph_api
def update_from_memory(self, batch_size=64, time_percentage=None):
records, sample_indices, importance_weights = self._memory.get_records(batch_size)
result = self.update_from_external_batch(
records["states"], records["actions"], records["rewards"], records["terminals"],
records["next_states"], importance_weights, time_percentage
)
if isinstance(self._memory, PrioritizedReplay):
update_pr_step_op = self._memory.update_records(sample_indices, result["critic_loss_per_item"])
result["update_pr_step_op"] = update_pr_step_op
return result
@rlgraph_api
def update_from_external_batch(
self, preprocessed_states, env_actions, rewards, terminals, next_states, importance_weights,
time_percentage=None
):
actions = self._graph_fn_one_hot(env_actions)
actor_loss, actor_loss_per_item, critic_loss, critic_loss_per_item, alpha_loss, alpha_loss_per_item = \
self.get_losses(preprocessed_states, actions, rewards, terminals, next_states, importance_weights)
policy_vars = self._policy.variables()
q_vars = [q_func.variables() for q_func in self._q_functions]
merged_q_vars = self._q_vars_merger.merge(*q_vars)
critic_step_op = self.vf_optimizer.step(merged_q_vars, critic_loss, critic_loss_per_item, time_percentage)
actor_step_op = self._optimizer.step(policy_vars, actor_loss, actor_loss_per_item, time_percentage)
if self.target_entropy is not None:
alpha_step_op = self._graph_fn_update_alpha(alpha_loss, alpha_loss_per_item, time_percentage)
else:
alpha_step_op = self._graph_fn_no_op()
# TODO: optimizer for alpha
sync_op = self.sync_targets()
# Increase the global training step counter.
alpha_step_op = self._graph_fn_training_step(alpha_step_op)
return dict(
actor_step_op=actor_step_op,
critic_step_op=critic_step_op,
sync_op=sync_op,
alpha_step_op=alpha_step_op,
actor_loss=actor_loss,
actor_loss_per_item=actor_loss_per_item,
critic_loss=critic_loss,
critic_loss_per_item=critic_loss_per_item,
alpha_loss=alpha_loss,
alpha_loss_per_item=alpha_loss_per_item
)
@graph_fn(flatten_ops=True, split_ops=True, add_auto_key_as_first_param=True)
def _graph_fn_one_hot(self, key, env_actions):
if isinstance(self.env_action_space[key], IntBox):
env_actions = tf.one_hot(env_actions, depth=self.env_action_space[key].num_categories, axis=-1)
return env_actions
@graph_fn(requires_variable_completeness=True)
def _graph_fn_update_alpha(self, alpha_loss, alpha_loss_per_item, time_percentage=None):
alpha_step_op = self.alpha_optimizer.step(
DataOpTuple([self.log_alpha]), alpha_loss, alpha_loss_per_item, time_percentage
)
return alpha_step_op
@rlgraph_api # `returns` are determined in ctor
def _graph_fn_get_q_values(self, preprocessed_states, actions, target=False):
backend = get_backend()
flat_actions = flatten_op(actions)
actions = []
for flat_key, action_component in self._policy.action_space.flatten().items():
actions.append(flat_actions[flat_key])
if backend == "tf":
actions = tf.concat(actions, axis=-1)
elif backend == "pytorch":
actions = torch.cat(actions, dim=-1)
q_funcs = self._q_functions if target is False else self._target_q_functions
# We do not concat states yet because we might pass states through a conv stack before merging it
# with actions.
return tuple(q.state_action_value(preprocessed_states, actions) for q in q_funcs)
@rlgraph_api
def get_losses(self, preprocessed_states, actions, rewards, terminals, next_states, importance_weights):
# TODO: internal states
samples_next = self._policy.get_action_and_log_likelihood(next_states, deterministic=False)
next_sampled_actions = samples_next["action"]
log_probs_next_sampled = samples_next["log_likelihood"]
q_values_next_sampled = self.get_q_values(
next_states, next_sampled_actions, target=True
)
q_values = self.get_q_values(preprocessed_states, actions)
samples = self._policy.get_action_and_log_likelihood(preprocessed_states, deterministic=False)
sampled_actions = samples["action"]
log_probs_sampled = samples["log_likelihood"]
q_values_sampled = self.get_q_values(preprocessed_states, sampled_actions)
alpha = self._graph_fn_compute_alpha()
return self.loss_function.loss(
alpha,
log_probs_next_sampled,
q_values_next_sampled,
q_values,
log_probs_sampled,
q_values_sampled,
rewards,
terminals
)
@rlgraph_api
def get_preprocessed_state_and_action(self, states, deterministic=False):
preprocessed_states = self._preprocessor.preprocess(states)
return self.action_from_preprocessed_state(preprocessed_states, deterministic)
@rlgraph_api
def action_from_preprocessed_state(self, preprocessed_states, deterministic=False):
out = self._policy.get_action(preprocessed_states, deterministic=deterministic)
return out["action"], preprocessed_states
@rlgraph_api(requires_variable_completeness=True)
def reset_targets(self):
ops = (target_q.sync(q.variables()) for q, target_q in zip(self._q_functions, self._target_q_functions))
return tuple(ops)
@rlgraph_api(requires_variable_completeness=True)
def sync_targets(self):
should_sync = self._graph_fn_get_should_sync()
return self._graph_fn_sync(should_sync)
@rlgraph_api
def get_memory_size(self):
return self._memory.get_size()
@graph_fn
def _graph_fn_compute_alpha(self):
backend = get_backend()
if backend == "tf":
return tf.exp(self.log_alpha)
elif backend == "pytorch":
return torch.exp(self.log_alpha)
# TODO: Move this into generic AgentRootComponent.
@graph_fn
def _graph_fn_training_step(self, other_step_op=None):
if self.agent is not None:
add_op = tf.assign_add(self.agent.graph_executor.global_training_timestep, 1)
op_list = [add_op] + [other_step_op] if other_step_op is not None else []
with tf.control_dependencies(op_list):
return tf.no_op() if other_step_op is None else other_step_op
else:
return tf.no_op() if other_step_op is None else other_step_op
@graph_fn(returns=1, requires_variable_completeness=True)
def _graph_fn_get_should_sync(self):
if get_backend() == "tf":
inc_op = tf.assign_add(self.steps_since_last_sync, 1)
should_sync = inc_op >= self.q_sync_spec.sync_interval
def reset_op():
op = tf.assign(self.steps_since_last_sync, 0)
with tf.control_dependencies([op]):
return tf.no_op()
sync_op = tf.cond(
pred=inc_op >= self.q_sync_spec.sync_interval,
true_fn=reset_op,
false_fn=tf.no_op
)
with tf.control_dependencies([sync_op]):
return tf.identity(should_sync)
else:
raise NotImplementedError("TODO")
@graph_fn(returns=1, requires_variable_completeness=True)
def _graph_fn_sync(self, should_sync):
assign_ops = []
tau = self.q_sync_spec.sync_tau
if tau != 1.0:
all_source_vars = [source.get_variables(collections=None, custom_scope_separator="-") for source in self._q_functions]
all_dest_vars = [destination.get_variables(collections=None, custom_scope_separator="-") for destination in self._target_q_functions]
for source_vars, dest_vars in zip(all_source_vars, all_dest_vars):
for (source_key, source_var), (dest_key, dest_var) in zip(sorted(source_vars.items()), sorted(dest_vars.items())):
assign_ops.append(tf.assign(dest_var, tau * source_var + (1.0 - tau) * dest_var))
else:
all_source_vars = [source.variables() for source in self._q_functions]
for source_vars, destination in zip(all_source_vars, self._target_q_functions):
assign_ops.append(destination.sync(source_vars))
assert len(assign_ops) > 0
grouped_op = tf.group(assign_ops)
def assign_op():
# Make sure we are returning no_op as opposed to reference
with tf.control_dependencies([grouped_op]):
return tf.no_op()
cond_assign_op = tf.cond(should_sync, true_fn=assign_op, false_fn=tf.no_op)
with tf.control_dependencies([cond_assign_op]):
return tf.no_op()
@graph_fn
def _graph_fn_no_op(self):
return tf.no_op()
@rlgraph_api
def get_global_timestep(self):
return self.read_variable(self.agent.graph_executor.global_timestep)
@rlgraph_api
def _graph_fn_update_global_timestep(self, increment):
if get_backend() == "tf":
add_op = tf.assign_add(self.agent.graph_executor.global_timestep, increment)
return add_op
elif get_backend == "pytorch":
self.agent.graph_executor.global_timestep += increment
return self.agent.graph_executor.global_timestep
@rlgraph_api
def _graph_fn_get_episode_reward(self):
return self.episode_reward
@rlgraph_api
def _graph_fn_set_episode_reward(self, episode_reward):
return tf.assign(self.episode_reward, episode_reward)
class SACAgent(Agent):
def __init__(
self,
state_space,
action_space,
discount=0.98,
preprocessing_spec=None,
network_spec=None,
internal_states_space=None,
policy_spec=None,
value_function_spec=None,
execution_spec=None,
optimizer_spec=None,
value_function_optimizer_spec=None,
observe_spec=None,
update_spec=None,
summary_spec=None,
saver_spec=None,
auto_build=True,
name="sac-agent",
double_q=True,
initial_alpha=1.0,
gumbel_softmax_temperature=1.0,
target_entropy=None,
memory_spec=None,
value_function_sync_spec=None
):
"""
This is an implementation of the Soft-Actor Critic algorithm.
Paper: http://arxiv.org/abs/1801.01290
Args:
state_space (Union[dict,Space]): Spec dict for the state Space or a direct Space object.
action_space (Union[dict,Space]): Spec dict for the action Space or a direct Space object.
preprocessing_spec (Optional[list,PreprocessorStack]): The spec list for the different necessary states
preprocessing steps or a PreprocessorStack object itself.
discount (float): The discount factor (gamma).
network_spec (Optional[list,NeuralNetwork]): Spec list for a NeuralNetwork Component or the NeuralNetwork
object itself.
internal_states_space (Optional[Union[dict,Space]]): Spec dict for the internal-states Space or a direct
Space object for the Space(s) of the internal (RNN) states.
policy_spec (Optional[dict]): An optional dict for further kwargs passing into the Policy c'tor.
value_function_spec (list, dict, ValueFunction): Neural network specification for baseline or instance
of ValueFunction.
execution_spec (Optional[dict,Execution]): The spec-dict specifying execution settings.
optimizer_spec (Optional[dict,Optimizer]): The spec-dict to create the Optimizer for this Agent.
value_function_optimizer_spec (dict): Optimizer config for value function optimizer. If None, the optimizer
spec for the policy is used (same learning rate and optimizer type).
observe_spec (Optional[dict]): Spec-dict to specify `Agent.observe()` settings.
update_spec (Optional[dict]): Spec-dict to specify `Agent.update()` settings.
summary_spec (Optional[dict]): Spec-dict to specify summary settings.
saver_spec (Optional[dict]): Spec-dict to specify saver settings.
auto_build (Optional[bool]): If True (default), immediately builds the graph using the agent's
graph builder. If false, users must separately call agent.build(). Useful for debugging or analyzing
components before building.
name (str): Some name for this Agent object.
double_q (bool): Whether to train two q networks independently.
initial_alpha (float): "The temperature parameter α determines the
relative importance of the entropy term against the reward".
gumbel_softmax_temperature (float): Temperature parameter for the Gumbel-Softmax distribution used
for discrete actions.
memory_spec (Optional[dict,Memory]): The spec for the Memory to use for the DQN algorithm.
update_spec (dict): Here we can have sync_interval or sync_tau (for the value network update).
"""
# If VF spec is a network spec, wrap with SAC vf type. The VF must concatenate actions and states,
# which can require splitting the network in the case of e.g. conv-inputs.
if isinstance(value_function_spec, list):
value_function_spec = dict(type="sac_value_function", network_spec=value_function_spec)
self.logger.info("Using default SAC value function.")
elif isinstance(value_function_spec, ValueFunction):
self.logger.info("Using value function object {}".format(ValueFunction))
if policy_spec is None:
# Continuous action space: Use squashed normal.
# Discrete: Gumbel-softmax.
policy_spec = dict(deterministic=False,
distributions_spec=dict(
bounded_distribution_type="squashed",
discrete_distribution_type="gumbel_softmax",
gumbel_softmax_temperature=gumbel_softmax_temperature
))
super(SACAgent, self).__init__(
state_space=state_space,
action_space=action_space,
discount=discount,
preprocessing_spec=preprocessing_spec,
network_spec=network_spec,
internal_states_space=internal_states_space,
policy_spec=policy_spec,
value_function_spec=value_function_spec,
execution_spec=execution_spec,
optimizer_spec=optimizer_spec,
value_function_optimizer_spec=value_function_optimizer_spec,
observe_spec=observe_spec,
update_spec=update_spec,
summary_spec=summary_spec,
saver_spec=saver_spec,
auto_build=auto_build,
name=name
)
self.double_q = double_q
self.target_entropy = target_entropy
self.initial_alpha = initial_alpha
# Assert that the synch interval is a multiple of the update_interval.
if "sync_interval" in self.update_spec:
if self.update_spec["sync_interval"] / self.update_spec["update_interval"] != \
self.update_spec["sync_interval"] // self.update_spec["update_interval"]:
raise RLGraphError(
"ERROR: sync_interval ({}) must be multiple of update_interval "
"({})!".format(self.update_spec["sync_interval"], self.update_spec["update_interval"])
)
elif "sync_tau" in self.update_spec:
if self.update_spec["sync_tau"] <= 0 or self.update_spec["sync_tau"] > 1.0:
raise RLGraphError(
"sync_tau ({}) must be in interval (0.0, 1.0]!".format(self.update_spec["sync_tau"])
)
else:
self.update_spec["sync_tau"] = 0.005 # The value mentioned in the paper
# Extend input Space definitions to this Agent's specific API-methods.
preprocessed_state_space = self.preprocessed_state_space.with_batch_rank()
reward_space = FloatBox(add_batch_rank=True)
terminal_space = BoolBox(add_batch_rank=True)
#self.iterations = self.update_spec["num_iterations"]
self.batch_size = self.update_spec["batch_size"]
float_action_space = self.action_space.with_batch_rank().map(
mapping=lambda flat_key, space: space.as_one_hot_float_space() if isinstance(space, IntBox) else space
)
self.input_spaces.update(dict(
env_actions=self.action_space.with_batch_rank(),
actions=float_action_space,
preprocessed_states=preprocessed_state_space,
rewards=reward_space,
terminals=terminal_space,
next_states=preprocessed_state_space,
states=self.state_space.with_batch_rank(add_batch_rank=True),
batch_size=int,
importance_weights=FloatBox(add_batch_rank=True),
deterministic=bool,
weights="variables:{}".format(self.policy.scope)
))
if value_function_sync_spec is None:
value_function_sync_spec = SyncSpecification(
sync_interval=self.update_spec["sync_interval"] // self.update_spec["update_interval"],
sync_tau=self.update_spec["sync_tau"] if "sync_tau" in self.update_spec else 5e-3
)
self.memory = Memory.from_spec(memory_spec)
self.alpha_optimizer = self.optimizer.copy(scope="alpha-" + self.optimizer.scope) if self.target_entropy is not None else None
self.root_component = SACAgentComponent(
agent=self,
policy=self.policy,
q_function=self.value_function,
preprocessor=self.preprocessor,
memory=self.memory,
discount=self.discount,
initial_alpha=self.initial_alpha,
target_entropy=target_entropy,
optimizer=self.optimizer,
vf_optimizer=self.value_function_optimizer,
alpha_optimizer=self.alpha_optimizer,
q_sync_spec=value_function_sync_spec,
num_q_functions=2 if self.double_q is True else 1
)
extra_optimizers = [self.value_function_optimizer]
if self.alpha_optimizer is not None:
extra_optimizers.append(self.alpha_optimizer)
self.build_options = dict(optimizers=extra_optimizers)
if self.auto_build:
self._build_graph(
[self.root_component], self.input_spaces, optimizer=self.optimizer,
batch_size=self.update_spec["batch_size"],
build_options=self.build_options
)
self.graph_built = True
def set_weights(self, policy_weights, value_function_weights=None):
# TODO: Overrides parent but should this be policy of value function?
return self.graph_executor.execute((self.root_component.set_policy_weights, policy_weights))
def get_weights(self):
return dict(policy_weights=self.graph_executor.execute(self.root_component.get_policy_weights))
def get_action(self, states, internals=None, use_exploration=True, apply_preprocessing=True, extra_returns=None,
time_percentage=None):
# TODO: common pattern - move to Agent
"""
Args:
extra_returns (Optional[Set[str],str]): Optional string or set of strings for additional return
values (besides the actions). Possible values are:
- 'preprocessed_states': The preprocessed states after passing the given states through the
preprocessor stack.
- 'internal_states': The internal states returned by the RNNs in the NN pipeline.
- 'used_exploration': Whether epsilon- or noise-based exploration was used or not.
Returns:
tuple or single value depending on `extra_returns`:
- action
- the preprocessed states
"""
extra_returns = {extra_returns} if isinstance(extra_returns, str) else (extra_returns or set())
# States come in without preprocessing -> use state space.
if apply_preprocessing:
call_method = self.root_component.get_preprocessed_state_and_action
batched_states, remove_batch_rank = self.state_space.force_batch(states)
else:
call_method = self.root_component.action_from_preprocessed_state
batched_states = states
remove_batch_rank = False
#remove_batch_rank = batched_states.ndim == np.asarray(states).ndim + 1
# Increase timesteps by the batch size (number of states in batch).
batch_size = len(batched_states)
self.timesteps += batch_size
# Control, which return value to "pull" (depending on `additional_returns`).
return_ops = [0, 1] if "preprocessed_states" in extra_returns else [0]
ret = force_list(self.graph_executor.execute((
call_method,
[batched_states, not use_exploration], # deterministic = not use_exploration
# 0=preprocessed_states, 1=action
return_ops
)))
# Convert Gumble (relaxed one-hot) sample back into int type for all discrete composite actions.
if isinstance(self.action_space, ContainerSpace):
ret[0] = ret[0].map(
mapping=lambda key, action: np.argmax(action, axis=-1).astype(action.dtype)
if isinstance(self.flat_action_space[key], IntBox) else action
)
elif isinstance(self.action_space, IntBox):
ret[0] = np.argmax(ret[0], axis=-1).astype(self.action_space.dtype)
if remove_batch_rank:
ret[0] = strip_list(ret[0])
if "preprocessed_states" in extra_returns:
return ret[0], ret[1]
else:
return ret[0]
def _observe_graph(self, preprocessed_states, actions, internals, rewards, next_states, terminals):
self.graph_executor.execute((self.root_component.insert_records, [preprocessed_states, actions, rewards, next_states, terminals]))
def update(self, batch=None, time_percentage=None, **kwargs):
if batch is None:
size = self.graph_executor.execute(self.root_component.get_memory_size)
# TODO: is this necessary?
if size < self.batch_size:
return 0.0, 0.0, 0.0
ret = self.graph_executor.execute((self.root_component.update_from_memory, [self.batch_size, time_percentage]))
else:
ret = self.graph_executor.execute((self.root_component.update_from_external_batch, [
batch["states"], batch["actions"], batch["rewards"], batch["terminals"], batch["next_states"],
batch["importance_weights"], time_percentage
]))
return ret["actor_loss"], ret["actor_loss_per_item"], ret["critic_loss"], ret["alpha_loss"]
def reset(self):
"""
Resets our preprocessor, but only if it contains stateful PreprocessLayer Components (meaning
the PreprocessorStack has at least one variable defined).
