max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
torch/utils/data/datapipes/iter/httpreader.py
xiaohanhuang/pytorch
60,067
12781056
<reponame>xiaohanhuang/pytorch<filename>torch/utils/data/datapipes/iter/httpreader.py from io import IOBase from typing import Sized, Tuple from torch.utils.data import IterDataPipe from torch.utils.data.datapipes.utils.common import deprecation_warning_torchdata class HTTPReaderIterDataPipe(IterDataPipe[Tuple[str, IOBase]]): r""" :class:`HTTPReaderIterDataPipe` Iterable DataPipe to load file url(s) (http url(s) pointing to file(s)), yield file url and IO stream in a tuple Args: datapipe: Iterable DataPipe providing urls timeout: Timeout for http request """ def __init__(self, datapipe, timeout=None): self.datapipe = datapipe self.timeout = timeout deprecation_warning_torchdata(type(self).__name__) def __iter__(self): from requests import HTTPError, RequestException, Session for url in self.datapipe: try: with Session() as session: if self.timeout is None: r = session.get(url, stream=True) else: r = session.get(url, timeout=self.timeout, stream=True) return url, r.raw except HTTPError as e: raise Exception(f"Could not get the file. [HTTP Error] {e.response}.") except RequestException as e: raise Exception(f"Could not get the file at {url}. [RequestException] {e.response}.") except Exception: raise def __len__(self) -> int: if isinstance(self.datapipe, Sized): return len(self.datapipe) raise TypeError("{} instance doesn't have valid length".format(type(self).__name__))
scipy/stats/tests/test_crosstab.py
Ennosigaeon/scipy
9,095
12781061
<filename>scipy/stats/tests/test_crosstab.py import pytest import numpy as np from numpy.testing import assert_array_equal from scipy.stats.contingency import crosstab @pytest.mark.parametrize('sparse', [False, True]) def test_crosstab_basic(sparse): a = [0, 0, 9, 9, 0, 0, 9] b = [2, 1, 3, 1, 2, 3, 3] expected_avals = [0, 9] expected_bvals = [1, 2, 3] expected_count = np.array([[1, 2, 1], [1, 0, 2]]) (avals, bvals), count = crosstab(a, b, sparse=sparse) assert_array_equal(avals, expected_avals) assert_array_equal(bvals, expected_bvals) if sparse: assert_array_equal(count.A, expected_count) else: assert_array_equal(count, expected_count) def test_crosstab_basic_1d(): # Verify that a single input sequence works as expected. x = [1, 2, 3, 1, 2, 3, 3] expected_xvals = [1, 2, 3] expected_count = np.array([2, 2, 3]) (xvals,), count = crosstab(x) assert_array_equal(xvals, expected_xvals) assert_array_equal(count, expected_count) def test_crosstab_basic_3d(): # Verify the function for three input sequences. a = 'a' b = 'b' x = [0, 0, 9, 9, 0, 0, 9, 9] y = [a, a, a, a, b, b, b, a] z = [1, 2, 3, 1, 2, 3, 3, 1] expected_xvals = [0, 9] expected_yvals = [a, b] expected_zvals = [1, 2, 3] expected_count = np.array([[[1, 1, 0], [0, 1, 1]], [[2, 0, 1], [0, 0, 1]]]) (xvals, yvals, zvals), count = crosstab(x, y, z) assert_array_equal(xvals, expected_xvals) assert_array_equal(yvals, expected_yvals) assert_array_equal(zvals, expected_zvals) assert_array_equal(count, expected_count) @pytest.mark.parametrize('sparse', [False, True]) def test_crosstab_levels(sparse): a = [0, 0, 9, 9, 0, 0, 9] b = [1, 2, 3, 1, 2, 3, 3] expected_avals = [0, 9] expected_bvals = [0, 1, 2, 3] expected_count = np.array([[0, 1, 2, 1], [0, 1, 0, 2]]) (avals, bvals), count = crosstab(a, b, levels=[None, [0, 1, 2, 3]], sparse=sparse) assert_array_equal(avals, expected_avals) assert_array_equal(bvals, expected_bvals) if sparse: assert_array_equal(count.A, expected_count) else: assert_array_equal(count, expected_count) @pytest.mark.parametrize('sparse', [False, True]) def test_crosstab_extra_levels(sparse): # The pair of values (-1, 3) will be ignored, because we explicitly # request the counted `a` values to be [0, 9]. a = [0, 0, 9, 9, 0, 0, 9, -1] b = [1, 2, 3, 1, 2, 3, 3, 3] expected_avals = [0, 9] expected_bvals = [0, 1, 2, 3] expected_count = np.array([[0, 1, 2, 1], [0, 1, 0, 2]]) (avals, bvals), count = crosstab(a, b, levels=[[0, 9], [0, 1, 2, 3]], sparse=sparse) assert_array_equal(avals, expected_avals) assert_array_equal(bvals, expected_bvals) if sparse: assert_array_equal(count.A, expected_count) else: assert_array_equal(count, expected_count) def test_validation_at_least_one(): with pytest.raises(TypeError, match='At least one'): crosstab() def test_validation_same_lengths(): with pytest.raises(ValueError, match='must have the same length'): crosstab([1, 2], [1, 2, 3, 4]) def test_validation_sparse_only_two_args(): with pytest.raises(ValueError, match='only two input sequences'): crosstab([0, 1, 1], [8, 8, 9], [1, 3, 3], sparse=True) def test_validation_len_levels_matches_args(): with pytest.raises(ValueError, match='number of input sequences'): crosstab([0, 1, 1], [8, 8, 9], levels=([0, 1, 2, 3],))
examples/libtest/imports/allsimple.py
takipsizad/pyjs
739
12781079
""" Helper module for import * without __all__ """ all_import2 = 3 all_import3 = 3 all_override = True
step30_multiple_stacks/Python/backend/lambda.py
fullstackwebdev/full-stack-serverless-cdk
192
12781091
<reponame>fullstackwebdev/full-stack-serverless-cdk<filename>step30_multiple_stacks/Python/backend/lambda.py import json import random import string def lambda_handler(event, context): # print(event) # print(context) letters = string.ascii_lowercase value = ''.join(random.choice(letters) for i in range(10)) return { 'statusCode': 200, "headers": json.dumps({ 'Access-Control-Allow-Origin': '*' }), "body": json.dumps(value) }
scripts/benchmark_ecef2geo.py
wrlssqi/pymap3d
116
12781116
<filename>scripts/benchmark_ecef2geo.py #!/usr/bin/env python3 """ benchmark ecef2geodetic """ import time from pymap3d.ecef import ecef2geodetic import numpy as np import argparse ll0 = (42.0, 82.0) def bench(N: int) -> float: x = np.random.random(N) y = np.random.random(N) z = np.random.random(N) tic = time.monotonic() lat, lon, alt = ecef2geodetic(x, y, z) return time.monotonic() - tic if __name__ == "__main__": p = argparse.ArgumentParser() p.add_argument("N", type=int) p = p.parse_args() N = p.N print(f"ecef2geodetic: {bench(N):.3f} seconds")
mmdeploy/codebase/mmdet3d/models/voxelnet.py
xizi/mmdeploy
746
12781126
# Copyright (c) OpenMMLab. All rights reserved. from mmdeploy.core import FUNCTION_REWRITER @FUNCTION_REWRITER.register_rewriter( 'mmdet3d.models.detectors.voxelnet.VoxelNet.simple_test') def voxelnet__simple_test(ctx, self, voxels, num_points, coors, img_metas=None, imgs=None, rescale=False): """Test function without augmentaiton. Rewrite this func to remove model post process. Args: voxels (torch.Tensor): Point features or raw points in shape (N, M, C). num_points (torch.Tensor): Number of points in each pillar. coors (torch.Tensor): Coordinates of each voxel. input_metas (list[dict]): Contain pcd meta info. Returns: List: Result of model. """ x = self.extract_feat(voxels, num_points, coors, img_metas) bbox_preds, scores, dir_scores = self.bbox_head(x) return bbox_preds, scores, dir_scores @FUNCTION_REWRITER.register_rewriter( 'mmdet3d.models.detectors.voxelnet.VoxelNet.extract_feat') def voxelnet__extract_feat(ctx, self, voxels, num_points, coors, img_metas=None): """Extract features from points. Rewrite this func to remove voxelize op. Args: voxels (torch.Tensor): Point features or raw points in shape (N, M, C). num_points (torch.Tensor): Number of points in each pillar. coors (torch.Tensor): Coordinates of each voxel. input_metas (list[dict]): Contain pcd meta info. Returns: torch.Tensor: Features from points. """ voxel_features = self.voxel_encoder(voxels, num_points, coors) batch_size = coors[-1, 0] + 1 # refactor assert batch_size == 1 x = self.middle_encoder(voxel_features, coors, batch_size) x = self.backbone(x) if self.with_neck: x = self.neck(x) return x
egg/hatch.py
TheMartianObserver/nsimd
247
12781151
<filename>egg/hatch.py # Copyright (c) 2021 Agenium Scale # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # What does this script? # ---------------------- # # This script generates code for each architecture, the base C/C++ APIs and # the advanced C++ API. Each part to be generated is handled by a # `gen_*.py` file. This script simply calls the `doit` function of each # `gen_*.py` module. Names are self-explanatory. # # ----------------------------------------------------------------------------- # First thing we do is check whether python3 is used import sys if sys.version_info[0] < 3: print('Only Python 3 is supported') sys.exit(1) # ----------------------------------------------------------------------------- # Imports import argparse import os import re import common import gen_archis import gen_base_apis import gen_adv_cxx_api import gen_adv_c_api import gen_tests import gen_src import gen_doc import gen_friendly_but_not_optimized import gen_modules import gen_scalar_utilities import get_sleef_code # Dir of this script script_dir = os.path.dirname(__file__) if script_dir == '': script_dir = '.' # ----------------------------------------------------------------------------- # Arguments parsing def parse_args(args): def parse_simd(value): ## Split .simd now values = { 'x86': common.x86_simds, 'arm': common.arm_simds, 'ppc': common.ppc_simds, 'all': common.simds, }.get(value, value.split(',')) ## Check that all simd are valid ret = [] for simd in values: if simd not in common.simds: raise argparse.ArgumentTypeError( "SIMD '{}' not found in {}".format(simd, common.simds)) ret += common.simds_deps[simd] return list(set(ret)) def parse_match(value): if value is None: return None else: return re.compile(value) # In pratice, we either generate all or all except tests and we never # change default directories for code generation. So we remove unused # options and regroup some into --library. parser = argparse.ArgumentParser( description='This is NSIMD generation script.') parser.add_argument('--force', '-f', action='store_true', help='Generate all files even if they already exist') parser.add_argument('--list-files', '-L', action='store_true', default=False, help='List files that will be created by hatch.py') parser.add_argument('--all', '-A', action='store_true', help='Generate code for the library and its tests') parser.add_argument('--library', '-l', action='store_true', help='Generate code of the library (C and C++ APIs)') parser.add_argument('--sleef', '-s', action='store_true', default=False, help='Compile Sleef') parser.add_argument('--tests', '-t', action='store_true', help='Generate tests in C and C++') parser.add_argument('--doc', '-d', action='store_true', help='Generate all documentation') parser.add_argument('--enable-clang-format', '-F', action='store_false', default=True, help='Disable Clang Format (mainly for speed on Windows)') parser.add_argument('--sve-emulate-bool', action='store_true', default=False, help='Use normal SVE vector to emulate predicates.') parser.add_argument('--simd', '-D', type=parse_simd, default='all', help='List of SIMD extensions (separated by a comma)') parser.add_argument('--match', '-m', type=parse_match, default=None, help='Regex used to filter generation on operator names') parser.add_argument('--verbose', '-v', action = 'store_true', default=None, help='Enable verbose mode') parser.add_argument('--simple-license', action='store_true', default=False, help='Put a simple copyright statement instead of the whole license') opts = parser.parse_args(args) # When -L has been chosen, we want to list all files and so we have to # turn to True other parameters if opts.list_files: opts.library = True opts.tests = True opts.force = True opts.doc = True # We set variables here because all the code depends on them + we do want # to keep the possibility to change them in the future opts.archis = opts.library opts.base_apis = opts.library opts.adv_cxx_api = opts.library opts.adv_c_api = opts.library opts.friendly_but_not_optimized = opts.library opts.src = opts.library opts.scalar_utilities = opts.library opts.sleef_version = '3.5.1' opts.include_dir = os.path.join(script_dir, '..', 'include', 'nsimd') opts.tests_dir = os.path.join(script_dir, '..', 'tests') opts.src_dir = os.path.join(script_dir, '..', 'src') return opts # ----------------------------------------------------------------------------- # Entry point def main(): opts = parse_args(sys.argv[1:]) opts.script_dir = script_dir opts.modules_list = None opts.platforms_list = None ## Gather all SIMD dependencies opts.simd = common.get_simds_deps_from_opts(opts) common.myprint(opts, 'List of SIMD: {}'.format(', '.join(opts.simd))) if opts.archis == True or opts.all == True: gen_archis.doit(opts) if opts.base_apis == True or opts.all == True: gen_base_apis.doit(opts) if opts.adv_cxx_api == True or opts.all == True: gen_adv_cxx_api.doit(opts) if opts.adv_c_api == True or opts.all == True: gen_adv_c_api.doit(opts) if opts.tests == True or opts.all == True: gen_tests.doit(opts) if opts.src == True or opts.all == True: gen_src.doit(opts) if opts.sleef == True or opts.all == True: get_sleef_code.doit(opts) if opts.scalar_utilities == True or opts.all == True: gen_scalar_utilities.doit(opts) if opts.friendly_but_not_optimized == True or opts.all == True: gen_friendly_but_not_optimized.doit(opts) gen_modules.doit(opts) # this must be here after all NSIMD if opts.doc == True or opts.all == True: gen_doc.doit(opts) if __name__ == '__main__': main()
ggtnn_graph_parse.py
hexahedria/gated-graph-transformer-network
160
12781160
<filename>ggtnn_graph_parse.py<gh_stars>100-1000 import os import sys import re import collections import numpy as np import scipy import json import itertools import pickle import gc import gzip import argparse def tokenize(sent): '''Return the tokens of a sentence including punctuation. >>> tokenize('Bob dropped the apple. Where is the apple?') ['Bob', 'dropped', 'the', 'apple', '.', 'Where', 'is', 'the', 'apple', '?'] ''' return re.findall('(?:\w+)|\S',sent) def list_to_map(l): '''Convert a list of values to a map from values to indices''' return {val:i for i,val in enumerate(l)} def parse_stories(lines): ''' Parse stories provided in the bAbi tasks format, with knowledge graph. ''' data = [] story = [] for line in lines: if line[-1] == "\n": line = line[:-1] nid, line = line.split(' ', 1) nid = int(nid) if nid == 1: story = [] questions = [] if '\t' in line: q, apre = line.split('\t')[:2] a = apre.split(',') q = tokenize(q) substory = [x for x in story if x] data.append((substory, q, a)) story.append('') else: line, graph = line.split('=', 1) sent = tokenize(line) graph_parsed = json.loads(graph) story.append((sent, graph_parsed)) return data def get_stories(taskname): with open(taskname, 'r') as f: lines = f.readlines() return parse_stories(lines) def get_max_sentence_length(stories): return max((max((len(sentence) for (sentence, graph) in sents_graphs)) for (sents_graphs, query, answer) in stories)) def get_max_query_length(stories): return max((len(query) for (sents_graphs, query, answer) in stories)) def get_max_num_queries(stories): return max((len(queries) for (sents_graphs, query, answer) in stories)) def get_max_nodes_per_iter(stories): result = 0 for (sents_graphs, query, answer) in stories: prev_nodes = set() for (sentence, graph) in sents_graphs: cur_nodes = set(graph["nodes"]) new_nodes = len(cur_nodes - prev_nodes) if new_nodes > result: result = new_nodes prev_nodes = cur_nodes return result def get_buckets(stories, max_ignore_unbatched=100, max_pad_amount=25): sentencecounts = [len(sents_graphs) for (sents_graphs, query, answer) in stories] countpairs = sorted(collections.Counter(sentencecounts).items()) buckets = [] smallest_left_val = 0 num_unbatched = max_ignore_unbatched for val,ct in countpairs: num_unbatched += ct if val - smallest_left_val > max_pad_amount or num_unbatched > max_ignore_unbatched: buckets.append(val) smallest_left_val = val num_unbatched = 0 if buckets[-1] != countpairs[-1][0]: buckets.append(countpairs[-1][0]) return buckets PAD_WORD = "<PAD>" def get_wordlist(stories): words = [PAD_WORD] + sorted(list(set((word for (sents_graphs, query, answer) in stories for wordbag in itertools.chain((s for s,g in sents_graphs), [query]) for word in wordbag )))) wordmap = list_to_map(words) return words, wordmap def get_answer_list(stories): words = sorted(list(set(word for (sents_graphs, query, answer) in stories for word in answer))) wordmap = list_to_map(words) return words, wordmap def pad_story(story, num_sentences, sentence_length): def pad(lst,dlen,pad): return lst + [pad]*(dlen - len(lst)) sents_graphs, query, answer = story padded_sents_graphs = [(pad(s,sentence_length,PAD_WORD), g) for s,g in sents_graphs] padded_query = pad(query,sentence_length,PAD_WORD) sentgraph_padding = (pad([],sentence_length,PAD_WORD), padded_sents_graphs[-1][1]) return (pad(padded_sents_graphs, num_sentences, sentgraph_padding), padded_query, answer) def get_unqualified_id(s): return s.split("#")[0] def get_graph_lists(stories): node_words = sorted(list(set(get_unqualified_id(node) for (sents_graphs, query, answer) in stories for sent,graph in sents_graphs for node in graph["nodes"]))) nodemap = list_to_map(node_words) edge_words = sorted(list(set(get_unqualified_id(edge["type"]) for (sents_graphs, query, answer) in stories for sent,graph in sents_graphs for edge in graph["edges"]))) edgemap = list_to_map(edge_words) return node_words, nodemap, edge_words, edgemap def convert_graph(graphs, nodemap, edgemap, new_nodes_per_iter, dynamic=True): num_node_ids = len(nodemap) num_edge_types = len(edgemap) full_size = len(graphs)*new_nodes_per_iter + 1 prev_size = 1 processed_nodes = [] index_map = {} all_num_nodes = [] all_node_ids = [] all_node_strengths = [] all_edges = [] if not dynamic: processed_nodes = list(nodemap.keys()) index_map = nodemap.copy() prev_size = num_node_ids full_size = prev_size new_nodes_per_iter = 0 for g in graphs: active_nodes = g["nodes"] active_edges = g["edges"] new_nodes = [e for e in active_nodes if e not in processed_nodes] num_new_nodes = len(new_nodes) if not dynamic: assert num_new_nodes == 0, "Cannot create more nodes in non-dynamic mode!\n{}".format(graphs) new_node_strengths = np.zeros([new_nodes_per_iter], np.float32) new_node_strengths[:num_new_nodes] = 1.0 new_node_ids = np.zeros([new_nodes_per_iter, num_node_ids], np.float32) for i, node in enumerate(new_nodes): new_node_ids[i,nodemap[get_unqualified_id(node)]] = 1.0 index_map[node] = prev_size + i next_edges = np.zeros([full_size, full_size, num_edge_types]) for edge in active_edges: next_edges[index_map[edge["from"]], index_map[edge["to"]], edgemap[get_unqualified_id(edge["type"])]] = 1.0 processed_nodes.extend(new_nodes) prev_size += new_nodes_per_iter all_num_nodes.append(num_new_nodes) all_node_ids.append(new_node_ids) all_edges.append(next_edges) all_node_strengths.append(new_node_strengths) return np.stack(all_num_nodes), np.stack(all_node_strengths), np.stack(all_node_ids), np.stack(all_edges) def convert_story(story, wordmap, answer_map, graph_node_map, graph_edge_map, new_nodes_per_iter, dynamic=True): """ Converts a story in format ([(sentence, graph)], [(index, question_arr, answer)]) to a consolidated story in format (sentence_arr, [graph_arr_dict], [(index, question_arr, answer)]) and also replaces words according to the input maps """ sents_graphs, query, answer = story sentence_arr = [[wordmap[w] for w in s] for s,g in sents_graphs] graphs = convert_graph([g for s,g in sents_graphs], graph_node_map, graph_edge_map, new_nodes_per_iter, dynamic) query_arr = [wordmap[w] for w in query] answer_arr = [answer_map[w] for w in answer] return (sentence_arr, graphs, query_arr, answer_arr) def process_story(s,bucket_len): return convert_story(pad_story(s, bucket_len, sentence_length), wordmap, answer_map, graph_node_map, graph_edge_map, new_nodes_per_iter, dynamic) def bucket_stories(stories, buckets, wordmap, answer_map, graph_node_map, graph_edge_map, sentence_length, new_nodes_per_iter, dynamic=True): return [ [process_story(story,bmax) for story in stories if bstart < len(story[0]) <= bmax] for bstart, bmax in zip([0]+buckets,buckets)] def prepare_stories(stories, dynamic=True): sentence_length = max(get_max_sentence_length(stories), get_max_query_length(stories)) buckets = get_buckets(stories) wordlist, wordmap = get_wordlist(stories) anslist, ansmap = get_answer_list(stories) new_nodes_per_iter = get_max_nodes_per_iter(stories) graph_node_list, graph_node_map, graph_edge_list, graph_edge_map = get_graph_lists(stories) bucketed = bucket_stories(stories, buckets, wordmap, ansmap, graph_node_map, graph_edge_map, sentence_length, new_nodes_per_iter, dynamic) return sentence_length, new_nodes_per_iter, buckets, wordlist, anslist, graph_node_list, graph_edge_list, bucketed def print_batch(story, wordlist, anslist, file=sys.stdout): sents, query, answer = story for batch,(s,q,a) in enumerate(zip(sents,query,answer)): file.write("Story {}\n".format(batch)) for sent in s: file.write(" ".join([wordlist[word] for word in sent]) + "\n") file.write(" ".join(wordlist[word] for word in q) + "\n") file.write(" ".join(anslist[word] for word in a.nonzero()[1]) + "\n") MetadataList = collections.namedtuple("MetadataList", ["sentence_length", "new_nodes_per_iter", "buckets", "wordlist", "anslist", "graph_node_list", "graph_edge_list"]) PreppedStory = collections.namedtuple("PreppedStory", ["converted", "sentences", "query", "answer"]) def generate_metadata(stories, dynamic=True): sentence_length = max(get_max_sentence_length(stories), get_max_query_length(stories)) buckets = get_buckets(stories) wordlist, wordmap = get_wordlist(stories) anslist, ansmap = get_answer_list(stories) new_nodes_per_iter = get_max_nodes_per_iter(stories) graph_node_list, graph_node_map, graph_edge_list, graph_edge_map = get_graph_lists(stories) metadata = MetadataList(sentence_length, new_nodes_per_iter, buckets, wordlist, anslist, graph_node_list, graph_edge_list) return metadata def preprocess_stories(stories, savedir, dynamic=True, metadata_file=None): if metadata_file is None: metadata = generate_metadata(stories, dynamic) else: with open(metadata_file,'rb') as f: metadata = pickle.load(f) buckets = get_buckets(stories) sentence_length, new_nodes_per_iter, old_buckets, wordlist, anslist, graph_node_list, graph_edge_list = metadata metadata = metadata._replace(buckets=buckets) if not os.path.exists(savedir): os.makedirs(savedir) with open(os.path.join(savedir,'metadata.p'),'wb') as f: pickle.dump(metadata, f) bucketed_files = [[] for _ in buckets] for i,story in enumerate(stories): bucket_idx, cur_bucket = next(((i,bmax) for (i,(bstart, bmax)) in enumerate(zip([0]+buckets,buckets)) if bstart < len(story[0]) <= bmax), (None,None)) assert cur_bucket is not None, "Couldn't put story of length {} into buckets {}".format(len(story[0]), buckets) bucket_dir = os.path.join(savedir, "bucket_{}".format(cur_bucket)) if not os.path.exists(bucket_dir): os.makedirs(bucket_dir) story_fn = os.path.join(bucket_dir, "story_{}.pz".format(i)) sents_graphs, query, answer = story sents = [s for s,g in sents_graphs] cvtd = convert_story(pad_story(story, cur_bucket, sentence_length), list_to_map(wordlist), list_to_map(anslist), list_to_map(graph_node_list), list_to_map(graph_edge_list), new_nodes_per_iter, dynamic) prepped = PreppedStory(cvtd, sents, query, answer) with gzip.open(story_fn, 'wb') as zf: pickle.dump(prepped, zf) bucketed_files[bucket_idx].append(os.path.relpath(story_fn, savedir)) gc.collect() # we don't want to use too much memory, so try to clean it up with open(os.path.join(savedir,'file_list.p'),'wb') as f: pickle.dump(bucketed_files, f) def main(file, dynamic, metadata_file=None): stories = get_stories(file) dirname, ext = os.path.splitext(file) preprocess_stories(stories, dirname, dynamic, metadata_file) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Parse a graph file') parser.add_argument("file", help="Graph file to parse") parser.add_argument("--static", dest="dynamic", action="store_false", help="Don't use dynamic nodes") parser.add_argument("--metadata-file", default=None, help="Use this particular metadata file instead of building it from scratch") args = vars(parser.parse_args()) main(**args)