"""
if self.preprocessing_required and len(self.preprocessor.variables) > 0:
self.graph_executor.execute("reset_preprocessor")
self.graph_executor.execute(self.root_component.reset_targets)
def __repr__(self):
return "SACAgent(double-q={}, initial-alpha={}, target-entropy={})".format(
self.double_q, self.initial_alpha, self.target_entropy
)
|
python/chartParsing.py | pramitmallick/spinn | 103 | 12777498 | """
Artifical test for chart parsing
"""
from random import shuffle
import numpy as np
import string
def generate_string(length):
letters = list(string.ascii_lowercase) + list(string.ascii_uppercase)
shuffle(letters)
output = []
for i in range(length):
output.append(letters[i])
return output
sen_length = 25
sentence = generate_string(sen_length)
# Compose : [A, B] = (A) + (B) = (AB)
# Combine : ((AB)C), (A(BC)) = (ABC)
# A + B = (AB)
# (AB) + C = ((AB)C)
def compose(l, r):
return "(" + l + r + ")"
def combine(list_versions):
return list_versions[0]
#return list_versions[0].replace("(","").replace(")","")
def compute_compositions(sent):
length = len(sent) -1
l_hiddens = sent[:-1]
l_cells = sent[:-1]
r_hiddens = sent[1:]
r_cells = sent[1:]
chart = []
masks = []
choices = []
"""
layer_0 = []
for i in range(len(sent)):
layer_0.append((sent[i], sent[i]))
chart = [layer_0]
"""
chart = [sent] # list or tuple. w/e
masks = [np.zeros(len(sent))]
choices = [sent]
for row in range(1, len(sent)):
chart.append([])
masks.append([])
choices.append([])
for col in range(len(sent) - row):
chart[row].append(None)
masks[row].append(None)
choices[row].append(None)
for row in range(1, len(sent)): # = len(l_hiddens)
for col in range(len(sent) - row):
versions = []
for i in range(row):
#print row, col, chart[row-i-1][col], chart[i][row+col-i]
versions.append(compose(chart[row-i-1][col], chart[i][row+col-i]))
chart[row][col] = combine(versions)
choices[row][col] = versions
l = len(versions)
rand_pos = np.random.randint(l)
mask = np.zeros(l)
mask[rand_pos] += 1
masks[row][col] = mask
return chart, masks, choices
chart, mask, choices = compute_compositions(sentence)
"""
for row in len(choices):
for col in len(choices[row]):
pick = choices[row][col][int(np.where(mask[row][col])[0])]
"""
print choices[-1][-1][int(np.where(mask[-1][-1])[0])]
|
deinkscape.py | Emoji-COLRv0/emojitwo | 313 | 12777543 | #!/usr/bin/env python3
# -*- mode: python; coding: utf-8 -*-
# By HarJIT in 2020. MIT/Expat licence.
import os, xml.dom.minidom, shutil, re, glob
svgpresattrs = ("alignment-baseline", "baseline-shift", "clip", "clip-path", "clip-rule", "color",
"color-interpolation", "color-interpolation-filters", "color-profile", "color-rendering", "cursor",
"direction", "display", "dominant-baseline", "enable-background", "fill", "fill-opacity",
"fill-rule", "filter", "flood-color", "flood-opacity", "font-family", "font-size",
"font-size-adjust", "font-stretch", "font-style", "font-variant", "font-weight",
"glyph-orientation-horizontal", "glyph-orientation-vertical", "image-rendering", "kerning",
"letter-spacing", "lighting-color", "marker-end", "marker-mid", "marker-start", "mask", "opacity",
"overflow", "pointer-events", "shape-rendering", "solid-color", "solid-opacity", "stop-color",
"stop-opacity", "stroke", "stroke-dasharray", "stroke-dashoffset", "stroke-linecap",
"stroke-linejoin", "stroke-miterlimit", "stroke-opacity", "stroke-width", "text-anchor",
"text-decoration", "text-rendering", "transform", "unicode-bidi", "vector-effect",
"visibility", "word-spacing", "writing-mode")
needlessline = re.compile("(?m)^\s*\n")
def has_real_dc(document):
if document.getElementsByTagName("cc:license"):
return True
elif document.getElementsByTagName("cc:License"):
return True
elif document.getElementsByTagName("dc:contributor"):
return True
elif document.getElementsByTagName("cc:Agent"):
return True
elif document.getElementsByTagName("cc:permits"):
return True
elif document.getElementsByTagName("cc:requires"):
return True
return False
for pn in glob.glob("**/*.svg", recursive=True):
i = os.path.basename(pn)
if "draft" in i.casefold():
continue
document = xml.dom.minidom.parse(pn)
changed = False
keep_metadata = has_real_dc(document)
retain_ns = ["xmlns:xlink"]
if keep_metadata:
retain_ns.extend(["xmlns:rdf", "xmlns:cc", "xmlns:dc"])
for element in document.getElementsByTagName("*"):
if element.nodeName == "metadata" and not keep_metadata:
print(i, "removing", element.nodeName)
changed = True
element.parentNode.removeChild(element)
elif element.nodeName == "defs":
if (not element.childNodes) or (len(element.childNodes) == 1 and
element.firstChild.nodeName == "#text" and
not element.firstChild.wholeText.strip()):
print(i, "removing", element.nodeName)
changed = True
element.parentNode.removeChild(element)
elif element.nodeName.startswith(("inkscape:", "sodipodi:")):
print(i, "removing", element.nodeName)
changed = True
element.parentNode.removeChild(element)
#
if element.hasAttribute("style"):
# Rip SVG pres. attributes out of inline CSS, replacing any overridden attributes
# Note: this will bork on quoted ; in values, which I don't expect to occur.
stylelist = element.getAttribute("style").strip(";").split(";")
styleout = ""
for style in stylelist:
if ":" not in style:
continue # nvm
name, val = style.split(":", 1)
if name in svgpresattrs:
print(i, "attributising", name)
changed = True
element.setAttribute(name.strip(), val.strip())
elif "inkscape" in name:
print(i, "removing", name)
changed = True
pass
else:
print(i, "retaining", name)
changed = True
styleout += style + ";"
if not styleout:
element.removeAttribute("style")
else:
element.setAttribute("style", styleout)
for attr in list(element.attributes.keys())[:]:
if attr.startswith("stroke-") and not element.hasAttribute("stroke") and not (element.nodeName == "g"):
print(i, "removing", attr)
changed = True
element.removeAttribute(attr)
elif attr.startswith("inkscape:") or attr.startswith("sodipodi:"):
print(i, "removing", attr)
changed = True
element.removeAttribute(attr)
elif attr.startswith("xmlns:") and attr not in retain_ns:
print(i, "removing", attr)
changed = True
element.removeAttribute(attr)
elif (element.nodeName == "svg") and (attr == "version"):
print(i, "removing", attr)
changed = True
element.removeAttribute("version")
elif attr == "fill-opacity" and element.getAttribute("fill-opacity") == "1":
print(i, "removing", attr)
changed = True
element.removeAttribute("fill-opacity")
if element.hasAttribute("stroke"):
print(i, "has stroke")
if element.hasAttribute("id") and ((not element.parentNode) or
element.parentNode.nodeName != "defs"):
# Autogenerated ID rubbish
if re.compile(r"^{}\d+$".format(element.nodeName)).match(element.getAttribute("id")):
print(i, "removing ID", element.getAttribute("id"))
changed = True
element.removeAttribute("id")
if changed:
shutil.move(pn, pn + "~")
with open(pn, "w") as f:
x = document.toxml().replace("<?xml version=\"1.0\" ?>", "")
f.write("".join(needlessline.split(x)))
os.unlink(pn + "~")
|
tests/test_portfolio_handler.py | ivanliu1989/qstrader | 113 | 12777565 | import datetime
from decimal import Decimal
import unittest
from qstrader.event import FillEvent, OrderEvent, SignalEvent
from qstrader.portfolio_handler import PortfolioHandler
from qstrader.price_handler.base import AbstractTickPriceHandler
from qstrader.compat import queue
class PriceHandlerMock(AbstractTickPriceHandler):
def __init__(self):
pass
def get_best_bid_ask(self, ticker):
prices = {
"MSFT": (Decimal("50.28"), Decimal("50.31")),
"GOOG": (Decimal("705.46"), Decimal("705.46")),
"AMZN": (Decimal("564.14"), Decimal("565.14")),
}
return prices[ticker]
class PositionSizerMock(object):
def __init__(self):
pass
def size_order(self, portfolio, initial_order):
"""
This PositionSizerMock object simply modifies
the quantity to be 100 of any share transacted.
"""
initial_order.quantity = 100
return initial_order
class RiskManagerMock(object):
def __init__(self):
pass
def refine_orders(self, portfolio, sized_order):
"""
This RiskManagerMock object simply lets the
sized order through, creates the corresponding
OrderEvent object and adds it to a list.
"""
order_event = OrderEvent(
sized_order.ticker,
sized_order.action,
sized_order.quantity
)
return [order_event]
class TestSimpleSignalOrderFillCycleForPortfolioHandler(unittest.TestCase):
"""
Tests a simple Signal, Order and Fill cycle for the
PortfolioHandler. This is, in effect, a sanity check.
"""
def setUp(self):
"""
Set up the PortfolioHandler object supplying it with
$500,000.00 USD in initial cash.
"""
initial_cash = Decimal("500000.00")
events_queue = queue.Queue()
price_handler = PriceHandlerMock()
position_sizer = PositionSizerMock()
risk_manager = RiskManagerMock()
# Create the PortfolioHandler object from the rest
self.portfolio_handler = PortfolioHandler(
initial_cash, events_queue, price_handler,
position_sizer, risk_manager
)
def test_create_order_from_signal_basic_check(self):
"""
Tests the "_create_order_from_signal" method
as a basic sanity check.
"""
signal_event = SignalEvent("MSFT", "BOT")
order = self.portfolio_handler._create_order_from_signal(signal_event)
self.assertEqual(order.ticker, "MSFT")
self.assertEqual(order.action, "BOT")
self.assertEqual(order.quantity, 0)
def test_place_orders_onto_queue_basic_check(self):
"""
Tests the "_place_orders_onto_queue" method
as a basic sanity check.
"""
order = OrderEvent("MSFT", "BOT", 100)
order_list = [order]
self.portfolio_handler._place_orders_onto_queue(order_list)
ret_order = self.portfolio_handler.events_queue.get()
self.assertEqual(ret_order.ticker, "MSFT")
self.assertEqual(ret_order.action, "BOT")
self.assertEqual(ret_order.quantity, 100)
def test_convert_fill_to_portfolio_update_basic_check(self):
"""
Tests the "_convert_fill_to_portfolio_update" method
as a basic sanity check.
"""
fill_event_buy = FillEvent(
datetime.datetime.utcnow(), "MSFT", "BOT",
100, "ARCA", Decimal("50.25"), Decimal("1.00")
)
self.portfolio_handler._convert_fill_to_portfolio_update(fill_event_buy)
# Check the Portfolio values within the PortfolioHandler
port = self.portfolio_handler.portfolio
self.assertEqual(port.cur_cash, Decimal("494974.00"))
# TODO: Finish this off and check it works via Interactive Brokers
fill_event_sell = FillEvent(
datetime.datetime.utcnow(), "MSFT", "SLD",
100, "ARCA", Decimal("50.25"), Decimal("1.00")
)
self.portfolio_handler._convert_fill_to_portfolio_update(fill_event_sell)
def test_on_signal_basic_check(self):
"""
Tests the "on_signal" method as a basic sanity check.
"""
signal_event = SignalEvent("MSFT", "BOT")
self.portfolio_handler.on_signal(signal_event)
ret_order = self.portfolio_handler.events_queue.get()
self.assertEqual(ret_order.ticker, "MSFT")
self.assertEqual(ret_order.action, "BOT")
self.assertEqual(ret_order.quantity, 100)
if __name__ == "__main__":
unittest.main()
|
babble/__init__.py | billchenxi/babble | 130 | 12777587 | from .explanation import Explanation
from .parsing import Rule, Grammar, Parse, SemanticParser
from .filter_bank import FilterBank
from .utils import ExplanationIO, link_explanation_candidates
from .babbler import Babbler, BabbleStream |
src/bkl/interpreter/__init__.py | johnwbyrd/brakefile | 118 | 12777595 | #
# This file is part of Bakefile (http://bakefile.org)
#
# Copyright (C) 2008-2013 <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to
# deal in the Software without restriction, including without limitation the
# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
"""
This module contains the very core of Bakefile -- the interpreter,
:class:`bkl.interpreter.Interpreter`, and its supporting classes.
"""
import logging
import bkl.parser
import bkl.model
import bkl.api
import bkl.expr
import passes
from builder import Builder
from bkl.error import Error, warning
from bkl.parser import parse_file
logger = logging.getLogger("bkl.interpreter")
class Interpreter(object):
"""
The interpreter is responsible for doing everything necessary to
"translate" input ``.bkl`` files into generated native makefiles. This
includes building a project model from the input, checking it for
correctness, optimizing it and creating outputs for all enabled toolsets.
:class:`Interpreter` provides both high-level interface for single-call
usage (see :meth:`process`) and other methods with finer granularity that
allows you to inspect individual steps (most useful for the test suite).
.. attribute:: model
Model of the project, as :class:`bkl.model.Project`. It's state always
reflects current state of processing.
.. attribute:: toolsets_to_use
Set of toolsets to generate for. This list may contain only a subset of
toolsets the bakefile is written for and may even contain toolsets not
specified in the bakefile.
If :const:`None` (the default), then the toolsets listed in the bakefile
are used.
"""
def __init__(self):
self.model = bkl.model.Project()
self.toolsets_to_use = None
def limit_toolsets(self, toolsets):
"""Sets :attr:`toolsets_to_use`."""
self.toolsets_to_use = set(toolsets)
def process(self, ast):
"""
Interprets input file and generates the outputs.
:param ast: AST of the input file, as returned by
:func:`bkl.parser.parse_file`.
Processing is done in several phases:
1. Basic model is built (see :class:`bkl.interpreter.builder.Builder`).
No optimizations or checks are performed at this point.
2. Several generic optimization and checking passes are run on the
model. Among other things, types correctness and other constraints
are checked, variables are substituted and evaluated.
3. The model is split into several copies, one per output toolset.
4. Further optimization passes are done.
5. Output files are generated.
Step 1 is done by :meth:`add_module`. Steps 2-4 are done by
:meth:`finalize` and step 5 is implemented in :meth:`generate`.
"""
self.add_module(ast, self.model)
self.finalize()
self.generate()
def process_file(self, filename):
"""Like :meth:`process()`, but takes filename as its argument."""
self.process(parse_file(filename))
def add_module(self, ast, parent):
"""
Adds parsed AST to the model, without doing any optimizations. May be
called more than once, with different parsed files.
:param ast: AST of the input file, as returned by
:func:`bkl.parser.parse_file`.
"""
logger.info("processing %s", ast.filename)
submodules = []
b = Builder(on_submodule=lambda fn, pos: submodules.append((fn,pos)))
module = b.create_model(ast, parent)
while submodules:
sub_filename, sub_pos = submodules[0]
submodules.pop(0)
try:
sub_ast = parse_file(sub_filename)
except IOError as e:
if e.filename:
msg = "%s: %s" % (e.strerror, e.filename)
else:
msg = e.strerror
raise Error(msg, pos=sub_pos)
self.add_module(sub_ast, module)
def _call_custom_steps(self, model, func):
for step in bkl.api.CustomStep.all():
logger.debug("invoking custom step %s.%s()", step.name, func)
getattr(step, func)(model)
def finalize(self):
"""
Finalizes the model, i.e. checks it for validity, optimizes, creates
per-toolset models etc.
"""
logger.debug("finalizing the model")
# call any custom steps first:
self._call_custom_steps(self.model, "finalize")
# then apply standard processing:
passes.detect_potential_problems(self.model)
passes.normalize_and_validate_bool_subexpressions(self.model)
passes.normalize_vars(self.model)
passes.validate_vars(self.model)
passes.normalize_paths_in_model(self.model, toolset=None)
passes.simplify_exprs(self.model)
def finalize_for_toolset(self, toolset_model, toolset):
"""
Finalizes after "toolset" variable was set.
"""
passes.remove_disabled_model_parts(toolset_model, toolset)
# TODO: do this in finalize() instead
passes.make_variables_for_missing_props(toolset_model, toolset)
passes.eliminate_superfluous_conditionals(toolset_model)
# This is done second time here (in addition to finalize()) to deal
# with paths added by make_variables_for_missing_props() and paths with
# @builddir (which is toolset specific and couldn't be resolved
# earlier). Ideally we wouldn't do it, but hopefully it's not all that
# inefficient, as no real work is done for paths that are already
# normalized:
passes.normalize_paths_in_model(toolset_model, toolset)
def make_toolset_specific_model(self, toolset, skip_making_copy=False):
"""
Returns toolset-specific model, i.e. one that works only with
*toolset*, has the ``toolset`` property set to it. The caller
still needs to call finalize_for_toolset() on it.
"""
if skip_making_copy:
model = self.model
else:
model = self.model.clone()
# don't use Variable.from_property(), because it's read-only
model.add_variable(bkl.model.Variable.from_property(
model.get_prop("toolset"),
bkl.expr.LiteralExpr(toolset)))
return model
def generate(self):
"""
Generates output files.
"""
# collect all requested toolsets:
toolsets = set()
for module in self.model.modules:
module_toolsets = module.get_variable("toolsets")
if module_toolsets:
toolsets.update(module_toolsets.value.as_py())
if self.toolsets_to_use:
for t in self.toolsets_to_use:
if t not in toolsets:
try:
bkl.api.Toolset.get(t)
except KeyError:
raise Error("unknown toolset \"%s\" given on command line" % t)
warning("toolset \"%s\" is not supported by the project, there may be issues", t)
# Add the forced toolset to all submodules:
for module in self.model.modules:
module_toolsets = module.get_variable("toolsets")
if module_toolsets:
module_toolsets.value.items.append(bkl.expr.LiteralExpr(t))
toolsets = self.toolsets_to_use
toolsets = list(toolsets)
logger.debug("toolsets to generate for: %s", toolsets)
if not toolsets:
raise Error("nothing to generate, \"toolsets\" property is empty")
# call any custom steps first:
self._call_custom_steps(self.model, "generate")
# and generate the outputs (notice that we can avoid making a
# (expensive!) deepcopy of the model for one of the toolsets and can
# reuse the current model):
for toolset in toolsets[:-1]:
self.generate_for_toolset(toolset)
self.generate_for_toolset(toolsets[-1], skip_making_copy=True)
def generate_for_toolset(self, toolset, skip_making_copy=False):
"""
Generates output for given *toolset*.
"""
logger.debug("****** preparing model for toolset %s ******", toolset)
model = self.make_toolset_specific_model(toolset, skip_making_copy)
self.finalize_for_toolset(model, toolset)
logger.debug("****** generating for toolset %s ********", toolset)
bkl.api.Toolset.get(toolset).generate(model)
|
example/issues/449_django_lazy_path/pulpsettings.py | sephiartlist/dynaconf | 2,293 | 12777602 | REST_FRAMEWORK__DEFAULT_AUTHENTICATION_CLASSES = (
"rest_framework.authentication.SessionAuthentication",
"pulpcore.app.authentication.PulpRemoteUserAuthentication",
"foo_bar1",
)
|
minpy/numpy/random.py | yuhonghong66/minpy | 1,271 | 12777621 | <reponame>yuhonghong66/minpy
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" Mock numpy random module """
#pylint: disable= invalid-name
from __future__ import absolute_import
import sys
from minpy.numpy.mocking import Module
_old = {
'__name__' : __name__,
}
sys.modules[__name__] = Module(_old, 'random')
|
pyatlas/unit_tests/test_identifier_converters.py | yazad3/atlas | 188 | 12777627 | import unittest
from pyatlas import identifier_converters
class IdentifierConvertersTest(unittest.TestCase):
def setUp(self):
pass
def test_osm_conversion(self):
atlas_id = 222222000000
osm_id = 222222
self.assertEqual(osm_id, identifier_converters.get_osm_identifier(atlas_id))
atlas_id = 123001002
osm_id = 123
self.assertEqual(osm_id, identifier_converters.get_osm_identifier(atlas_id))
atlas_id = 3101220
osm_id = 3
self.assertEqual(osm_id, identifier_converters.get_osm_identifier(atlas_id))
atlas_id = -222222000001
osm_id = 222222
self.assertEqual(osm_id, identifier_converters.get_osm_identifier(atlas_id))
def test_country_code_conversion(self):
atlas_id = 222222000000
country_code = 0
self.assertEqual(country_code, identifier_converters.get_country_code(atlas_id))
atlas_id = 123001002
country_code = 1
self.assertEqual(country_code, identifier_converters.get_country_code(atlas_id))
atlas_id = 3101220
country_code = 101
self.assertEqual(country_code, identifier_converters.get_country_code(atlas_id))
atlas_id = -222222002001
country_code = 2
self.assertEqual(country_code, identifier_converters.get_country_code(atlas_id))
def test_way_section_conversion(self):
atlas_id = 222222000000
way_section = 0
self.assertEqual(way_section, identifier_converters.get_way_section_index(atlas_id))
atlas_id = 123001002
way_section = 2
self.assertEqual(way_section, identifier_converters.get_way_section_index(atlas_id))
atlas_id = 3101220
way_section = 220
self.assertEqual(way_section, identifier_converters.get_way_section_index(atlas_id))
atlas_id = -222222002001
way_section = 1
self.assertEqual(way_section, identifier_converters.get_way_section_index(atlas_id))
|
videos/HomeworkVol03/678-widcardw.py | AStarySky/manim_sandbox | 366 | 12777683 | <gh_stars>100-1000
# from widcardw
from manimlib.imports import *
class Test6(Scene):
CONFIG = {"camera_config": {"background_color": "#ffffff"}}
def construct(self):
circle0 = Circle(radius=1.5, stroke_color="#559944", plot_depth=-2)
doto = Dot(ORIGIN, color="#000000")
texto = TexMobject("O", color="#000000", background_stroke_color="#ffffff", background_stroke_width=6).next_to(
doto, RIGHT+DOWN, buff=SMALL_BUFF)
self.play(ShowCreation(circle0))
self.play(Write(doto), Write(texto))
dota = Dot(np.array([3.2, 0, 0]), color="#000000", plot_depth=1)
texta = TexMobject("A", color="#000000").next_to(
dota, RIGHT+DOWN, buff=SMALL_BUFF)
self.play(Write(dota), Write(texta))
t = ValueTracker(2)
dotb = Dot(color="#bb3333", plot_depth=1).add_updater(lambda b: b.move_to(np.array([
1.5*np.cos(t.get_value()), 1.5*np.sin(t.get_value()), 0
])))
textb = TexMobject("B", color="#000000", background_stroke_color="#ffffff", background_stroke_width=6).add_updater(
lambda b: b.next_to(dotb, UP+LEFT, buff=SMALL_BUFF))
self.play(Write(dotb), Write(textb))
self.wait(0.2)
l_ab = DashedLine(color="#bb7755", stroke_width=1.5, plot_depth=0).add_updater(
lambda l: l.put_start_and_end_on(dota.get_center(), dotb.get_center()))
self.play(ShowCreation(l_ab))
self.wait(0.2)
self.play(t.increment_value, 1, rate_func=smooth)
self.play(t.increment_value, -3, rate_func=smooth)
l_b = Line(LEFT, RIGHT).add_updater(lambda l: l.become(
Line(color="#55aaee", plot_depth=0).rotate(l_ab.get_angle()+PI/2,
about_point=l_ab.get_start())
.move_to(l_ab.get_end()).scale(20)
))
dotc = Dot(stroke_opacity=0, fill_opacity=0).add_updater(
lambda d: d.move_to(l_b.get_start()))
self.play(ShowCreation(l_b))
self.add(dotc)
anglea = Angle(dota, dotb, dotc)\
.add_updater(lambda a: a.become(Angle(dota, dotb, dotc, color="#E65A4C")))
self.play(ShowCreation(anglea))
for i in range(50):
self.play(t.increment_value, TAU/50,
rate_func=linear, run_time=0.12)
l_b.clear_updaters()
l_b.plot_depth = -1
l_bc = l_b.copy().set_stroke(width=1.5, color="#00aaff")
self.add(l_bc)
l_b.add_updater(lambda l: l.become(
Line(color="#55aaee", plot_depth=0).rotate(l_ab.get_angle()+PI/2,
about_point=l_ab.get_start())
.move_to(l_ab.get_end()).scale(20)
))
self.add(l_b)
anglea.clear_updaters()
l_b.clear_updaters()
self.play(FadeOut(anglea), FadeOut(l_b))
self.wait(3)
class Test7(Scene):
CONFIG = {"camera_config": {"background_color": "#ffffff"}}
def construct(self):
t = ValueTracker(0)
doto = Dot(DOWN*0.6, color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2).scale(0.5)
dotp = Dot(np.array([0, -2.7, 0]), color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2).scale(0.5)
dota = Dot(color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2).scale(0.5).add_updater(lambda d: d.move_to(np.array([
doto.get_center()[0]+np.cos(t.get_value()),
doto.get_center()[1]+np.sin(t.get_value()), 0
])))
cira = Circle().add_updater(lambda c: c.become(
Circle(radius=get_line_long(dotp.get_center(),
dota.get_center()), color="#559944").move_to(dota.get_center())
))
texto = TexMobject(
"O", color="#000000", background_stroke_color="#ffffff", background_stroke_width=6)\
.scale(0.7).next_to(doto, DOWN+RIGHT, buff=SMALL_BUFF)
textp = TexMobject(
"P", color="#000000", background_stroke_color="#ffffff", background_stroke_width=6)\
.scale(0.7).next_to(dotp, DOWN+LEFT, buff=SMALL_BUFF)
texta = TexMobject(
"A", color="#000000", background_stroke_color="#ffffff", background_stroke_width=6)\
.scale(0.7).add_updater(lambda a: a.next_to(dota, DOWN+LEFT, buff=SMALL_BUFF))
ciro = Circle(radius=1, color="#bb7755").move_to(doto.get_center())
dotpc = Dot(color="#000000").scale(0.5).move_to(dotp.get_center())
l_pa = DashedLine(color="#55bb33", stroke_width=1.5).add_updater(lambda l: l.put_start_and_end_on(
dota.get_center(), dotpc.get_center()))
self.play(ShowCreation(ciro), Write(doto), Write(texto))
self.play(Write(dotp), Write(textp))
self.wait(0.3)
self.play(Write(dota), Write(texta))
self.add(dotpc)
self.play(ShowCreation(l_pa))
path = TracedPath(dotpc.get_center,
stroke_color="#559944", stroke_width=3)
self.add(path)
self.play(Rotating(dotpc, about_point=dota.get_center()),
run_time=1.8, rate_func=smooth)
# self.play(ShowCreation(cira))
l_pa.clear_updaters()
self.remove(dotpc, path)
self.play(FadeOut(l_pa), FadeIn(cira))
self.play(t.increment_value, -PI/2)
self.wait(0.3)
for i in range(40):
self.play(t.increment_value, TAU/40,
rate_func=linear, run_time=0.2)
cira.clear_updaters()
ciracpy = cira.copy().set_color("#9944bb").set_stroke(width=1.5)
self.add(ciracpy)
cira.add_updater(lambda c: c.become(
Circle(radius=get_line_long(dotp.get_center(),
dota.get_center()), color="#559944").move_to(dota.get_center())
))
self.add(cira)
#attention: get_line_long is defined by Shy_Vector
#if it does not work, you can turn to "get_norm(...)"
cira.clear_updaters()
self.play(FadeOut(cira))
self.wait(2.5)
class Test8(Scene):
CONFIG = {"camera_config": {"background_color": "#ffffff"}}
def construct(self):
doto = Dot(color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2).scale(0.7)
dota = Dot(LEFT*1.8, color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2).scale(0.7)
dotb = Dot(RIGHT*1.8, color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2).scale(0.7)
texto = TexMobject("O", color="#000000", background_stroke_color="#ffffff",
background_stroke_width=6, plot_depth=2).scale(0.7).next_to(doto, RIGHT+DOWN, buff=SMALL_BUFF)
texta = TexMobject("A", color="#000000", background_stroke_color="#ffffff",
background_stroke_width=6, plot_depth=2).scale(0.7).next_to(dota, LEFT, buff=SMALL_BUFF)
textb = TexMobject("B", color="#000000", background_stroke_color="#ffffff",
background_stroke_width=6, plot_depth=2).scale(0.7).next_to(dotb, RIGHT, buff=SMALL_BUFF)
ciro = Circle(radius=1.8, color="#559944")
l_ab = Line(LEFT*1.8, RIGHT*1.8, color="#4488dd")
self.play(ShowCreation(ciro), Write(doto), Write(texto))
self.play(ShowCreation(l_ab), *[Write(obj)
for obj in [dota, dotb, texta, textb]])
self.wait(0.3)
t = ValueTracker(1)
dotp = Dot(color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2).scale(0.7)\
.add_updater(lambda d: d.move_to(np.array([
1.8*np.cos(t.get_value()), 1.8*np.sin(t.get_value()), 0
])))
textp = TexMobject("P", color="#000000", background_stroke_color="#ffffff",
background_stroke_width=6, plot_depth=2).scale(0.7)\
.add_updater(lambda p: p.next_to(dotp, UP+RIGHT, buff=SMALL_BUFF))
self.play(Write(dotp), Write(textp))
self.wait(0.2)
cirp = Circle(radius=2).add_updater(lambda c: c.become(
Circle(radius=abs(dotp.get_center()[1]), color="#dd7766")
.move_to(dotp.get_center())
))
self.play(ShowCreation(cirp))
self.play(t.increment_value, 1)
self.play(t.increment_value, -2)
self.wait(0.2)
for i in range(40):
self.play(t.increment_value, TAU/40,
rate_func=linear, run_time=0.2)
cirp.clear_updaters()
cirpc = cirp.copy().set_stroke(width=1.5, color="#715582")
self.add(cirpc)
cirp.add_updater(lambda c: c.become(
Circle(radius=abs(dotp.get_center()[1]), color="#dd7766")
.move_to(dotp.get_center())))
self.add(cirp)
cirp.clear_updaters()
textp.clear_updaters()
dotp.clear_updaters()
self.wait()
self.play(*[FadeOut(obj)
for obj in [doto, dota, dotb, texta, textb, textp, textp, dotp, l_ab, ciro, texto]])
self.wait(2)
'''
to be completed...
class Test5(Scene):
CONFIG = {"camera_config": {"background_color": "#ffffff"}}
def construct(self):
dotb = Dot(LEFT*2, color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2)
dotc = Dot(RIGHT*2, color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2)
dota = Dot(LEFT*2+UP*1.3, color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2)
texta = TexMobject("A", color="#000000", background_stroke_color="#ffffff",
background_stroke_width=6, plot_depth=2).next_to(dota, UP+LEFT, buff=SMALL_BUFF)
textb = TexMobject("B", color="#000000", background_stroke_color="#ffffff",
background_stroke_width=6, plot_depth=2).next_to(dotb, LEFT+DOWN, buff=SMALL_BUFF)
textc = TexMobject("C", color="#000000", background_stroke_color="#ffffff",
background_stroke_width=6, plot_depth=2).next_to(dotc, RIGHT+DOWN, buff=SMALL_BUFF)
l_ab = Line(color="#559944")\
.put_start_and_end_on(dota.get_center(), dotb.get_center())
l_bc = Line(color="#559944")\
.put_start_and_end_on(dotc.get_center(), dotb.get_center())
self.play(*[ShowCreation(obj)
for obj in [l_ab, l_bc, dota, dotb, dotc]])
self.play(*[Write(obj) for obj in [texta, textb, textc]])
self.wait(0.3)
t = ValueTracker(0)
def p_pos(t):
return np.array([0, 0, 0])
dotp = Dot(color="#000000", background_stroke_color="#ffffff",
background_stroke_width=3, plot_depth=2)\
.add_updater(lambda d: d.move_to())'''
|
assertpy/__init__.py | santunioni/assertpy | 246 | 12777688 | from __future__ import absolute_import
from .assertpy import assert_that, assert_warn, soft_assertions, fail, soft_fail, add_extension, remove_extension, WarningLoggingAdapter, __version__
from .file import contents_of
|
rl_agents/trainer/logger.py | neskoc/rl-agents | 342 | 12777691 | <reponame>neskoc/rl-agents<gh_stars>100-1000
import json
import logging.config
from pathlib import Path
import gym
from rl_agents.configuration import Configurable
logging_config = {
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"standard": {
"format": "[%(levelname)s] %(message)s "
},
"detailed": {
"format": "[%(name)s:%(levelname)s] %(message)s "
}
},
"handlers": {
"default": {
"level": "INFO",
"formatter": "standard",
"class": "logging.StreamHandler"
}
},
"loggers": {
"": {
"handlers": [
"default"
],
"level": "DEBUG",
"propagate": True
}
}
}
def configure(config={}, gym_level=gym.logger.INFO):
"""
Configure logging.
Update the default configuration by a configuration file.
Also configure the gym logger.
:param config: logging configuration, or path to a configuration file
:param gym_level: desired level for gym logger
"""
if config:
if isinstance(config, str):
with Path(config).open() as f:
config = json.load(f)
Configurable.rec_update(logging_config, config)
logging.config.dictConfig(logging_config)
gym.logger.set_level(gym_level)
def add_file_handler(file_path):
"""
Add a file handler to the root logger.
:param Path file_path: log file path
"""
configure({
"handlers": {
file_path.name: {
"class": "logging.FileHandler",
"filename": file_path,
"level": "DEBUG",
"formatter": "detailed",
"mode": 'w'
}
},
"loggers": {
"": {
"handlers": [
file_path.name,
*logging_config["handlers"]
]
}
}
})
|
gpflow/utilities/utilities.py | HarrySpearing/GPflow | 1,724 | 12777735 | # Copyright 2017-2021 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module is deprecated, and is only provided for backwards compatibility.
It will be removed in GPflow 2.3.
"""
from deprecated import deprecated
from . import misc, traversal
__all__ = []
def _create_module_redirects(m):
for name in m.__all__:
func = getattr(m, name)
assert callable(func), "all names exported by misc and traversal should be functions"
deprecated_func = deprecated(
reason="The gpflow.utilities.utilities module is deprecated and will "
f"be removed in GPflow 2.3; use gpflow.utilities.{name} instead."
)(func)
globals()[name] = deprecated_func
__all__.append(name)
_create_module_redirects(misc)
_create_module_redirects(traversal)
del _create_module_redirects, misc, traversal
|
tests/java/org/python/indexer/data/mod2.py | jeff5/jython-whinchat | 577 | 12777762 | <reponame>jeff5/jython-whinchat<filename>tests/java/org/python/indexer/data/mod2.py
import distutils.command
def mod2test():
return dir(distutils)
|
eraserhead/request_storage.py | yozlet/django-eraserhead | 216 | 12777792 | # encoding: utf-8
from __future__ import print_function
import term
import humanfriendly
class RequestStorage(object):
""" Stores statistics about single request """
def __init__(self):
self.queryset_stats = []
def add_queryset_storage_instance(self, queryset_storage):
self.queryset_stats.append(queryset_storage)
@property
def total_wasted_memory(self):
wasted_memory = 0
for qs_storage in self.queryset_stats:
wasted_memory += qs_storage.total_wasted_memory
return wasted_memory
# Stats print methods
def print_stats(self):
""" Display statistics of current request """
if not self.queryset_stats:
return
term.writeLine("\n\t ERASERHEAD STATS \n", term.bold, term.reverse)
for queryset_storage in self.queryset_stats:
queryset_storage.print_stats()
print()
term.write("\t TOTAL WASTED MEMORY: ", term.bold, term.reverse)
term.write(" {}".format(humanfriendly.format_size(self.total_wasted_memory)), term.red)
print()
|
setup.py | rvega/isobar | 241 | 12777806 | #!/usr/bin/env python
from setuptools import setup, find_packages
setup(
name='isobar',
version='0.1.1',
description='A Python library to express and manipulate musical patterns',
long_description = open("README.md", "r").read(),
long_description_content_type = "text/markdown",
author='<NAME>',
author_email='<EMAIL>',
url='https://github.com/ideoforms/isobar',
packages=find_packages(),
install_requires=['python-osc', 'mido', 'python-rtmidi'],
keywords=['sound', 'music', 'composition'],
classifiers=[
'Topic :: Multimedia :: Sound/Audio',
'Topic :: Artistic Software',
'Development Status :: 4 - Beta',
'Intended Audience :: Developers'
],
setup_requires=['pytest-runner'],
tests_require=['pytest', 'pytest-timeout']
)
|
alphamind/tests/portfolio/test_optimizers.py | rongliang-tech/alpha-mind | 186 | 12777819 | <gh_stars>100-1000
# -*- coding: utf-8 -*-
"""
Created on 2017-11-1
@author: cheng.li
"""
import unittest
import numpy as np
from alphamind.portfolio.optimizers import LPOptimizer
from alphamind.portfolio.optimizers import QuadraticOptimizer
from alphamind.portfolio.optimizers import TargetVolOptimizer
class TestOptimizers(unittest.TestCase):
def test_lpoptimizer(self):
er = np.array([-1., -2.])
lower_bound = np.array([0., 0.2])
upper_bound = np.array([1., 0.8])
optimizer = LPOptimizer(objective=-er,
cons_matrix=np.array([[1., 1., 1., 1.]]),
lbound=lower_bound,
ubound=upper_bound)
self.assertAlmostEqual(optimizer.feval(), 1.2)
np.testing.assert_array_almost_equal(optimizer.x_value(), [0.8, 0.2])
def test_qpoptimizer(self):
er = np.array([0.01, 0.02, 0.03])
cov = np.array([[0.02, 0.01, 0.02],
[0.01, 0.02, 0.03],
[0.02, 0.03, 0.02]])
ids_var = np.diag([0.01, 0.02, 0.03])
cov += ids_var
lbound = np.array([0., 0., 0.])
ubound = np.array([0.4, 0.4, 0.5])
cons = np.array([[1., 1., 1.],
[1., 0., 1.]])
clbound = np.array([1., 0.3])
cubound = np.array([1., 0.7])
cons_matrix = np.concatenate([cons, clbound.reshape((-1, 1)), cubound.reshape((-1, 1))], axis=1)
optimizer = QuadraticOptimizer(objective=-er,
cov=cov,
lbound=lbound,
ubound=ubound,
cons_matrix=cons_matrix)
# check against matlab result
np.testing.assert_array_almost_equal(optimizer.x_value(),
[0.2, 0.3, 0.5],
4)
def test_qpoptimizer_with_factor_model(self):
er = np.array([0.1, 0.2, 0.3])
lbound = np.array([0.0, 0.0, 0.0])
ubound = np.array([1.0, 1.0, 1.0])
factor_var = np.array([[0.5, -0.3], [-0.3, 0.7]])
factor_load = np.array([[0.8, 0.2], [0.5, 0.5], [0.2, 0.8]])
idsync = np.array([0.1, 0.3, 0.2])
cons = np.array([[1., 1., 1.]])