src/examples/plot_costs.py
zhhengcs/sunny-side-up
581
12781176
#!/usr/bin/env python import os import json import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import argparse arg_parser = argparse.ArgumentParser() arg_parser.add_argument("--start", default=25, type=int) arg_parser.add_argument("cost_file", default="metrics_costs.json", nargs="?") args = arg_parser.parse_args() def plot_costs(json_path, path_prefix=""): with open(json_path) as f: json_obj = json.load(f) #df = np.array(json_obj) for idx, epoch in enumerate(json_obj): print idx, ":" costs_epoch = np.array(list(enumerate(epoch))) plt.figure() plt.plot(costs_epoch[args.start:,0], costs_epoch[args.start:,1]) plt.savefig(os.path.join(path_prefix, "costs_{}.png".format(idx))) plt.close() if __name__=="__main__": plot_costs(args.cost_file)
tests/unit/test_utils.py
shkumagai/python-ndb
137
12781247
<reponame>shkumagai/python-ndb # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import threading try: from unittest import mock except ImportError: # pragma: NO PY3 COVER import mock import pytest from google.cloud.ndb import utils class Test_asbool: @staticmethod def test_None(): assert utils.asbool(None) is False @staticmethod def test_bool(): assert utils.asbool(True) is True assert utils.asbool(False) is False @staticmethod def test_truthy_int(): assert utils.asbool(0) is False assert utils.asbool(1) is True @staticmethod def test_truthy_string(): assert utils.asbool("Y") is True assert utils.asbool("f") is False def test_code_info(): with pytest.raises(NotImplementedError): utils.code_info() def test_decorator(): with pytest.raises(NotImplementedError): utils.decorator() def test_frame_info(): with pytest.raises(NotImplementedError): utils.frame_info() def test_func_info(): with pytest.raises(NotImplementedError): utils.func_info() def test_gen_info(): with pytest.raises(NotImplementedError): utils.gen_info() def test_get_stack(): with pytest.raises(NotImplementedError): utils.get_stack() class Test_logging_debug: @staticmethod @mock.patch("google.cloud.ndb.utils.DEBUG", False) def test_noop(): log = mock.Mock(spec=("debug",)) utils.logging_debug(log, "hello dad! {} {where}", "I'm", where="in jail") log.debug.assert_not_called() @staticmethod @mock.patch("google.cloud.ndb.utils.DEBUG", True) def test_log_it(): log = mock.Mock(spec=("debug",)) utils.logging_debug(log, "hello dad! {} {where}", "I'm", where="in jail") log.debug.assert_called_once_with("hello dad! I'm in jail") def test_positional(): @utils.positional(2) def test_func(a=1, b=2, **kwargs): return a, b @utils.positional(1) def test_func2(a=3, **kwargs): return a with pytest.raises(TypeError): test_func(1, 2, 3) with pytest.raises(TypeError): test_func2(1, 2) assert test_func(4, 5, x=0) == (4, 5) assert test_func(6) == (6, 2) assert test_func2(6) == 6 def test_keyword_only(): @utils.keyword_only(foo=1, bar=2, baz=3) def test_kwonly(**kwargs): return kwargs["foo"], kwargs["bar"], kwargs["baz"] with pytest.raises(TypeError): test_kwonly(faz=4) assert test_kwonly() == (1, 2, 3) assert test_kwonly(foo=3, bar=5, baz=7) == (3, 5, 7) assert test_kwonly(baz=7) == (1, 2, 7) def test_threading_local(): assert utils.threading_local is threading.local def test_tweak_logging(): with pytest.raises(NotImplementedError): utils.tweak_logging() def test_wrapping(): with pytest.raises(NotImplementedError): utils.wrapping()
test/test_cairopen.py
colinmford/coldtype
142
12781260
import unittest from coldtype.pens.cairopen import CairoPen from pathlib import Path from coldtype.color import hsl from coldtype.geometry import Rect from coldtype.text.composer import StSt, Font from coldtype.pens.datpen import DATPen, DATPens from PIL import Image import drawBot as db import imagehash import contextlib co = Font.Cacheable("assets/ColdtypeObviously-VF.ttf") renders = Path("test/renders/cairo") renders.mkdir(parents=True, exist_ok=True) def hash_img(path): if path.exists(): return ( imagehash.colorhash(Image.open(path)), imagehash.average_hash(Image.open(path))) else: return -1 @contextlib.contextmanager def test_image(test:unittest.TestCase, path, rect=Rect(300, 300)): img = (renders / path) hash_before = hash_img(img) if img.exists(): img.unlink() yield(img, rect) hash_after = hash_img(img) test.assertEqual(hash_after, hash_before) test.assertEqual(img.exists(), True) class TestCairoPen(unittest.TestCase): def test_cairo_pdf(self): r = Rect(300, 300) pdf = renders / "test_cairo.pdf" dp = (StSt("CDEL", co, 100, wdth=0.5) .pens() .align(r)) CairoPen.Composite(dp, r, pdf) self.assertEqual(len(dp), 4) self.assertEqual(type(dp), DATPens) def test_cairo_png(self): with test_image(self, "test_cairo.png") as (i, r): rr = Rect(0, 0, 100, 100) dp = (DATPen() .define(r=rr, c=75) .gs("$r↗ $r↓|↘|$c $r↖|↙|$c") .align(r) .scale(1.2) .rotate(180) .f(hsl(0.5, a=0.1)) .s(hsl(0.9)) .sw(5)) CairoPen.Composite(dp, r, i) self.assertEqual(len(dp.value), 4) self.assertEqual(type(dp), DATPen) if __name__ == "__main__": unittest.main()
start_mirt_pipeline.py
hmirin/guacamole
141
12781293
<reponame>hmirin/guacamole #!/usr/bin/env python """This file will take you all the way from a CSV of student performance on test items to trained parameters describing the difficulties of the assessment items. The parameters can be used to identify the different concepts in your assessment items, and to drive your own adaptive test. The mirt_engine python file included here can be used to run an adaptive pretest that will provide an adaptive set of assessment items if you provide information about whether the questions are being answered correctly or incorrectly. Example Use: with a file called my_data.csv call ./start_mirt_pipeline -i path/to/my_data.csv let a1_time.json be the name of the output json file (Congrats! Examine that for information about item difficulty!) To run an adaptive test with your test items: ./run_adaptive_test.py -i a1_time.json This will open an interactive session where the test will ask you questions according to whatever will cause the model to gain the most information to predict your abilities. Authors: <NAME>, <NAME>, <NAME>, <NAME> (2014) """ import argparse import datetime import multiprocessing import os import shutil import sys from mirt import mirt_train_EM, generate_predictions, score from mirt import visualize, adaptive_pretest, generate_responses from train_util import model_training_util # Necessary on some systems to make sure all cores are used. If not all # cores are being used and you'd like a speedup, pip install affinity try: import affinity affinity.set_process_affinity_mask(0, 2 ** multiprocessing.cpu_count() - 1) except NotImplementedError: pass except ImportError: sys.stderr.write('If you find that not all cores are being ' 'used, try installing affinity.\n') def get_command_line_arguments(arguments=None): """Gets command line arguments passed in when called, or can be called from within a program. Parses input from the command line into options for running the MIRT model. For more fine-grained options, look at mirt_train_EM.py """ parser = argparse.ArgumentParser() parser.add_argument("--generate", action="store_true", help=("Generate fake training data.")) parser.add_argument("--train", action="store_true", help=("Train a model from training data.")) parser.add_argument("--visualize", action="store_true", help=("Visualize a trained model.")) parser.add_argument("--test", action="store_true", help=("Take an adaptive test from a trained model.")) parser.add_argument("--score", action="store_true", help=("Score the responses of each student.")) parser.add_argument("--report", action="store_true", help=("Report on the parameters of each exercise.")) parser.add_argument("--roc_viz", action="store_true", help=("Examine the roc curve for the current model" " on the data in the data file.")) parser.add_argument("--sigmoid_viz", action="store_true", help=("Examine the sigmoids generated for the model in" " the model file.")) parser.add_argument( "-d", "--data_file", default=os.path.dirname( os.path.abspath(__file__)) + '/sample_data/all.responses', help=("Name of file where data of interest is located.")) parser.add_argument( '-a', '--abilities', default=1, type=int, help='The dimensionality/number of abilities.') parser.add_argument( '-s', '--num_students', default=500, type=int, help="Number of students to generate data for. Only meaningful when " "generating fake data - otherwise it's read from the data file.") parser.add_argument( '-p', '--num_problems', default=10, type=int, help="Number of problems to generate data for. Only meaningful when " "generating fake data - otherwise it's read from the data file.") parser.add_argument("-t", "--time", action="store_true", help=("Whether to include time as a parameter." "If you do not select time, the 'time' field" "in your data is ignored.")) parser.add_argument( '-w', '--workers', type=int, default=1, help=("The number of processes to use to parallelize mirt training")) parser.add_argument( "-n", "--num_epochs", type=int, default=20, help=("The number of EM iterations to do during learning")) parser.add_argument( "-o", "--model_directory", default=os.path.dirname( os.path.abspath(__file__)) + '/sample_data/models/', help=("The directory to write models and other output")) parser.add_argument( "-m", "--model", default=os.path.dirname( os.path.abspath(__file__)) + '/sample_data/models/model.json', help=("The location of the model (to write if training, and to read if" " visualizing or testing.")) parser.add_argument( "-q", "--num_replicas", type=int, default=1, help=( "The number of copies of the data to train on. If there is too " "little training data, increase this number in order to maintain " "multiple samples from the abilities vector for each student. A " "sign that there is too little training data is if the update step" " length ||dcouplings|| remains large.")) parser.add_argument( "-i", "--items", type=int, default=5, help=( "Number of items to use in adaptive test.")) if arguments: arguments = parser.parse_args(arguments) else: arguments = parser.parse_args() # Support file paths in the form of "~/blah", which python # doesn't normally recognise if arguments.data_file: arguments.data_file = os.path.expanduser(arguments.data_file) if arguments.model_directory: arguments.model_directory = os.path.expanduser( arguments.model_directory) if arguments.model: arguments.model = os.path.expanduser(arguments.model) # When visualize is true, we do all visualizations if arguments.visualize: arguments.roc_viz = True arguments.sigmoid_viz = True arguments.report = True # if we haven't been instructed to do anything, then show the help text if not (arguments.generate or arguments.train or arguments.visualize or arguments.test or arguments.roc_viz or arguments.sigmoid_viz or arguments.report or arguments.score): print ("\nMust specify at least one task (--generate, --train," " --visualize, --test, --report, --roc_viz, --sigmoid_viz, " "--score).\n") parser.print_help() # Save the current time for reference when looking at generated models. DATE_FORMAT = '%Y-%m-%d-%H-%M-%S' arguments.datetime = str(datetime.datetime.now().strftime(DATE_FORMAT)) return arguments def save_model(arguments): """Look at all generated models, and save the most recent to the correct location""" latest_model = get_latest_parameter_file_name(arguments) print "Saving model to %s" % arguments.model shutil.copyfile(latest_model, arguments.model) def get_latest_parameter_file_name(arguments): """Get the most recent of many parameter files in a directory. There will be many .npz files written; we take the last one. """ params = gen_param_str(arguments) path = arguments.model_directory + params + '/' npz_files = os.listdir(path) npz_files.sort(key=lambda fname: fname.split('_')[-1]) return path + npz_files[-1] def main(): """Get arguments from the command line and runs with those arguments.""" arguments = get_command_line_arguments() run_with_arguments(arguments) def make_necessary_directories(arguments): """Ensure that output directories for the data we'll be writing exist.""" roc_dir = arguments.model_directory + 'rocs/' model_training_util.mkdir_p([roc_dir]) def gen_param_str(arguments): """Transform data about current run into a param string for file names.""" time_str = 'time' if arguments.time else 'no_time' return "%s_%s_%s" % (arguments.abilities, time_str, arguments.datetime) def generate_model_with_parameters(arguments): """Trains a model with the given parameters, saving results.""" param_str = gen_param_str(arguments) out_dir_name = arguments.model_directory + param_str + '/' model_training_util.mkdir_p(out_dir_name) # to set more fine-grained parameters about MIRT training, look at # the arguments at mirt/mirt_train_EM.py mirt_train_params = [ '-a', str(arguments.abilities), '-w', str(arguments.workers), '-n', str(arguments.num_epochs), '-f', arguments.model_directory + 'train.responses', '-o', out_dir_name, ] if arguments.time: mirt_train_params.append('--time') mirt_train_EM.run_programmatically(mirt_train_params) def generate_roc_curve_from_model(arguments): """Read results from each model trained and generate roc curves.""" roc_dir = arguments.model_directory + 'rocs/' roc_file = roc_dir + arguments.datetime test_file = arguments.model_directory + 'test.responses' return generate_predictions.load_and_simulate_assessment( arguments.model, roc_file, test_file) def run_with_arguments(arguments): """Generate data, train a model, visualize your trained data, and score students based on a trained model. """ params = gen_param_str(arguments) # Set up directories make_necessary_directories(arguments) if arguments.generate: print 'Generating Responses' generate_responses.run(arguments) print 'Generated responses for %d students and %d problems' % ( arguments.num_students, arguments.num_problems) if arguments.train: # Only re-separate into test and train when resume_from_file # is False. # Separate provided data file into a train and test set. model_training_util.sep_into_train_and_test(arguments) print 'Training MIRT models' generate_model_with_parameters(arguments) save_model(arguments) if arguments.roc_viz: print 'Generating ROC for %s' % arguments.model roc_curve = generate_roc_curve_from_model(arguments) print 'Visualizing roc for %s' % arguments.model visualize.show_roc({params: [r for r in roc_curve]}) if arguments.sigmoid_viz: print 'Visualizing sigmoids for %s' % arguments.model visualize.show_exercises(arguments.model) if arguments.test: print 'Starting adaptive pretest' adaptive_pretest.main(arguments.model, arguments.items) if arguments.report: print "Generating problems report based on params file." visualize.print_report(arguments.model) if arguments.score: print "Scoring all students based on trained test file" score.score_students(arguments.model, arguments.data_file) if __name__ == '__main__': main()
samples/python/46.teams-auth/bots/__init__.py
Aliacf21/BotBuilder-Samples
1,998
12781296
<reponame>Aliacf21/BotBuilder-Samples<gh_stars>1000+ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from .dialog_bot import DialogBot from .teams_bot import TeamsBot __all__ = ["DialogBot", "TeamsBot"]
tests/test_model_methods/test_load_all.py
naterenegar/ormar
905
12781304
<filename>tests/test_model_methods/test_load_all.py<gh_stars>100-1000 from typing import List import databases import pytest import sqlalchemy import ormar from tests.settings import DATABASE_URL database = databases.Database(DATABASE_URL, force_rollback=True) metadata = sqlalchemy.MetaData() class BaseMeta(ormar.ModelMeta): database = database metadata = metadata class Language(ormar.Model): class Meta(BaseMeta): tablename = "languages" id: int = ormar.Integer(primary_key=True) name: str = ormar.String(max_length=100) level: str = ormar.String(max_length=150, default="Beginner") class CringeLevel(ormar.Model): class Meta(BaseMeta): tablename = "levels" id: int = ormar.Integer(primary_key=True) name: str = ormar.String(max_length=100) language = ormar.ForeignKey(Language) class NickName(ormar.Model): class Meta(BaseMeta): tablename = "nicks" id: int = ormar.Integer(primary_key=True) name: str = ormar.String(max_length=100, nullable=False, name="hq_name") is_lame: bool = ormar.Boolean(nullable=True) level: CringeLevel = ormar.ForeignKey(CringeLevel) class HQ(ormar.Model): class Meta(BaseMeta): tablename = "hqs" id: int = ormar.Integer(primary_key=True) name: str = ormar.String(max_length=100, nullable=False, name="hq_name") nicks: List[NickName] = ormar.ManyToMany(NickName) class Company(ormar.Model): class Meta(BaseMeta): tablename = "companies" id: int = ormar.Integer(primary_key=True) name: str = ormar.String(max_length=100, nullable=False, name="company_name") founded: int = ormar.Integer(nullable=True) hq: HQ = ormar.ForeignKey(HQ, related_name="companies") @pytest.fixture(autouse=True, scope="module") def create_test_database(): engine = sqlalchemy.create_engine(DATABASE_URL) metadata.drop_all(engine) metadata.create_all(engine) yield metadata.drop_all(engine) @pytest.mark.asyncio async def test_load_all_fk_rel(): async with database: async with database.transaction(force_rollback=True): hq = await HQ.objects.create(name="Main") company = await Company.objects.create(name="Banzai", founded=1988, hq=hq) hq = await HQ.objects.get(name="Main") await hq.load_all() assert hq.companies[0] == company assert hq.companies[0].name == "Banzai" assert hq.companies[0].founded == 1988 hq2 = await HQ.objects.select_all().get(name="Main") assert hq2.companies[0] == company assert hq2.companies[0].name == "Banzai" assert hq2.companies[0].founded == 1988 @pytest.mark.asyncio async def test_load_all_many_to_many(): async with database: async with database.transaction(force_rollback=True): nick1 = await NickName.objects.create(name="BazingaO", is_lame=False) nick2 = await NickName.objects.create(name="Bazinga20", is_lame=True) hq = await HQ.objects.create(name="Main") await hq.nicks.add(nick1) await hq.nicks.add(nick2) hq = await HQ.objects.get(name="Main") await hq.load_all() assert hq.nicks[0] == nick1 assert hq.nicks[0].name == "BazingaO" assert hq.nicks[1] == nick2 assert hq.nicks[1].name == "Bazinga20" hq2 = await HQ.objects.select_all().get(name="Main") assert hq2.nicks[0] == nick1 assert hq2.nicks[0].name == "BazingaO" assert hq2.nicks[1] == nick2 assert hq2.nicks[1].name == "Bazinga20" @pytest.mark.asyncio async def test_load_all_with_order(): async with database: async with database.transaction(force_rollback=True): nick1 = await NickName.objects.create(name="Barry", is_lame=False) nick2 = await NickName.objects.create(name="Joe", is_lame=True) hq = await HQ.objects.create(name="Main") await hq.nicks.add(nick1) await hq.nicks.add(nick2) hq = await HQ.objects.get(name="Main") await hq.load_all(order_by="-nicks__name") assert hq.nicks[0] == nick2 assert hq.nicks[0].name == "Joe" assert hq.nicks[1] == nick1 assert hq.nicks[1].name == "Barry" await hq.load_all() assert hq.nicks[0] == nick1 assert hq.nicks[1] == nick2 hq2 = ( await HQ.objects.select_all().order_by("-nicks__name").get(name="Main") ) assert hq2.nicks[0] == nick2 assert hq2.nicks[1] == nick1 hq3 = await HQ.objects.select_all().get(name="Main") assert hq3.nicks[0] == nick1 assert hq3.nicks[1] == nick2 @pytest.mark.asyncio async def test_loading_reversed_relation(): async with database: async with database.transaction(force_rollback=True): hq = await HQ.objects.create(name="Main") await Company.objects.create(name="Banzai", founded=1988, hq=hq) company = await Company.objects.get(name="Banzai") await company.load_all() assert company.hq == hq company2 = await Company.objects.select_all().get(name="Banzai") assert company2.hq == hq @pytest.mark.asyncio async def test_loading_nested(): async with database: async with database.transaction(force_rollback=True): language = await Language.objects.create(name="English") level = await CringeLevel.objects.create(name="High", language=language) level2 = await CringeLevel.objects.create(name="Low", language=language) nick1 = await NickName.objects.create( name="BazingaO", is_lame=False, level=level ) nick2 = await NickName.objects.create( name="Bazinga20", is_lame=True, level=level2 ) hq = await HQ.objects.create(name="Main") await hq.nicks.add(nick1) await hq.nicks.add(nick2) hq = await HQ.objects.get(name="Main") await hq.load_all(follow=True) assert hq.nicks[0] == nick1 assert hq.nicks[0].name == "BazingaO" assert hq.nicks[0].level.name == "High" assert hq.nicks[0].level.language.name == "English" assert hq.nicks[1] == nick2 assert hq.nicks[1].name == "Bazinga20" assert hq.nicks[1].level.name == "Low" assert hq.nicks[1].level.language.name == "English" hq2 = await HQ.objects.select_all(follow=True).get(name="Main") assert hq2.nicks[0] == nick1 assert hq2.nicks[0].name == "BazingaO" assert hq2.nicks[0].level.name == "High" assert hq2.nicks[0].level.language.name == "English" assert hq2.nicks[1] == nick2 assert hq2.nicks[1].name == "Bazinga20" assert hq2.nicks[1].level.name == "Low" assert hq2.nicks[1].level.language.name == "English" hq5 = await HQ.objects.select_all().get(name="Main") assert len(hq5.nicks) == 2 await hq5.nicks.select_all(follow=True).all() assert hq5.nicks[0] == nick1 assert hq5.nicks[0].name == "BazingaO" assert hq5.nicks[0].level.name == "High" assert hq5.nicks[0].level.language.name == "English" assert hq5.nicks[1] == nick2 assert hq5.nicks[1].name == "Bazinga20" assert hq5.nicks[1].level.name == "Low" assert hq5.nicks[1].level.language.name == "English" await hq.load_all(follow=True, exclude="nicks__level__language") assert len(hq.nicks) == 2 assert hq.nicks[0].level.language is None assert hq.nicks[1].level.language is None hq3 = ( await HQ.objects.select_all(follow=True) .exclude_fields("nicks__level__language") .get(name="Main") ) assert len(hq3.nicks) == 2 assert hq3.nicks[0].level.language is None assert hq3.nicks[1].level.language is None await hq.load_all(follow=True, exclude="nicks__level__language__level") assert len(hq.nicks) == 2 assert hq.nicks[0].level.language is not None assert hq.nicks[0].level.language.level is None assert hq.nicks[1].level.language is not None assert hq.nicks[1].level.language.level is None await hq.load_all(follow=True, exclude="nicks__level") assert len(hq.nicks) == 2 assert hq.nicks[0].level is None assert hq.nicks[1].level is None await hq.load_all(follow=True, exclude="nicks") assert len(hq.nicks) == 0
features/steps/log-scale-axes.py
eaton-lab/toyplot
438
12781313
<reponame>eaton-lab/toyplot<filename>features/steps/log-scale-axes.py<gh_stars>100-1000 # Copyright 2014, Sandia Corporation. Under the terms of Contract # DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain # rights in this software. from behave import * import nose import numpy import toyplot.data @given(u'values from -1000 to -1') def step_impl(context): context.x = numpy.linspace(-1000, -1, 100) @given(u'values from -1000 to -0.01') def step_impl(context): context.x = numpy.linspace(-1000, -0.01, 100) @given(u'values from -1000 to 0') def step_impl(context): context.x = numpy.linspace(-1000, 0, 100) @given(u'values from -1000 to 0.5') def step_impl(context): context.x = numpy.linspace(-1000, 0.5, 100) @given(u'values from -0.5 to 1000') def step_impl(context): context.x = numpy.linspace(-0.5, 1000, 100) @given(u'values from 0 to 1000') def step_impl(context): context.x = numpy.linspace(0, 1000, 100) @given(u'values from 0.01 to 1000') def step_impl(context): context.x = numpy.linspace(0.01, 1000, 100) @given(u'values from 1 to 1000') def step_impl(context): context.x = numpy.linspace(1, 1000, 100) @given(u'values from -1000 to 1000') def step_impl(context): context.x = numpy.linspace(-1000, 1000, 100) @given(u'log 10 axes on x and y') def step_impl(context): context.axes = context.canvas.cartesian(xscale="log10", yscale="log10") @given(u'log 2 axes on x and y') def step_impl(context): context.axes = context.canvas.cartesian(xscale="log2", yscale="log2") @given(u'log 10 axes on x and y with custom format') def step_impl(context): context.axes = context.canvas.cartesian(xscale="log10", yscale="log10") context.axes.x.ticks.locator = toyplot.locator.Log(base=10, format="{base}^{exponent}") context.axes.y.ticks.locator = toyplot.locator.Log(base=10, format="{base}^{exponent}") @when(u'plotting x, x with markers') def step_impl(context): context.axes.plot(context.x, context.x, marker="o") @given(u'squared values from 0 to 10') def step_impl(context): context.values = numpy.linspace(0, 10) ** 2 @given(u'squared values from -10 to 0') def step_impl(context): context.values = -(numpy.linspace(10, 0) ** 2) @given(u'log 10 axes on y with domain min 10') def step_impl(context): context.axes = context.canvas.cartesian(yscale="log10") context.axes.y.domain.min = 10 @given(u'log 10 axes on y with domain max -10') def step_impl(context): context.axes = context.canvas.cartesian(yscale="log10") context.axes.y.domain.max = -10 @when(u'plotting the values with bars') def step_impl(context): context.axes.bars(context.values)