clbound = np.array([1.])
cubound = np.array([1.])
cons_matrix = np.concatenate([cons, clbound.reshape((-1, 1)), cubound.reshape((-1, 1))], axis=1)
optimizer = QuadraticOptimizer(objective=-er,
lbound=lbound,
ubound=ubound,
factor_cov=factor_var,
factor_load=factor_load,
factor_special=idsync,
cons_matrix=cons_matrix)
# check against cvxpy result
np.testing.assert_array_almost_equal(optimizer.x_value(),
[0.2866857, 0.21416417, 0.49915014],
4)
def test_qpoptimizer_with_identity_matrix(self):
er = np.array([-0.02, 0.01, 0.03])
cov = np.diag([1., 1., 1.])
optimizer = QuadraticOptimizer(objective=-er,
cov=cov)
np.testing.assert_array_almost_equal(optimizer.x_value(),
[-0.02, 0.01, 0.03],
4)
def test_target_vol_optimizer_without_cons(self):
er = np.array([0.1, 0.2, 0.3])
cov = np.array([[0.05, 0.01, 0.02],
[0.01, 0.06, 0.03],
[0.02, 0.03, 0.07]])
lbound = np.array([-0.3, -0.3, -0.3])
ubound = np.array([0.5, 0.5, 0.5])
target_vol = 0.1
optimizer = TargetVolOptimizer(objective=-er,
cov=cov,
lbound=lbound,
ubound=ubound,
target_vol=target_vol)
# check against known good result
np.testing.assert_array_almost_equal(optimizer.x_value(),
[.0231776, 0.1274768, 0.30130881],
4)
def test_target_vol_optimizer_with_cons(self):
er = np.array([0.1, 0.2, 0.3])
cov = np.array([[0.05, 0.01, 0.02],
[0.01, 0.06, 0.03],
[0.02, 0.03, 0.07]])
lbound = np.array([-0.3, -0.3, -0.3])
ubound = np.array([0.5, 0.5, 0.5])
cons = np.array([[1., 1., 1.]])
clbound = np.array([0.])
cubound = np.array([0.])
cons_matrix = np.concatenate([cons, clbound.reshape((-1, 1)), cubound.reshape((-1, 1))], axis=1)
target_vol = 0.1
optimizer = TargetVolOptimizer(objective=-er,
cov=cov,
lbound=lbound,
ubound=ubound,
target_vol=target_vol,
cons_matrix=cons_matrix)
# check against known good result
np.testing.assert_array_almost_equal(optimizer.x_value(),
[-0.3, -0.10919033, 0.40919033],
4)
def test_target_vol_optimizer_with_factor_model(self):
er = np.array([0.1, 0.2, 0.3])
lbound = np.array([0.0, 0.0, 0.0])
ubound = np.array([1.0, 1.0, 1.0])
factor_var = np.array([[0.5, -0.3], [-0.3, 0.7]])
factor_load = np.array([[0.8, 0.2], [0.5, 0.5], [0.2, 0.8]])
idsync = np.array([0.1, 0.3, 0.2])
cons = np.array([[1., 1., 1.]])
clbound = np.array([1.])
cubound = np.array([1.])
target_vol = 0.5
cons_matrix = np.concatenate([cons, clbound.reshape((-1, 1)), cubound.reshape((-1, 1))], axis=1)
optimizer = TargetVolOptimizer(objective=-er,
factor_cov=factor_var,
factor_load=factor_load,
factor_special=idsync,
lbound=lbound,
ubound=ubound,
target_vol=target_vol,
cons_matrix=cons_matrix)
# check against cvxpy result
np.testing.assert_array_almost_equal(optimizer.x_value(),
[0.26595552, 0.21675092, 0.51729356],
4)
def test_target_vol_with_cons_and_ieq(self):
er = np.array([0.1, 0.2, 0.3])
cov = np.array([[0.05, 0.01, 0.02],
[0.01, 0.06, 0.03],
[0.02, 0.03, 0.07]])
lbound = np.array([-0.3, -0.3, -0.3])
ubound = np.array([0.5, 0.5, 0.5])
cons = np.array([[1., 1., 1.]])
clbound = np.array([0.])
cubound = np.array([0.])
target_vol = 0.1
cons_matrix = np.concatenate([cons, clbound.reshape((-1, 1)), cubound.reshape((-1, 1))], axis=1)
optimizer = TargetVolOptimizer(objective=-er,
cov=cov,
lbound=lbound,
ubound=ubound,
target_vol=target_vol,
cons_matrix=cons_matrix)
# check against known good result
np.testing.assert_array_almost_equal(optimizer.x_value(),
[-0.3, -0.10919033, 0.40919033],
4)
if __name__ == '__main__':
unittest.main()
|
scripts/estimate_median_freq.py | rocksat/jsis3d | 180 | 12777846 | import os
import sys
import h5py
import argparse
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument('--root', help='path to root directory')
args = parser.parse_args()
root = args.root
fname = os.path.join(root, 'metadata/train.txt')
flist = [os.path.join(root, 'h5', line.strip())
for line in open(fname, 'r')]
fname = os.path.join(root, 'metadata', 'classes.txt')
classes = [line.strip() for line in open(fname, 'r')]
num_classes = len(classes)
sizes = np.zeros(num_classes)
total = np.zeros(num_classes)
for fname in flist:
print('> Processing {}...'.format(fname))
fin = h5py.File(fname)
coords = fin['coords'][:]
points = fin['points'][:]
labels = fin['labels'][:]
labels = labels.reshape(-1, 2)
num_points = labels.shape[0]
for i in range(num_classes):
indices = (labels[:, 0] == i)
size = np.sum(indices)
sizes[i] += size
if size == 0: continue
total[i] += num_points
freq = sizes / total
weight = np.median(freq) / freq
fname = os.path.join(root, 'metadata', 'weight.txt')
print('> Saving statistics to {}...'.format(fname))
np.savetxt(fname, weight, fmt='%f')
|
third_party/blink/renderer/build/scripts/blinkbuild/name_style_converter_test.py | zipated/src | 2,151 | 12777848 | # Copyright 2017 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
# pylint: disable=import-error,print-statement,relative-import,protected-access
"""Unit tests for name_style_converter.py."""
import unittest
from name_style_converter import NameStyleConverter
from name_style_converter import tokenize_name
class SmartTokenizerTest(unittest.TestCase):
def test_simple_cases(self):
self.assertEqual(tokenize_name('foo'), ['foo'])
self.assertEqual(tokenize_name('fooBar'), ['foo', 'Bar'])
self.assertEqual(tokenize_name('fooBarBaz'), ['foo', 'Bar', 'Baz'])
self.assertEqual(tokenize_name('Baz'), ['Baz'])
self.assertEqual(tokenize_name(''), [])
self.assertEqual(tokenize_name('FOO'), ['FOO'])
self.assertEqual(tokenize_name('foo2'), ['foo', '2'])
def test_tricky_cases(self):
self.assertEqual(tokenize_name('XMLHttpRequest'), ['XML', 'Http', 'Request'])
self.assertEqual(tokenize_name('HTMLElement'), ['HTML', 'Element'])
self.assertEqual(tokenize_name('WebGLRenderingContext'),
['WebGL', 'Rendering', 'Context'])
self.assertEqual(tokenize_name('CanvasRenderingContext2D'),
['Canvas', 'Rendering', 'Context', '2D'])
self.assertEqual(tokenize_name('CanvasRenderingContext2DAPITest'),
['Canvas', 'Rendering', 'Context', '2D', 'API', 'Test'])
self.assertEqual(tokenize_name('SVGSVGElement'), ['SVG', 'SVG', 'Element'])
self.assertEqual(tokenize_name('CanvasRenderingContext2D'),
['Canvas', 'Rendering', 'Context', '2D'])
self.assertEqual(tokenize_name('CSSURLImageValue'), ['CSS', 'URL', 'Image', 'Value'])
self.assertEqual(tokenize_name('CSSPropertyAPID'), ['CSS', 'Property', 'API', 'D'])
self.assertEqual(tokenize_name('AXARIAGridCell'), ['AX', 'ARIA', 'Grid', 'Cell'])
self.assertEqual(tokenize_name('CDATASection'), ['CDATA', 'Section'])
self.assertEqual(tokenize_name('ASCIICType'), ['ASCII', 'CType'])
self.assertEqual(tokenize_name('CString'), ['CString'])
self.assertEqual(tokenize_name('HTMLDListElement'), ['HTML', 'DList', 'Element'])
self.assertEqual(tokenize_name('HTMLOListElement'), ['HTML', 'OList', 'Element'])
self.assertEqual(tokenize_name('HTMLIFrameElement'), ['HTML', 'IFrame', 'Element'])
self.assertEqual(tokenize_name('HTMLPlugInElement'), ['HTML', 'PlugIn', 'Element'])
# No special handling for OptGroup, FieldSet, and TextArea.
self.assertEqual(tokenize_name('HTMLOptGroupElement'), ['HTML', 'Opt', 'Group', 'Element'])
self.assertEqual(tokenize_name('HTMLFieldSetElement'), ['HTML', 'Field', 'Set', 'Element'])
self.assertEqual(tokenize_name('HTMLTextAreaElement'), ['HTML', 'Text', 'Area', 'Element'])
self.assertEqual(tokenize_name('Path2D'), ['Path', '2D'])
self.assertEqual(tokenize_name('Point2D'), ['Point', '2D'])
self.assertEqual(tokenize_name('CanvasRenderingContext2DState'),
['Canvas', 'Rendering', 'Context', '2D', 'State'])
self.assertEqual(tokenize_name('Accelerated2dCanvas'), ['Accelerated', '2d', 'Canvas'])
self.assertEqual(tokenize_name('RTCDTMFSender'), ['RTC', 'DTMF', 'Sender'])
self.assertEqual(tokenize_name('WebGLCompressedTextureS3TCsRGB'),
['WebGL', 'Compressed', 'Texture', 'S3TC', 'sRGB'])
self.assertEqual(tokenize_name('WebGL2CompressedTextureETC1'),
['WebGL2', 'Compressed', 'Texture', 'ETC1'])
self.assertEqual(tokenize_name('EXTsRGB'), ['EXT', 'sRGB'])
# 'PVRTC' contains a special token 'RTC', but it should be a
# single token.
self.assertEqual(tokenize_name('WebGLCompressedTexturePVRTC'),
['WebGL', 'Compressed', 'Texture', 'PVRTC'])
self.assertEqual(tokenize_name('SVGFEBlendElement'), ['SVG', 'FE', 'Blend', 'Element'])
self.assertEqual(tokenize_name('SVGMPathElement'), ['SVG', 'MPath', 'Element'])
self.assertEqual(tokenize_name('SVGTSpanElement'), ['SVG', 'TSpan', 'Element'])
self.assertEqual(tokenize_name('SVGURIReference'), ['SVG', 'URI', 'Reference'])
self.assertEqual(tokenize_name('UTF16TextIterator'), ['UTF16', 'Text', 'Iterator'])
self.assertEqual(tokenize_name('UTF8Decoder'), ['UTF8', 'Decoder'])
self.assertEqual(tokenize_name('Uint8Array'), ['Uint8', 'Array'])
self.assertEqual(tokenize_name('DOMWindowBase64'), ['DOM', 'Window', 'Base64'])
self.assertEqual(tokenize_name('TextCodecLatin1'), ['Text', 'Codec', 'Latin1'])
self.assertEqual(tokenize_name('V8BindingForCore'), ['V8', 'Binding', 'For', 'Core'])
self.assertEqual(tokenize_name('V8DOMRect'), ['V8', 'DOM', 'Rect'])
self.assertEqual(tokenize_name('String16MojomTraits'), ['String16', 'Mojom', 'Traits'])
self.assertEqual(tokenize_name('V0InsertionPoint'), ['V0', 'Insertion', 'Point'])
self.assertEqual(tokenize_name('ShadowDOMV0Test'), ['Shadow', 'DOM', 'V0', 'Test'])
self.assertEqual(tokenize_name('ElementShadowV0'), ['Element', 'Shadow', 'V0'])
self.assertEqual(tokenize_name('StubChromeClientForSPv2'),
['Stub', 'Chrome', 'Client', 'For', 'SPv2'])
self.assertEqual(tokenize_name('SQLiteAuthorizer'), ['SQLite', 'Authorizer'])
self.assertEqual(tokenize_name('XPathEvaluator'), ['XPath', 'Evaluator'])
self.assertEqual(tokenize_name('IsXHTMLDocument'), ['Is', 'XHTML', 'Document'])
self.assertEqual(tokenize_name('isHTMLDocument'), ['is', 'HTML', 'Document'])
self.assertEqual(tokenize_name('matrix3d'), ['matrix', '3d'])
def test_ignoring_characters(self):
self.assertEqual(tokenize_name('Animation.idl'), ['Animation', 'idl'])
self.assertEqual(tokenize_name('-webkit-appearance'), ['webkit', 'appearance'])
self.assertEqual(tokenize_name(' foo_bar!#"$'), ['foo', 'bar'])
class NameStyleConverterTest(unittest.TestCase):
def test_snake_case(self):
converter = NameStyleConverter('HTMLElement')
self.assertEqual(converter.to_snake_case(), 'html_element')
def test_upper_camel_case(self):
converter = NameStyleConverter('someSuperThing')
self.assertEqual(converter.to_upper_camel_case(), 'SomeSuperThing')
converter = NameStyleConverter('SVGElement')
self.assertEqual(converter.to_upper_camel_case(), 'SVGElement')
converter = NameStyleConverter('cssExternalScannerPreload')
self.assertEqual(converter.to_upper_camel_case(), 'CSSExternalScannerPreload')
converter = NameStyleConverter('xpathExpression')
self.assertEqual(converter.to_upper_camel_case(), 'XPathExpression')
converter = NameStyleConverter('feDropShadow')
self.assertEqual(converter.to_upper_camel_case(), 'FEDropShadow')
def test_lower_camel_case(self):
converter = NameStyleConverter('someSuperThing')
self.assertEqual(converter.to_lower_camel_case(), 'someSuperThing')
converter = NameStyleConverter('SVGElement')
self.assertEqual(converter.to_lower_camel_case(), 'svgElement')
converter = NameStyleConverter('documentURI')
self.assertEqual(converter.to_lower_camel_case(), 'documentURI')
converter = NameStyleConverter('-webkit-margin-start')
self.assertEqual(converter.to_lower_camel_case(), 'webkitMarginStart')
converter = NameStyleConverter('Accelerated2dCanvas')
self.assertEqual(converter.to_lower_camel_case(), 'accelerated2dCanvas')
def test_macro_case(self):
converter = NameStyleConverter('WebGLBaz2D')
self.assertEqual(converter.to_macro_case(), 'WEBGL_BAZ_2D')
def test_all_cases(self):
converter = NameStyleConverter('SVGScriptElement')
self.assertEqual(converter.to_all_cases(), {
'snake_case': 'svg_script_element',
'upper_camel_case': 'SVGScriptElement',
'macro_case': 'SVG_SCRIPT_ELEMENT',
})
|
python/test/cuda/test_large_blocks.py | daniel-falk/nnabla-ext-cuda | 103 | 12777865 | <gh_stars>100-1000
# Copyright 2017,2018,2019,2020,2021 Sony Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import pytest
import numpy as np
import nnabla as nn
import nnabla.functions as F
@pytest.mark.parametrize("m", [1, 2, 3])
def test_cuda_large_blocks(cuda_test_opts, m):
if cuda_test_opts.disable_test_large_blocks:
pytest.skip('`--disable-test-large-blocks` is passed')
CUDA_THREAD_PER_BLOCK = 512
CUDA_MAX_BLOCKS = 65536
size = CUDA_MAX_BLOCKS * CUDA_THREAD_PER_BLOCK * m + 3
print("Variable size:", size)
x = np.zeros((size,), np.float32)
v = nn.Variable(x.shape)
v.d = x
from nnabla.ext_utils import get_extension_context
with nn.context_scope(get_extension_context('cuda')):
y = F.relu(v)
y.forward()
|
tests/test_0231-indexform.py | BioGeek/awkward-1.0 | 519 | 12777887 | # BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE
from __future__ import absolute_import
import pytest # noqa: F401
import numpy as np # noqa: F401
import awkward as ak # noqa: F401
def test():
for itype in ["i8", "u8", "i32", "u32", "i64"]:
form = ak.forms.ListOffsetForm(itype, ak.forms.EmptyForm())
assert form.offsets == itype
|
src/gausskernel/dbmind/tools/ai_server/service/datafactory/collector/agent_collect.py | Yanci0/openGauss-server | 360 | 12777926 | #!/usr/bin/python3
# -*- coding: utf-8 -*-
#############################################################################
# Copyright (c): 2021, Huawei Tech. Co., Ltd.
# FileName : agent_collect.py
# Version :
# Date : 2021-4-7
# Description : Receives and stores agent data.
#############################################################################
try:
import sys
import os
from flask import request, Response
from flask_restful import Resource
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../../../"))
from common.logger import CreateLogger
from service.datafactory.storage.insert_data_to_database import SaveData
except ImportError as err:
sys.exit("agent_collect.py: Failed to import module: %s." % str(err))
LOGGER = CreateLogger("debug", "server.log").create_log()
class ResponseTuple:
"""
This class is used for generating a response tuple.
"""
@staticmethod
def success(result=None):
if result is None:
return {"status": "success"}, 200
return {"status": "success", "result": result}
@staticmethod
def error(msg="", status_code=400):
return {"status": "error", "msg": msg}, status_code
class Source(Resource):
"""
This class is used for acquiring metric data from agent and save data
in sqlite database.
"""
def __init__(self):
pass
@staticmethod
def post():
content = request.json
client_ip = request.remote_addr
LOGGER.info("Successfully received request from: %s." % client_ip)
try:
insert_db = SaveData(LOGGER)
insert_db.run(content)
return ResponseTuple.success()
except Exception as e:
return ResponseTuple.error(msg=str(e), status_code=Response.status_code)
@staticmethod
def get():
return ResponseTuple.success(result="Server service is normal.")
@staticmethod
def delete():
return ResponseTuple.error(status_code=400)
|
sgit/commit.py | russelldavis/SublimeGit | 310 | 12777946 | <gh_stars>100-1000
# coding: utf-8
from functools import partial
import sublime
from sublime_plugin import WindowCommand, TextCommand, EventListener
from .util import find_view_by_settings, noop, get_setting
from .cmd import GitCmd
from .helpers import GitStatusHelper
from .status import GIT_WORKING_DIR_CLEAN
GIT_COMMIT_VIEW_TITLE = "COMMIT_EDITMSG"
GIT_COMMIT_VIEW_SYNTAX = 'Packages/SublimeGit/syntax/SublimeGit Commit Message.tmLanguage'
GIT_NOTHING_STAGED = u'No changes added to commit. Use s on files/sections in the status view to stage changes.'
GIT_COMMIT_TEMPLATE = u"""{old_msg}
# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.
{status}"""
GIT_AMEND_PUSHED = (u"It is discouraged to rewrite history which has already been pushed. "
u"Are you sure you want to amend the commit?")
CUT_LINE = u"------------------------ >8 ------------------------\n"
CUT_EXPLANATION = u"# Do not touch the line above.\n# Everything below will be removed.\n"
class GitCommit(object):
windows = {}
class GitCommitWindowCmd(GitCmd, GitStatusHelper):
@property
def is_verbose(self):
return get_setting('git_commit_verbose', False)
def get_commit_template(self, repo, add=False, amend=False):
cmd = ['commit', '--dry-run', '--status',
'--all' if add else None,
'--amend' if amend else None,
'--verbose' if self.is_verbose else None]
exit, stdout, stderr = self.git(cmd, cwd=repo)
stderr = stderr.strip()
if stderr:
for line in stderr.splitlines():
stdout += "# %s\n" % line
old_msg = ''
if amend:
old_msg = self.git_lines(['rev-list', '--format=%B', '--max-count=1', 'HEAD'], cwd=repo)
old_msg = "%s\n" % "\n".join(old_msg[1:])
if self.is_verbose and CUT_LINE not in stdout:
comments = []
other = []
for line in stdout.splitlines():
if line.startswith('#'):
comments.append(line)
else:
other.append(line)
status = "\n".join(comments)
status += "\n# %s" % CUT_LINE
status += CUT_EXPLANATION
status += "\n".join(other)
else:
status = stdout
return GIT_COMMIT_TEMPLATE.format(status=status, old_msg=old_msg)
def show_commit_panel(self, content):
panel = self.window.get_output_panel('git-commit')
panel.run_command('git_panel_write', {'content': content})
self.window.run_command('show_panel', {'panel': 'output.git-commit'})
class GitCommitCommand(WindowCommand, GitCommitWindowCmd):
"""
Documentation coming soon.
"""
def run(self, add=False):
repo = self.get_repo()
if not repo:
return
staged = self.has_staged_changes(repo)
dirty = self.has_unstaged_changes(repo)
if not add and not staged:
return sublime.error_message(GIT_NOTHING_STAGED)
elif add and (not staged and not dirty):
return sublime.error_message(GIT_WORKING_DIR_CLEAN)
view = find_view_by_settings(self.window, git_view='commit', git_repo=repo)
if not view:
view = self.window.new_file()
view.set_name(GIT_COMMIT_VIEW_TITLE)
view.set_syntax_file(GIT_COMMIT_VIEW_SYNTAX)
view.set_scratch(True)
view.settings().set('git_view', 'commit')
view.settings().set('git_repo', repo)
GitCommit.windows[view.id()] = (self.window, add, False)
self.window.focus_view(view)
template = self.get_commit_template(repo, add=add)
view.run_command('git_commit_template', {'template': template})
class GitCommitAmendCommand(GitCommitWindowCmd, WindowCommand):
"""
Documentation coming soon.
"""
def run(self):
repo = self.get_repo()
if not repo:
return
unpushed = self.git_exit_code(['diff', '--exit-code', '--quiet', '@{upstream}..'], cwd=repo)
if unpushed == 0:
if not sublime.ok_cancel_dialog(GIT_AMEND_PUSHED, 'Amend commit'):
return
view = find_view_by_settings(self.window, git_view='commit', git_repo=repo)
if not view:
view = self.window.new_file()
view.set_name(GIT_COMMIT_VIEW_TITLE)
view.set_syntax_file(GIT_COMMIT_VIEW_SYNTAX)
view.set_scratch(True)
view.settings().set('git_view', 'commit')
view.settings().set('git_repo', repo)
GitCommit.windows[view.id()] = (self.window, False, True)
self.window.focus_view(view)
template = self.get_commit_template(repo, amend=True)
view.run_command('git_commit_template', {'template': template})
class GitCommitTemplateCommand(TextCommand):
def is_visible(self):
return False
def run(self, edit, template=''):
if self.view.size() > 0:
self.view.erase(edit, sublime.Region(0, self.view.size()))
self.view.insert(edit, 0, template)
self.view.sel().clear()
self.view.sel().add(sublime.Region(0))
class GitCommitEventListener(EventListener):
_lpop = False
def mark_pedantic(self, view):
if view.settings().get('git_view') == 'commit' or view.file_name() == 'COMMIT_EDITMSG':
# Header lines should be a max of 50 chars
view.erase_regions('git-commit.header')
firstline = view.line(view.text_point(0, 0))
if firstline.end() > 50 and not view.substr(firstline).startswith('#'):
view.add_regions('git-commit.header', [sublime.Region(50, firstline.end())], 'invalid', 'dot')
# The second line should be empty
view.erase_regions('git-commit.line2')
secondline = view.line(view.text_point(1, 0))
if secondline.end() - secondline.begin() > 0 and not view.substr(secondline).startswith('#'):
view.add_regions('git-commit.line2', [secondline], 'invalid', 'dot')
# Other lines should be at most 72 chars
view.erase_regions('git-commit.others')
for l in view.lines(sublime.Region(view.text_point(2, 0), view.size())):
if view.substr(l).startswith('#'):
break
if l.end() - l.begin() > 72:
view.add_regions('git-commit.others', [sublime.Region(l.begin() + 72, l.end())], 'invalid', 'dot')
def on_activated(self, view):
if sublime.version() < '3000' and get_setting('git_commit_pedantic') is True:
self.mark_pedantic(view)
def on_modified(self, view):
if sublime.version() < '3000' and get_setting('git_commit_pedantic') is True:
self.mark_pedantic(view)
def on_modified_async(self, view):
if get_setting('git_commit_pedantic') is True:
self.mark_pedantic(view)
def on_activated_async(self, view):
if get_setting('git_commit_pedantic') is True:
self.mark_pedantic(view)
def on_close(self, view):
if view.settings().get('git_view') == 'commit' and view.id() in GitCommit.windows:
message = view.substr(sublime.Region(0, view.size()))
window, add, amend = GitCommit.windows[view.id()]
repo = view.settings().get('git_repo')
window.run_command('git_commit_perform', {'message': message, 'add': add, 'amend': amend, 'repo': repo})
class GitCommitPerformCommand(WindowCommand, GitCommitWindowCmd):
def run(self, repo, message, add=False, amend=False):
cmd = ['commit', '--cleanup=strip',
'--all' if add else None,
'--amend' if amend else None,
'--verbose' if self.is_verbose else None, '-F', '-']
exit, stdout, stderr = self.git(cmd, stdin=message, cwd=repo)
self.show_commit_panel(stdout if exit == 0 else stderr)
self.window.run_command('git_status', {'refresh_only': True})
def is_visible(self):
return False
class GitCommitSaveCommand(TextCommand):
def is_visible(self):
return False
def run(self, edit):
if self.view.settings().get('git_view') == 'commit' and self.view.id() in GitCommit.windows:
return
self.view.run_command('save')
class GitQuickCommitCommand(WindowCommand, GitCommitWindowCmd):
"""
Quickly commit changes with a one-line commit message.
If there are any staged changes, only those changes will be added. If there
are no staged changes, any changed files that git know about will be added
in the commit.
If the working directory is clean, an error will be shown indicating it.
After entering the commit message, press enter to commit, or esc to cancel.
An empty commit message will also result in the commit being cancelled.
"""
def run(self):
repo = self.get_repo()
if not repo:
return
staged = self.has_staged_changes(repo)
dirty = self.has_unstaged_changes(repo)
if not staged and not dirty:
sublime.error_message(GIT_WORKING_DIR_CLEAN.capitalize())
return
self.window.show_input_panel("Commit message:", '', partial(self.on_commit_message, repo), noop, noop)
def on_commit_message(self, repo, msg=None):
if not msg:
msg = ''
cmd = ['commit', '-F', '-'] if self.has_staged_changes(repo) else ['commit', '-a', '-F', '-']
stdout = self.git_string(cmd, stdin=msg, cwd=repo)
self.show_commit_panel(stdout)
self.window.run_command('git_status', {'refresh_only': True})
class GitQuickCommitCurrentFileCommand(TextCommand, GitCmd, GitStatusHelper):
"""
Documentation coming soon.
"""
def run(self, edit):
filename = self.view.file_name()
if not filename:
sublime.error_message("Cannot commit a file which has not been saved.")
return
repo = self.get_repo()
if not repo:
return
if not self.file_in_git(repo, filename):
if sublime.ok_cancel_dialog("The file %s is not tracked by git. Do you want to add it?" % filename, "Add file"):
exit, stdout, stderr = self.git(['add', '--force', '--', filename], cwd=repo)
if exit == 0:
sublime.status_message('Added %s' % filename)
else:
sublime.error_message('git error: %s' % stderr)
else:
return
self.view.window().show_input_panel("Commit message:", '', partial(self.on_commit_message, repo, filename), noop, noop)
def on_commit_message(self, repo, filename, msg=None):
if not msg:
msg = ''
# run command
cmd = ['commit', '-F', '-', '--only', '--', filename]
stdout = self.git_string(cmd, stdin=msg, cwd=repo)
# show output panel
panel = self.view.window().get_output_panel('git-commit')
panel.run_command('git_panel_write', {'content': stdout})
self.view.window().run_command('show_panel', {'panel': 'output.git-commit'})
# update status if necessary
self.view.window().run_command('git_status', {'refresh_only': True})
|
src/seedwork/infrastructure/logging.py | Ermlab/python-ddd | 308 | 12777968 | from pythonjsonlogger import jsonlogger
from datetime import datetime
import logging
from logging import Logger
from logging.config import dictConfig
from seedwork.utils.functional import SimpleLazyObject
from seedwork.infrastructure.request_context import request_context
class RequestContextFilter(logging.Filter):
""" "Provides correlation id parameter for the logger"""
def __init__(self, name: str, request_context) -> None:
super().__init__(name=name)
self.request_context = request_context
def filter(self, record):
record.correlation_id = self.request_context.correlation_id.get()
return True
class ElkJsonFormatter(jsonlogger.JsonFormatter):
"""
ELK stack-compatibile formatter
"""
def add_fields(self, log_record, record, message_dict):
super(ElkJsonFormatter, self).add_fields(log_record, record, message_dict)
log_record["@timestamp"] = datetime.now().isoformat()
log_record["level"] = record.levelname
log_record["logger"] = record.name
class LoggerFactory:
_configured = False
@classmethod
def configure(
cls,
logger_name="app",
log_filename="./logs.json",
request_context=request_context,
):
cls.logger_name = logger_name
cls.log_filename = log_filename
cls.request_context = request_context
cls._configured = True
@classmethod
def create_logger(cls):
"""
Returns a logger instance, based on a configuration options
"""
if not cls._configured:
cls.configure()
logging_config = {
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
# exact format is not important, this is the minimum information
"format": "%(asctime)s %(name)-12s %(levelname)-8s %(correlation_id)s %(message)s",
},
"colored": {
"()": "colorlog.ColoredFormatter",
"format": "%(log_color)s%(asctime)s %(name)-12s %(levelname)-8s %(correlation_id)s %(message)s",
"log_colors": {
"DEBUG": "white",
"INFO": "green",
"WARNING": "yellow",
"ERROR": "red",
"CRITICAL": "red,bold",
},
},
"colored_db": {
"()": "colorlog.ColoredFormatter",
"format": "%(log_color)s%(asctime)s %(name)-12s %(levelname)-8s %(correlation_id)s %(message)s",
"log_colors": {
"DEBUG": "purple",
"INFO": "green",
"WARNING": "yellow",
"ERROR": "red",
"CRITICAL": "red,bold",
},
},
"json_formatter": {
"()": "seedwork.infrastructure.logging.ElkJsonFormatter",
},
},
"handlers": {
# console logs to stderr
"console": {
"class": "logging.StreamHandler",
"formatter": "default",
},
"colored_console": {
"class": "colorlog.StreamHandler",
"formatter": "colored",
},
"colored_console_db": {
"class": "colorlog.StreamHandler",
"formatter": "colored_db",
},
"file_handler": {
"class": "logging.handlers.RotatingFileHandler",
"filename": cls.log_filename,
"formatter": "json_formatter",
}
if cls.log_filename
else None,
# Add Handler for Sentry for `warning` and above
# 'sentry': {
# 'level': 'WARNING',
# 'class': 'raven.contrib.django.raven_compat.handlers.SentryHandler',
# },
},
"loggers": {
cls.logger_name: {
"level": "DEBUG",
"handlers": ["colored_console", "file_handler"], # , 'sentry'],
},
# Prevent noisy modules from logging to Sentry
"noisy_module": {
"level": "ERROR",
"handlers": ["console"],
"propagate": False,
},
},
}
dictConfig(logging_config)
logger = logging.getLogger(name=cls.logger_name)
logger.addFilter(
RequestContextFilter(
name=cls.logger_name, request_context=cls.request_context
)
)
return logger
"""
We are making logger globally available, but to make it configurable logger lazy-evaluated.
Use `LoggerFactory.configure()` to configure the logger prior to its usage
"""
logger = SimpleLazyObject(LoggerFactory.create_logger)
|
homeassistant/components/wiffi/wiffi_strings.py | domwillcode/home-assistant | 30,023 | 12777989 | """Definition of string used in wiffi json telegrams."""
# units of measurement
WIFFI_UOM_TEMP_CELSIUS = "gradC"
WIFFI_UOM_DEGREE = "grad"
WIFFI_UOM_PERCENT = "%"
WIFFI_UOM_MILLI_BAR = "mb"
WIFFI_UOM_LUX = "lux"
|
uasyncio/test_readexactly.py | Carglglz/micropython-lib | 126 | 12778021 | <reponame>Carglglz/micropython-lib<filename>uasyncio/test_readexactly.py<gh_stars>100-1000
from uasyncio import StreamReader
class MockSock:
def __init__(self, data_list):
self.data = data_list
def read(self, sz):
try:
return self.data.pop(0)
except IndexError:
return b""
mock = MockSock([
b"123",
b"234", b"5",
b"a", b"b", b"c", b"d", b"e",
])
def func():
sr = StreamReader(mock)
assert await sr.readexactly(3) == b"123"
assert await sr.readexactly(4) == b"2345"
assert await sr.readexactly(5) == b"abcde"
# This isn't how it should be, but the current behavior
assert await sr.readexactly(10) == b""
for i in func():
pass
|
examples/urlopen.py | mikelolasagasti/bandit | 4,016 | 12778084 | ''' Example dangerous usage of urllib[2] opener functions
The urllib and urllib2 opener functions and object can open http, ftp,
and file urls. Often, the ability to open file urls is overlooked leading
to code that can unexpectedly open files on the local server. This
could be used by an attacker to leak information about the server.
'''
import urllib
import urllib2
# Python 3
import urllib.request
# Six
import six
def test_urlopen():
# urllib
url = urllib.quote('file:///bin/ls')
urllib.urlopen(url, 'blah', 32)
urllib.urlretrieve('file:///bin/ls', '/bin/ls2')
opener = urllib.URLopener()
opener.open('file:///bin/ls')
opener.retrieve('file:///bin/ls')
opener = urllib.FancyURLopener()
opener.open('file:///bin/ls')
opener.retrieve('file:///bin/ls')
# urllib2
handler = urllib2.HTTPBasicAuthHandler()
handler.add_password(realm='test',
uri='http://mysite.com',
user='bob')
opener = urllib2.build_opener(handler)
urllib2.install_opener(opener)
urllib2.urlopen('file:///bin/ls')
urllib2.Request('file:///bin/ls')
# Python 3
urllib.request.urlopen('file:///bin/ls')
urllib.request.urlretrieve('file:///bin/ls', '/bin/ls2')
opener = urllib.request.URLopener()
opener.open('file:///bin/ls')
opener.retrieve('file:///bin/ls')
opener = urllib.request.FancyURLopener()
opener.open('file:///bin/ls')
opener.retrieve('file:///bin/ls')
# Six
six.moves.urllib.request.urlopen('file:///bin/ls')
six.moves.urllib.request.urlretrieve('file:///bin/ls', '/bin/ls2')
opener = six.moves.urllib.request.URLopener()
opener.open('file:///bin/ls')
opener.retrieve('file:///bin/ls')
opener = six.moves.urllib.request.FancyURLopener()
opener.open('file:///bin/ls')
opener.retrieve('file:///bin/ls')
|
python_web/config.py | LouisYZK/Frodo | 123 | 12778096 | import os
import configparser
import yaml
import ast
from pathlib import Path
HERE = Path(__file__).parent.absolute()
print(HERE)
config_dir = HERE / 'config/config.ini.model'
config = configparser.ConfigParser()
config.read(config_dir)
ACCESS_TOKEN_EXPIRE_MINUTES = config.get('security', 'access_token_expire_minutes')
JWT_ALGORITHM = config.get('security', 'jwt_algorithm')
OAUTH_REDIRECT_PATH = config.get('github', 'oauth_redirect_path')
REDIRECT_URI = config.get('github', 'redirect_uri')
CLIENT_ID = config.get('github', 'client_id')
CLIENT_SECRET = config.get('github', 'client_secret')
HOST_PATH = config.get('global', 'host_path')
WEB_PORT = config.get('port', "fastapi")
# DB_URL = os.getenv('DB_URL', config.get('database', 'db_url'))
db_host = config.get('database', 'host')
db_username = config.get('database', 'username')
db_pwd = config.get('database', 'password')
db_port = config.get('database', 'port')
db = config.get('database', 'db')
charset = config.get('database', 'charset')
DB_URL = f'mysql+pymysql://{db_username}:{db_pwd}@{db_host}:{db_port}/{db}?charset={charset}'
print(DB_URL)
REDIS_URL = os.getenv('REDIS_URL',
config.get('redis', 'redis_url'))
DEBUG = os.getenv('DEBUG', config.get('global', 'debug')).lower() \
in ('true', 'y', 'yes', '1')
WTF_CSRF_SECRET_KEY = 123
AUTH_LOGIN_ENDPOINT = 'index.login'
MEMCACHED_HOST = os.getenv('MEMCACHED_HOST',
config.get('memcached', 'memcached_host'))
MEMCACHED_PORT = config.get('memcached', 'memcached_port')
oauth_redirect_path = '/oauth'
redirect_uri = 'http://127.0.0.1:8000/oauth'
client_id = "098a2e6da880878e05da"
client_secret = "<KEY>"
REACT_PROMPT = '喜欢这篇文章吗? 记得给我留言或订阅哦'
PLOAD_FOLDER = HERE / 'static/upload'
AUTHOR = 'zhikai'
SITE_TITLE = 'Zhikai-Yang Space'
PER_PAGE = 10
GOOGLE_ANALYTICS = ''
SENTRY_DSN = ''