PyLeap_CPB_EyeLights_LED_Glasses_Sparkle/code.py
gamblor21/Adafruit_Learning_System_Guides
665
12781322
# SPDX-FileCopyrightText: 2021 <NAME> # SPDX-License-Identifier: MIT import board from adafruit_led_animation.animation.sparkle import Sparkle from adafruit_led_animation.color import PURPLE from adafruit_led_animation.sequence import AnimationSequence from adafruit_is31fl3741.adafruit_ledglasses import MUST_BUFFER, LED_Glasses from adafruit_is31fl3741.led_glasses_animation import LED_Glasses_Animation glasses = LED_Glasses(board.I2C(), allocate=MUST_BUFFER) glasses.set_led_scaling(255) glasses.global_current = 0xFE glasses.enable = True pixels = LED_Glasses_Animation(glasses) anim2 = Sparkle(pixels, 0.05, PURPLE) group = AnimationSequence( anim2, advance_interval=5, auto_reset=True, auto_clear=True ) while True: group.animate()
plum/util.py
ruancomelli/plum
153
12781336
<filename>plum/util.py import abc import logging __all__ = ["multihash", "Comparable", "is_in_class", "get_class", "get_context"] log = logging.getLogger(__name__) def multihash(*args): """Multi-argument order-sensitive hash. Args: *args: Objects to hash. Returns: int: Hash. """ return hash(args) class Comparable: """A mixin that makes instances of the class comparable. Requires the subclass to just implement `__le__`. """ __metaclass__ = abc.ABCMeta def __eq__(self, other): return self <= other <= self def __ne__(self, other): return not self == other @abc.abstractmethod def __le__(self, other): pass # pragma: no cover def __lt__(self, other): return self <= other and self != other def __ge__(self, other): return other.__le__(self) def __gt__(self, other): return self >= other and self != other def is_comparable(self, other): """Check whether this object is comparable with another one. Args: other (:class:`.util.Comparable`): Object to check comparability with. Returns: bool: `True` if the object is comparable with `other` and `False` otherwise. """ return self < other or self == other or self > other def is_in_class(f): """Check if a function is part of a class. Args: f (function): Function to check. Returns: bool: `True` if `f` is part of a class, else `False`. """ parts = f.__qualname__.split(".") return len(parts) >= 2 and parts[-2] != "<locals>" def _split_parts(f): qualified_name = f.__module__ + "." + f.__qualname__ return qualified_name.split(".") def get_class(f): """Assuming that `f` is part of a class, get the fully qualified name of the class. Args: f (function): Method to get class name for. Returns: str: Fully qualified name of class. """ parts = _split_parts(f) return ".".join(parts[:-1]) def get_context(f): """Get the fully qualified name of the context for `f`. If `f` is part of a class, then the context corresponds to the scope of the class. If `f` is not part of a class, then the context corresponds to the scope of the function. Args: f (function): Method to get context for. Returns: str: Context. """ parts = _split_parts(f) if is_in_class(f): # Split off function name and class. return ".".join(parts[:-2]) else: # Split off function name only. return ".".join(parts[:-1])
tools/spaln/list_spaln_tables.py
ic4f/tools-iuc
142
12781352
#!/usr/bin/env python3 import argparse import shlex import sys from subprocess import run from typing import TextIO def find_common_ancestor_distance( taxon: str, other_taxon: str, taxonomy_db_path: str, only_canonical: bool ): canonical = "--only_canonical" if only_canonical else "" cmd_str = f"taxonomy_util -d {taxonomy_db_path} common_ancestor_distance {canonical} '{other_taxon}' '{taxon}'" cmd = shlex.split(cmd_str) proc = run(cmd, encoding="utf8", capture_output=True) return proc def find_distances(gnm2tab_file: TextIO, taxon: str, taxonomy_db_path: str): cmd = ["taxonomy_util", "-d", taxonomy_db_path, "get_id", taxon] proc = run(cmd, capture_output=True, encoding="utf8") if "not found in" in proc.stderr: exit("Error: " + proc.stderr.strip()) for line in gnm2tab_file: fields = line.split("\t") (species_code, settings, other_taxon) = map(lambda el: el.strip(), fields[:3]) proc = find_common_ancestor_distance(taxon, other_taxon, taxonomy_db_path, True) ancestor_info = proc.stdout.rstrip() if proc.stderr != "": print("Warning:", other_taxon, proc.stderr.rstrip(), file=sys.stderr) else: proc = find_common_ancestor_distance( taxon, other_taxon, taxonomy_db_path, False ) non_canonical_distance = proc.stdout.split("\t")[0] print( non_canonical_distance, ancestor_info, species_code, settings, other_taxon, sep="\t", ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Find distance to common ancestor") parser.add_argument( "--taxonomy_db", required=True, help="NCBI Taxonomy database (SQLite format)" ) parser.add_argument( "--gnm2tab_file", required=True, type=argparse.FileType(), help="gnm2tab file from spal", ) parser.add_argument("taxon") args = parser.parse_args() find_distances(args.gnm2tab_file, args.taxon, args.taxonomy_db)
OmniMarkupLib/Renderers/MediaWikiRenderer.py
henumohe/OmniMarkupPreviewer
476
12781363
<filename>OmniMarkupLib/Renderers/MediaWikiRenderer.py<gh_stars>100-1000 from .base_renderer import * import os.path __file__ = os.path.normpath(os.path.abspath(__file__)) __path__ = os.path.dirname(__file__) @renderer class MediaWikiRenderer(CommandlineRenderer): def __init__(self): super(MediaWikiRenderer, self).__init__( executable='ruby', args=['-rubygems', os.path.join(__path__, 'bin/mw2html.rb')]) @classmethod def is_enabled(cls, filename, syntax): if syntax == 'text.html.mediawiki': return True return filename.endswith('.mediawiki') or filename.endswith('.wiki')
Python/Battery_Full_Charged_Notifier/battery_full_charged_notifier.pyw
iamakkkhil/Rotten-Scripts
1,127
12781364
import psutil #Library to get System details import time import pyttsx3 # Library for text to speech Offline from win10toast import ToastNotifier # also need to install win32api (This is for Notifications) import threading # To make notification and speech work at same time toaster = ToastNotifier() x=pyttsx3.init() x.setProperty('rate',130) x.setProperty('volume',8) count = 0 def show_notification(show_text): toaster.show_toast(show_text, icon_path='battery.ico', duration=10) # loop the toaster over some period of time while toaster.notification_active(): time.sleep(0.1) def monitor(): while (True): time.sleep(10) battery = psutil.sensors_battery() plugged = battery.power_plugged percent = int(battery.percent) if percent == 100: if plugged == True: processThread = threading.Thread(target=show_notification, args=("Laptop Fully Charged",)) # <- note extra ',' processThread.start() x.say("Laptop is Fully Charged Please plug out the cable") x.runAndWait() elif percent == 90: if plugged == True: if count == 0: processThread = threading.Thread(target=show_notification, args=("Your Battery at 90% Please plug out the cable",)) # <- note extra ',' processThread.start() x.say("Your battery at 90% ") x.runAndWait() count = count + 1 if __name__ == "__main__": monitor()
A1014280203/7/7.py
saurabh896/python-1
3,976
12781369
import os code_lines = list() notation_lines = list() blank_lines = list() def process_file(filename): global code_lines global notation_lines global blank_lines with open(filename, 'r') as file: for line in file.readlines(): _line = line.strip() if not _line: blank_lines.append(_line) elif _line.startswith('#'): notation_lines.append(_line) else: code_lines.append(_line) def show_result(): global code_lines global notation_lines global blank_lines print('-'*20) print('code:', len(code_lines)) for line in code_lines: print(line) print('-' * 20) print('notation:', len(notation_lines)) for line in notation_lines: print(line) print('-' * 20) print('blank:', len(blank_lines)) code_lines.clear() notation_lines.clear() blank_lines.clear() def process_files(path='../6'): files = os.listdir(path) for file in files: if file.endswith('.py'): print('='*30) print('current file:', os.path.join(path, file)) process_file(os.path.join(path, file)) show_result() process_files()
users/models.py
hrbhat/twissandra
308
12781383
# Nope, we're using Cassandra :)
ci/release.py
steve-louis/mist-ce
778
12781387
<gh_stars>100-1000 #!/usr/bin/env python import os import sys import hashlib import argparse import magic import requests def main(): args = parse_args() request = Client(args.owner, args.repo, args.token) update_release( request, args.tag, msg=args.msg, files=args.files, prerelease=args.prerelease, draft=args.draft, remove_undefined_files=args.remove_undefined_files, ) def parse_args(): argparser = argparse.ArgumentParser( description=("Create/Update Github release based on git tag. When " "creating a release that doesn't exist, it'll be marked " "as stable (not prerelease) and public (not draft), " "unless otherwise specified. When updating a release, " "only fields specified by corresponding options will be " "modified.")) argparser.add_argument('owner', help="The github repo's owner") argparser.add_argument('repo', help="The github repo's name") argparser.add_argument('tag', help="Tag name for which to make release") argparser.add_argument( '-m', '--msg', default=None, help=("Message for the release. Either the message as a string, or " "the filename of a text file preceded by '@'. Use an empty " "string '' to set an empty message.")) argparser.add_argument( '-f', '--files', nargs='+', metavar='FILE', help="Files to upload as release assets.") argparser.add_argument( '--remove-undefined-files', action='store_true', help=("If specified, remove any preexisting files from the release " "that aren't currently specified with the `--files` option.")) argparser.add_argument( '--prerelease', dest='prerelease', default=None, action='store_true', help="Mark release as prerelease.") argparser.add_argument( '--no-prerelease', dest='prerelease', default=None, action='store_false', help="Mark release as regular release, no prerelease.") argparser.add_argument( '--draft', dest='draft', default=None, action='store_true', help="Mark release as draft.") argparser.add_argument( '--no-draft', dest='draft', default=None, action='store_false', help="Publish release, unmark as draft.") argparser.add_argument( '--token', default=os.getenv('GITHUB_API_TOKEN'), help=("Github API token to use. Can also be specified as env var " "GITHUB_API_TOKEN.")) args = argparser.parse_args() if args.msg and args.msg.startswith('@'): with open(args.msg[1:], 'r') as fobj: args.msg = fobj.read() return args class Client(object): def __init__(self, owner, repo, token): self.owner = owner self.repo = repo self.token = token def __call__(self, url, method='GET', parse_json_resp=True, api='https://api.github.com', **kwargs): url = '%s/repos/%s/%s%s' % (api, self.owner, self.repo, url) headers = kwargs.pop('headers', {}) headers.update({'Authorization': 'token %s' % self.token}) print("Will make %s request to %s: %s" % (method, url, kwargs)) resp = requests.request(method, url, headers=headers, **kwargs) if not resp.ok: print(resp.status_code) print(resp.text) raise Exception(resp.status_code) if parse_json_resp: try: return resp.json() except Exception: print("Error decoding json response") print(resp.text) raise else: return resp def print_release(release): print('-' * 60) for name, key in [('id', 'id'), ('name', 'name'), ('tag', 'tag_name'), ('ref', 'target_commitish'), ('draft', 'draft'), ('prerelease', 'prerelease')]: print('%s: %s' % (name, release[key])) print('assets:') for asset in release['assets']: print(' - %s' % asset['name']) if release['body']: print('msg: |') for line in release['body'].splitlines(): print(' %s' % line) print('-' * 60) def update_release(request, tag, msg=None, files=None, draft=None, prerelease=None, remove_undefined_files=False): # Check that the repo exists. resp = request('') # Find git tag corresponding to release. resp = request('/tags') for item in resp: if item['name'] == tag: sha = item['commit']['sha'] print("Tag %s points to %s" % (tag, sha)) break else: print("Tag %s doesn't exist" % tag) sys.exit(1) # Create or update github release. data = { 'tag_name': tag, 'target_commitish': sha, 'name': tag, 'body': msg, 'draft': draft, 'prerelease': prerelease, } for key, val in list(data.items()): if val is None: data.pop(key) for release in request('/releases'): if release['tag_name'] == tag: print("Found preexisting release.") print_release(release) for key in list(data.keys()): if data[key] == release[key]: data.pop(key) if data: print("Release already exists, updating.") release = request('/releases/%s' % release['id'], 'PATCH', json=data) print_release(release) else: print("No need to modify release's metadata.") break else: print("Creating a new release.") release = request('/releases', 'POST', json=data) print_release(release) # Add or update assets. assets = list(release['assets']) for path in files or []: name = os.path.basename(path) uploaded = False for i, asset in enumerate(list(assets)): if asset['name'] != name: continue assets.pop(i) print("Found already uploaded file '%s'" % path) md5 = hashlib.md5() resp = request('/releases/assets/%s' % asset['id'], headers={'Accept': 'application/octet-stream'}, parse_json_resp=False, stream=True) for chunk in resp.iter_content(chunk_size=1024): if chunk: md5.update(chunk) md5sum_remote = md5.hexdigest() md5 = hashlib.md5() with open(path, 'rb') as fobj: while True: chunk = fobj.read(1024) if not chunk: break md5.update(chunk) md5sum_local = md5.hexdigest() if md5sum_local == md5sum_remote: print("Preexisting file matches local file") uploaded = True break print("Deleting preexisting different asset.") request('/releases/assets/%s' % asset['id'], 'DELETE', parse_json_resp=False) if not uploaded: with open(path, 'rb') as fobj: ctype = magic.Magic(mime=True).from_file(path) request('/releases/%s/assets' % release['id'], 'POST', api='https://uploads.github.com', headers={'Content-Type': ctype}, params={'name': name}, data=fobj) if remove_undefined_files: for asset in assets: print("Deleting preexisting undefined asset %s." % asset['name']) request('/releases/assets/%s' % asset['id'], 'DELETE', parse_json_resp=False) if __name__ == "__main__": main()
build/lib/jet_django/__init__.py
lukejamison/jet-dasboard
193
12781388
VERSION = '0.0.1' default_app_config = 'jet_django.apps.JetDjangoConfig'
tests/suite/test_healthcheck_uri.py
snebel29/kubernetes-ingress
3,803
12781401
<reponame>snebel29/kubernetes-ingress import pytest import requests from suite.resources_utils import ensure_connection @pytest.mark.ingresses @pytest.mark.parametrize('ingress_controller, expected_responses', [ pytest.param({"extra_args": ["-health-status=true", "-health-status-uri=/something-va(l)id/blabla"]}, {"/something-va(l)id/blabla": 200, "/nginx-health": 404}, id="custom-health-status-uri"), pytest.param({"extra_args": ["-health-status=true"]}, {"/something-va(l)id/blabla": 404, "/nginx-health": 200}, id="default-health-status-uri"), pytest.param({"extra_args": ["-health-status=false"]}, {"/something-va(l)id/blabla": 404, "/nginx-health": 404}, id="disable-health-status") ], indirect=["ingress_controller"]) class TestHealthStatusURI: def test_response_code(self, ingress_controller_endpoint, ingress_controller, expected_responses): for uri in expected_responses: req_url = f"http://{ingress_controller_endpoint.public_ip}:{ingress_controller_endpoint.port}{uri}" ensure_connection(req_url, expected_responses[uri]) resp = requests.get(req_url) assert resp.status_code == expected_responses[uri],\ f"Expected {expected_responses[uri]} code for {uri} but got {resp.status_code}"
kino-webhook/handler.py
DongjunLee/kino-bot
109
12781404
import arrow import json import requests def kanban_webhook(event, context): input_body = json.loads(event['body']) print(event['body']) action = input_body["action"] action_type = action["type"] if action_type == "createCard": list_name, card_name = get_create_card(action["data"]) elif action_type == "updateCard": list_name, card_name = get_update_card(action["data"]) kanban_list = ["DOING", "BREAK", "DONE"] if list_name in kanban_list: payload = make_payload(action=list_name, msg=card_name) r = send_to_kino({"text": payload}) response = { "statusCode": r.status_code } response = { "statusCode": 400 } return response def get_create_card(action_data): list_name = action_data["list"]["name"].upper() card_name = action_data["card"]["name"] return list_name, card_name def get_update_card(action_data): list_name = action_data["listAfter"]["name"].upper() card_name = action_data["card"]["name"] return list_name, card_name def make_payload(action=None, msg=None, time=None): if time is None: now = arrow.now() time = now.format(" MMMM d, YYYY") + " at " + now.format("HH:mmA") payload = { "action": "KANBAN_" + action, "msg": msg, "time": time } return json.dumps(payload) def send_to_kino(data): return requests.post("https://hooks.slack.com/services/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", data=json.dumps(data))
tests/unittests/load_functions/outside_main_code_in_main/main.py
anandagopal6/azure-functions-python-worker
277
12781426
<reponame>anandagopal6/azure-functions-python-worker # This function app is to ensure the code outside main() function # should only get loaded once in __init__.py from .count import invoke, get_invoke_count, reset_count invoke() def main(req): count = get_invoke_count() reset_count() return f'executed count = {count}'
layers.py
gemilepus/ShadeSketch
313
12781430
""" ShadeSketch https://github.com/qyzdao/ShadeSketch Learning to Shadow Hand-drawn Sketches <NAME>, <NAME>, <NAME> Copyright (C) 2020 The respective authors and Project HAT. All rights reserved. Licensed under MIT license. """ import tensorflow as tf # import keras keras = tf.keras K = keras.backend Layer = keras.layers.Layer Conv2D = keras.layers.Conv2D InputSpec = keras.layers.InputSpec image_data_format = K.image_data_format activations = keras.activations initializers = keras.initializers regularizers = keras.regularizers constraints = keras.constraints class Composite(Layer): def __init__(self, data_format='channels_last', **kwargs): self.data_format = data_format super(Composite, self).__init__(**kwargs) def call(self, inputs): line_inputs, shade_inputs = inputs return line_inputs + (shade_inputs + 1) * 0.25 def compute_output_shape(self, input_shape): return input_shape[0] class PixelwiseConcat(Layer): def __init__(self, data_format='channels_last', **kwargs): self.data_format = data_format super(PixelwiseConcat, self).__init__(**kwargs) def call(self, inputs): pixel_inputs, unit_inputs = inputs if self.data_format == 'channels_first': repeated_unit_inputs = tf.tile( K.expand_dims(K.expand_dims(unit_inputs, 2), 2), [1, K.shape(pixel_inputs)[2], K.shape(pixel_inputs)[3], 1] ) elif self.data_format == 'channels_last': repeated_unit_inputs = tf.tile( K.expand_dims(K.expand_dims(unit_inputs, 1), 1), [1, K.shape(pixel_inputs)[1], K.shape(pixel_inputs)[2], 1] ) return K.concatenate([pixel_inputs, repeated_unit_inputs]) def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': return (input_shape[0][0], input_shape[0][1] + input_shape[1][1], input_shape[0][2], input_shape[0][3]) elif self.data_format == 'channels_last': return (input_shape[0][0], input_shape[0][1], input_shape[0][2], input_shape[0][3] + input_shape[1][1]) class SubPixelConv2D(Conv2D): def __init__(self, filters, kernel_size, r, padding='same', data_format=None, strides=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(SubPixelConv2D, self).__init__( filters=r * r * filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, **kwargs) self.r = r if hasattr(tf.nn, 'depth_to_space'): self.depth_to_space = tf.nn.depth_to_space else: self.depth_to_space = tf.depth_to_space def phase_shift(self, I): if self.data_format == 'channels_first': return self.depth_to_space(I, self.r, data_format="NCHW") elif self.data_format == 'channels_last': return self.depth_to_space(I, self.r, data_format="NHWC") def call(self, inputs): return self.phase_shift(super(SubPixelConv2D, self).call(inputs)) def compute_output_shape(self, input_shape): if self.data_format == 'channels_first': n, c, h, w = super(SubPixelConv2D, self).compute_output_shape(input_shape) elif self.data_format == 'channels_last': n, h, w, c = super(SubPixelConv2D, self).compute_output_shape(input_shape) if h is not None: h = int(self.r * h) if w is not None: w = int(self.r * w) c = int(c / (self.r * self.r)) if self.data_format == 'channels_first': return (n, c, h, w) elif self.data_format == 'channels_last': return (n, h, w, c) def get_config(self): config = super(Conv2D, self).get_config() config.pop('rank') config.pop('dilation_rate') config['filters'] /= self.r * self.r config['r'] = self.r return config class SelfAttention(Layer): def __init__(self, data_format='channels_last', activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs): super(SelfAttention, self).__init__(**kwargs) self.data_format = data_format self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) def build(self, input_shape): if self.data_format == 'channels_first': channel_axis = 1 else: channel_axis = -1 kernel_size = (1, 1) self.filters = int(input_shape[channel_axis]) self.kernel_f = self.add_weight(shape=kernel_size + (self.filters, self.filters // 8), initializer=self.kernel_initializer, name='kernel_f', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.kernel_g = self.add_weight(shape=kernel_size + (self.filters, self.filters // 8), initializer=self.kernel_initializer, name='kernel_g', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.kernel_h = self.add_weight(shape=kernel_size + (self.filters, self.filters), initializer=self.kernel_initializer, name='kernel_h', regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) if self.use_bias: self.bias_f = self.add_weight(shape=(self.filters // 8,), initializer=self.bias_initializer, name='bias_f', regularizer=self.bias_regularizer, constraint=self.bias_constraint) self.bias_g = self.add_weight(shape=(self.filters // 8,), initializer=self.bias_initializer, name='bias_g', regularizer=self.bias_regularizer, constraint=self.bias_constraint) self.bias_h = self.add_weight(shape=(self.filters,), initializer=self.bias_initializer, name='bias_h', regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias_f = None self.bias_g = None self.bias_h = None self.gamma = self.add_weight( name='gamma', shape=(1,), initializer=initializers.Constant(0) ) super(SelfAttention, self).build(input_shape) def call(self, inputs): f = K.conv2d(inputs, self.kernel_f, data_format=self.data_format, strides=(1, 1), dilation_rate=(1, 1)) # [bs, h, w, c'] g = K.conv2d(inputs, self.kernel_g, data_format=self.data_format, strides=(1, 1), dilation_rate=(1, 1)) # [bs, h, w, c'] h = K.conv2d(inputs, self.kernel_h, data_format=self.data_format, strides=(1, 1), dilation_rate=(1, 1)) # [bs, h, w, c] if self.use_bias: f = K.bias_add(f, self.bias_f, data_format=self.data_format) # [bs, h, w, c'] g = K.bias_add(g, self.bias_g, data_format=self.data_format) # [bs, h, w, c'] h = K.bias_add(h, self.bias_h, data_format=self.data_format) # [bs, h, w, c] # N = h * w s = K.dot(K.batch_flatten(g), K.transpose(K.batch_flatten(f))) # # [bs, N, N] beta = K.softmax(s) # attention map o = K.dot(beta, K.batch_flatten(h)) # [bs, N, C] o = K.reshape(o, K.shape(inputs)) # [bs, h, w, C] return self.activation(self.gamma * o + inputs) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = { 'activation': activations.serialize(self.activation), 'data_format': self.data_format, 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(SelfAttention, self).get_config() return dict(list(base_config.items()) + list(config.items())) """ Implementation of Coordinate Channel keras-coordconv MIT License Copyright (c) 2018 <NAME> https://github.com/titu1994/keras-coordconv/blob/master/coord.py """ class _CoordinateChannel(Layer): """ Adds Coordinate Channels to the input tensor. # Arguments rank: An integer, the rank of the input data-uniform, e.g. "2" for 2D convolution. use_radius: Boolean flag to determine whether the radius coordinate should be added for 2D rank inputs or not. data_format: A string, one of `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, ..., channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, ...)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". # Input shape ND tensor with shape: `(samples, channels, *)` if `data_format` is `"channels_first"` or ND tensor with shape: `(samples, *, channels)` if `data_format` is `"channels_last"`. # Output shape ND tensor with shape: `(samples, channels + 2, *)` if `data_format` is `"channels_first"` or 5D tensor with shape: `(samples, *, channels + 2)` if `data_format` is `"channels_last"`. # References: - [An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution](https://arxiv.org/abs/1807.03247) """ def __init__(self, rank, use_radius=False, data_format='channels_last', **kwargs): super(_CoordinateChannel, self).__init__(**kwargs) if data_format not in [None, 'channels_first', 'channels_last']: raise ValueError('`data_format` must be either "channels_last", "channels_first" ' 'or None.') self.rank = rank self.use_radius = use_radius self.data_format = data_format self.axis = 1 if image_data_format() == 'channels_first' else -1 self.input_spec = InputSpec(min_ndim=2) self.supports_masking = True def build(self, input_shape): assert len(input_shape) >= 2 input_dim = input_shape[self.axis] self.input_spec = InputSpec(min_ndim=self.rank + 2, axes={self.axis: input_dim}) self.built = True def call(self, inputs, training=None, mask=None): input_shape = K.shape(inputs) if self.rank == 1: input_shape = [input_shape[i] for i in range(3)] batch_shape, dim, channels = input_shape xx_range = tf.tile(K.expand_dims(K.arange(0, dim), axis=0), K.stack([batch_shape, 1])) xx_range = K.expand_dims(xx_range, axis=-1) xx_channels = K.cast(xx_range, K.floatx()) xx_channels = xx_channels / K.cast(dim - 1, K.floatx()) xx_channels = (xx_channels * 2) - 1. outputs = K.concatenate([inputs, xx_channels], axis=-1) if self.rank == 2: if self.data_format == 'channels_first': inputs = K.permute_dimensions(inputs, [0, 2, 3, 1]) input_shape = K.shape(inputs) input_shape = [input_shape[i] for i in range(4)] batch_shape, dim1, dim2, channels = input_shape xx_ones = tf.ones(K.stack([batch_shape, dim2]), dtype='int32') xx_ones = K.expand_dims(xx_ones, axis=-1) xx_range = tf.tile(K.expand_dims(K.arange(0, dim1), axis=0), K.stack([batch_shape, 1])) xx_range = K.expand_dims(xx_range, axis=1) xx_channels = K.batch_dot(xx_ones, xx_range, axes=[2, 1]) xx_channels = K.expand_dims(xx_channels, axis=-1) xx_channels = K.permute_dimensions(xx_channels, [0, 2, 1, 3]) yy_ones = tf.ones(K.stack([batch_shape, dim1]), dtype='int32') yy_ones = K.expand_dims(yy_ones, axis=1) yy_range = tf.tile(K.expand_dims(K.arange(0, dim2), axis=0), K.stack([batch_shape, 1])) yy_range = K.expand_dims(yy_range, axis=-1) yy_channels = K.batch_dot(yy_range, yy_ones, axes=[2, 1]) yy_channels = K.expand_dims(yy_channels, axis=-1) yy_channels = K.permute_dimensions(yy_channels, [0, 2, 1, 3]) xx_channels = K.cast(xx_channels, K.floatx()) xx_channels = xx_channels / K.cast(dim1 - 1, K.floatx()) xx_channels = (xx_channels * 2) - 1. yy_channels = K.cast(yy_channels, K.floatx()) yy_channels = yy_channels / K.cast(dim2 - 1, K.floatx()) yy_channels = (yy_channels * 2) - 1. outputs = K.concatenate([inputs, xx_channels, yy_channels], axis=-1) if self.use_radius: rr = K.sqrt(K.square(xx_channels - 0.5) + K.square(yy_channels - 0.5)) outputs = K.concatenate([outputs, rr], axis=-1) if self.data_format == 'channels_first': outputs = K.permute_dimensions(outputs, [0, 3, 1, 2]) if self.rank == 3: if self.data_format == 'channels_first': inputs = K.permute_dimensions(inputs, [0, 2, 3, 4, 1]) input_shape = K.shape(inputs) input_shape = [input_shape[i] for i in range(5)] batch_shape, dim1, dim2, dim3, channels = input_shape xx_ones = tf.ones(K.stack([batch_shape, dim3]), dtype='int32') xx_ones = K.expand_dims(xx_ones, axis=-1) xx_range = tf.tile(K.expand_dims(K.arange(0, dim2), axis=0), K.stack([batch_shape, 1])) xx_range = K.expand_dims(xx_range, axis=1) xx_channels = K.batch_dot(xx_ones, xx_range, axes=[2, 1]) xx_channels = K.expand_dims(xx_channels, axis=-1) xx_channels = K.permute_dimensions(xx_channels, [0, 2, 1, 3]) xx_channels = K.expand_dims(xx_channels, axis=1) xx_channels = tf.tile(xx_channels, [1, dim1, 1, 1, 1]) yy_ones = tf.ones(K.stack([batch_shape, dim2]), dtype='int32') yy_ones = K.expand_dims(yy_ones, axis=1) yy_range = tf.tile(K.expand_dims(K.arange(0, dim3), axis=0), K.stack([batch_shape, 1])) yy_range = K.expand_dims(yy_range, axis=-1) yy_channels = K.batch_dot(yy_range, yy_ones, axes=[2, 1]) yy_channels = K.expand_dims(yy_channels, axis=-1) yy_channels = K.permute_dimensions(yy_channels, [0, 2, 1, 3]) yy_channels = K.expand_dims(yy_channels, axis=1) yy_channels = tf.tile(yy_channels, [1, dim1, 1, 1, 1]) zz_range = tf.tile(K.expand_dims(K.arange(0, dim1), axis=0), K.stack([batch_shape, 1])) zz_range = K.expand_dims(zz_range, axis=-1) zz_range = K.expand_dims(zz_range, axis=-1) zz_channels = tf.tile(zz_range, [1, 1, dim2, dim3]) zz_channels = K.expand_dims(zz_channels, axis=-1) xx_channels = K.cast(xx_channels, K.floatx()) xx_channels = xx_channels / K.cast(dim2 - 1, K.floatx()) xx_channels = xx_channels * 2 - 1. yy_channels = K.cast(yy_channels, K.floatx()) yy_channels = yy_channels / K.cast(dim3 - 1, K.floatx()) yy_channels = yy_channels * 2 - 1. zz_channels = K.cast(zz_channels, K.floatx()) zz_channels = zz_channels / K.cast(dim1 - 1, K.floatx()) zz_channels = zz_channels * 2 - 1. outputs = K.concatenate([inputs, zz_channels, xx_channels, yy_channels], axis=-1) if self.data_format == 'channels_first': outputs = K.permute_dimensions(outputs, [0, 4, 1, 2, 3]) return outputs def compute_output_shape(self, input_shape): assert input_shape and len(input_shape) >= 2 assert input_shape[self.axis] if self.use_radius and self.rank == 2: channel_count = 3 else: channel_count = self.rank output_shape = list(input_shape) output_shape[self.axis] = input_shape[self.axis] + channel_count return tuple(output_shape) def get_config(self): config = { 'rank': self.rank, 'use_radius': self.use_radius, 'data_format': self.data_format } base_config = super(_CoordinateChannel, self).get_config() return dict(list(base_config.items()) + list(config.items())) class CoordinateChannel1D(_CoordinateChannel): """ Adds Coordinate Channels to the input tensor of rank 1. # Arguments data_format: A string, one of `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, ..., channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, ...)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". # Input shape 3D tensor with shape: `(batch_size, steps, input_dim)` # Output shape 3D tensor with shape: `(batch_size, steps, input_dim + 2)` # References: - [An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution](https://arxiv.org/abs/1807.03247) """ def __init__(self, data_format=None, **kwargs): super(CoordinateChannel1D, self).__init__( rank=1, use_radius=False, data_format=data_format, **kwargs ) def get_config(self): config = super(CoordinateChannel1D, self).get_config() config.pop('rank') config.pop('use_radius') return config class CoordinateChannel2D(_CoordinateChannel): """ Adds Coordinate Channels to the input tensor. # Arguments use_radius: Boolean flag to determine whether the radius coordinate should be added for 2D rank inputs or not. data_format: A string, one of `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, ..., channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, ...)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if `data_format` is `"channels_first"` or 4D tensor with shape: `(samples, rows, cols, channels)` if `data_format` is `"channels_last"`. # Output shape 4D tensor with shape: `(samples, channels + 2/3, rows, cols)` if `data_format` is `"channels_first"` or 4D tensor with shape: `(samples, rows, cols, channels + 2/3)` if `data_format` is `"channels_last"`. If `use_radius` is set, then will have 3 additional filers, else only 2 additional filters will be added. # References: - [An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution](https://arxiv.org/abs/1807.03247) """ def __init__(self, use_radius=False, data_format=None, **kwargs): super(CoordinateChannel2D, self).__init__( rank=2, use_radius=use_radius, data_format=data_format, **kwargs ) def get_config(self): config = super(CoordinateChannel2D, self).get_config() config.pop('rank') return config
smartmin/perms.py
nickhargreaves/smartmin
166
12781445
from django.contrib.auth.models import Permission def assign_perm(perm, group): """ Assigns a permission to a group """ if not isinstance(perm, Permission): try: app_label, codename = perm.split('.', 1) except ValueError: raise ValueError("For global permissions, first argument must be in" " format: 'app_label.codename' (is %r)" % perm) perm = Permission.objects.get(content_type__app_label=app_label, codename=codename) group.permissions.add(perm) return perm def remove_perm(perm, group): """ Removes a permission from a group """ if not isinstance(perm, Permission): try: app_label, codename = perm.split('.', 1) except ValueError: raise ValueError("For global permissions, first argument must be in" " format: 'app_label.codename' (is %r)" % perm) perm = Permission.objects.get(content_type__app_label=app_label, codename=codename) group.permissions.remove(perm) return
hummingbot/connector/exchange/huobi/huobi_api_order_book_data_source.py
BGTCapital/hummingbot
3,027
12781455
#!/usr/bin/env python import asyncio import logging import hummingbot.connector.exchange.huobi.huobi_constants as CONSTANTS from collections import defaultdict from typing import ( Any, Dict, List, Optional, ) from hummingbot.connector.exchange.huobi.huobi_order_book import HuobiOrderBook from hummingbot.connector.exchange.huobi.huobi_utils import ( convert_from_exchange_trading_pair, convert_to_exchange_trading_pair, build_api_factory, ) from hummingbot.core.data_type.order_book import OrderBook from hummingbot.core.data_type.order_book_message import OrderBookMessage from hummingbot.core.data_type.order_book_tracker_data_source import OrderBookTrackerDataSource from hummingbot.core.web_assistant.connections.data_types import RESTMethod, RESTRequest, RESTResponse, WSRequest from hummingbot.core.web_assistant.rest_assistant import RESTAssistant from hummingbot.core.web_assistant.web_assistants_factory import WebAssistantsFactory from hummingbot.core.web_assistant.ws_assistant import WSAssistant from hummingbot.logger import HummingbotLogger class HuobiAPIOrderBookDataSource(OrderBookTrackerDataSource): MESSAGE_TIMEOUT = 30.0 PING_TIMEOUT = 10.0 HEARTBEAT_INTERVAL = 30.0 # seconds ORDER_BOOK_SNAPSHOT_DELAY = 60 * 60 # expressed in seconds TRADE_CHANNEL_SUFFIX = "trade.detail" ORDERBOOK_CHANNEL_SUFFIX = "depth.step0" _haobds_logger: Optional[HummingbotLogger] = None @classmethod def logger(cls) -> HummingbotLogger: if cls._haobds_logger is None: cls._haobds_logger = logging.getLogger(__name__) return cls._haobds_logger def __init__(self, trading_pairs: List[str], api_factory: Optional[WebAssistantsFactory] = None, ): super().__init__(trading_pairs) self._api_factory = api_factory or build_api_factory() self._rest_assistant: Optional[RESTAssistant] = None self._ws_assistant: Optional[WSAssistant] = None self._message_queue: Dict[str, asyncio.Queue] = defaultdict(asyncio.Queue) async def _get_rest_assistant(self) -> RESTAssistant: if self._rest_assistant is None: self._rest_assistant = await self._api_factory.get_rest_assistant() return self._rest_assistant async def _get_ws_assistant(self) -> WSAssistant: if self._ws_assistant is None: self._ws_assistant = await self._api_factory.get_ws_assistant() return self._ws_assistant @classmethod async def get_last_traded_prices(cls, trading_pairs: List[str]) -> Dict[str, float]: api_factory = build_api_factory() rest_assistant = await api_factory.get_rest_assistant() url = CONSTANTS.REST_URL + CONSTANTS.TICKER_URL request = RESTRequest(method=RESTMethod.GET, url=url) response: RESTResponse = await rest_assistant.call(request=request) results = dict() resp_json = await response.json() for trading_pair in trading_pairs: resp_record = [o for o in resp_json["data"] if o["symbol"] == convert_to_exchange_trading_pair(trading_pair)][0] results[trading_pair] = float(resp_record["close"]) return results @staticmethod async def fetch_trading_pairs() -> List[str]: try: api_factory = build_api_factory() rest_assistant = await api_factory.get_rest_assistant() url = CONSTANTS.REST_URL + CONSTANTS.API_VERSION + CONSTANTS.SYMBOLS_URL request = RESTRequest(method=RESTMethod.GET, url=url) response: RESTResponse = await rest_assistant.call(request=request) if response.status == 200: all_symbol_infos: Dict[str, Any] = await response.json() return [f"{symbol_info['base-currency']}-{symbol_info['quote-currency']}".upper() for symbol_info in all_symbol_infos["data"] if symbol_info["state"] == "online"] except Exception: # Do nothing if the request fails -- there will be no autocomplete for huobi trading pairs pass return [] async def get_snapshot(self, trading_pair: str) -> Dict[str, Any]: rest_assistant = await self._get_rest_assistant() url = CONSTANTS.REST_URL + CONSTANTS.DEPTH_URL # when type is set to "step0", the default value of "depth" is 150 params: Dict = {"symbol": convert_to_exchange_trading_pair(trading_pair), "type": "step0"} request = RESTRequest(method=RESTMethod.GET, url=url, params=params) response: RESTResponse = await rest_assistant.call(request=request) if response.status != 200: raise IOError(f"Error fetching Huobi market snapshot for {trading_pair}. " f"HTTP status is {response.status}.") snapshot_data: Dict[str, Any] = await response.json() return snapshot_data async def get_new_order_book(self, trading_pair: str) -> OrderBook: snapshot: Dict[str, Any] = await self.get_snapshot(trading_pair) timestamp = snapshot["tick"]["ts"] snapshot_msg: OrderBookMessage = HuobiOrderBook.snapshot_message_from_exchange( msg=snapshot, timestamp=timestamp, metadata={"trading_pair": trading_pair}, ) order_book: OrderBook = self.order_book_create_function() order_book.apply_snapshot(snapshot_msg.bids, snapshot_msg.asks, snapshot_msg.update_id) return order_book async def _subscribe_channels(self, ws: WSAssistant): try: for trading_pair in self._trading_pairs: subscribe_orderbook_request: WSRequest = WSRequest({ "sub": f"market.{convert_to_exchange_trading_pair(trading_pair)}.depth.step0", "id": convert_to_exchange_trading_pair(trading_pair) }) subscribe_trade_request: WSRequest = WSRequest({ "sub": f"market.{convert_to_exchange_trading_pair(trading_pair)}.trade.detail", "id": convert_to_exchange_trading_pair(trading_pair) }) await ws.send(subscribe_orderbook_request) await ws.send(subscribe_trade_request) self.logger().info("Subscribed to public orderbook and trade channels...") except asyncio.CancelledError: raise except Exception: self.logger().error( "Unexpected error occurred subscribing to order book trading and delta streams...", exc_info=True ) raise async def listen_for_subscriptions(self): ws = None while True: try: ws: WSAssistant = await self._get_ws_assistant() await ws.connect(ws_url=CONSTANTS.WS_PUBLIC_URL, ping_timeout=self.HEARTBEAT_INTERVAL) await self._subscribe_channels(ws) async for ws_response in ws.iter_messages(): data = ws_response.data if "subbed" in data: continue if "ping" in data: ping_request = WSRequest(payload={ "pong": data["ping"] }) await ws.send(request=ping_request) channel = data.get("ch", "") if channel.endswith(self.TRADE_CHANNEL_SUFFIX): self._message_queue[self.TRADE_CHANNEL_SUFFIX].put_nowait(data) if channel.endswith(self.ORDERBOOK_CHANNEL_SUFFIX): self._message_queue[self.ORDERBOOK_CHANNEL_SUFFIX].put_nowait(data) except asyncio.CancelledError: raise except Exception: self.logger().error( "Unexpected error occurred when listening to order book streams. Retrying in 5 seconds...", exc_info=True, ) await self._sleep(5.0) finally: ws and await ws.disconnect() async def listen_for_trades(self, ev_loop: asyncio.BaseEventLoop, output: asyncio.Queue): message_queue = self._message_queue[self.TRADE_CHANNEL_SUFFIX] while True: try: msg: Dict[str, Any] = await message_queue.get() trading_pair = msg["ch"].split(".")[1] timestamp = msg["tick"]["ts"] for data in msg["tick"]["data"]: trade_message: OrderBookMessage = HuobiOrderBook.trade_message_from_exchange( msg=data, timestamp=timestamp, metadata={"trading_pair": convert_from_exchange_trading_pair(trading_pair)} ) output.put_nowait(trade_message) except asyncio.CancelledError: raise except Exception: self.logger().error("Unexpected error with WebSocket connection. Retrying after 30 seconds...", exc_info=True) await self._sleep(30.0) async def listen_for_order_book_diffs(self, ev_loop: asyncio.BaseEventLoop, output: asyncio.Queue): message_queue = self._message_queue[self.ORDERBOOK_CHANNEL_SUFFIX] while True: try: msg: Dict[str, Any] = await message_queue.get() timestamp = msg["tick"]["ts"] order_book_message: OrderBookMessage = HuobiOrderBook.diff_message_from_exchange( msg=msg, timestamp=timestamp ) output.put_nowait(order_book_message) except asyncio.CancelledError: raise except Exception: self.logger().error("Unexpected error with WebSocket connection. Retrying after 30 seconds...", exc_info=True) await self._sleep(30.0) async def listen_for_order_book_snapshots(self, ev_loop: asyncio.BaseEventLoop, output: asyncio.Queue): while True: await self._sleep(self.ORDER_BOOK_SNAPSHOT_DELAY) try: for trading_pair in self._trading_pairs: snapshot: Dict[str, Any] = await self.get_snapshot(trading_pair) snapshot_message: OrderBookMessage = HuobiOrderBook.snapshot_message_from_exchange( snapshot, timestamp=snapshot["tick"]["ts"], metadata={"trading_pair": trading_pair}, ) output.put_nowait(snapshot_message) self.logger().debug(f"Saved order book snapshot for {trading_pair}") except asyncio.CancelledError: raise except Exception: self.logger().error("Unexpected error listening for orderbook snapshots. Retrying in 5 secs...", exc_info=True) await self._sleep(5.0)
acora/__init__.py
scoder/acora
209
12781492
"""\ Acora - a multi-keyword search engine based on Aho-Corasick trees. Usage:: >>> from acora import AcoraBuilder Collect some keywords:: >>> builder = AcoraBuilder('ab', 'bc', 'de') >>> builder.add('a', 'b') Generate the Acora search engine:: >>> ac = builder.build() Search a string for all occurrences:: >>> ac.findall('abc') [('a', 0), ('ab', 0), ('b', 1), ('bc', 1)] >>> ac.findall('abde') [('a', 0), ('ab', 0), ('b', 1), ('de', 2)] """ from __future__ import absolute_import import sys IS_PY3 = sys.version_info[0] >= 3 if IS_PY3: unicode = str FILE_BUFFER_SIZE = 32 * 1024 class PyAcora(object): """A simple (and very slow) Python implementation of the Acora search engine. """ transitions = None def __init__(self, machine, transitions=None): if transitions is not None: # old style format start_state = machine self.transitions = dict([ ((state.id, char), (target_state.id, target_state.matches)) for ((state, char), target_state) in transitions.items()]) else: # new style Machine format start_state = machine.start_state ignore_case = machine.ignore_case self.transitions = transitions = {} child_states = machine.child_states child_targets = {} state_matches = {} needs_bytes_conversion = None for state in child_states: state_id = state.id child_targets[state_id], state_matches[state_id] = ( _merge_targets(state, ignore_case)) if needs_bytes_conversion is None and state_matches[state_id]: if IS_PY3: needs_bytes_conversion = any( isinstance(s, bytes) for s in state_matches[state_id]) elif any(isinstance(s, unicode) for s in state_matches[state_id]): # in Py2, some keywords might be str even though we're processing unicode needs_bytes_conversion = False if needs_bytes_conversion is None and not IS_PY3: needs_bytes_conversion = True if needs_bytes_conversion: if IS_PY3: convert = ord else: from codecs import latin_1_encode def convert(s): return latin_1_encode(s)[0] else: convert = None get_child_targets = child_targets.get get_matches = state_matches.get state_id = start_state.id for ch, child in _merge_targets(start_state, ignore_case)[0].items(): child_id = child.id if convert is not None: ch = convert(ch) transitions[(state_id, ch)] = (child_id, get_matches(child_id)) for state in child_states: state_id = state.id for ch, child in get_child_targets(state_id).items(): child_id = child.id if convert is not None: ch = convert(ch) transitions[(state_id, ch)] = (child_id, get_matches(child_id)) self.start_state = start_state.id def finditer(self, s): """Iterate over all occurrences of any keyword in the string. Returns (keyword, offset) pairs. """ state = self.start_state start_state = (state, []) next_state = self.transitions.get pos = 0 for char in s: pos += 1 state, matches = next_state((state, char), start_state) if matches: for match in matches: yield (match, pos-len(match)) def findall(self, s): """Find all occurrences of any keyword in the string. Returns a list of (keyword, offset) pairs. """ return list(self.finditer(s)) def filefind(self, f): """Iterate over all occurrences of any keyword in a file. Returns (keyword, offset) pairs. """ opened = False if not hasattr(f, 'read'): f = open(f, 'rb') opened = True try: state = self.start_state start_state = (state, ()) next_state = self.transitions.get pos = 0 while 1: data = f.read(FILE_BUFFER_SIZE) if not data: break for char in data: pos += 1 state, matches = next_state((state, char), start_state) if matches: for match in matches: yield (match, pos-len(match)) finally: if opened: f.close() def filefindall(self, f): """Find all occurrences of any keyword in a file. Returns a list of (keyword, offset) pairs. """ return list(self.filefind(f)) # import from shared Python/Cython module from acora._acora import ( insert_bytes_keyword, insert_unicode_keyword, build_trie as _build_trie, build_MachineState as _MachineState, merge_targets as _merge_targets) # import from Cython module if available try: from acora._cacora import ( UnicodeAcora, BytesAcora, insert_bytes_keyword, insert_unicode_keyword) except ImportError: # C module not there ... UnicodeAcora = BytesAcora = PyAcora class AcoraBuilder(object): """The main builder class for an Acora search engine. Add keywords by calling ``.add(*keywords)`` or by passing them into the constructor. Then build the search engine by calling ``.build()``. Builds a case insensitive search engine when passing ``ignore_case=True``, and a case sensitive engine otherwise. """ ignore_case = False def __init__(self, *keywords, **kwargs): if kwargs: self.ignore_case = kwargs.pop('ignore_case', False) if kwargs: raise TypeError( "%s() got unexpected keyword argument %s" % ( self.__class__.__name__, next(iter(kwargs)))) if len(keywords) == 1 and isinstance(keywords[0], (list, tuple)): keywords = keywords[0] self.for_unicode = None self.state_counter = 1 self.keywords = set() self.tree = _MachineState(0) if keywords: self.update(keywords) def __update(self, keywords): """Add more keywords to the search engine builder. Adding keywords does not impact previously built search engines. """ if not keywords: return self.tree = None self.keywords.update(keywords) if self.for_unicode is None: for keyword in keywords: if isinstance(keyword, unicode): self.for_unicode = True elif isinstance(keyword, bytes): self.for_unicode = False else: raise TypeError( "keywords must be either bytes or unicode, not mixed (got %s)" % type(keyword)) break # validate input string types marker = object() if self.for_unicode: for keyword in keywords: if not isinstance(keyword, unicode): break else: keyword = marker else: for keyword in keywords: if not isinstance(keyword, bytes): break else: keyword = marker if keyword is not marker: raise TypeError( "keywords must be either bytes or unicode, not mixed (got %s)" % type(keyword)) def add(self, *keywords): """Add more keywords to the search engine builder. Adding keywords does not impact previously built search engines. """ if keywords: self.update(keywords) def build(self, ignore_case=None, acora=None): """Build a search engine from the aggregated keywords. Builds a case insensitive search engine when passing ``ignore_case=True``, and a case sensitive engine otherwise. """ if acora is None: if self.for_unicode: acora = UnicodeAcora else: acora = BytesAcora if self.for_unicode == False and ignore_case: import sys if sys.version_info[0] >= 3: raise ValueError( "Case insensitive search is not supported for byte strings in Python 3") if ignore_case is not None and ignore_case != self.ignore_case: # must rebuild tree builder = type(self)(ignore_case=ignore_case) builder.update(self.keywords) return builder.build(acora=acora) return acora(_build_trie(self.tree, ignore_case=self.ignore_case)) def update(self, keywords): for_unicode = self.for_unicode ignore_case = self.ignore_case insert_keyword = insert_unicode_keyword if for_unicode else insert_bytes_keyword for keyword in keywords: if for_unicode is None: for_unicode = self.for_unicode = isinstance(keyword, unicode) insert_keyword = ( insert_unicode_keyword if for_unicode else insert_bytes_keyword) elif for_unicode != isinstance(keyword, unicode): raise TypeError( "keywords must be either bytes or unicode, not mixed (got %s)" % type(keyword)) self.state_counter = insert_keyword( self.tree, keyword, self.state_counter, ignore_case) self.keywords.update(keywords) ### convenience functions def search(s, *keywords): """Convenience function to search a string for keywords. """ acora = AcoraBuilder(keywords).build() return acora.findall(s) def search_ignore_case(s, *keywords): """Convenience function to search a string for keywords. Case insensitive version. """ acora = AcoraBuilder(keywords, ignore_case=True).build() return acora.findall(s)