REQUEST_TIMEOUT = 15
SHOW_PAGEVIEW = True
PERMALINK_TYPE = 'slug' # 可选 id、slug、title
# [(Endpoint, Name, IconName, Color), ...]
# SITE_NAV_MENUS = [('blog.index', '首页'), ('blog.topics', '专题'),
# ('blog.archives', '归档'), ('blog.tags', '标签'),
# ('index.search', '搜索'), ('/page/aboutme', '关于我'),
# ('index.feed', 'RSS', 'rss', '#fc6423')]
SITE_NAV_MENUS = [('blog.index', '首页'),
('blog.activities', '动态'),
('blog.tags', '标签'),
('index.search', '搜索'),
('blog.archives', '归档'),
('/post/aboutme', '关于我')
]
BEIAN_ID = ''
JWT_SECRET = config.get('security', 'jwt_secret')
EXPIRATION_DELTA = 60 * 60
WTF_CSRF_ENABLED = False
MAIL_SERVER = 'smtp.qq.com'
MAIL_PORT = 465
MAIL_USERNAME = ''
MAIL_PASSWORD = ''
BLOG_URL = 'https://example.com'
UPLOAD_FOLDER = HERE / 'static/upload'
# Redis sentinel
REDIS_SENTINEL_SERVICE_HOST = None
REDIS_SENTINEL_SERVICE_PORT = 26379
SHOW_AUTHOR = True
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.__dict__ = self
try:
with open(HERE / 'config.yaml') as f:
yaml_content = f.read()
partials = AttrDict(yaml.load(yaml_content)).partials
USE_YAML = True
except FileNotFoundError:
USE_YAML = False
partials = {}
try:
from local_settings import * # noqa
except ImportError:
pass
K_POST = 1001
K_COMMENT = 1002
ONE_MINUTE = 60
ONE_HOUR = ONE_MINUTE * 60
ONE_DAY = ONE_HOUR * 24
K_STATUS = 1003
K_ACTIVITY = 1004
CDN_DOMAIN = ''
USE_FFMPEG = False
STATIC_FILE_TYPES = ('jpg', 'png', 'webp', 'gif', 'mp4', 'css', 'js') |
vedastr/metrics/__init__.py | csmasters/vedastr | 475 | 12778112 | from .accuracy import Accuracy
from .builder import build_metric
|
alipay/aop/api/domain/ApInvoiceBillLinkOrderRequest.py | antopen/alipay-sdk-python-all | 213 | 12778115 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
import json
from alipay.aop.api.constant.ParamConstants import *
from alipay.aop.api.domain.MultiCurrencyMoneyOpenApi import MultiCurrencyMoneyOpenApi
class ApInvoiceBillLinkOrderRequest(object):
def __init__(self):
self._amt = None
self._daily_bill_dimension = None
self._monthly_bill_no = None
@property
def amt(self):
return self._amt
@amt.setter
def amt(self, value):
if isinstance(value, MultiCurrencyMoneyOpenApi):
self._amt = value
else:
self._amt = MultiCurrencyMoneyOpenApi.from_alipay_dict(value)
@property
def daily_bill_dimension(self):
return self._daily_bill_dimension
@daily_bill_dimension.setter
def daily_bill_dimension(self, value):
self._daily_bill_dimension = value
@property
def monthly_bill_no(self):
return self._monthly_bill_no
@monthly_bill_no.setter
def monthly_bill_no(self, value):
self._monthly_bill_no = value
def to_alipay_dict(self):
params = dict()
if self.amt:
if hasattr(self.amt, 'to_alipay_dict'):
params['amt'] = self.amt.to_alipay_dict()
else:
params['amt'] = self.amt
if self.daily_bill_dimension:
if hasattr(self.daily_bill_dimension, 'to_alipay_dict'):
params['daily_bill_dimension'] = self.daily_bill_dimension.to_alipay_dict()
else:
params['daily_bill_dimension'] = self.daily_bill_dimension
if self.monthly_bill_no:
if hasattr(self.monthly_bill_no, 'to_alipay_dict'):
params['monthly_bill_no'] = self.monthly_bill_no.to_alipay_dict()
else:
params['monthly_bill_no'] = self.monthly_bill_no
return params
@staticmethod
def from_alipay_dict(d):
if not d:
return None
o = ApInvoiceBillLinkOrderRequest()
if 'amt' in d:
o.amt = d['amt']
if 'daily_bill_dimension' in d:
o.daily_bill_dimension = d['daily_bill_dimension']
if 'monthly_bill_no' in d:
o.monthly_bill_no = d['monthly_bill_no']
return o
|
packages/pyright-internal/src/tests/samples/paramSpec4.py | Jasha10/pyright | 3,934 | 12778116 | # This sample tests the type checker's handling of ParamSpec
# and Concatenate as described in PEP 612.
from typing import Callable, Concatenate, ParamSpec, TypeVar
P = ParamSpec("P")
R = TypeVar("R")
class Request:
...
def with_request(f: Callable[Concatenate[Request, P], R]) -> Callable[P, R]:
def inner(*args: P.args, **kwargs: P.kwargs) -> R:
return f(Request(), *args, **kwargs)
return inner
@with_request
def takes_int_str(request: Request, x: int, y: str) -> int:
# use request
return x + 7
takes_int_str(1, "A")
# This should generate an error because the first arg
# is the incorrect type.
takes_int_str("B", "A")
# This should generate an error because there are too
# many parameters.
takes_int_str(1, "A", 2)
# This should generate an error because a ParamSpec can appear
# only within the last type arg for Concatenate
def decorator1(f: Callable[Concatenate[P, P], int]) -> Callable[P, int]:
...
# This should generate an error because the last type arg
# for Concatenate should be a ParamSpec.
def decorator2(f: Callable[Concatenate[int, int], int]) -> Callable[P, int]:
...
# This should generate an error because Concatenate is missing
# its type arguments.
def decorator3(f: Callable[Concatenate, int]) -> Callable[P, int]:
...
def decorator4(func: Callable[P, None]) -> Callable[Concatenate[int, P], None]:
def wrapper(x: int, /, *args: P.args, **kwargs: P.kwargs) -> None:
...
return wrapper
def func1(func: Callable[Concatenate[int, P], None]) -> Callable[P, None]:
...
def func2(a: int, b: str, c: str) -> None:
...
def func3(a: int, /, b: str, c: str) -> None:
...
def func4(a: int, b: str, /, c: str) -> None:
...
v1 = func1(func2)
reveal_type(v1, expected_text="(b: str, c: str) -> None")
v2 = func1(func3)
reveal_type(v2, expected_text="(b: str, c: str) -> None")
v3 = func1(func4)
reveal_type(v3, expected_text="(b: str, /, c: str) -> None")
def func5(__fn: Callable[P, R], *args: P.args, **kwargs: P.kwargs) -> R:
...
def func6(name: str, *args: str):
...
v5 = func5(func6, "a", "b", "c")
# This should generate an error because 1 isn't assignable to str.
v6 = func5(func6, "a", "b", "c", 1)
def func7(name: str, **kwargs: str):
...
v7 = func5(func7, "a", b="b", c="c")
# This should generate an error because 1 isn't assignable to str.
v8 = func5(func7, "a", b="b", c=1)
|
pyjobs/core/migrations/0015_job_ad_interested.py | Mdslino/PyJobs | 132 | 12778121 | <filename>pyjobs/core/migrations/0015_job_ad_interested.py<gh_stars>100-1000
# -*- coding: utf-8 -*-
# Generated by Django 1.11.15 on 2018-11-04 18:42
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [("core", "0014_auto_20180511_2122")]
operations = [
migrations.AddField(
model_name="job",
name="ad_interested",
field=models.BooleanField(
default=False,
verbose_name="Interessado em ficar em destaque no PyJobs?",
),
)
]
|
apps/panel/migrations/0004_log.py | ivall/IVmonitor | 190 | 12778152 | # Generated by Django 3.0.7 on 2021-02-05 09:15
from django.db import migrations, models
import django.db.models.deletion
import django.utils.timezone
class Migration(migrations.Migration):
dependencies = [
('panel', '0003_auto_20210205_0955'),
]
operations = [
migrations.CreateModel(
name='Log',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('status', models.CharField(max_length=4)),
('time', models.DateTimeField(default=django.utils.timezone.now)),
('monitor_object', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='panel.MonitorObject')),
],
),
]
|
hummingbot/strategy/dev_0_hello_world/start.py | cardosofede/hummingbot | 542 | 12778239 | <reponame>cardosofede/hummingbot
#!/usr/bin/env python
from hummingbot.strategy.dev_0_hello_world.dev_0_hello_world_config_map import dev_0_hello_world_config_map
from hummingbot.strategy.dev_0_hello_world import HelloWorldStrategy
def start(self):
try:
exchange = dev_0_hello_world_config_map.get("exchange").value.lower()
trading_pair = dev_0_hello_world_config_map.get("trading_pair").value
asset = dev_0_hello_world_config_map.get("asset").value
self._initialize_markets([(exchange, [trading_pair])])
exchange = self.markets[exchange]
self.strategy = HelloWorldStrategy(exchange=exchange,
trading_pair=trading_pair,
asset=asset,
)
except Exception as e:
self.notify(str(e))
self.logger().error("Unknown error during initialization.", exc_info=True)
|
tests/unit/test_modulegraph/testpkg-packages/pkg/__init__.py | hawkhai/pyinstaller | 9,267 | 12778243 | <reponame>hawkhai/pyinstaller
""" pkg.init """
|
dataparser/queue/finder.py | idxn/sublime-robot-framework-assistant | 103 | 12778260 | import os
import fnmatch
def finder(path, ext):
"""Returns files from path by extension"""
l = []
if not ext.startswith('*.'):
ext = '*.{0}'.format(ext)
for path, dirs, files in os.walk(os.path.abspath(path)):
for f in fnmatch.filter(files, ext):
l.append(os.path.join(path, f))
return l
|
ote_sdk/ote_sdk/entities/coordinate.py | ntyukaev/training_extensions | 775 | 12778267 | <reponame>ntyukaev/training_extensions
"""This module implements the Coordinate entity"""
# Copyright (C) 2021-2022 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
#
from typing import Tuple
class Coordinate:
"""
Represents a 2D-coordinate with an x-position and a y-position.
NB most coordinates are normalized (between 0.0 and 1.0)
:param x: x-coordinate
:param y: y-coordinate
"""
__slots__ = ["x", "y"]
def __init__(self, x: float, y: float):
self.x = x
self.y = y
def __repr__(self):
return f"Coordinate(x={self.x}, y={self.y})"
def __eq__(self, other):
return self.x == other.x and self.y == other.y
def __hash__(self):
return hash(str(self))
def as_tuple(self) -> Tuple[float, float]:
"""
Convert the coordinates to a pair (x,y)
"""
return self.x, self.y
def as_int_tuple(self) -> Tuple[int, int]:
"""
Convert the coordinates to a pair of integer coordinates (x,y)
"""
return int(self.x), int(self.y)
|
kashgari/layers/__init__.py | SharpKoi/Kashgari | 2,422 | 12778272 | # encoding: utf-8
# author: BrikerMan
# contact: <EMAIL>
# blog: https://eliyar.biz
# file: __init__.py
# time: 7:39 下午
from typing import Dict, Any
from tensorflow import keras
from .conditional_random_field import KConditionalRandomField
from .behdanau_attention import BahdanauAttention # type: ignore
L = keras.layers
L.BahdanauAttention = BahdanauAttention
L.KConditionalRandomField = KConditionalRandomField
def resigter_custom_layers(custom_objects: Dict[str, Any]) -> Dict[str, Any]:
custom_objects['KConditionalRandomField'] = KConditionalRandomField
custom_objects['BahdanauAttention'] = BahdanauAttention
return custom_objects
if __name__ == "__main__":
pass
|
leet/array/maxSubArrayLen.py | peterlamar/python-cp-cheatsheet | 140 | 12778287 | class Solution:
# Maximum Size Subarray Sum Equals k
def maxSubArrayLen(self, nums: List[int], k: int) -> int:
hm = {0:-1}
ps = 0
rtn = 0
for i in range(len(nums)):
ps += nums[i]
if ps not in hm:
hm[ps] = i
if ps - k in hm:
rtn = max(rtn, i-hm[ps-k])
return rtn
def maxSubArrayLen(self, nums: List[int], k: int) -> int:
hm = {0:-1}
ps = rtn = 0
for i, n in enumerate(nums):
ps += n
if ps not in hm:
hm[ps] = i
if ps-k in hm:
rtn = max(rtn, i-hm[ps-k])
return rtn |
faker/providers/lorem/tl_PH/__init__.py | jacksmith15/faker | 12,077 | 12778301 | <reponame>jacksmith15/faker<gh_stars>1000+
from ..fil_PH import Provider as FilPhProvider
class Provider(FilPhProvider):
"""Implement lorem provider for ``tl_PH`` locale.
There is no difference from the |FilPhLoremProvider|.
.. |FilPhLoremProvider| replace::
:meth:`FilPhLoremProvider <faker.providers.lorem.fil_PH.Provider>`
"""
pass
|
sampling_free/modeling/generalized_rcnn/rpn/retinanet/__init__.py | ChenJoya/sampling-free | 266 | 12778302 | <reponame>ChenJoya/sampling-free
from .retinanet import build_retinanet |
trackml/score.py | victor-estrade/trackml-library | 166 | 12778315 | """TrackML scoring metric"""
__authors__ = ['<NAME>', '<NAME>', '<NAME>',
'<NAME>']
import numpy
import pandas
def _analyze_tracks(truth, submission):
"""Compute the majority particle, hit counts, and weight for each track.
Parameters
----------
truth : pandas.DataFrame
Truth information. Must have hit_id, particle_id, and weight columns.
submission : pandas.DataFrame
Proposed hit/track association. Must have hit_id and track_id columns.
Returns
-------
pandas.DataFrame
Contains track_id, nhits, major_particle_id, major_particle_nhits,
major_nhits, and major_weight columns.
"""
# true number of hits for each particle_id
particles_nhits = truth['particle_id'].value_counts(sort=False)
total_weight = truth['weight'].sum()
# combined event with minimal reconstructed and truth information
event = pandas.merge(truth[['hit_id', 'particle_id', 'weight']],
submission[['hit_id', 'track_id']],
on=['hit_id'], how='left', validate='one_to_one')
event.drop('hit_id', axis=1, inplace=True)
event.sort_values(by=['track_id', 'particle_id'], inplace=True)
# ASSUMPTIONs: 0 <= track_id, 0 <= particle_id
tracks = []
# running sum for the reconstructed track we are currently in
rec_track_id = -1
rec_nhits = 0
# running sum for the particle we are currently in (in this track_id)
cur_particle_id = -1
cur_nhits = 0
cur_weight = 0
# majority particle with most hits up to now (in this track_id)
maj_particle_id = -1
maj_nhits = 0
maj_weight = 0
for hit in event.itertuples(index=False):
# we reached the next track so we need to finish the current one
if (rec_track_id != -1) and (rec_track_id != hit.track_id):
# could be that the current particle is the majority one
if maj_nhits < cur_nhits:
maj_particle_id = cur_particle_id
maj_nhits = cur_nhits
maj_weight = cur_weight
# store values for this track
tracks.append((rec_track_id, rec_nhits, maj_particle_id,
particles_nhits[maj_particle_id], maj_nhits,
maj_weight / total_weight))
# setup running values for next track (or first)
if rec_track_id != hit.track_id:
rec_track_id = hit.track_id
rec_nhits = 1
cur_particle_id = hit.particle_id
cur_nhits = 1
cur_weight = hit.weight
maj_particle_id = -1
maj_nhits = 0
maj_weights = 0
continue
# hit is part of the current reconstructed track
rec_nhits += 1
# reached new particle within the same reconstructed track
if cur_particle_id != hit.particle_id:
# check if last particle has more hits than the majority one
# if yes, set the last particle as the new majority particle
if maj_nhits < cur_nhits:
maj_particle_id = cur_particle_id
maj_nhits = cur_nhits
maj_weight = cur_weight
# reset runnig values for current particle
cur_particle_id = hit.particle_id
cur_nhits = 1
cur_weight = hit.weight
# hit belongs to the same particle within the same reconstructed track
else:
cur_nhits += 1
cur_weight += hit.weight
# last track is not handled inside the loop
if maj_nhits < cur_nhits:
maj_particle_id = cur_particle_id
maj_nhits = cur_nhits
maj_weight = cur_weight
# store values for the last track
tracks.append((rec_track_id, rec_nhits, maj_particle_id,
particles_nhits[maj_particle_id], maj_nhits, maj_weight / total_weight))
cols = ['track_id', 'nhits',
'major_particle_id', 'major_particle_nhits',
'major_nhits', 'major_weight']
return pandas.DataFrame.from_records(tracks, columns=cols)
def score_event(truth, submission):
"""Compute the TrackML event score for a single event.
Parameters
----------
truth : pandas.DataFrame
Truth information. Must have hit_id, particle_id, and weight columns.
submission : pandas.DataFrame
Proposed hit/track association. Must have hit_id and track_id columns.
"""
tracks = _analyze_tracks(truth, submission)
purity_rec = numpy.true_divide(tracks['major_nhits'], tracks['nhits'])
purity_maj = numpy.true_divide(tracks['major_nhits'], tracks['major_particle_nhits'])
good_track = (0.5 < purity_rec) & (0.5 < purity_maj)
return tracks['major_weight'][good_track].sum()
|
exercises/zh/solution_03_09_01.py | Jette16/spacy-course | 2,085 | 12778375 | from spacy.lang.zh import Chinese
from spacy.tokens import Token
nlp = Chinese()
# 注册词符的扩展属性"is_country",其默认值是False
Token.set_extension("is_country", default=False)
# 处理文本,将词符"新加坡"的is_country属性设置为True
doc = nlp("我住在新加坡。")
doc[3]._.is_country = True
# 对所有词符打印词符文本及is_country属性
print([(token.text, token._.is_country) for token in doc])
|
examples/worker/simplejob.py | pooya/disco | 786 | 12778443 | from disco.job import SimpleJob
class SimpleJob(SimpleJob):
def map(self, worker, task, **jobargs):
worker.output(task, partition=None).file.append('hello world!')
def reduce(self, worker, task, **jobargs):
worker.output(task, partition=None).file.append('goodbye world!')