tests/model_test.py
gaganchhabra/appkernel
156
12781516
import json from decimal import Decimal from pymongo import MongoClient from appkernel import PropertyRequiredException from appkernel.configuration import config from appkernel.repository import mongo_type_converter_to_dict, mongo_type_converter_from_dict from .utils import * import pytest from jsonschema import validate def setup_module(module): config.mongo_database = MongoClient(host='localhost')['appkernel'] def setup_function(function): """ executed before each method call """ print('\n\nSETUP ==> ') Project.delete_all() User.delete_all() def test_required_field(): project = Project() with pytest.raises(PropertyRequiredException): project.finalise_and_validate() with pytest.raises(PropertyRequiredException): project.update(name=None) project.finalise_and_validate() project.update(name='some_name') project.finalise_and_validate() def test_append_to_non_existing_non_defined_element(): project = Project().update(name='strange project') project.append_to(users=Task().update(name='some_task', description='some description')) project.finalise_and_validate() assert 'users' in project.__dict__ assert len(project.users) == 1 assert isinstance(project.users[0], Task) print(('{}'.format(project))) def test_append_to_non_existing_element(): project = Project().update(name='strange project') project.append_to(tasks=Task().update(name='some_task', description='some description')) project.finalise_and_validate() assert 'tasks' in project.__dict__ assert len(project.tasks) == 1 assert isinstance(project.tasks[0], Task) print(('{}'.format(project))) def test_remove_non_existing_element(): with pytest.raises(AttributeError): project = Project().update(name='strange project') project.remove_from(tasks=Task()) with pytest.raises(AttributeError): project = Project().update(name='strange project') project.remove_from(tasks=None) with pytest.raises(AttributeError): project = Project().update(name='strange project') project.remove_from(somehtings=Task()) def test_remove_existing_defined_element(): task1 = Task().update(name='some_task', description='some description') task2 = Task().update(name='some_other_task', description='some other description') task3 = Task().update(name='a third task', description='some third description') project = Project().update(name='strange project') project.append_to(tasks=[task1, task2]) project.finalise_and_validate() assert len(project.tasks) == 2 project.append_to(tasks=task3) project.finalise_and_validate() assert len(project.tasks) == 3 print(('{}'.format(project))) project.remove_from(tasks=task1) assert len(project.tasks) == 2 print(('{}'.format(project))) def test_generator(): task = Task() task.name = 'some task name' task.description = 'some task description' task.finalise_and_validate() print(('\nTask:\n {}'.format(task))) assert task.id is not None and task.id.startswith('U') def test_converter(): user = create_and_save_a_user('test user', 'test password', 'test description') print(('\n{}'.format(user.dumps(pretty_print=True)))) assert user.password.startswith('<PASSWORD>') hash1 = user.password user.save() assert user.password.startswith('<PASSWORD>') assert hash1 == user.password def test_nested_object_serialisation(): portfolio = create_a_portfolion_with_owner() print((portfolio.dumps(pretty_print=True))) check_portfolio(portfolio) def test_describe_model(): user_spec = User.get_parameter_spec() print(User.get_paramater_spec_as_json()) assert 'name' in user_spec assert user_spec.get('name').get('required') assert user_spec.get('name').get('type') == 'str' assert len(user_spec.get('name').get('validators')) == 2 for validator in user_spec.get('name').get('validators'): if validator.get('type') == 'Regexp': assert validator.get('value') == '[A-Za-z0-9-_]' assert user_spec.get('roles').get('sub_type') == 'str' def test_describe_rich_model(): project_spec = Project.get_parameter_spec() print(Project.get_paramater_spec_as_json()) assert project_spec.get('created').get('required') assert project_spec.get('created').get('type') == 'datetime' assert project_spec.get('name').get('required') assert project_spec.get('name').get('type') == 'str' name_validators = project_spec.get('name').get('validators') assert len(name_validators) == 1 assert name_validators[0].get('type') == 'NotEmpty' assert name_validators[0].get('value') is None or 'null' tasks = project_spec.get('tasks') assert not tasks.get('required') assert 'sub_type' in tasks assert tasks.get('type') == 'list' task = tasks.get('sub_type') assert task.get('type') == 'Task' assert 'props' in task props = task.get('props') assert not props.get('closed_date').get('required') assert props.get('closed_date').get('type') == 'datetime' assert props.get('closed_date').get('validators')[0].get('type') == 'Past' def test_json_schema(): json_schema = Project.get_json_schema() print('\n{}'.format(json.dumps(json_schema, indent=2))) print('===========') project = create_rich_project() print(project.dumps(pretty_print=True)) assert json_schema.get('title') == 'Project Schema' assert 'title' in json_schema assert json_schema.get('type') == 'object' assert 'name' in json_schema.get('required') assert 'created' in json_schema.get('required') assert 'definitions' in json_schema assert json_schema.get('additionalProperties') definitions = json_schema.get('definitions') assert 'Task' in definitions assert len(definitions.get('Task').get('required')) == 6 assert 'id' in definitions.get('Task').get('properties') closed_date = definitions.get('Task').get('properties').get('closed_date') assert 'string' in closed_date.get('type') assert len(closed_date.get('type')) == 2 assert closed_date.get('format') == 'date-time' completed = definitions.get('Task').get('properties').get('completed') assert 'boolean' in completed.get('type') assert len(completed.get('type')) == 1 validate(json.loads(project.dumps()), json_schema) # todo: check the enum / make a negative test # validator = Draft4Validator(json_schema) # errors = sorted(validator.iter_errors(project.dumps()), key=lambda e: e.path) # for error in errors: # print('{}'.format(error.message, list(error.path))) def test_json_schema_primitives_types(): json_schema = Stock.get_json_schema() print(json.dumps(json_schema, indent=2)) props = json_schema.get('properties') opentypes = props.get('open').get('type') assert 'number' in opentypes assert len(opentypes) == 1 item_types = props.get('history').get('items').get('type') assert 'number' in item_types len(item_types) == 1 stock = create_a_stock() validate(json.loads(stock.dumps()), json_schema) def test_json_schema_complex(): # print json.dumps(Portfolio.get_parameter_spec(True), indent=2) json_schema = Portfolio.get_json_schema() print(json.dumps(json_schema, indent=2)) stock_definition = json_schema.get('definitions').get('Stock') assert stock_definition.get('properties').get('updated').get('format') == 'date-time' assert stock_definition.get('properties').get('code').get('pattern') == '[A-Za-z0-9-_]' assert stock_definition.get('properties').get('code').get('maxLength') == 4 assert stock_definition.get('properties').get('open').get('minimum') == 0 open_types = stock_definition.get('properties').get('open').get('type') assert 'number' in open_types assert len(open_types) == 1 sequence_types = stock_definition.get('properties').get('sequence').get('type') assert 'number' in sequence_types assert len(sequence_types) == 2 assert stock_definition.get('properties').get('sequence').get('minimum') == 1 assert stock_definition.get('properties').get('sequence').get('maximum') == 100 assert stock_definition.get('properties').get('sequence').get('multipleOf') == 1.0 history_types = stock_definition.get('properties').get('history').get('type') assert 'array' in history_types assert len(history_types) == 2 portfolio = create_portfolio('My Portfolio') validate(json.loads(portfolio.dumps()), json_schema) def test_json_schema_in_mongo_compat_mode(): json_schema = Project.get_json_schema(mongo_compatibility=True) print('\n\n{}'.format(json.dumps(json_schema, indent=2))) print('===========') task_spec = json_schema.get('properties').get('tasks') assert len(task_spec.get('items').get('required')) == 5 priority_spec = task_spec.get('items').get('properties').get('priority') assert len(priority_spec.get('enum')) == 3 closed_date_spec = task_spec.get('items').get('properties').get('closed_date') assert len(closed_date_spec.get('bsonType')) == 2 assert 'bsonType' in json_schema assert 'id' not in json_schema assert '$schema' not in json_schema assert 'definitions' not in json_schema for prop in json_schema.get('properties').items(): assert 'format' not in prop[1] assert 'bsonType' in prop[1] for prop in task_spec.get('items').get('properties').items(): assert 'format' not in prop[1] assert 'bsonType' or 'enum' in prop[1] project = create_rich_project() print(project.dumps(pretty_print=True)) validate(json.loads(project.dumps()), json_schema) def __assert_product_dict(product_dict: dict): assert 'name' in product_dict assert 'description' in product_dict assert 'size' in product_dict assert product_dict.get('size') == 'M' assert 'price' in product_dict assert isinstance(product_dict.get('price'), dict) price_dict = product_dict.get('price') assert '_type' in price_dict assert price_dict.get('_type') == 'money.money.Money' assert price_dict.get('currency') == 'EUR' def test_custom_object_marshalling(): product = Product(code='TRX', name='White T-Shirt', description='a stylish white shirt', size=ProductSize.M, price=Money(10.50, 'EUR')) product_dict = Model.to_dict(product) __assert_product_dict(product_dict) amount = product_dict.get('price').get('amount') assert isinstance(amount, Decimal) assert amount == 10.5 product_json = product.dumps(pretty_print=True) print('JSON: \n{}'.format(product_json)) reloaded_product = Product.loads(product_json) assert reloaded_product is not None and isinstance(reloaded_product, Product) assert reloaded_product.name == product.name assert reloaded_product.description == product.description assert reloaded_product.size == product.size assert isinstance(reloaded_product.price, Money) assert reloaded_product.price == product.price def test_custom_converter_function(): product = Product(code='TRX', name='White T-Shirt', description='a stylish white shirt', size=ProductSize.M, price=Money(10.50, 'EUR')) product_dict = Model.to_dict(product, converter_func=mongo_type_converter_to_dict) __assert_product_dict(product_dict) amount = product_dict.get('price').get('amount') assert isinstance(amount, float) product_json = product.dumps(pretty_print=True) print('JSON: \n{}'.format(product_json)) reloaded_product = Model.from_dict(product_dict, Product, converter_func=mongo_type_converter_from_dict) assert isinstance(reloaded_product.price, Money) assert isinstance(reloaded_product.price.amount, Decimal)
study/vanilla/models.py
NunoEdgarGFlowHub/wavetorch
470
12781536
import torch import torch.nn as nn from torch.nn import functional as F class CustomRNN(nn.Module): def __init__(self, input_size, output_size, hidden_size, batch_first=True, W_scale=1e-1, f_hidden=None): super(CustomRNN, self).__init__() self.input_size = input_size self.output_size = output_size self.hidden_size = hidden_size self.f_hidden = f_hidden self.W1 = nn.Parameter((torch.rand(hidden_size, input_size)-0.5)*W_scale) self.W2 = nn.Parameter((torch.rand(hidden_size, hidden_size)-0.5)*W_scale) self.W3 = nn.Parameter((torch.rand(output_size, hidden_size)-0.5)*W_scale) self.b_h = nn.Parameter(torch.zeros(hidden_size)) def forward(self, x): h1 = torch.zeros(x.shape[0], self.hidden_size) ys = [] for i, xi in enumerate(x.chunk(x.size(1), dim=1)): h1 = (torch.matmul(self.W2, h1.t()) + torch.matmul(self.W1, xi.t())).t() + self.b_h if self.f_hidden is not None: h1 = getattr(F, self.f_hidden)(h1) y = torch.matmul(self.W3, h1.t()).t() ys.append(y) ys = torch.stack(ys, dim=1) return ys class CustomRes(nn.Module): def __init__(self, input_size, output_size, hidden_size, batch_first=True, W_scale=1e-1, f_hidden=None): super(CustomRes, self).__init__() self.input_size = input_size self.output_size = output_size self.hidden_size = hidden_size self.f_hidden = f_hidden self.W1 = torch.nn.Parameter((torch.rand(hidden_size, input_size)-0.5)*W_scale) self.W2 = torch.nn.Parameter((torch.rand(hidden_size, hidden_size)-0.5)*W_scale) self.W3 = torch.nn.Parameter((torch.rand(output_size, hidden_size)-0.5)*W_scale) self.b_h = torch.nn.Parameter(torch.zeros(hidden_size)) def forward(self, x): h1 = torch.zeros(x.shape[0], self.hidden_size) ys = [] for i, xi in enumerate(x.chunk(x.size(1), dim=1)): hprev = h1 h1 = (torch.matmul(self.W2, h1.t()) + torch.matmul(self.W1, xi.t())).t() + self.b_h if self.f_hidden is not None: h1 = getattr(F, self.f_hidden)(h1) y = torch.matmul(self.W3, h1.t()).t() ys.append(y) h1 = h1 + hprev ys = torch.stack(ys, dim=1) return ys class CustomLSTM(nn.Module): def __init__(self, input_size, output_size, hidden_size, batch_first=True, W_scale=1e-1): super(CustomLSTM, self).__init__() self.input_size = input_size self.output_size = output_size self.hidden_size = hidden_size self.lstm = nn.LSTM(input_size, hidden_size, batch_first=batch_first) self.W3 = torch.nn.Parameter((torch.rand(output_size, hidden_size)-0.5)) def forward(self, x): # out should have size [N_batch, T, N_hidden] out, hidden = self.lstm(x.unsqueeze(2)) # print(torch.max(x, 1)) # print(x[:, 100]) # print(out[:, 100, 0].detach()) # ys should have size [N_batch, T, N_classes] ys = torch.matmul(out, self.W3.t()) return ys
office-plugin/windows-office/program/wizards/common/Properties.py
jerrykcode/kkFileView
6,660
12781554
# # This file is part of the LibreOffice project. # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. # # This file incorporates work covered by the following license notice: # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed # with this work for additional information regarding copyright # ownership. The ASF licenses this file to you under the Apache # License, Version 2.0 (the "License"); you may not use this file # except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 . # from com.sun.star.beans import PropertyValue ''' Simplifies handling Arrays of PropertyValue. To make a use of this class, instantiate it, and call the put(propName,propValue) method. caution: propName should always be a String. When finished, call the getProperties() method to get an array of the set properties. ''' class Properties(dict): @classmethod def getPropertyValue(self, props, propName): for i in props: if propName == i.Name: return i.Value raise AttributeError ("Property '" + propName + "' not found.") @classmethod def hasPropertyValue(self, props, propName): for i in props: if propName == i.Name: return True return False @classmethod def getProperties(self, _map): pv = [] for k,v in _map.items(): pv.append(self.createProperty(k, v)) return pv @classmethod def createProperty(self, name, value, handle=None): pv = PropertyValue() pv.Name = name pv.Value = value if handle is not None: pv.Handle = handle return pv def getProperties1(self): return self.getProperties(self)
indicnlp/transliterate/unicode_transliterate.py
shubham303/indic_nlp_library
432
12781564
<reponame>shubham303/indic_nlp_library # # Copyright (c) 2013-present, <NAME> # All rights reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # #Program for text written in one Indic script to another based on Unicode mappings. # # @author <NAME> # import sys, string, itertools, re, os from collections import defaultdict from indicnlp import common from indicnlp import langinfo from indicnlp.script import indic_scripts as isc from indicnlp.transliterate.sinhala_transliterator import SinhalaDevanagariTransliterator as sdt import pandas as pd OFFSET_TO_ITRANS={} ITRANS_TO_OFFSET=defaultdict(list) DUPLICATE_ITRANS_REPRESENTATIONS={} def init(): """ To be called by library loader, do not call it in your program """ ### Load the ITRANS-script offset map. The map was initially generated using the snippet below (uses the old itrans transliterator) ### The map is modified as needed to accomodate extensions and corrections to the mappings # # base=0x900 # l=[] # for i in range(0,0x80): # c=chr(base+i) # itrans=ItransTransliterator.to_itrans(c,'hi') # l.append((hex(i),c,itrans)) # print(l) # # pd.DataFrame(l,columns=['offset_hex','devnag_char','itrans']).to_csv('offset_itrans_map.csv',index=False,encoding='utf-8') itrans_map_fname=os.path.join(common.get_resources_path(),'transliterate','offset_itrans_map.csv') #itrans_map_fname=r'D:\src\python_sandbox\src\offset_itrans_map.csv' itrans_df=pd.read_csv(itrans_map_fname,encoding='utf-8') global OFFSET_TO_ITRANS, ITRANS_TO_OFFSET, DUPLICATE_ITRANS_REPRESENTATIONS for r in itrans_df.iterrows(): itrans=r[1]['itrans'] o=int(r[1]['offset_hex'],base=16) OFFSET_TO_ITRANS[o]=itrans if langinfo.is_consonant_offset(o): ### for consonants, strip the schwa - add halant offset ITRANS_TO_OFFSET[itrans[:-1]].extend([o,0x4d]) else: ### the append assumes that the maatra always comes after independent vowel in the df ITRANS_TO_OFFSET[itrans].append(o) DUPLICATE_ITRANS_REPRESENTATIONS = { 'A': 'aa', 'I': 'ii', 'U': 'uu', 'RRi': 'R^i', 'RRI': 'R^I', 'LLi': 'L^i', 'LLI': 'L^I', 'L': 'ld', 'w': 'v', 'x': 'kSh', 'gj': 'j~n', 'dny': 'j~n', '.n': '.m', 'M': '.m', 'OM': 'AUM' } class UnicodeIndicTransliterator(object): """ Base class for rule-based transliteration among Indian languages. Script pair specific transliterators should derive from this class and override the transliterate() method. They can call the super class 'transliterate()' method to avail of the common transliteration """ @staticmethod def _correct_tamil_mapping(offset): # handle missing unaspirated and voiced plosives in Tamil script # replace by unvoiced, unaspirated plosives # for first 4 consonant rows of varnamala # exception: ja has a mapping in Tamil if offset>=0x15 and offset<=0x28 and \ offset!=0x1c and \ not ( (offset-0x15)%5==0 or (offset-0x15)%5==4 ) : subst_char=(offset-0x15)//5 offset=0x15+5*subst_char # for 5th consonant row of varnamala if offset in [ 0x2b, 0x2c, 0x2d]: offset=0x2a # 'sh' becomes 'Sh' if offset==0x36: offset=0x37 return offset @staticmethod def transliterate(text,lang1_code,lang2_code): """ convert the source language script (lang1) to target language script (lang2) text: text to transliterate lang1_code: language 1 code lang1_code: language 2 code """ if lang1_code in langinfo.SCRIPT_RANGES and lang2_code in langinfo.SCRIPT_RANGES: # if Sinhala is source, do a mapping to Devanagari first if lang1_code=='si': text=sdt.sinhala_to_devanagari(text) lang1_code='hi' # if Sinhala is target, make Devanagiri the intermediate target org_lang2_code='' if lang2_code=='si': lang2_code='hi' org_lang2_code='si' trans_lit_text=[] for c in text: newc=c offset=ord(c)-langinfo.SCRIPT_RANGES[lang1_code][0] if offset >=langinfo.COORDINATED_RANGE_START_INCLUSIVE and offset <= langinfo.COORDINATED_RANGE_END_INCLUSIVE and c!='\u0964' and c!='\u0965': if lang2_code=='ta': # tamil exceptions offset=UnicodeIndicTransliterator._correct_tamil_mapping(offset) newc=chr(langinfo.SCRIPT_RANGES[lang2_code][0]+offset) trans_lit_text.append(newc) # if Sinhala is source, do a mapping to Devanagari first if org_lang2_code=='si': return sdt.devanagari_to_sinhala(''.join(trans_lit_text)) return ''.join(trans_lit_text) else: return text class ItransTransliterator(object): """ Transliterator between Indian scripts and ITRANS """ @staticmethod def to_itrans(text,lang_code): if lang_code in langinfo.SCRIPT_RANGES: if lang_code=='ml': # Change from chillus characters to corresponding consonant+halant text=text.replace('\u0d7a','\u0d23\u0d4d') text=text.replace('\u0d7b','\u0d28\u0d4d') text=text.replace('\u0d7c','\u0d30\u0d4d') text=text.replace('\u0d7d','\u0d32\u0d4d') text=text.replace('\u0d7e','\u0d33\u0d4d') text=text.replace('\u0d7f','\u0d15\u0d4d') offsets = [ isc.get_offset(c,lang_code) for c in text ] ### naive lookup # itrans_l = [ OFFSET_TO_ITRANS.get(o, '-' ) for o in offsets ] itrans_l=[] for o in offsets: itrans=OFFSET_TO_ITRANS.get(o, chr(langinfo.SCRIPT_RANGES[lang_code][0]+o) ) if langinfo.is_halanta_offset(o): itrans='' if len(itrans_l)>0: itrans_l.pop() elif langinfo.is_vowel_sign_offset(o) and len(itrans_l)>0: itrans_l.pop() itrans_l.extend(itrans) return ''.join(itrans_l) else: return text @staticmethod def from_itrans(text,lang): """ TODO: Document this method properly TODO: A little hack is used to handle schwa: needs to be documented TODO: check for robustness """ MAXCODE=4 ### TODO: Needs to be fixed ## handle_duplicate_itrans_representations for k, v in DUPLICATE_ITRANS_REPRESENTATIONS.items(): if k in text: text=text.replace(k,v) start=0 match=None solution=[] i=start+1 while i<=len(text): itrans=text[start:i] # print('===') # print('i: {}'.format(i)) # if i<len(text): # print('c: {}'.format(text[i-1])) # print('start: {}'.format(start)) # print('itrans: {}'.format(itrans)) if itrans in ITRANS_TO_OFFSET: offs=ITRANS_TO_OFFSET[itrans] ## single element list - no problem ## except when it is 'a' ## 2 element list of 2 kinds: ### 1. alternate char for independent/dependent vowel ### 2. consonant + halant if len(offs)==2 and \ langinfo.is_vowel_offset(offs[0]): ### 1. alternate char for independent/dependent vowel ## if previous is a consonant, then use the dependent vowel if len(solution)>0 and langinfo.is_halanta(solution[-1],lang): offs=[offs[1]] ## dependent vowel else: offs=[offs[0]] ## independent vowel c=''.join([ langinfo.offset_to_char(x,lang) for x in offs ]) match=(i,c) elif len(itrans)==1: ## unknown character match=(i,itrans) elif i<len(text) and (i-start)<MAXCODE+1: ## continue matching till MAXCODE length substring i=i+1 continue else: solution.extend(match[1]) # start=i-1 start=match[0] i=start match=None # print('match done') # print('match: {}'.format(match)) i=i+1 ### flush matches if match is not None: solution.extend(match[1]) #### post-processing ## delete unecessary halants # print(''.join(solution)) temp_out=list(''.join(solution)) rem_indices=[] for i in range(len(temp_out)-1): if langinfo.is_halanta(temp_out[i],lang) and \ (langinfo.is_vowel_sign(temp_out[i+1],lang) \ or langinfo.is_nukta(temp_out[i+1],lang) \ or temp_out[i+1]==langinfo.offset_to_char(0x7f,lang)): rem_indices.append(i) # if temp_out[i]==langinfo.offset_to_char(0x7f,lang): # rem_indices.append(i) for i in reversed(rem_indices): temp_out.pop(i) out=''.join(temp_out) ## delete schwa placeholder out=out.replace(langinfo.offset_to_char(0x7f,lang),'') return out if __name__ == '__main__': if len(sys.argv)<4: print("Usage: python unicode_transliterate.py <command> <infile> <outfile> <src_language> <tgt_language>") sys.exit(1) if sys.argv[1]=='transliterate': src_language=sys.argv[4] tgt_language=sys.argv[5] with open(sys.argv[2],'r', encoding='utf-8') as ifile: with open(sys.argv[3],'w', encoding='utf-8') as ofile: for line in ifile.readlines(): transliterated_line=UnicodeIndicTransliterator.transliterate(line,src_language,tgt_language) ofile.write(transliterated_line) elif sys.argv[1]=='romanize': language=sys.argv[4] ### temp fix to replace anusvara with corresponding nasal #r1_nasal=re.compile(ur'\u0902([\u0915-\u0918])') #r2_nasal=re.compile(ur'\u0902([\u091a-\u091d])') #r3_nasal=re.compile(ur'\u0902([\u091f-\u0922])') #r4_nasal=re.compile(ur'\u0902([\u0924-\u0927])') #r5_nasal=re.compile(ur'\u0902([\u092a-\u092d])') with open(sys.argv[2],'r', encoding='utf-8') as ifile: with open(sys.argv[3],'w', encoding='utf-8') as ofile: for line in ifile.readlines(): ### temp fix to replace anusvara with corresponding nasal #line=r1_nasal.sub(u'\u0919\u094D\\1',line) #line=r2_nasal.sub(u'\u091e\u094D\\1',line) #line=r3_nasal.sub(u'\u0923\u094D\\1',line) #line=r4_nasal.sub(u'\u0928\u094D\\1',line) #line=r5_nasal.sub(u'\u092e\u094D\\1',line) transliterated_line=ItransTransliterator.to_itrans(line,language) ## temp fix to replace 'ph' to 'F' to match with Urdu transliteration scheme transliterated_line=transliterated_line.replace('ph','f') ofile.write(transliterated_line) elif sys.argv[1]=='indicize': language=sys.argv[4] with open(sys.argv[2],'r', encoding='utf-8') as ifile: with open(sys.argv[3],'w', encoding='utf-8') as ofile: for line in ifile.readlines(): transliterated_line=ItransTransliterator.from_itrans(line,language) ofile.write(transliterated_line)
tensorflow/python/tools/module_util.py
KosingZhu/tensorflow
190,993
12781575
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for modules.""" import os import six if six.PY2: import imp # pylint: disable=g-import-not-at-top else: import importlib # pylint: disable=g-import-not-at-top def get_parent_dir(module): return os.path.abspath(os.path.join(os.path.dirname(module.__file__), "..")) def get_parent_dir_for_name(module_name): """Get parent directory for module with the given name. Args: module_name: Module name for e.g. tensorflow_estimator.python.estimator.api._v1.estimator. Returns: Path to the parent directory if module is found and None otherwise. Given example above, it should return: /pathtoestimator/tensorflow_estimator/python/estimator/api/_v1. """ name_split = module_name.split(".") if not name_split: return None if six.PY2: try: spec = imp.find_module(name_split[0]) except ImportError: return None if not spec: return None base_path = spec[1] else: try: spec = importlib.util.find_spec(name_split[0]) except ValueError: return None if not spec or not spec.origin: return None base_path = os.path.dirname(spec.origin) return os.path.join(base_path, *name_split[1:-1])
tests/qos/conftest.py
dmytroxshevchuk/sonic-mgmt
132
12781592
<gh_stars>100-1000 from .args.qos_sai_args import add_qos_sai_args from .args.buffer_args import add_dynamic_buffer_calculation_args # QoS pytest arguments def pytest_addoption(parser): ''' Adds option to QoS pytest Args: parser: pytest parser object Returns: None ''' add_qos_sai_args(parser) add_dynamic_buffer_calculation_args(parser)
scripts/automation/trex_control_plane/stf/trex_stf_lib/trex_daemon_server.py
timgates42/trex-core
956
12781603
#!/usr/bin/python import outer_packages import daemon from trex_server import do_main_program, trex_parser import CCustomLogger import logging import time import sys import os, errno import grp import signal from daemon import runner from extended_daemon_runner import ExtendedDaemonRunner import lockfile import errno class TRexServerApp(object): def __init__(self): TRexServerApp.create_working_dirs() self.stdin_path = '/dev/null' self.stdout_path = '/dev/tty' # All standard prints will come up from this source. self.stderr_path = "/var/log/trex/trex_daemon_server.log" # All log messages will come up from this source self.pidfile_path = '/var/run/trex/trex_daemon_server.pid' self.pidfile_timeout = 5 # timeout in seconds def run(self): do_main_program() @staticmethod def create_working_dirs(): if not os.path.exists('/var/log/trex'): os.mkdir('/var/log/trex') if not os.path.exists('/var/run/trex'): os.mkdir('/var/run/trex') def main (): trex_app = TRexServerApp() # setup the logger default_log_path = '/var/log/trex/trex_daemon_server.log' try: CCustomLogger.setup_daemon_logger('TRexServer', default_log_path) logger = logging.getLogger('TRexServer') logger.setLevel(logging.INFO) formatter = logging.Formatter("%(asctime)s %(name)-10s %(module)-20s %(levelname)-8s %(message)s") handler = logging.FileHandler("/var/log/trex/trex_daemon_server.log") logger.addHandler(handler) except EnvironmentError, e: if e.errno == errno.EACCES: # catching permission denied error print "Launching user must have sudo privileges in order to run TRex daemon.\nTerminating daemon process." exit(-1) daemon_runner = ExtendedDaemonRunner(trex_app, trex_parser) #This ensures that the logger file handle does not get closed during daemonization daemon_runner.daemon_context.files_preserve=[handler.stream] try: if not set(['start', 'stop']).isdisjoint(set(sys.argv)): print "Logs are saved at: {log_path}".format( log_path = default_log_path ) daemon_runner.do_action() except lockfile.LockTimeout as inst: logger.error(inst) print inst print """ Please try again once the timeout has been reached. If this error continues, consider killing the process manually and restart the daemon.""" if __name__ == "__main__": main()
streaming-mqtt/python-tests/tests.py
JacopoCastello/bahir
337
12781610
<gh_stars>100-1000 # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import time import random if sys.version_info[:2] <= (2, 6): try: import unittest2 as unittest except ImportError: sys.stderr.write('Please install unittest2 to test with Python 2.6 or earlier') sys.exit(1) else: import unittest from pyspark.context import SparkConf, SparkContext, RDD from pyspark.streaming.context import StreamingContext from pyspark.streaming.tests import PySparkStreamingTestCase from mqtt import MQTTUtils class MQTTStreamTests(PySparkStreamingTestCase): timeout = 20 # seconds duration = 1 def setUp(self): super(MQTTStreamTests, self).setUp() MQTTTestUtilsClz = self.ssc._jvm.java.lang.Thread.currentThread().getContextClassLoader() \ .loadClass("org.apache.spark.streaming.mqtt.MQTTTestUtils") self._MQTTTestUtils = MQTTTestUtilsClz.newInstance() self._MQTTTestUtils.setup() def tearDown(self): if self._MQTTTestUtils is not None: self._MQTTTestUtils.teardown() self._MQTTTestUtils = None super(MQTTStreamTests, self).tearDown() def _randomTopic(self): return "topic-%d" % random.randint(0, 10000) def _startContext(self, topic): # Start the StreamingContext and also collect the result stream = MQTTUtils.createStream(self.ssc, "tcp://" + self._MQTTTestUtils.brokerUri(), topic) result = [] def getOutput(_, rdd): for data in rdd.collect(): result.append(data) stream.foreachRDD(getOutput) self.ssc.start() return result def test_mqtt_stream(self): """Test the Python MQTT stream API.""" sendData = "MQTT demo for spark streaming" topic = self._randomTopic() result = self._startContext(topic) def retry(): self._MQTTTestUtils.publishData(topic, sendData) # Because "publishData" sends duplicate messages, here we should use > 0 self.assertTrue(len(result) > 0) self.assertEqual(sendData, result[0]) # Retry it because we don't know when the receiver will start. self._retry_or_timeout(retry) def _start_context_with_paired_stream(self, topics): stream = MQTTUtils.createPairedStream(self.ssc, "tcp://" + self._MQTTTestUtils.brokerUri(), topics) # Keep a set because records can potentially be repeated. result = set() def getOutput(_, rdd): for data in rdd.collect(): result.add(data) stream.foreachRDD(getOutput) self.ssc.start() return result def test_mqtt_pair_stream(self): """Test the Python MQTT stream API with multiple topics.""" data_records = ["random string 1", "random string 2", "random string 3"] topics = [self._randomTopic(), self._randomTopic(), self._randomTopic()] topics_and_records = zip(topics, data_records) result = self._start_context_with_paired_stream(topics) def retry(): for topic, data_record in topics_and_records: self._MQTTTestUtils.publishData(topic, data_record) # Sort the received records as they might be out of order. self.assertEqual(topics_and_records, sorted(result, key=lambda x: x[1])) # Retry it because we don't know when the receiver will start. self._retry_or_timeout(retry) def _retry_or_timeout(self, test_func): start_time = time.time() while True: try: test_func() break except: if time.time() - start_time > self.timeout: raise time.sleep(0.01) if __name__ == "__main__": unittest.main()
desktop/core/ext-py/cx_Oracle-6.4.1/samples/tutorial/query_one.py
yetsun/hue
5,079
12781613
#------------------------------------------------------------------------------ # query_one.py (Section 3.2) #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # Copyright 2017, 2018, Oracle and/or its affiliates. All rights reserved. #------------------------------------------------------------------------------ from __future__ import print_function import cx_Oracle import db_config con = cx_Oracle.connect(db_config.user, db_config.pw, db_config.dsn) cur = con.cursor() cur.execute("select * from dept order by deptno") row = cur.fetchone() print(row) row = cur.fetchone() print(row)
running_modes/reinforcement_learning/core_reinforcement_learning.py
lilleswing/Reinvent-1
183
12781637
<gh_stars>100-1000 import time import numpy as np import torch from reinvent_chemistry.utils import get_indices_of_unique_smiles from reinvent_models.lib_invent.enums.generative_model_regime import GenerativeModelRegimeEnum from reinvent_models.model_factory.configurations.model_configuration import ModelConfiguration from reinvent_models.model_factory.enums.model_type_enum import ModelTypeEnum from reinvent_models.model_factory.generative_model import GenerativeModel from reinvent_models.model_factory.generative_model_base import GenerativeModelBase from reinvent_scoring import FinalSummary from reinvent_scoring.scoring.diversity_filters.reinvent_core.base_diversity_filter import BaseDiversityFilter from reinvent_scoring.scoring.function.base_scoring_function import BaseScoringFunction from running_modes.configurations import ReinforcementLearningConfiguration from running_modes.constructors.base_running_mode import BaseRunningMode from running_modes.reinforcement_learning.inception import Inception from running_modes.reinforcement_learning.logging.base_reinforcement_logger import BaseReinforcementLogger from running_modes.reinforcement_learning.margin_guard import MarginGuard from running_modes.utils.general import to_tensor class CoreReinforcementRunner(BaseRunningMode): def __init__(self, critic: GenerativeModelBase, actor: GenerativeModelBase, configuration: ReinforcementLearningConfiguration, scoring_function: BaseScoringFunction, diversity_filter: BaseDiversityFilter, inception: Inception, logger: BaseReinforcementLogger): self._prior = critic self._agent = actor self._scoring_function = scoring_function self._diversity_filter = diversity_filter self.config = configuration self._logger = logger self._inception = inception self._margin_guard = MarginGuard(self) self._optimizer = torch.optim.Adam(self._agent.get_network_parameters(), lr=self.config.learning_rate) def run(self): self._logger.log_message("starting an RL run") start_time = time.time() self._disable_prior_gradients() for step in range(self.config.n_steps): seqs, smiles, agent_likelihood = self._sample_unique_sequences(self._agent, self.config.batch_size) # switch signs agent_likelihood = -agent_likelihood prior_likelihood = -self._prior.likelihood(seqs) score_summary: FinalSummary = self._scoring_function.get_final_score_for_step(smiles, step) score = self._diversity_filter.update_score(score_summary, step) augmented_likelihood = prior_likelihood + self.config.sigma * to_tensor(score) loss = torch.pow((augmented_likelihood - agent_likelihood), 2) loss, agent_likelihood = self._inception_filter(self._agent, loss, agent_likelihood, prior_likelihood, self.config.sigma, smiles, score) loss = loss.mean() self._optimizer.zero_grad() loss.backward() self._optimizer.step() self._stats_and_chekpoint(score, start_time, step, smiles, score_summary, agent_likelihood, prior_likelihood, augmented_likelihood) self._logger.save_final_state(self._agent, self._diversity_filter) self._logger.log_out_input_configuration() self._logger.log_out_inception(self._inception) def _disable_prior_gradients(self): # There might be a more elegant way of disabling gradients for param in self._prior.get_network_parameters(): param.requires_grad = False def _stats_and_chekpoint(self, score, start_time, step, smiles, score_summary: FinalSummary, agent_likelihood, prior_likelihood, augmented_likelihood): self._margin_guard.adjust_margin(step) mean_score = np.mean(score) self._margin_guard.store_run_stats(agent_likelihood, prior_likelihood, augmented_likelihood, score) self._logger.timestep_report(start_time, self.config.n_steps, step, smiles, mean_score, score_summary, score, agent_likelihood, prior_likelihood, augmented_likelihood, self._diversity_filter) self._logger.save_checkpoint(step, self._diversity_filter, self._agent) def _sample_unique_sequences(self, agent, batch_size): seqs, smiles, agent_likelihood = agent.sample(batch_size) unique_idxs = get_indices_of_unique_smiles(smiles) seqs_unique = seqs[unique_idxs] smiles_np = np.array(smiles) smiles_unique = smiles_np[unique_idxs] agent_likelihood_unique = agent_likelihood[unique_idxs] return seqs_unique, smiles_unique, agent_likelihood_unique def _inception_filter(self, agent, loss, agent_likelihood, prior_likelihood, sigma, smiles, score): exp_smiles, exp_scores, exp_prior_likelihood = self._inception.sample() if len(exp_smiles) > 0: exp_agent_likelihood = -agent.likelihood_smiles(exp_smiles) exp_augmented_likelihood = exp_prior_likelihood + sigma * exp_scores exp_loss = torch.pow((to_tensor(exp_augmented_likelihood) - exp_agent_likelihood), 2) loss = torch.cat((loss, exp_loss), 0) agent_likelihood = torch.cat((agent_likelihood, exp_agent_likelihood), 0) self._inception.add(smiles, score, prior_likelihood) return loss, agent_likelihood def reset(self, reset_countdown=0): model_type_enum = ModelTypeEnum() model_regime = GenerativeModelRegimeEnum() actor_config = ModelConfiguration(model_type_enum.DEFAULT, model_regime.TRAINING, self.config.agent) self._agent = GenerativeModel(actor_config) self._optimizer = torch.optim.Adam(self._agent.get_network_parameters(), lr=self.config.learning_rate) self._logger.log_message("Resetting Agent") self._logger.log_message(f"Adjusting sigma to: {self.config.sigma}") return reset_countdown
pixelssl/task_template/__init__.py
charlesCXK/PixelSSL
223
12781641
from . import func as func_template from . import data as data_template from . import model as model_template from . import criterion as criterion_template from . import proxy as proxy_template __all__ = [ 'func_template', 'data_template', 'model_template', 'criterion_template', 'proxy_template', ]
Python3/1302.py
rakhi2001/ecom7
854
12781662
<gh_stars>100-1000 __________________________________________________________________________________________________ sample 72 ms submission # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def deepestLeavesSum(self, root: TreeNode) -> int: pre = [] queue = [root] while queue: pre, queue = queue, [leaf for q in queue for leaf in [q.left, q.right] if leaf] return sum([p.val for p in pre]) __________________________________________________________________________________________________ sample 76 ms submission # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def deepestLeavesSum(self, root: TreeNode) -> int: layer = [root] res = root.val while layer: next_layer = [] next_res = 0 for node in layer: next_res += node.val if node.left: next_layer.append(node.left) if node.right: next_layer.append(node.right) layer = next_layer res = next_res return res __________________________________________________________________________________________________
HOG-Features/scikithog.py
saneravi/ML_Stuff
209
12781674
#!/usr/bin/env python """Calculate HOG features for an image""" import os import matplotlib.pyplot as plt from hog_features import image2pixelarray from skimage import exposure from skimage.feature import hog def main(filename): """ Orchestrate the HOG feature calculation Parameters ---------- filename : str """ image = image2pixelarray(filename) fd, hog_image = hog( image, orientations=8, pixels_per_cell=(16, 16), cells_per_block=(1, 1), visualise=True, ) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True) ax1.axis("off") ax1.imshow(image, cmap=plt.cm.gray) ax1.set_title("Input image") ax1.set_adjustable("box-forced") # Rescale histogram for better display hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02)) ax2.axis("off") ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray) ax2.set_title("Histogram of Oriented Gradients") ax1.set_adjustable("box-forced") plt.show() def is_valid_file(parser, arg): """ Check if arg is a valid file that already exists on the file system. Parameters ---------- parser : argparse object arg : str Returns ------- arg """ arg = os.path.abspath(arg) if not os.path.exists(arg): parser.error("The file %s does not exist!" % arg) else: return arg def get_parser(): """Get parser object for scikithog""" from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser parser = ArgumentParser( description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter ) parser.add_argument( "-f", "--file", dest="filename", type=lambda x: is_valid_file(parser, x), help="write report to FILE", required=True, metavar="FILE", ) return parser if __name__ == "__main__": args = get_parser().parse_args() main(args.filename)
cactus/listener/__init__.py
danielchasehooper/Cactus
1,048
12781766
<filename>cactus/listener/__init__.py import logging from cactus.listener.polling import PollingListener logger = logging.getLogger(__name__) try: from cactus.listener.mac import FSEventsListener as Listener except (ImportError, OSError): logger.debug("Failed to load FSEventsListener, falling back to PollingListener", exc_info=True) Listener = PollingListener
python/RawNet2/dataloader.py
ishine/RawNet
199
12781810
<reponame>ishine/RawNet<gh_stars>100-1000 import numpy as np import soundfile as sf from torch.utils import data class Dataset_VoxCeleb2(data.Dataset): def __init__(self, list_IDs, base_dir, nb_samp = 0, labels = {}, cut = True, return_label = True, norm_scale = True): ''' self.list_IDs : list of strings (each string: utt key) self.labels : dictionary (key: utt key, value: label integer) self.nb_samp : integer, the number of timesteps for each mini-batch cut : (boolean) adjust utterance duration for mini-batch construction return_label : (boolean) norm_scale : (boolean) normalize scale alike SincNet github repo ''' self.list_IDs = list_IDs self.nb_samp = nb_samp self.base_dir = base_dir self.labels = labels self.cut = cut self.return_label = return_label self.norm_scale = norm_scale if self.cut and self.nb_samp == 0: raise ValueError('when adjusting utterance length, "nb_samp" should be input') def __len__(self): return len(self.list_IDs) def __getitem__(self, index): ID = self.list_IDs[index] try: X, _ = sf.read(self.base_dir+ID) X = X.astype(np.float64) except: raise ValueError('%s'%ID) if self.norm_scale: X = self._normalize_scale(X).astype(np.float32) X = X.reshape(1,-1) #because of LayerNorm for the input if self.cut: nb_time = X.shape[1] if nb_time > self.nb_samp: start_idx = np.random.randint(low = 0, high = nb_time - self.nb_samp) X = X[:, start_idx : start_idx + self.nb_samp][0] elif nb_time < self.nb_samp: nb_dup = int(self.nb_samp / nb_time) + 1 X = np.tile(X, (1, nb_dup))[:, :self.nb_samp][0] else: X = X[0] if not self.return_label: return X y = self.labels[ID.split('/')[0]] return X, y def _normalize_scale(self, x): ''' Normalize sample scale alike SincNet. ''' return x/np.max(np.abs(x)) class TA_Dataset_VoxCeleb2(data.Dataset): def __init__(self, list_IDs, base_dir, nb_samp = 0, window_size = 0, labels = {}, cut = True, return_label = True, norm_scale = True): ''' self.list_IDs : list of strings (each string: utt key) self.labels : dictionary (key: utt key, value: label integer) self.nb_samp : integer, the number of timesteps for each mini-batch cut : (boolean) adjust utterance duration for mini-batch construction return_label : (boolean) norm_scale : (boolean) normalize scale alike SincNet github repo ''' self.list_IDs = list_IDs self.window_size = window_size self.nb_samp = nb_samp self.base_dir = base_dir self.labels = labels self.cut = cut self.return_label = return_label self.norm_scale = norm_scale if self.cut and self.nb_samp == 0: raise ValueError('when adjusting utterance length, "nb_samp" should be input') def __len__(self): return len(self.list_IDs) def __getitem__(self, index): ID = self.list_IDs[index] try: X, _ = sf.read(self.base_dir+ID) X = X.astype(np.float64) except: raise ValueError('%s'%ID) if self.norm_scale: X = self._normalize_scale(X).astype(np.float32) X = X.reshape(1,-1) list_X = [] nb_time = X.shape[1] if nb_time < self.nb_samp: nb_dup = int(self.nb_samp / nb_time) + 1 list_X.append(np.tile(X, (1, nb_dup))[:, :self.nb_samp][0]) elif nb_time > self.nb_samp: step = self.nb_samp - self.window_size iteration = int( (nb_time - self.window_size) / step ) + 1 for i in range(iteration): if i == 0: list_X.append(X[:, :self.nb_samp][0]) elif i < iteration - 1: list_X.append(X[:, i*step : i*step + self.nb_samp][0]) else: list_X.append(X[:, -self.nb_samp:][0]) else : list_X.append(X[0]) if not self.return_label: return list_X y = self.labels[ID.split('/')[0]] return list_X, y def _normalize_scale(self, x): ''' Normalize sample scale alike SincNet. ''' return x/np.max(np.abs(x))
website/discovery/views.py
gaybro8777/osf.io
628
12781812