|
tests/seahub/views/sysadmin/test_sysadmin.py | samuelduann/seahub | 420 | 12778455 | <filename>tests/seahub/views/sysadmin/test_sysadmin.py<gh_stars>100-1000
import os
import openpyxl
from io import BytesIO
from mock import patch
from django.urls import reverse
from seahub.base.accounts import User
from seahub.options.models import (UserOptions, KEY_FORCE_PASSWD_CHANGE)
from seahub.test_utils import BaseTestCase
from seahub.utils.ms_excel import write_xls as real_write_xls
import pytest
pytestmark = pytest.mark.django_db
from seaserv import ccnet_threaded_rpc
class BatchUserMakeAdminTest(BaseTestCase):
def setUp(self):
self.login_as(self.admin)
def test_can_make_admins(self):
resp = self.client.post(
reverse('batch_user_make_admin'), {
'set_admin_emails': self.user.username
}, HTTP_X_REQUESTED_WITH='XMLHttpRequest'
)
old_passwd = <PASSWORD>
self.assertContains(resp, '"success": true')
u = User.objects.get(email=self.user.username)
assert u.is_staff is True
assert u.enc_password == <PASSWORD>
# class UserMakeAdminTest(TestCase, Fixtures):
# def test_can_make_admin(self):
# self.client.post(
# reverse('auth_login'), {'username': self.admin.username,
# 'password': '<PASSWORD>'}
# )
# resp = self.client.get(
# reverse('user_make_admin', args=[self.user.id])
# )
# old_passwd = <PASSWORD>
# self.assertEqual(302, resp.status_code)
# u = User.objects.get(email=self.user.username)
# assert u.is_staff is True
# assert u.enc_password == <PASSWORD>
class UserRemoveTest(BaseTestCase):
def setUp(self):
self.login_as(self.admin)
def test_can_remove(self):
# create one user
username = self.user.username
resp = self.client.post(
reverse('user_remove', args=[username])
)
self.assertEqual(302, resp.status_code)
assert len(ccnet_threaded_rpc.search_emailusers('DB', username, -1, -1)) == 0
class SudoModeTest(BaseTestCase):
def test_normal_user_raise_404(self):
self.login_as(self.user)
resp = self.client.get(reverse('sys_sudo_mode'))
self.assertEqual(404, resp.status_code)
def test_admin_get(self):
self.login_as(self.admin)
resp = self.client.get(reverse('sys_sudo_mode'))
self.assertEqual(200, resp.status_code)
self.assertTemplateUsed('sysadmin/sudo_mode.html')
def test_admin_post(self):
self.login_as(self.admin)
resp = self.client.post(reverse('sys_sudo_mode'), {
'username': self.admin.username,
'password': <PASSWORD>,
})
self.assertEqual(302, resp.status_code)
self.assertRedirects(resp, reverse('sys_info'))
class SysGroupAdminExportExcelTest(BaseTestCase):
def setUp(self):
self.login_as(self.admin)
def test_can_export_excel(self):
resp = self.client.get(reverse('sys_group_admin_export_excel'))
self.assertEqual(200, resp.status_code)
assert 'application/ms-excel' in resp.headers['content-type']
class SysUserAdminExportExcelTest(BaseTestCase):
def setUp(self):
self.login_as(self.admin)
def test_can_export_excel(self):
resp = self.client.get(reverse('sys_useradmin_export_excel'))
self.assertEqual(200, resp.status_code)
assert 'application/ms-excel' in resp.headers['content-type']
def write_xls(self, sheet_name, head, data_list):
assert 'Role' in head
return real_write_xls(sheet_name, head, data_list)
@patch('seahub.views.sysadmin.write_xls')
@patch('seahub.views.sysadmin.is_pro_version')
def test_can_export_excel_in_pro(self, mock_is_pro_version, mock_write_xls):
mock_is_pro_version.return_value = True
mock_write_xls.side_effect = self.write_xls
# mock_write_xls.assert_called_once()
resp = self.client.get(reverse('sys_useradmin_export_excel'))
self.assertEqual(200, resp.status_code)
assert 'application/ms-excel' in resp.headers['content-type']
class BatchAddUserHelpTest(BaseTestCase):
def setUp(self):
self.login_as(self.admin)
def test_can_get_excel(self):
resp = self.client.get(reverse('batch_add_user_example')+"?type=xlsx")
assert resp.status_code == 200
def test_validate_excel(self):
resp = self.client.get(reverse('batch_add_user_example')+"?type=xlsx")
wb = openpyxl.load_workbook(filename=BytesIO(resp.content), read_only=True)
assert wb.sheetnames[0] == 'sample'
rows = wb.worksheets[0].rows
i = 0
next(rows)
for r in rows:
assert r[0].value == 'test' + str(i) + '@example.com'
assert r[1].value == '123456'
assert r[2].value == 'test' + str(i)
assert r[3].value == 'default'
assert r[4].value == '1000'
i += 1
|
saleor/plugins/webhook/const.py | victor-abz/saleor | 1,392 | 12778477 | CACHE_EXCLUDED_SHIPPING_KEY = "webhook_exclude_shipping_id_"
CACHE_EXCLUDED_SHIPPING_TIME = 60 * 3
EXCLUDED_SHIPPING_REQUEST_TIMEOUT = 2
|
workflow/__main__.py | trecvt-oss/workflow | 183 | 12778504 | <gh_stars>100-1000
#!/usr/bin/python
# -*- coding: utf-8 -*-
# License: 3-clause BSD License
# Author: <NAME> <<EMAIL>>
# Read-more: https://github.com/mdipierro/workflow
import sys, os, shelve, glob, time, shlex, subprocess, logging, re, optparse
re_line = re.compile('(?P<n>\w+):\s*(?P<p>.+?)\s*(\[(?P<dt>\w+)\]\s*)?:\s*(?P<c>.*)\s*(?P<a>\&)?')
def daemonize():
if os.fork()==0:
os.setsid()
if os.fork()==0:
return
os._exit(0)
def load_config(config_filename,data):
if not os.path.exists(config_filename): return (None,0)
config_mt = os.path.getmtime(config_filename)
config = []
print '-'*10+' loading rules '+'-'*10
lines = open(config_filename,'r').read()
for line in lines.replace('\\\n','\n').split('\n'):
if not line.startswith('#') and ':' in line:
match = re_line.match(line)
if match:
print line
name = match.group('n')
pattern = match.group('p')
dt = eval((match.group('dt') or '1')\
.replace('s','*1').replace('m','*60')\
.replace('h','*3600').replace('d','*24*3600')\
.replace('w','*7*24*3600'))
command = match.group('c')
ampersand = match.group('a')
config.append((name,pattern,dt,command,ampersand))
if not name in data:
data[name]=[]
print '-'*35
return config, config_mt
def workflow(options):
folder = options.folder or './'
logging.basicConfig(level=logging.INFO,
format='%(asctime)s: %(levelname)-8s: %(message)s',
datefmt='%m-%d %H:%M',
filename=options.logfile)
config_filename = options.config or os.path.join(folder,'workflow.config')
cache_filename = options.cache or os.path.join(folder,'workflow.cache')
data = shelve.open(cache_filename)
config, config_mt = load_config(config_filename,data)
processes = {}
while config:
pause = True
if config_mt < os.path.getmtime(config_filename):
config, config_mt = load_config(config_filename,data)
if not config: return
for clear in glob.glob('.workflow.*.clear'):
rule = clear[10:-6]
logging.info('clearing rule "%s"' % rule)
for key in data.get(rule,[]):
if key in data: del data[key]
os.unlink(clear)
for name,pattern,dt,action,ampersand in config:
filenames = glob.glob(pattern)
for filename in filenames:
mt = os.path.getmtime(filename)
if mt > time.time()-dt: continue
pid_file = filename+'.%s.pid' % name
log_file = filename+'.%s.out' % name
err_file = filename+'.%s.err' % name
key = re.sub('\s+',' ',pattern+'='+filename+':'+action).strip()
if not (os.path.exists(pid_file) or os.path.exists(err_file)):
if data.get(key,None)!=mt:
command = action.replace(options.name,filename)
logging.info('%s -> %s' % (filename, command))
wlg = open(log_file,'wb')
process = subprocess.Popen(command,stdout=wlg,
stderr=wlg,shell=True)
open(pid_file,'w').write(str(process.pid))
processes[pid_file] = (filename,command,process)
if not ampersand: process.wait()
if pid_file in processes and processes[pid_file][2].poll()==0:
filename, command, process = processes[pid_file]
returncode = process.returncode
if returncode !=0:
open(err_file,'w').write(str(returncode))
logging.error('%s -> %s' % (filename, command))
else:
data[key] = mt
data[name] = data[name]+[key]
del processes[pid_file]
os.remove(pid_file)
pause = False
elif os.path.exists(pid_file) and not pid_file in processes:
os.remove(pid_file)
pause = False
if pause: time.sleep(options.sleep)
def main():
usage = """
1. read docs: https://github.com/mdipierro/workflow
2. create a file workflow.config
3. run workflow.py
"""
version = "0.1"
parser = optparse.OptionParser(usage, None, optparse.Option, version)
parser.add_option("-s", "--sleep", dest="sleep", default=1,
help="sleep interval")
parser.add_option("-c", "--clear", dest="clear", default=None,
help="clear rule")
parser.add_option("-n", "--name", dest="name", default='$0',
help="name")
parser.add_option("-f", "--folder", dest="folder", default='./',
help="folder for workflow")
parser.add_option("-d", "--daemonize", dest="daemonize", default=False,
action="store_true", help="runs as daemon")
parser.add_option("-x", "--config", dest="config", default=None,
help="path of the config filename "\
+"(default=workflow.config)")
parser.add_option("-y", "--cache", dest="cache", default=None,
help="path of the cache filename "\
+"(default=workflow.cache)")
parser.add_option("-l", "--logfile", dest="logfile", default=None,
help="path of the logfile "\
+"(default=/var/tmp/workflow.log when daemonized)")
(options, args) = parser.parse_args()
if options.clear:
open('.workflow.%s.clear' % options.clear,'wb').write(time.ctime())
return
if options.daemonize:
options.logfile = options.logfile or '/var/tmp/workflow.log'
daemonize()
try:
workflow(options)
except KeyboardInterrupt:
return
if __name__=='__main__': main()
|
mae_envs/modules/__init__.py | bglick13/multi-agent-emergence-environments | 1,317 | 12778514 | from .module import *
from .util import *
|
mopidy_mopify/mem.py | dirkgroenen/mopidy-mopify | 504 | 12778515 | <reponame>dirkgroenen/mopidy-mopify
queuemanager = None
localfiles = None |
house_robber_ii/solution.py | mahimadubey/leetcode-python | 528 | 12778542 | """
Note: This is an extension of House Robber.
After robbing those houses on that street, the thief has found himself a new
place for his thievery so that he will not get too much attention. This time,
all houses at this place are arranged in a circle. That means the first house
is the neighbor of the last one. Meanwhile, the security system for these
houses remain the same as for those in the previous street.
Given a list of non-negative integers representing the amount of money of each
house, determine the maximum amount of money you can rob tonight without
alerting the police.
"""
class Solution(object):
def rob(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
n = len(nums)
if n == 0:
return 0
elif n == 1:
return nums[0]
return max(self.rob_aux(nums, 0), self.rob_aux(nums, 1))
def rob_aux(self, nums, left):
n = len(nums) - 1
t = [0 for i in range(n + 1)]
if n == 0:
return t[n]
t[1] = nums[left]
if n <= 1:
return t[n]
t[2] = max(nums[left: left + 2])
for i in range(3, n + 1):
t[i] = max(t[i - 2] + nums[left + i - 1], t[i - 1])
return t[n]
a1 = [1]
a2 = [4, 1, 6, 10, 5, 13, 2, 7]
s = Solution()
print(s.rob(a1))
print(s.rob(a2))
|
spyder_terminal/server/rest/__init__.py | mrclary/spyder-terminal | 169 | 12778546 | # -*- coding: utf-8 -*-
"""
rest module.
=========
Provides:
1. Asynchronous execution of JSON services
How to use the documentation
----------------------------
Documentation is available in one form: docstrings provided
with the code
Copyright (c) 2016, <NAME>.
MIT, see LICENSE for more details.
"""
from . import term_rest
term_rest
|
experiments/launcher_exp2_collect.py | MenshovSergey/DetectChess | 144 | 12778568 | <filename>experiments/launcher_exp2_collect.py
import os
import pandas as pd
from os2d.utils.logger import extract_value_from_os2d_binary_log, mAP_percent_to_points
if __name__ == "__main__":
config_path = os.path.dirname(os.path.abspath(__file__))
config_job_name = "exp2"
log_path = os.path.abspath(os.path.join(config_path, "..", "output/exp2"))
def get_result(job_type, # "v1" or "v2"
sub_index,
backbone_arch,
init_model_nickname,
random_seed,
):
job_name = f"{config_job_name}.{sub_index}.{job_type}_seed{random_seed}"
log_folder = job_name + "_" + backbone_arch + "_init_" + init_model_nickname
log_folder = os.path.join(log_path, log_folder)
data_file = os.path.join(log_folder, "train_log.pkl")
return mAP_percent_to_points(extract_value_from_os2d_binary_log(data_file, "[email protected]_grozi-val-new-cl", reduce="max")),\
mAP_percent_to_points(extract_value_from_os2d_binary_log(data_file, "[email protected]_grozi-val-new-cl", reduce="first"))
table = pd.DataFrame(columns=["arch", "init", "v1-train", "v2-init", "v2-train"])
random_seed = 0
for i, arch, init in zip(range(10),
["ResNet50"] * 5 + ["ResNet101"] * 5,
["fromScratch", "imageNetPth", "imageNetCaffe2", "imageNetCaffe2GroupNorm", "cocoMaskrcnnFpn",
"imageNetPth", "imageNetCaffe2", "buildingsCirtorch", "cocoMaskrcnnFpn", "pascalWeakalign"]
):
val_train_v1, val_init_v1 = get_result("v1", i, arch, init, random_seed)
val_train_v2, val_init_v2 = get_result("v2", i, arch, init, random_seed)
table = table.append({"arch":arch, "init":init,
"v1-train":val_train_v1, "v2-init":val_init_v2, "v2-train":val_train_v2},
ignore_index=True)
print(table, sep='\n')
|
orion/app.py | brian123zx/orion-server | 120 | 12778580 | from flask import Flask
from flask import jsonify
from flask import request
from flask_cors import CORS
from raven.contrib.flask import Sentry
from orion.context import Context
from orion.handlers import handler_classes
def init_app(app):
"""
Statefully initialize the Flask application. This involves creating a sever-side application
context and adding route definitions for all endpoint handlers.
:param app: Uninitialized Flask application instance.
:return: Server-side application context.
"""
ctx = Context(app)
CORS(app, supports_credentials=True, origins=[ctx.config.get_value('frontend_url')])
sentry_dsn = ctx.config.get_value('sentry_dsn')
if sentry_dsn:
Sentry(dsn=sentry_dsn).init_app(app)
def map_handler_func(HandlerClass):
"""
Create all necessary params for adding this route to the Flask server.
:param HandlerClass: Handler class to prepare.
:return: A tuple of (path, name, view_func, methods) for this handler.
"""
def handler_wrapper(*args, **kwargs):
# Provide an abstraction for supplying the handler with request JSON.
data = request.get_json(force=True, silent=True) or {}
handler = HandlerClass(ctx, data)
resp_json, status = handler.run(*args, **kwargs)
return jsonify(resp_json), status
return HandlerClass.path, HandlerClass.__name__, handler_wrapper, HandlerClass.methods
for rule, endpoint, view_func, methods in map(map_handler_func, handler_classes):
app.add_url_rule(
rule=rule,
endpoint=endpoint,
view_func=view_func,
methods=methods,
)
return ctx
def create_app():
"""
Create a fully initialized Flask application instance for this server.
:return: The initialized Flask application instance.
"""
app = Flask('orion')
ctx = init_app(app)
app.ctx = ctx
return app
|
saleor/graphql/order/mutations/fulfillment_refund_and_return_product_base.py | eanknd/saleor | 1,392 | 12778585 | from typing import Optional
import graphene
from django.core.exceptions import ValidationError
from ....giftcard.utils import order_has_gift_card_lines
from ....order import FulfillmentLineData
from ....order import models as order_models
from ....order.error_codes import OrderErrorCode
from ....order.fetch import OrderLineInfo
from ....payment.models import TransactionItem
from ...core.mutations import BaseMutation
from ..types import FulfillmentLine, OrderLine
class FulfillmentRefundAndReturnProductBase(BaseMutation):
class Meta:
abstract = True
@classmethod
def clean_order_payment(cls, payment, cleaned_input):
if not payment or not payment.can_refund():
raise ValidationError(
{
"order": ValidationError(
"Order cannot be refunded.",
code=OrderErrorCode.CANNOT_REFUND.value,
)
}
)
cleaned_input["payment"] = payment
@classmethod
def clean_amount_to_refund(
cls, order, amount_to_refund, charged_value, cleaned_input
):
if amount_to_refund is not None:
if order_has_gift_card_lines(order):
raise ValidationError(
{
"amount_to_refund": ValidationError(
(
"Cannot specified amount to refund when order has "
"gift card lines."
),
code=OrderErrorCode.CANNOT_REFUND.value,
)
}
)
if amount_to_refund > charged_value:
raise ValidationError(
{
"amount_to_refund": ValidationError(
(
"The amountToRefund is greater than the maximal "
"possible amount to refund."
),
code=OrderErrorCode.CANNOT_REFUND.value,
),
}
)
cleaned_input["amount_to_refund"] = amount_to_refund
@classmethod
def _raise_error_for_line(cls, msg, type, line_id, field_name, code=None):
line_global_id = graphene.Node.to_global_id(type, line_id)
if not code:
code = OrderErrorCode.INVALID_QUANTITY.value
raise ValidationError(
{
field_name: ValidationError(
msg,
code=code,
params={field_name: line_global_id},
)
}
)
@classmethod
def raise_error_for_payment_error(cls, transactions: Optional[TransactionItem]):
if transactions:
code = OrderErrorCode.MISSING_TRANSACTION_ACTION_REQUEST_WEBHOOK.value
msg = "No app or plugin is configured to handle payment action requests."
else:
msg = "The refund operation is not available yet."
code = OrderErrorCode.CANNOT_REFUND.value
raise ValidationError(
msg,
code=code,
)
@classmethod
def clean_fulfillment_lines(
cls, fulfillment_lines_data, cleaned_input, whitelisted_statuses
):
fulfillment_lines = cls.get_nodes_or_error(
[line["fulfillment_line_id"] for line in fulfillment_lines_data],
field="fulfillment_lines",
only_type=FulfillmentLine,
qs=order_models.FulfillmentLine.objects.prefetch_related(
"fulfillment", "order_line"
),
)
fulfillment_lines = list(fulfillment_lines)
cleaned_fulfillment_lines = []
for line, line_data in zip(fulfillment_lines, fulfillment_lines_data):
quantity = line_data["quantity"]
if line.order_line.is_gift_card:
cls._raise_error_for_line(
"Cannot refund or return gift card line.",
"FulfillmentLine",
line.pk,
"fulfillment_line_id",
OrderErrorCode.GIFT_CARD_LINE.value,
)
if line.quantity < quantity:
cls._raise_error_for_line(
"Provided quantity is bigger than quantity from "
"fulfillment line",
"FulfillmentLine",
line.pk,
"fulfillment_line_id",
)
if line.fulfillment.status not in whitelisted_statuses:
allowed_statuses_str = ", ".join(whitelisted_statuses)
cls._raise_error_for_line(
f"Unable to process action for fulfillmentLine with different "
f"status than {allowed_statuses_str}.",
"FulfillmentLine",
line.pk,
"fulfillment_line_id",
code=OrderErrorCode.INVALID.value,
)
replace = line_data.get("replace", False)
if replace and not line.order_line.variant_id:
cls._raise_error_for_line(
"Unable to replace line as the assigned product doesn't exist.",
"OrderLine",
line.pk,
"order_line_id",
)
cleaned_fulfillment_lines.append(
FulfillmentLineData(
line=line,
quantity=quantity,
replace=replace,
)
)
cleaned_input["fulfillment_lines"] = cleaned_fulfillment_lines
@classmethod
def clean_lines(cls, lines_data, cleaned_input):
order_lines = cls.get_nodes_or_error(
[line["order_line_id"] for line in lines_data],
field="order_lines",
only_type=OrderLine,
qs=order_models.OrderLine.objects.prefetch_related(
"fulfillment_lines__fulfillment", "variant", "allocations"
),
)
order_lines = list(order_lines)
cleaned_order_lines = []
for line, line_data in zip(order_lines, lines_data):
quantity = line_data["quantity"]
if line.is_gift_card:
cls._raise_error_for_line(
"Cannot refund or return gift card line.",
"OrderLine",
line.pk,
"order_line_id",
OrderErrorCode.GIFT_CARD_LINE.value,
)
if line.quantity < quantity:
cls._raise_error_for_line(
"Provided quantity is bigger than quantity from order line.",
"OrderLine",
line.pk,
"order_line_id",
)
quantity_ready_to_move = line.quantity_unfulfilled
if quantity_ready_to_move < quantity:
cls._raise_error_for_line(
"Provided quantity is bigger than unfulfilled quantity.",
"OrderLine",
line.pk,
"order_line_id",
)
variant = line.variant
replace = line_data.get("replace", False)
if replace and not line.variant_id:
cls._raise_error_for_line(
"Unable to replace line as the assigned product doesn't exist.",
"OrderLine",
line.pk,
"order_line_id",
)
cleaned_order_lines.append(
OrderLineInfo(
line=line, quantity=quantity, variant=variant, replace=replace
)
)
cleaned_input["order_lines"] = cleaned_order_lines
|
tuyaha/devices/switch.py | PaulAnnekov/tuya-ha | 153 | 12778604 |
from tuyaha.devices.base import TuyaDevice
class TuyaSwitch(TuyaDevice):
def turn_on(self):
if self._control_device("turnOnOff", {"value": "1"}):
self._update_data("state", True)
def turn_off(self):
if self._control_device("turnOnOff", {"value": "0"}):
self._update_data("state", False)
def update(self, use_discovery=True):
return self._update(use_discovery=True)
|
tools/polly/bin/detail/osx_dev_root.py | Kondr11/LABA7 | 861 | 12778606 | # Copyright (c) 2015, <NAME>
# All rights reserved.
import os
import re
def get(osx_version):
dev_dir = re.sub(r'\.', '_', osx_version)
dev_dir = 'OSX_{}_DEVELOPER_DIR'.format(dev_dir)
return os.getenv(dev_dir)
|
libsaas/services/uservoice/comments.py | MidtownFellowship/libsaas | 155 | 12778628 | from libsaas import http, parsers
from libsaas.services import base
from . import resource, flags
class CommentsBase(resource.UserVoiceTextResource):
path = 'comments'
def wrap_object(self, name):
return {'comment': {'text': name}}
class Comments(CommentsBase):
def create(self, obj):
raise base.MethodNotSupported()
class ForumSuggestionComment(CommentsBase):
@base.resource(flags.SuggestionCommentFlags)
def flags(self):
"""
Return the resource corresponding to all the flags of this comment.