<filename>website/discovery/views.py from framework.flask import redirect def redirect_activity_to_search(**kwargs): return redirect('/search/')
lib/models/mixformer/__init__.py
SangbumChoi/MixFormer
103
12781829
from .mixformer import build_mixformer from .mixformer_online import build_mixformer_online_score
interpretation/deepseismic_interpretation/dutchf3/tests/test_dataloaders.py
elmajdma/seismic-deeplearning
270
12781849
<filename>interpretation/deepseismic_interpretation/dutchf3/tests/test_dataloaders.py<gh_stars>100-1000 # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """ Tests for TrainLoader and TestLoader classes when overriding the file names of the seismic and label data. """ import tempfile import numpy as np from deepseismic_interpretation.dutchf3.data import ( get_test_loader, TrainPatchLoaderWithDepth, TrainSectionLoaderWithDepth, ) import pytest import yacs.config import os # npy files dimensions IL = 5 XL = 10 D = 8 N_CLASSES = 2 CONFIG_FILE = "./experiments/interpretation/dutchf3_patch/configs/unet.yaml" with open(CONFIG_FILE, "rt") as f_read: config = yacs.config.load_cfg(f_read) def generate_npy_files(path, data): np.save(path, data) def assert_dimensions(test_section_loader): assert test_section_loader.labels.shape[0] == IL assert test_section_loader.labels.shape[1] == XL assert test_section_loader.labels.shape[2] == D # Because add_section_depth_channels method add # 2 extra channels to a 1 channel section assert test_section_loader.seismic.shape[0] == IL assert test_section_loader.seismic.shape[2] == XL assert test_section_loader.seismic.shape[3] == D def test_TestSectionLoader_should_load_data_from_test1_set(): with open(CONFIG_FILE, "rt") as f_read: config = yacs.config.load_cfg(f_read) with tempfile.TemporaryDirectory() as data_dir: os.makedirs(os.path.join(data_dir, "test_once")) os.makedirs(os.path.join(data_dir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "test_once", "test1_seismic.npy"), seimic) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "test_once", "test1_labels.npy"), labels) txt_path = os.path.join(data_dir, "splits", "section_test1.txt") open(txt_path, "a").close() TestSectionLoader = get_test_loader(config) config.merge_from_list(["DATASET.ROOT", data_dir]) test_set = TestSectionLoader(config, split="test1") assert_dimensions(test_set) def test_TestSectionLoader_should_load_data_from_test2_set(): with tempfile.TemporaryDirectory() as data_dir: os.makedirs(os.path.join(data_dir, "test_once")) os.makedirs(os.path.join(data_dir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "test_once", "test2_seismic.npy"), seimic) A = np.load(os.path.join(data_dir, "test_once", "test2_seismic.npy")) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "test_once", "test2_labels.npy"), labels) txt_path = os.path.join(data_dir, "splits", "section_test2.txt") open(txt_path, "a").close() TestSectionLoader = get_test_loader(config) config.merge_from_list(["DATASET.ROOT", data_dir]) test_set = TestSectionLoader(config, split="test2") assert_dimensions(test_set) def test_TestSectionLoader_should_load_data_from_path_override_data(): with tempfile.TemporaryDirectory() as data_dir: os.makedirs(os.path.join(data_dir, "volume_name")) os.makedirs(os.path.join(data_dir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "volume_name", "seismic.npy"), seimic) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(data_dir, "volume_name", "labels.npy"), labels) txt_path = os.path.join(data_dir, "splits", "section_volume_name.txt") open(txt_path, "a").close() TestSectionLoader = get_test_loader(config) config.merge_from_list(["DATASET.ROOT", data_dir]) test_set = TestSectionLoader( config, split="volume_name", is_transform=True, augmentations=None, seismic_path=os.path.join(data_dir, "volume_name", "seismic.npy"), label_path=os.path.join(data_dir, "volume_name", "labels.npy"), ) assert_dimensions(test_set) def test_TrainPatchLoaderWithDepth_should_fail_on_missing_seismic_file(tmpdir): """ Check for exception when training param is empty """ # Setup os.makedirs(os.path.join(tmpdir, "volume_name")) os.makedirs(os.path.join(tmpdir, "splits")) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(tmpdir, "volume_name", "labels.npy"), labels) txt_path = os.path.join(tmpdir, "splits", "patch_volume_name.txt") open(txt_path, "a").close() config.merge_from_list(["DATASET.ROOT", str(tmpdir)]) # Test with pytest.raises(Exception) as excinfo: _ = TrainPatchLoaderWithDepth( config, split="volume_name", is_transform=True, augmentations=None, seismic_path=os.path.join(tmpdir, "volume_name", "seismic.npy"), label_path=os.path.join(tmpdir, "volume_name", "labels.npy"), ) assert "does not exist" in str(excinfo.value) def test_TrainPatchLoaderWithDepth_should_fail_on_missing_label_file(tmpdir): """ Check for exception when training param is empty """ # Setup os.makedirs(os.path.join(tmpdir, "volume_name")) os.makedirs(os.path.join(tmpdir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(tmpdir, "volume_name", "seismic.npy"), seimic) txt_path = os.path.join(tmpdir, "splits", "patch_volume_name.txt") open(txt_path, "a").close() config.merge_from_list(["DATASET.ROOT", str(tmpdir)]) # Test with pytest.raises(Exception) as excinfo: _ = TrainPatchLoaderWithDepth( config, split="volume_name", is_transform=True, augmentations=None, seismic_path=os.path.join(tmpdir, "volume_name", "seismic.npy"), label_path=os.path.join(tmpdir, "volume_name", "labels.npy"), ) assert "does not exist" in str(excinfo.value) def test_TrainPatchLoaderWithDepth_should_load_with_one_train_and_label_file(tmpdir): """ Check for successful class instantiation w/ single npy file for train & label """ # Setup os.makedirs(os.path.join(tmpdir, "volume_name")) os.makedirs(os.path.join(tmpdir, "splits")) seimic = np.zeros([IL, XL, D]) generate_npy_files(os.path.join(tmpdir, "volume_name", "seismic.npy"), seimic) labels = np.ones([IL, XL, D]) generate_npy_files(os.path.join(tmpdir, "volume_name", "labels.npy"), labels) txt_dir = os.path.join(tmpdir, "splits") txt_path = os.path.join(txt_dir, "patch_volume_name.txt") open(txt_path, "a").close() config.merge_from_list(["DATASET.ROOT", str(tmpdir)]) # Test train_set = TrainPatchLoaderWithDepth( config, split="volume_name", is_transform=True, augmentations=None, seismic_path=os.path.join(tmpdir, "volume_name", "seismic.npy"), label_path=os.path.join(tmpdir, "volume_name", "labels.npy"), ) assert train_set.labels.shape == (IL, XL, D + 2 * config.TRAIN.PATCH_SIZE) assert train_set.seismic.shape == (IL, XL, D + 2 * config.TRAIN.PATCH_SIZE)
ISMLnextGen/dynamicCoro.py
Ravenclaw-OIer/ISML_auto_voter
128
12781851
import asyncio from threading import Thread async def production_task(): i = 0 while 1: # 将consumption这个协程每秒注册一个到运行在线程中的循环,thread_loop每秒会获得一个一直打印i的无限循环任务 asyncio.run_coroutine_threadsafe(consumption(i), thread_loop) # 注意:run_coroutine_threadsafe 这个方法只能用在运行在线程中的循环事件使用 await asyncio.sleep(2) # 必须加await i += 1 async def consumption(i): while True: print("我是第{}任务".format(i)) await asyncio.sleep(1) def start_loop(loop): # 运行事件循环, loop以参数的形式传递进来运行 asyncio.set_event_loop(loop) loop.run_forever() #消费者循环 thread_loop = asyncio.new_event_loop() # 获取一个事件循环 run_loop_thread = Thread(target=start_loop, args=(thread_loop,)) # 将次事件循环运行在一个线程中,防止阻塞当前主线程 run_loop_thread.start() # 运行线程,同时协程事件循环也会运行 #生产者循环 advocate_loop = asyncio.get_event_loop() # 将生产任务的协程注册到这个循环中 advocate_loop.run_until_complete(production_task()) # 运行次循环
tf_quant_finance/math/qmc/__init__.py
slowy07/tf-quant-finance
3,138
12781861
# Lint as: python3 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RQMC support.""" from tf_quant_finance.math.qmc import utils from tf_quant_finance.math.qmc.digital_net import digital_net_sample from tf_quant_finance.math.qmc.digital_net import random_digital_shift from tf_quant_finance.math.qmc.digital_net import random_scrambling_matrices from tf_quant_finance.math.qmc.digital_net import scramble_generating_matrices from tf_quant_finance.math.qmc.lattice_rule import lattice_rule_sample from tf_quant_finance.math.qmc.lattice_rule import random_scrambling_vectors from tf_quant_finance.math.qmc.sobol import sobol_generating_matrices from tf_quant_finance.math.qmc.sobol import sobol_sample from tensorflow.python.util.all_util import remove_undocumented # pylint: disable=g-direct-tensorflow-import _allowed_symbols = [ 'digital_net_sample', 'lattice_rule_sample', 'random_digital_shift', 'random_scrambling_matrices', 'random_scrambling_vectors', 'scramble_generating_matrices', 'sobol_generating_matrices', 'sobol_sample', 'utils', ] remove_undocumented(__name__, _allowed_symbols)
bo/pp/pp_gp_my_distmat.py
ZachZhu7/banana-git
167
12781865
<gh_stars>100-1000 """ Classes for GP models without any PP backend, using a given distance matrix. """ from argparse import Namespace import time import copy import numpy as np from scipy.spatial.distance import cdist from bo.pp.pp_core import DiscPP from bo.pp.gp.gp_utils import kern_exp_quad, kern_matern32, \ get_cholesky_decomp, solve_upper_triangular, solve_lower_triangular, \ sample_mvn, squared_euc_distmat, kern_distmat from bo.util.print_utils import suppress_stdout_stderr class MyGpDistmatPP(DiscPP): """ GPs using a kernel specified by a given distance matrix, without any PP backend """ def __init__(self, data=None, modelp=None, printFlag=True): """ Constructor """ self.set_model_params(modelp) self.set_data(data) self.set_model() super(MyGpDistmatPP,self).__init__() if printFlag: self.print_str() def set_model_params(self, modelp): """ Set self.modelp """ if modelp is None: pass #TODO self.modelp = modelp def set_data(self, data): """ Set self.data """ if data is None: pass #TODO self.data_init = copy.deepcopy(data) self.data = copy.deepcopy(self.data_init) def set_model(self): """ Set GP regression model """ self.model = self.get_model() def get_model(self): """ Returns model object """ return None def infer_post_and_update_samples(self, print_result=False): """ Update self.sample_list """ self.sample_list = [Namespace(ls=self.modelp.kernp.ls, alpha=self.modelp.kernp.alpha, sigma=self.modelp.kernp.sigma)] if print_result: self.print_inference_result() def get_distmat(self, xmat1, xmat2): """ Get distance matrix """ #return squared_euc_distmat(xmat1, xmat2, .5) from data import Data self.distmat = Data.generate_distance_matrix #print('distmat') #print(self.distmat(xmat1, xmat2, self.modelp.distance)) return self.distmat(xmat1, xmat2, self.modelp.distance) def print_inference_result(self): """ Print results of stan inference """ print('*ls pt est = '+str(self.sample_list[0].ls)+'.') print('*alpha pt est = '+str(self.sample_list[0].alpha)+'.') print('*sigma pt est = '+str(self.sample_list[0].sigma)+'.') print('-----') def sample_pp_post_pred(self, nsamp, input_list, full_cov=False): """ Sample from posterior predictive of PP. Inputs: input_list - list of np arrays size=(-1,) Returns: list (len input_list) of np arrays (size=(nsamp,1)).""" samp = self.sample_list[0] postmu, postcov = self.gp_post(self.data.X, self.data.y, input_list, samp.ls, samp.alpha, samp.sigma, full_cov) if full_cov: ppred_list = list(sample_mvn(postmu, postcov, nsamp)) else: ppred_list = list(np.random.normal(postmu.reshape(-1,), postcov.reshape(-1,), size=(nsamp, len(input_list)))) return list(np.stack(ppred_list).T), ppred_list def sample_pp_pred(self, nsamp, input_list, lv=None): """ Sample from predictive of PP for parameter lv. Returns: list (len input_list) of np arrays (size (nsamp,1)).""" if lv is None: lv = self.sample_list[0] postmu, postcov = self.gp_post(self.data.X, self.data.y, input_list, lv.ls, lv.alpha, lv.sigma) pred_list = list(sample_mvn(postmu, postcov, 1)) ###TODO: sample from this mean nsamp times return list(np.stack(pred_list).T), pred_list def gp_post(self, x_train_list, y_train_arr, x_pred_list, ls, alpha, sigma, full_cov=True): """ Compute parameters of GP posterior """ kernel = lambda a, b, c, d: kern_distmat(a, b, c, d, self.get_distmat) k11_nonoise = kernel(x_train_list, x_train_list, ls, alpha) lmat = get_cholesky_decomp(k11_nonoise, sigma, 'try_first') smat = solve_upper_triangular(lmat.T, solve_lower_triangular(lmat, y_train_arr)) k21 = kernel(x_pred_list, x_train_list, ls, alpha) mu2 = k21.dot(smat) k22 = kernel(x_pred_list, x_pred_list, ls, alpha) vmat = solve_lower_triangular(lmat, k21.T) k2 = k22 - vmat.T.dot(vmat) if full_cov is False: k2 = np.sqrt(np.diag(k2)) return mu2, k2 # Utilities def print_str(self): """ Print a description string """ print('*MyGpDistmatPP with modelp='+str(self.modelp)+'.') print('-----')
python/python-core/datetimes.py
josephobonyo/sigma_coding_youtube
893
12781892
# import our libraries import time import datetime # get today's date today = date.today() print(today) # create a custom date future_date = date(2020, 1, 31) print(future_date) # let's create a time stamp time_stamp = time.time() print(time_stamp) # create a date from a timestamp date_stamp = date.fromtimestamp(time_stamp) print(date_stamp) # get components of a date print(date_stamp.year) print(date_stamp.month) print(date_stamp.day) # ------------------------- PART TWO -------------------------- from datetime import datetime, date, time # create a date and a time my_date = date(2019, 3, 22) my_time = time(12, 30) # create a datetime my_datetime = datetime.combine(my_date, my_time) print(my_datetime) # get the different components print(my_datetime.year) print(my_datetime.month) print(my_datetime.day) print(my_datetime.hour) print(my_datetime.minute)
sample_project/env/lib/python3.9/site-packages/fontTools/misc/roundTools.py
Istiakmorsalin/ML-Data-Science
38,667
12781897
""" Various round-to-integer helpers. """ import math import functools import logging log = logging.getLogger(__name__) __all__ = [ "noRound", "otRound", "maybeRound", "roundFunc", ] def noRound(value): return value def otRound(value): """Round float value to nearest integer towards ``+Infinity``. The OpenType spec (in the section on `"normalization" of OpenType Font Variations <https://docs.microsoft.com/en-us/typography/opentype/spec/otvaroverview#coordinate-scales-and-normalization>`_) defines the required method for converting floating point values to fixed-point. In particular it specifies the following rounding strategy: for fractional values of 0.5 and higher, take the next higher integer; for other fractional values, truncate. This function rounds the floating-point value according to this strategy in preparation for conversion to fixed-point. Args: value (float): The input floating-point value. Returns float: The rounded value. """ # See this thread for how we ended up with this implementation: # https://github.com/fonttools/fonttools/issues/1248#issuecomment-383198166 return int(math.floor(value + 0.5)) def maybeRound(v, tolerance, round=otRound): rounded = round(v) return rounded if abs(rounded - v) <= tolerance else v def roundFunc(tolerance, round=otRound): if tolerance < 0: raise ValueError("Rounding tolerance must be positive") if tolerance == 0: return noRound if tolerance >= .5: return round return functools.partial(maybeRound, tolerance=tolerance, round=round)
office365/sharepoint/tenant/administration/sharing_capabilities.py
wreiner/Office365-REST-Python-Client
544
12781902
class SharingCapabilities: def __init__(self): pass Disabled = 0 ExternalUserSharingOnly = 1 ExternalUserAndGuestSharing = 2 ExistingExternalUserSharingOnly = 3
Classification/LibLinear/src/test/scripts/generate_test_data.py
em3ndez/tribuo
1,091
12781942
# Copyright (c) 2015-2020, Oracle and/or its affiliates. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import os def generate_data(mode='train', problem_type='binary'): assert mode == 'train' or mode == 'test' rng = np.random.RandomState(1) if problem_type == 'binary': labels = ['POS', 'NEG'] else: labels = ['POS', 'NEG', 'NEU'] texts = ['aaa', 'bbb', 'ccc'] counts = {label: 0 for label in labels} if mode == 'train': n = 1000 else: n = 100 lns = [] for i in range(n): y = rng.choice(labels) counts[y] += 1 x = rng.choice(texts) lns.append('%s##%s\n' % (y, x)) print(counts) with open('%s_input_%s.tribuo' % (mode, problem_type), 'w') as f: for ln in lns: f.write(ln) def generate_models(): lltypes = [ 'L2R_LR', 'L2R_L2LOSS_SVC_DUAL', 'L2R_L2LOSS_SVC', 'L2R_L1LOSS_SVC_DUAL', 'MCSVM_CS', 'L1R_L2LOSS_SVC', 'L1R_LR', 'L2R_LR_DUAL' ] for lltype in lltypes: cmd = './src/test/scripts/generate-model.sh %s %s %s %s' % (lltype, lltype, 'train_input_binary.tribuo', 'test_input_binary.tribuo') print(cmd) os.system(cmd) # multiclass model lltype = 'L2R_LR' cmd = './src/test/scripts/generate-model.sh %s %s %s %s' % (lltype, lltype+'_multiclass', 'train_input_multiclass.tribuo', 'test_input_multiclass.tribuo') print(cmd) os.system(cmd) if __name__ == '__main__': generate_data(mode='train') generate_data(mode='test') generate_data(mode='train', problem_type='multiclass') generate_data(mode='test', problem_type='multiclass') generate_models()
parsers/api_check.py
Bassem95/Test26
105
12781950
<reponame>Bassem95/Test26 # -*- coding: utf-8 -*- #!/usr/bin/python """ """ import requests import time from raven import Client client = Client( 'https://aee9ceb609b549fe8a85339e69c74150:[email protected]/1223891') key = "<KEY>" def check_api(word): query_string = { 'api-key': key, 'q': '"%s"' % word} req = requests.get('https://api.nytimes.com/svc/search/v2/articlesearch.json', params=query_string, verify=False) if req.status_code in set([429, 529, 504]): time.sleep(50) client.captureMessage("NYT API RATELIMIT") return check_api(word) if req.status_code == 500: client.captureMessage("NYT API 500", extra={ 'req':req, 'word': word, }) return False result = req.json() num_results = len(result['response']['docs']) return num_results < 2
hydrachain/examples/native/fungible/test_fungible_contract.py
bts/hydrachain
406
12781954
from ethereum import tester import hydrachain.native_contracts as nc from fungible_contract import Fungible, Transfer, Approval import ethereum.slogging as slogging log = slogging.get_logger('test.fungible') def test_fungible_instance(): state = tester.state() creator_address = tester.a0 creator_key = tester.k0 nc.registry.register(Fungible) # Create proxy EUR_address = nc.tester_create_native_contract_instance(state, creator_key, Fungible) fungible_as_creator = nc.tester_nac(state, creator_key, EUR_address) # Initalize fungible with a fixed quantity of fungibles. fungible_total = 1000000 fungible_as_creator.init(fungible_total) assert fungible_as_creator.balanceOf(creator_address) == fungible_total nc.registry.unregister(Fungible) def test_fungible_template(): """ Tests; Fungible initialization as Creator, Creator sends Fungibles to Alice, Alice sends Fungibles to Bob, Bob approves Creator to spend Fungibles on his behalf, Creator allocates these Fungibles from Bob to Alice, Testing of non-standardized functions of the Fungible contract. Events; Checking logs from Transfer and Approval Events """ # Register Contract Fungible nc.registry.register(Fungible) # Initialize Participants and Fungible contract state = tester.state() logs = [] creator_address = tester.a0 creator_key = tester.k0 alice_address = tester.a1 alice_key = tester.k1 bob_address = tester.a2 bob_key = tester.k2 # Create proxy nc.listen_logs(state, Transfer, callback=lambda e: logs.append(e)) nc.listen_logs(state, Approval, callback=lambda e: logs.append(e)) fungible_as_creator = nc.tester_nac(state, creator_key, Fungible.address) # Initalize fungible with a fixed quantity of fungibles. fungible_total = 1000000 fungible_as_creator.init(fungible_total) assert fungible_as_creator.balanceOf(creator_address) == fungible_total # Creator transfers Fungibles to Alice send_amount_alice = 700000 fungible_as_creator.transfer(alice_address, send_amount_alice) assert fungible_as_creator.balanceOf(creator_address) == fungible_total - send_amount_alice assert fungible_as_creator.balanceOf(alice_address) == send_amount_alice # Check logs data of Transfer Event assert len(logs) == 1 l = logs[0] assert l['event_type'] == 'Transfer' assert l['from'] == creator_address assert l['to'] == alice_address # Build transaction Log arguments and check sent amount assert l['value'] == send_amount_alice # Alice transfers Fungibles to Bob send_amount_bob = 400000 # Create proxy for Alice fungible_as_alice = nc.tester_nac(state, alice_key, Fungible.address) fungible_as_alice.transfer(bob_address, send_amount_bob) # Test balances of Creator, Alice and Bob creator_balance = fungible_total - send_amount_alice alice_balance = send_amount_alice - send_amount_bob bob_balance = send_amount_bob assert fungible_as_alice.balanceOf(creator_address) == creator_balance assert fungible_as_alice.balanceOf(alice_address) == alice_balance assert fungible_as_alice.balanceOf(bob_address) == bob_balance # Create proxy for Bob fungible_as_bob = nc.tester_nac(state, bob_key, Fungible.address) approved_amount_bob = 100000 assert fungible_as_bob.allowance(creator_address) == 0 # Bob approves Creator to spend Fungibles assert fungible_as_bob.allowance(creator_address) == 0 fungible_as_bob.approve(creator_address, approved_amount_bob) assert fungible_as_bob.allowance(creator_address) == approved_amount_bob # Test transferFrom function, i.e. direct debit. fungible_as_creator.transferFrom(bob_address, alice_address, approved_amount_bob) # Test balances alice_balance += approved_amount_bob bob_balance -= approved_amount_bob assert fungible_as_alice.balanceOf(creator_address) == creator_balance assert fungible_as_alice.balanceOf(alice_address) == alice_balance assert fungible_as_alice.balanceOf(bob_address) == bob_balance # Check logs data of Transfer Event assert len(logs) == 4 l = logs[-1] assert l['event_type'] == 'Transfer' assert l['from'] == bob_address assert l['to'] == alice_address # Build transaction Log arguments and check sent amount assert l['value'] == approved_amount_bob # Testing account information # Now we should have three Fungible accounts assert 3 == fungible_as_alice.num_accounts() r = fungible_as_creator.get_creator() assert r == creator_address r = fungible_as_creator.get_accounts() assert set(r) == set([creator_address, alice_address, bob_address]) print logs while logs and logs.pop(): pass nc.registry.unregister(Fungible)
bpy_utilities/material_loader/shaders/source1_shaders/refract.py
tltneon/SourceIO
199
12781969
<reponame>tltneon/SourceIO<filename>bpy_utilities/material_loader/shaders/source1_shaders/refract.py import numpy as np from typing import Iterable from ...shader_base import Nodes from ..source1_shader_base import Source1ShaderBase class Refract(Source1ShaderBase): SHADER: str = 'refract' @property def bumpmap(self): texture_path = self._vavle_material.get_param('$normalmap', None) if texture_path is not None: image = self.load_texture_or_default(texture_path, (0.5, 0.5, 1.0, 1.0)) image = self.convert_normalmap(image) image.colorspace_settings.is_data = True image.colorspace_settings.name = 'Non-Color' return image return None @property def basetexture(self): texture_path = self._vavle_material.get_param('$basetexture', None) if texture_path is not None: return self.load_texture_or_default(texture_path, (0.3, 0, 0.3, 1.0)) return None @property def color2(self): color_value, value_type = self._vavle_material.get_vector('$color2', [1, 1, 1]) divider = 255 if value_type is int else 1 color_value = list(map(lambda a: a / divider, color_value)) if len(color_value) == 1: color_value = [color_value[0], color_value[0], color_value[0]] elif len(color_value) > 3: color_value = color_value[:3] return color_value @property def bluramount(self): value = self._vavle_material.get_float('$bluramount', 0) return value @property def color(self): color_value, value_type = self._vavle_material.get_vector('$color', [1, 1, 1]) divider = 255 if value_type is int else 1 color_value = list(map(lambda a: a / divider, color_value)) if len(color_value) == 1: color_value = [color_value[0], color_value[0], color_value[0]] elif len(color_value) > 3: color_value = color_value[:3] return color_value @property def refracttint(self): color_value, value_type = self._vavle_material.get_vector('$refracttint', [1, 1, 1]) divider = 255 if value_type is int else 1 color_value = list(map(lambda a: a / divider, color_value)) if len(color_value) == 1: color_value = [color_value[0], color_value[0], color_value[0]] return color_value def create_nodes(self, material_name): if super().create_nodes(material_name) in ['UNKNOWN', 'LOADED']: return self.bpy_material.blend_method = 'OPAQUE' self.bpy_material.shadow_method = 'NONE' self.bpy_material.use_screen_refraction = True self.bpy_material.use_backface_culling = True material_output = self.create_node(Nodes.ShaderNodeOutputMaterial) shader = self.create_node(Nodes.ShaderNodeBsdfPrincipled, self.SHADER) self.connect_nodes(shader.outputs['BSDF'], material_output.inputs['Surface']) basetexture = self.basetexture if basetexture: self.create_and_connect_texture_node(basetexture, shader.inputs['Base Color'], name='$basetexture') bumpmap = self.bumpmap if bumpmap: normalmap_node = self.create_node(Nodes.ShaderNodeNormalMap) self.create_and_connect_texture_node(bumpmap, normalmap_node.inputs['Color'], name='$bumpmap') self.connect_nodes(normalmap_node.outputs['Normal'], shader.inputs['Normal']) shader.inputs['Transmission'].default_value = 1.0 shader.inputs['Roughness'].default_value = self.bluramount