"""
return flags.SuggestionCommentFlags(self)
class ForumSuggestionComments(CommentsBase):
@base.apimethod
def get(self, page=None, per_page=None, filter=None, sort=None):
"""
Fetch comments on this suggestion.
:var page: Where should paging start. If left as `None`, the first page
is returned.
:vartype page: int
:var per_page: How many objects sould be returned. If left as `None`,
10 objects are returned.
:vartype per_page: int
:var filter: The kind of comments to return, see upstream
documentation for possible values.
:vartype filter: str
:var sort: How should the returned collection be sorted. Refer to
upstream documentation for possible values.
:vartype sort: str
"""
params = base.get_params(None, locals())
request = http.Request('GET', self.get_url(), params)
return request, parsers.parse_json
class UserComments(CommentsBase):
def create(self, obj):
raise base.MethodNotSupported()
@base.apimethod
def get(self, page=None, per_page=None, filter=None, sort=None):
"""
Fetch comments from this user.
:var page: Where should paging start. If left as `None`, the first page
is returned.
:vartype page: int
:var per_page: How many objects sould be returned. If left as `None`,
10 objects are returned.
:vartype per_page: int
:var filter: The kind of comments to return, see upstream
documentation for possible values.
:vartype filter: str
:var sort: How should the returned collection be sorted. Refer to
upstream documentation for possible values.
:vartype sort: str
"""
params = base.get_params(None, locals())
request = http.Request('GET', self.get_url(), params)
return request, parsers.parse_json
|
backend/api/views/task.py | skaghzz/doccano | 3,989 | 12778629 | <filename>backend/api/views/task.py
from celery.result import AsyncResult
from rest_framework.permissions import IsAuthenticated
from rest_framework.response import Response
from rest_framework.views import APIView
class TaskStatus(APIView):
permission_classes = (IsAuthenticated,)
def get(self, request, *args, **kwargs):
task = AsyncResult(kwargs['task_id'])
ready = task.ready()
error = ready and not task.successful()
return Response({
'ready': ready,
'result': task.result if ready and not error else None,
'error': {'text': str(task.result)} if error else None,
})
|
docs/examples/cpu_temperature_bar_graph.py | NotBobTheBuilder/gpiozero | 743 | 12778671 | <reponame>NotBobTheBuilder/gpiozero<filename>docs/examples/cpu_temperature_bar_graph.py
from gpiozero import LEDBarGraph, CPUTemperature
from signal import pause
cpu = CPUTemperature(min_temp=50, max_temp=90)
leds = LEDBarGraph(2, 3, 4, 5, 6, 7, 8, pwm=True)
leds.source = cpu
pause()
|
src/opendr/perception/activity_recognition/x3d/algorithm/x3d.py | makistsantekidis/opendr | 217 | 12778704 | <gh_stars>100-1000
""" Adapted from: https://github.com/facebookresearch/SlowFast
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from .head_helper import X3DHead
from .resnet_helper import ResStage
from .stem_helper import VideoModelStem
import pytorch_lightning as pl
class X3D(pl.LightningModule):
"""
X3D model,
adapted from https://github.com/facebookresearch/SlowFast
<NAME>.
"X3D: Expanding Architectures for Efficient Video Recognition."
https://arxiv.org/abs/2004.04730
"""
def __init__(
self,
dim_in: int,
image_size: int,
frames_per_clip: int,
num_classes: int,
conv1_dim: int,
conv5_dim: int,
num_groups: int,
width_per_group: int,
width_factor: float,
depth_factor: float,
bottleneck_factor: float,
use_channelwise_3x3x3: bool,
dropout_rate: float,
head_activation: str,
head_batchnorm: bool,
fc_std_init: float,
final_batchnorm_zero_init: bool,
loss_name="cross_entropy",
):
super().__init__()
self.norm_module = torch.nn.BatchNorm3d
self.loss_name = loss_name
exp_stage = 2.0
self.dim_conv1 = conv1_dim
self.dim_res2 = (
_round_width(self.dim_conv1, exp_stage, divisor=8)
if False # hparams.X3D.SCALE_RES2
else self.dim_conv1
)
self.dim_res3 = _round_width(self.dim_res2, exp_stage, divisor=8)
self.dim_res4 = _round_width(self.dim_res3, exp_stage, divisor=8)
self.dim_res5 = _round_width(self.dim_res4, exp_stage, divisor=8)
self.block_basis = [
# blocks, c, stride
[1, self.dim_res2, 2],
[2, self.dim_res3, 2],
[5, self.dim_res4, 2],
[3, self.dim_res5, 2],
]
num_groups = num_groups
width_per_group = width_per_group
dim_inner = num_groups * width_per_group
w_mul = width_factor
d_mul = depth_factor
dim_res1 = _round_width(self.dim_conv1, w_mul)
# Basis of temporal kernel sizes for each of the stage.
temp_kernel = [
[[5]], # conv1 temporal kernels.
[[3]], # res2 temporal kernels.
[[3]], # res3 temporal kernels.
[[3]], # res4 temporal kernels.
[[3]], # res5 temporal kernels.
]
self.s1 = VideoModelStem(
dim_in=[dim_in],
dim_out=[dim_res1],
kernel=[temp_kernel[0][0] + [3, 3]],
stride=[[1, 2, 2]],
padding=[[temp_kernel[0][0][0] // 2, 1, 1]],
norm_module=self.norm_module,
stem_func_name="x3d_stem",
)
# blob_in = s1
dim_in = dim_res1
dim_out = dim_in
for stage, block in enumerate(self.block_basis):
dim_out = _round_width(block[1], w_mul)
dim_inner = int(bottleneck_factor * dim_out)
n_rep = _round_repeats(block[0], d_mul)
prefix = "s{}".format(stage + 2) # start w res2 to follow convention
s = ResStage(
dim_in=[dim_in],
dim_out=[dim_out],
dim_inner=[dim_inner],
temp_kernel_sizes=temp_kernel[1],
stride=[block[2]],
num_blocks=[n_rep],
num_groups=[dim_inner] if use_channelwise_3x3x3 else [num_groups],
num_block_temp_kernel=[n_rep],
nonlocal_inds=[[]],
nonlocal_group=[1],
nonlocal_pool=[[1, 2, 2], [1, 2, 2]],
instantiation="dot_product",
trans_func_name="x3d_transform",
stride_1x1=False,
norm_module=self.norm_module,
dilation=[1],
drop_connect_rate=0.0,
)
dim_in = dim_out
self.add_module(prefix, s)
spat_sz = int(math.ceil(image_size / 32.0))
self.head = X3DHead(
dim_in=dim_out,
dim_inner=dim_inner,
dim_out=conv5_dim,
num_classes=num_classes,
pool_size=(frames_per_clip, spat_sz, spat_sz),
dropout_rate=dropout_rate,
act_func=head_activation,
bn_lin5_on=bool(head_batchnorm),
)
init_weights(self, fc_std_init, bool(final_batchnorm_zero_init))
def forward(self, x: Tensor):
# The original slowfast code was set up to use multiple paths, wrap the input
x = [x] # type:ignore
for module in self.children():
x = module(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
x = self.forward(x)
loss = getattr(F, self.loss_name, F.cross_entropy)(x, y)
self.log('train/loss', loss)
self.log('train/acc', _accuracy(x, y))
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
x = self.forward(x)
loss = getattr(F, self.loss_name, F.cross_entropy)(x, y)
self.log('val/loss', loss)
self.log('val/acc', _accuracy(x, y))
return loss
def test_step(self, batch, batch_idx):
x, y = batch
x = self.forward(x)
loss = getattr(F, self.loss_name, F.cross_entropy)(x, y)
self.log('test/loss', loss)
self.log('test/acc', _accuracy(x, y))
return loss
def _accuracy(x: Tensor, y: Tensor):
return torch.sum(x.argmax(dim=1) == y) / len(y)
def _round_width(width, multiplier, min_depth=8, divisor=8):
"""Round width of filters based on width multiplier."""
if not multiplier:
return width
width *= multiplier
min_depth = min_depth or divisor
new_filters = max(min_depth, int(width + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * width:
new_filters += divisor
return int(new_filters)
def _round_repeats(repeats, multiplier):
"""Round number of layers based on depth multiplier."""
multiplier = multiplier
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
def c2_msra_fill(module: nn.Module) -> None:
"""
Initialize `module.weight` using the "MSRAFill" implemented in Caffe2.
Also initializes `module.bias` to 0.
Args:
module (torch.nn.Module): module to initialize.
"""
# pyre-ignore
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
if module.bias is not None: # pyre-ignore
nn.init.constant_(module.bias, 0)
def init_weights(model, fc_init_std=0.01, zero_init_final_bn=True):
"""
Performs ResNet style weight initialization.
Args:
fc_init_std (float): the expected standard deviation for fc layer.
zero_init_final_bn (bool): if True, zero initialize the final bn for
every bottleneck.
"""
for m in model.modules():
if isinstance(m, nn.Conv3d):
"""
Follow the initialization method proposed in:
{He, Kaiming, et al.
"Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification."
arXiv preprint arXiv:1502.01852 (2015)}
"""
c2_msra_fill(m)
elif isinstance(m, nn.BatchNorm3d):
if (
hasattr(m, "transform_final_bn") and
m.transform_final_bn and
zero_init_final_bn
):
batchnorm_weight = 0.0
else:
batchnorm_weight = 1.0
if m.weight is not None:
m.weight.data.fill_(batchnorm_weight)
if m.bias is not None:
m.bias.data.zero_()
if isinstance(m, nn.Linear):
m.weight.data.normal_(mean=0.0, std=fc_init_std)
if m.bias is not None:
m.bias.data.zero_()
|
app/settings/arq.py | leosussan/fastapi-gino-arq-postgres | 289 | 12778706 | <filename>app/settings/arq.py
from arq.connections import RedisSettings
from .globals import REDIS_IP, REDIS_PORT
settings = RedisSettings(host=REDIS_IP, port=REDIS_PORT)
|
zinnia/migrations/__init__.py | Boondockers-Welcome/django-blog-zinnia | 1,522 | 12778732 | """Migrations for Zinnia"""
|
openbb_terminal/dashboards/widget_helpers.py | tehcoderer/GamestonkTerminal | 255 | 12778771 | """Widgets Helper Library.
A library of `ipywidgets` wrappers for notebook based reports and voila dashboards.
The library includes both python code and html/css/js elements that can be found in the
`./widgets` folder.
"""
import os
from jinja2 import Template
def stylesheet():
"""Load a default CSS stylesheet from file."""
with open(
os.path.join(os.path.dirname(os.path.abspath(__file__)), "widgets", "style.css")
) as f:
style = f.read()
return style
def price_card(ticker: str, price: str, price_color: str = "neutral_color") -> str:
"""Prepare a styled HTML element of a 128 by 128 price card.
Parameters
----------
ticker : str
Instrument ticker for the price card
price : str
Instrument price as a string
price_color : str, optional
The color of the price. Accepts "up_color", "down_color" and default "neutral_color"
Returns
-------
str
HTML code as string
"""
with open(
os.path.join(os.path.dirname(os.path.abspath(__file__)), "widgets", "card.j2")
) as f:
template = Template(f.read())
card = template.render(ticker=ticker, price=price, price_color=price_color)
return card
|
corehq/apps/sms/tests/opt_tests.py | akashkj/commcare-hq | 471 | 12778795 | from django.test import TestCase
from corehq.apps.accounting.models import SoftwarePlanEdition
from corehq.apps.accounting.tests.utils import DomainSubscriptionMixin
from corehq.apps.accounting.utils import clear_plan_version_cache
from corehq.apps.domain.models import Domain
from corehq.messaging.smsbackends.test.models import SQLTestSMSBackend
from corehq.apps.sms.api import incoming, send_sms_to_verified_number
from corehq.apps.sms.messages import MSG_OPTED_IN, MSG_OPTED_OUT, get_message
from corehq.apps.sms.models import SMS, PhoneBlacklist, PhoneNumber, SQLMobileBackendMapping, SQLMobileBackend
from corehq.apps.sms.tests.util import (
delete_domain_phone_numbers,
setup_default_sms_test_backend,
)
from corehq.form_processor.tests.utils import FormProcessorTestUtils
class OptTestCase(DomainSubscriptionMixin, TestCase):
@classmethod
def setUpClass(cls):
super(OptTestCase, cls).setUpClass()
cls.domain = 'opt-test'
cls.domain_obj = Domain(name=cls.domain)
cls.domain_obj.sms_case_registration_enabled = True
cls.domain_obj.save()
cls.setup_subscription(cls.domain, SoftwarePlanEdition.ADVANCED)
cls.backend, cls.backend_mapping = setup_default_sms_test_backend()
cls.custom_backend = SQLTestSMSBackend.objects.create(
name='MOBILE_BACKEND_CUSTOM_TEST',
is_global=True,
hq_api_id=SQLTestSMSBackend.get_api_id(),
opt_in_keywords=['RESTART'],
opt_out_keywords=['RESTOP']
)
cls.custom_backend_mapping = SQLMobileBackendMapping.objects.create(
is_global=True,
backend_type=SQLMobileBackend.SMS,
prefix='1',
backend=cls.custom_backend,
)
@classmethod
def tearDownClass(cls):
cls.backend_mapping.delete()
cls.backend.delete()
cls.custom_backend_mapping.delete()
cls.custom_backend.delete()
FormProcessorTestUtils.delete_all_cases(cls.domain)
cls.teardown_subscriptions()
cls.domain_obj.delete()
clear_plan_version_cache()
super(OptTestCase, cls).tearDownClass()
def tearDown(self):
PhoneBlacklist.objects.all().delete()
SMS.objects.filter(domain=self.domain).delete()
delete_domain_phone_numbers(self.domain)
def get_last_sms(self, phone_number):
return SMS.objects.filter(domain=self.domain, phone_number=phone_number).order_by('-date')[0]
def test_opt_out_and_opt_in(self):
self.assertEqual(PhoneBlacklist.objects.count(), 0)
incoming('99912345678', 'join opt-test', 'GVI')
v = PhoneNumber.get_two_way_number('99912345678')
self.assertIsNotNone(v)
incoming('99912345678', 'stop', 'GVI')
self.assertEqual(PhoneBlacklist.objects.count(), 1)
phone_number = PhoneBlacklist.objects.get(phone_number='99912345678')
self.assertFalse(phone_number.send_sms)
self.assertEqual(phone_number.domain, self.domain)
self.assertIsNotNone(phone_number.last_sms_opt_out_timestamp)
self.assertIsNone(phone_number.last_sms_opt_in_timestamp)
sms = self.get_last_sms('+99912345678')
self.assertEqual(sms.direction, 'O')
self.assertEqual(sms.text, get_message(MSG_OPTED_OUT, context=('START',)))
incoming('99912345678', 'start', 'GVI')
self.assertEqual(PhoneBlacklist.objects.count(), 1)
phone_number = PhoneBlacklist.objects.get(phone_number='99912345678')
self.assertTrue(phone_number.send_sms)
self.assertEqual(phone_number.domain, self.domain)
self.assertIsNotNone(phone_number.last_sms_opt_out_timestamp)
self.assertIsNotNone(phone_number.last_sms_opt_in_timestamp)
sms = self.get_last_sms('+99912345678')
self.assertEqual(sms.direction, 'O')
self.assertEqual(sms.text, get_message(MSG_OPTED_IN, context=('STOP',)))
def test_sending_to_opted_out_number(self):
self.assertEqual(PhoneBlacklist.objects.count(), 0)
incoming('99912345678', 'join opt-test', 'GVI')
v = PhoneNumber.get_two_way_number('99912345678')
self.assertIsNotNone(v)
send_sms_to_verified_number(v, 'hello')
sms = self.get_last_sms('+99912345678')
self.assertEqual(sms.direction, 'O')
self.assertEqual(sms.text, 'hello')
incoming('99912345678', 'stop', 'GVI')
self.assertEqual(PhoneBlacklist.objects.count(), 1)
phone_number = PhoneBlacklist.objects.get(phone_number='99912345678')
self.assertFalse(phone_number.send_sms)
send_sms_to_verified_number(v, 'hello')
sms = self.get_last_sms('+99912345678')
self.assertEqual(sms.direction, 'O')
self.assertEqual(sms.text, 'hello')
self.assertTrue(sms.error)
self.assertEqual(sms.system_error_message, SMS.ERROR_PHONE_NUMBER_OPTED_OUT)
incoming('99912345678', 'start', 'GVI')
self.assertEqual(PhoneBlacklist.objects.count(), 1)
phone_number = PhoneBlacklist.objects.get(phone_number='99912345678')
self.assertTrue(phone_number.send_sms)
send_sms_to_verified_number(v, 'hello')
sms = self.get_last_sms('+99912345678')
self.assertEqual(sms.direction, 'O')
self.assertEqual(sms.text, 'hello')
self.assertFalse(sms.error)
self.assertIsNone(sms.system_error_message)
def test_custom_opt_keywords(self):
self.assertEqual(PhoneBlacklist.objects.count(), 0)
incoming('19912345678', 'join opt-test', 'TEST')
v = PhoneNumber.get_two_way_number('19912345678')
self.assertIsNotNone(v)
send_sms_to_verified_number(v, 'hello')
sms = self.get_last_sms('+19912345678')
self.assertEqual(sms.direction, 'O')
self.assertEqual(sms.text, 'hello')
incoming('19912345678', 'restop', 'TEST')
self.assertEqual(PhoneBlacklist.objects.count(), 1)
phone_number = PhoneBlacklist.objects.get(phone_number='19912345678')
self.assertFalse(phone_number.send_sms)
send_sms_to_verified_number(v, 'hello')
sms = self.get_last_sms('+19912345678')
self.assertEqual(sms.direction, 'O')
self.assertEqual(sms.text, 'hello')
self.assertTrue(sms.error)
self.assertEqual(sms.system_error_message, SMS.ERROR_PHONE_NUMBER_OPTED_OUT)
incoming('19912345678', 'restart', 'TEST')
self.assertEqual(PhoneBlacklist.objects.count(), 1)
phone_number = PhoneBlacklist.objects.get(phone_number='19912345678')
self.assertTrue(phone_number.send_sms)
send_sms_to_verified_number(v, 'hello')
sms = self.get_last_sms('+19912345678')
self.assertEqual(sms.direction, 'O')
self.assertEqual(sms.text, 'hello')
self.assertFalse(sms.error)
self.assertIsNone(sms.system_error_message)
|
Subsets and Splits