python_modules/libraries/dagster-papertrail/dagster_papertrail/loggers.py
rpatil524/dagster
4,606
12781980
<gh_stars>1000+ import logging import socket from dagster import Field, IntSource, StringSource, logger class ContextFilter(logging.Filter): hostname = socket.gethostname() def filter(self, record): record.hostname = ContextFilter.hostname return True @logger( { "log_level": Field(StringSource, is_required=False, default_value="INFO"), "name": Field(StringSource, is_required=False, default_value="dagster_papertrail"), "papertrail_address": Field(StringSource, description="Papertrail URL", is_required=True), "papertrail_port": Field(IntSource, description="Papertrail port", is_required=True), }, description="A JSON-formatted console logger", ) def papertrail_logger(init_context): """Use this logger to configure your Dagster pipeline to log to Papertrail. You'll need an active Papertrail account with URL and port. Example: .. code-block:: python @job(logger_defs={ "console": colored_console_logger, "papertrail": papertrail_logger, }) def simple_job(): ... simple_job.execute_in_process( run_config={ "loggers": { "console": { "config": { "log_level": "INFO", } }, "papertrail": { "config": { "log_level": "INFO", "name": "hello_pipeline", "papertrail_address": "127.0.0.1", "papertrail_port": 12345, } }, } } ) """ level, name, papertrail_address, papertrail_port = ( init_context.logger_config.get(k) for k in ("log_level", "name", "papertrail_address", "papertrail_port") ) klass = logging.getLoggerClass() logger_ = klass(name, level=level) log_format = "%(asctime)s %(hostname)s " + name + ": %(message)s" formatter = logging.Formatter(log_format, datefmt="%b %d %H:%M:%S") handler = logging.handlers.SysLogHandler(address=(papertrail_address, papertrail_port)) handler.addFilter(ContextFilter()) handler.setFormatter(formatter) logger_.addHandler(handler) return logger_
angr/knowledge_plugins/patches.py
Kyle-Kyle/angr
6,132
12781988
from typing import Optional, List, Dict from cle.address_translator import AddressTranslator from sortedcontainers import SortedDict from .plugin import KnowledgeBasePlugin # TODO: Serializable class Patch: def __init__(self, addr, new_bytes, comment: Optional[str]=None): self.addr = addr self.new_bytes = new_bytes self.comment = comment def __len__(self): return len(self.new_bytes) class PatchManager(KnowledgeBasePlugin): """ A placeholder-style implementation for a binary patch manager. This class should be significantly changed in the future when all data about loaded binary objects are loaded into angr knowledge base from CLE. As of now, it only stores byte-level replacements. Other angr components may choose to use or not use information provided by this manager. In other words, it is not transparent. Patches should not overlap, but it's user's responsibility to check for and avoid overlapping patches. """ def __init__(self, kb): super().__init__() self._patches: Dict[int,Patch] = SortedDict() self._kb = kb def add_patch(self, addr, new_bytes, comment: Optional[str]=None): self._patches[addr] = Patch(addr, new_bytes, comment=comment) def add_patch_obj(self, patch: Patch): self._patches[patch.addr] = patch def remove_patch(self, addr): if addr in self._patches: del self._patches[addr] def patch_addrs(self): return self._patches.keys() def get_patch(self, addr): """ Get patch at the given address. :param int addr: The address of the patch. :return: The patch if there is one starting at the address, or None if there isn't any. :rtype: Patch or None """ return self._patches.get(addr, None) def get_all_patches(self, addr, size): """ Retrieve all patches that cover a region specified by [addr, addr+size). :param int addr: The address of the beginning of the region. :param int size: Size of the region. :return: A list of patches. :rtype: list """ patches = [ ] for patch_addr in self._patches.irange(maximum=addr+size-1, reverse=True): p = self._patches[patch_addr] if self.overlap(p.addr, p.addr + len(p), addr, addr+size): patches.append(p) else: break return patches[::-1] def keys(self): return self._patches.keys() def items(self): return self._patches.items() def values(self): return self._patches.values() def copy(self): o = PatchManager(self._kb) o._patches = self._patches.copy() @staticmethod def overlap(a0, a1, b0, b1): return a0 <= b0 < a1 or a0 <= b1 < a1 or b0 <= a0 < b1 def apply_patches_to_binary(self, binary_bytes: Optional[bytes]=None, patches: Optional[List[Patch]]=None) -> bytes: if patches is None: patches = sorted(list(self._patches.values()), key=lambda x: x.addr) if binary_bytes is None: with open(self._kb._project.loader.main_object.binary, "rb") as f: binary_bytes = f.read() for patch in patches: # convert addr to file offset at = AddressTranslator.from_mva(patch.addr, self._kb._project.loader.main_object) file_offset = at.to_raw() if file_offset < len(binary_bytes) and file_offset + len(patch.new_bytes) < len(binary_bytes): binary_bytes = binary_bytes[:file_offset] + \ patch.new_bytes + \ binary_bytes[file_offset + len(patch.new_bytes):] return binary_bytes KnowledgeBasePlugin.register_default('patches', PatchManager)
fuzzing/kernel/syzkaller-configs/generate_config.py
DBGilles/retrowrite
478
12781992
<reponame>DBGilles/retrowrite<gh_stars>100-1000 #!/usr/bin/python3 import argparse import json import os def main(): parser = argparse.ArgumentParser( description='Generate a configuration file for syzkaller') parser.add_argument('--workdir', help='workdir for syzkaller', required=True) parser.add_argument('--kernel', help='path to the kernel directory', required=True) parser.add_argument('--initramfs', help='path to the initramfs', required=True) parser.add_argument('--image', help='path to the disk image', required=True) parser.add_argument('--sshkey', help='path to the VM\'s SSH key', required=True) parser.add_argument('--syzkaller', help='path to syzkaller', required=True) parser.add_argument('--vms', help='number of VMs', type=int, default=8) parser.add_argument('--cpus', help='CPUs per VM', type=int, default=2) parser.add_argument('--mem', help='memory per VM', type=int, default=2048) parser.add_argument('config', help='path to the original config') args = parser.parse_args() with open(args.config) as f: config = json.load(f) config['reproduce'] = False config['vm']['count'] = args.vms config['vm']['kernel'] = os.path.join(args.kernel, 'arch', 'x86', 'boot', 'bzImage') config['vm']['initrd'] = args.initramfs config['vm']['cpu'] = args.cpus config['vm']['mem'] = args.mem config['workdir'] = args.workdir config['kernel_obj'] = args.kernel config['image'] = args.image config['sshkey'] = args.sshkey config['syzkaller'] = args.syzkaller print(json.dumps(config, indent=4)) if __name__ == '__main__': main()
lectures/solutions/tile_rectify.py
ritamonteiroo/scikit
453
12782008
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from skimage import transform from skimage.transform import estimate_transform source = np.array([(129, 72), (302, 76), (90, 185), (326, 193)]) target = np.array([[0, 0], [400, 0], [0, 400], [400, 400]]) tf = estimate_transform('projective', source, target) H = tf.params # in older versions of skimage, this should be # H = tf._matrix print(H) # H = np.array([[ 3.04026872e+00, 1.04929628e+00, -4.67743998e+02], # [ -1.44134582e-01, 6.23382067e+00, -4.30241727e+02], # [ 2.63620673e-05, 4.17694527e-03, 1.00000000e+00]]) def rectify(xy): x = xy[:, 0] y = xy[:, 1] # You must fill in your code here. # # Handy functions are: # # - np.dot (matrix multiplication) # - np.ones_like (make an array of ones the same shape as another array) # - np.column_stack # - A.T -- type .T after a matrix to transpose it # - x.reshape -- reshapes the array x # We need to provide the backward mapping HH = np.linalg.inv(H) homogeneous_coordinates = np.column_stack([x, y, np.ones_like(x)]) xyz = np.dot(HH, homogeneous_coordinates.T) # We want one coordinate per row xyz = xyz.T # Turn z into a column vector z = xyz[:, 2] z = z.reshape([len(z), 1]) xyz = xyz / z return xyz[:, :2] image = plt.imread('../../images/chapel_floor.png') out = transform.warp(image, rectify, output_shape=(400, 400)) f, (ax0, ax1) = plt.subplots(1, 2, figsize=(8, 4)) ax0.imshow(image) ax1.imshow(out) plt.show()
python/fleetx/dataset/ctr_data_generator.py
hutuxian/FleetX
170
12782026
<filename>python/fleetx/dataset/ctr_data_generator.py #!/usr/bin/python # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # There are 13 integer features and 26 categorical features import os import paddle import paddle.fluid as fluid import paddle.distributed.fleet as fleet continous_features = range(1, 14) categorial_features = range(14, 40) continous_clip = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50] def get_dataloader(inputs, train_files_path, sparse_feature_dim, batch_size, shuffle=True): file_list = [ str(train_files_path) + "/%s" % x for x in os.listdir(train_files_path) ] loader = fluid.io.DataLoader.from_generator( feed_list=inputs, capacity=64, use_double_buffer=True, iterable=True) train_generator = CriteoDataset(sparse_feature_dim) reader = train_generator.train(file_list, fleet.worker_num(), fleet.worker_index()) if shuffle: reader = paddle.batch( paddle.reader.shuffle( reader, buf_size=batch_size * 100), batch_size=batch_size) else: reader = paddle.batch(reader, batch_size=batch_size) places = fluid.CPUPlace() loader.set_sample_list_generator(reader, places) return loader class CriteoDataset(object): def __init__(self, sparse_feature_dim): self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] self.cont_max_ = [ 20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.cont_diff_ = [ 20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50 ] self.hash_dim_ = sparse_feature_dim # here, training data are lines with line_index < train_idx_ self.train_idx_ = 41256555 self.continuous_range_ = range(1, 14) self.categorical_range_ = range(14, 40) def _reader_creator(self, file_list, is_train, trainer_num, trainer_id): def reader(): for file in file_list: with open(file, 'r') as f: line_idx = 0 for line in f: line_idx += 1 features = line.rstrip('\n').split('\t') dense_feature = [] sparse_feature = [] for idx in self.continuous_range_: if features[idx] == '': dense_feature.append(0.0) else: dense_feature.append( (float(features[idx]) - self.cont_min_[idx - 1]) / self.cont_diff_[idx - 1]) for idx in self.categorical_range_: sparse_feature.append([ hash(str(idx) + features[idx]) % self.hash_dim_ ]) label = [int(features[0])] yield [dense_feature] + sparse_feature + [label] return reader def train(self, file_list, trainer_num, trainer_id): return self._reader_creator(file_list, True, trainer_num, trainer_id) def test(self, file_list): return self._reader_creator(file_list, False, 1, 0)
solutions/problem_108.py
ksvr444/daily-coding-problem
1,921
12782034
def can_shift(target, string): return \ target and string and \ len(target) == len(string) and \ string in target * 2 assert can_shift("abcde", "cdeab") assert not can_shift("abc", "acb")
src/amuse/ext/cloud.py
rknop/amuse
131
12782075
<reponame>rknop/amuse<filename>src/amuse/ext/cloud.py<gh_stars>100-1000 import inspect import numpy from amuse.units import generic_unit_system from amuse import datamodel def fill_grid_with_cloud_and_medium( grid, center = None, radius = None, rho_medium = 1.0 | generic_unit_system.mass / generic_unit_system.length**3, rho_cloud = 0.1 | generic_unit_system.mass / generic_unit_system.length**3, gamma = 5.0 / 3.0, ): pass def fill_grid_with_spherical_cloud( grid, center = None, radius = None, rho = 1.0 | generic_unit_system.mass / generic_unit_system.length**3, rhovx = 0.0 | generic_unit_system.mass / (generic_unit_system.time * generic_unit_system.length**2), rhovy = 0.0 | generic_unit_system.mass / (generic_unit_system.time * generic_unit_system.length**2), rhovz = 0.0 | generic_unit_system.mass / (generic_unit_system.time * generic_unit_system.length**2), energy = 1.0 | generic_unit_system.mass / (generic_unit_system.time**2 * generic_unit_system.length), subgridsize = 4, ): radii = (grid.position - center).lengths() if subgridsize <= 1: selection = radii <= radius else: dr = grid.cellsize().length() selection = radii < (radius - dr) grid.rho[selection] = rho(radii) if inspect.isroutine(rho) else rho grid.rhovx[selection] = rhovx grid.rhovy[selection] = rhovy grid.rhovz[selection] = rhovz grid.energy[selection] = energy if subgridsize <= 1: return selection = numpy.logical_and( radii >= (radius-dr), radii <= (radius+dr)) subgrid = datamodel.Grid.create((subgridsize, subgridsize, subgridsize), grid.cellsize()) subgrid.x -= grid.cellsize()[0] / 2.0 subgrid.y -= grid.cellsize()[1] / 2.0 subgrid.z -= grid.cellsize()[2] / 2.0 x_indices, y_indices, z_indices = grid.indices() x_indices = x_indices[selection] y_indices = y_indices[selection] z_indices = z_indices[selection] position = subgrid.position centers = center - grid.position[selection] subgrid_rho = rho * numpy.ones_like(subgrid.x.number) subgrid_rhovx = rhovx * numpy.ones_like(subgrid.x.number) subgrid_rhovy = rhovy * numpy.ones_like(subgrid.x.number) subgrid_rhovz = rhovz * numpy.ones_like(subgrid.x.number) subgrid_energy = energy * numpy.ones_like(subgrid.x.number) update_grid_rho = grid.rho[selection] update_grid_rhovx = grid.rhovx[selection] update_grid_rhovy = grid.rhovy[selection] update_grid_rhovz = grid.rhovz[selection] update_grid_energy = grid.energy[selection] for i in range(len(x_indices)): x_index = x_indices[i] y_index = y_indices[i] z_index = z_indices[i] center_of_cloud_for_subgrid = centers[i] radii = (position - center_of_cloud_for_subgrid).lengths() subgrid_rho[...] = update_grid_rho[i] subgrid_rhovx[...] = update_grid_rhovx[i] subgrid_rhovy[...] = update_grid_rhovy[i] subgrid_rhovz[...] = update_grid_rhovz[i] subgrid_energy[...] = update_grid_energy[i] subgrid_selection = radii <= radius subgrid_rho[subgrid_selection] = rho subgrid_rhovx[subgrid_selection] = rhovx subgrid_rhovy[subgrid_selection] = rhovy subgrid_rhovz[subgrid_selection] = rhovz subgrid_energy[subgrid_selection] = energy update_grid_rho[i] = subgrid_rho.mean() update_grid_rhovx[i] = subgrid_rhovx.mean() update_grid_rhovy[i] = subgrid_rhovy.mean() update_grid_rhovz[i] = subgrid_rhovz.mean() update_grid_energy[i] = subgrid_energy.mean() grid.rho[selection] = update_grid_rho grid.rhovx[selection] = update_grid_rhovx grid.rhovy[selection] = update_grid_rhovy grid.rhovz[selection] = update_grid_rhovz grid.energy[selection] = update_grid_energy def fill_grid_with_cloud_shock( grid, center = None, radius = None, ratio_densities = 10.0, mach_number = 2.7, gamma = 5.0/3.0, subgridsize = 4, ): velocity_unit = generic_unit_system.length / generic_unit_system.time momentum_unit = generic_unit_system.mass / (generic_unit_system.time * generic_unit_system.length**2) density_unit = generic_unit_system.mass / generic_unit_system.length**3 energy_unit = generic_unit_system.mass / (generic_unit_system.time**2 * generic_unit_system.length) velocity_of_medium = (numpy.sqrt(gamma*(gamma-1.0)*ratio_densities) * mach_number) | velocity_unit rho_in_cloud = 1.0 | density_unit rhovx_in_cloud = 0.0 | momentum_unit rhovy_in_cloud = 0.0 | momentum_unit rhovz_in_cloud = 0.0 | momentum_unit energy_in_cloud = 1.0 | energy_unit rho_in_medium = 1.0 / ratio_densities | density_unit rhovx_in_medium = 0.0 | momentum_unit rhovy_in_medium = rho_in_medium * velocity_of_medium rhovz_in_medium = 0.0 | momentum_unit energy_in_medium = (1.0 | energy_unit) + (0.5* rho_in_medium * velocity_of_medium**2) grid.rho = rho_in_medium grid.rhovx = rhovx_in_medium grid.rhovy = rhovy_in_medium grid.rhovz = rhovz_in_medium grid.energy = energy_in_medium fill_grid_with_spherical_cloud(grid, center, radius, rho_in_cloud, rhovx_in_cloud, rhovy_in_cloud, rhovz_in_cloud, energy_in_cloud, subgridsize)
zkstark/quadratic_prover_test.py
kevaundray/research
1,351
12782116
import quadratic_provers as q data = q.eval_across_field([1, 2, 3, 4], 11) qproof = q.mk_quadratic_proof(data, 4, 11) assert q.check_quadratic_proof(data, qproof, 4, 5, 11) data2 = q.eval_across_field(range(36), 97) cproof = q.mk_column_proof(data2, 36, 97) assert q.check_column_proof(data2, cproof, 36, 10, 97)
fairseq/modules/multibranch.py
ishine/lite-transformer
543
12782205
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from . import MultiheadAttention class MultiBranch(nn.Module): def __init__(self, branches, embed_dim_list): super().__init__() self.branches = nn.ModuleList(branches) self.embed_dim_list = embed_dim_list def forward(self, query, key, value, key_padding_mask=None, incremental_state=None, need_weights=True, static_kv=False, attn_mask=None): tgt_len, bsz, embed_size = query.size() assert sum(self.embed_dim_list) == embed_size out = [] attn = None start = 0 for idx, embed_dim in enumerate(self.embed_dim_list): branch = self.branches[idx] branch_type = type(branch) q = query[...,start:start+embed_dim] if key is not None: assert value is not None k, v = key[..., start:start+embed_dim], value[..., start:start+embed_dim] start += embed_dim if branch_type == MultiheadAttention: x, attn = branch(q, k, v, key_padding_mask, incremental_state, need_weights, static_kv, attn_mask) else: mask = key_padding_mask if mask is not None: q = q.masked_fill(mask.transpose(0, 1).unsqueeze(2), 0) x = branch(q.contiguous(), incremental_state=incremental_state) out.append(x) out = torch.cat(out, dim=-1) return out, attn
VSR/DataLoader/Dataset.py
Kadantte/VideoSuperResolution
1,447
12782238
<reponame>Kadantte/VideoSuperResolution # Copyright (c) 2017-2020 <NAME>. # Author: <NAME> # Email: <EMAIL> # Update: 2020 - 2 - 7 import re from concurrent import futures from pathlib import Path import copy import yaml from .VirtualFile import ImageFile, RawFile from ..Util import Config, to_list try: from yaml import FullLoader as _Loader except ImportError: from yaml import Loader as _Loader IMAGE_SUF = ('PNG', 'JPG', 'JPEG', 'BMP', 'TIFF', 'TIF', 'GIF') VIDEO_SUF = { 'NV12': 'NV12', 'YUV': 'YV12', 'YV12': 'YV12', 'NV21': 'NV21', 'YV21': 'YV21', 'RGB': 'RGB' } def _supported_image(x: Path): return x.suffix[1:].upper() in IMAGE_SUF def _supported_video(x: Path): return x.suffix[1:].upper() in VIDEO_SUF def _supported_suffix(x: Path): return _supported_image(x) or _supported_video(x) class Dataset(object): """ Make a `dataset` object """ def __init__(self, *folders): self.dirs = list(map(Path, folders)) self.recursive = True self.glob_patterns = ('*',) self.inc_patterns = None self.exc_patterns = None self.as_video = False self.compiled = None def use_like_video_(self): self.as_video = True def use_like_video(self): d = copy.copy(self) d.compiled = None d.use_like_video_() return d def include_(self, *pattern: str): self.glob_patterns = list(pattern) self.inc_patterns = None def include(self, *pattern: str): d = copy.copy(self) d.compiled = None d.include_(*pattern) return d def include_reg_(self, *reg: str): self.inc_patterns = [re.compile(r) for r in reg] self.glob_patterns = ('*',) def include_reg(self, *reg: str): d = copy.copy(self) d.compiled = None d.include_reg_(*reg) return d def exclude_(self, *reg: str): self.exc_patterns = [re.compile(r) for r in reg] def exclude(self, *reg: str): d = copy.copy(self) d.compiled = None d.exclude_(*reg) return d def compile(self): if self.compiled: return self.compiled files = [] def _exc(x: Path): if self.exc_patterns: for reg in self.exc_patterns: if reg.search(str(x.absolute().as_posix())): return False return True def _inc(x: Path): if self.inc_patterns: for reg in self.inc_patterns: if reg.search(str(x.absolute().as_posix())): return True return False for folder in self.dirs: if not Path(folder).exists(): continue nodes = [] if folder.is_file(): # if points to a file rather than a directory nodes.append(folder) fn_glob = Path.rglob if self.recursive else Path.glob for pat in self.glob_patterns: nodes += list(fn_glob(folder, pat)) if self.inc_patterns: nodes = filter(_inc, nodes) files += list(filter(_exc, filter(_supported_suffix, nodes))) image_nodes = list(filter(_supported_image, files)) if not self.as_video: self.compiled = Container(sorted(image_nodes), self.as_video) return self.compiled video_nodes = list(filter(_supported_video, files)) video_nodes += list(map(lambda x: x.parent, image_nodes)) video_nodes = list(set(video_nodes)) # remove duplicated nodes self.compiled = Container(sorted(video_nodes), self.as_video) return self.compiled class Container(object): """Frames container """ def __init__(self, urls, is_video: bool): assert isinstance(urls, (list, tuple)) pool = futures.ThreadPoolExecutor(4) fs = [] self.nodes = [] def _parse_image_node(url: Path): if url.is_dir(): for i in filter(_supported_image, url.glob('*')): self.nodes.append(ImageFile(i, rewind=True)) elif _supported_image(url): self.nodes.append(ImageFile(url, rewind=True)) def _parse_video_node(url: Path): if _supported_video(url): size = re.findall("\\d+x\\d+", url.stem) if size: size = [int(x) for x in size[0].split('x')] self.nodes.append( RawFile(url, VIDEO_SUF[url.suffix[1:].upper()], size, rewind=True)) elif url.is_dir(): self.nodes.append(ImageFile(url)) for j in urls: if is_video: fs.append(pool.submit(_parse_video_node, j)) else: fs.append(pool.submit(_parse_image_node, j)) futures.as_completed(fs) pool.shutdown() self.nodes = sorted(self.nodes, key=lambda x: x.path) def __getitem__(self, item): return self.nodes[item] def __len__(self): return len(self.nodes) @property def capacity(self): if not self.nodes: return 0 pos = 0 max_sz = 0 total_frames = 0 for i, n in enumerate(self.nodes): total_frames += n.frames if n.size() > max_sz: max_sz = n.size() pos = i shape = self.nodes[pos].shape max_bpp = 3 return shape[0] * shape[1] * max_bpp * total_frames def load_datasets(describe_file, key=''): """load dataset described in YAML file""" def _extend_pattern(url): _url = root / Path(url) url_p = _url while True: try: if url_p.exists(): break except OSError: url_p = url_p.parent continue if url_p == url_p.parent: break url_p = url_p.parent # retrieve glob pattern url_r = str(_url.relative_to(url_p)) if url_r == '.' and url_p.is_dir(): return str(Path(url) / '**/*') return url def _get_dataset(desc, use_as_video=None, name=None): dataset = Config(name=name) for i in desc: if i not in ('train', 'val', 'test'): continue if isinstance(desc[i], dict): hr = to_list(desc[i].get('hr')) lr = to_list(desc[i].get('lr')) else: hr = to_list(desc[i]) lr = [] if use_as_video: hr_pattern = [ x if x not in all_path and x + '[video]' not in all_path else all_path[x + '[video]'] for x in hr] lr_pattern = [ x if x not in all_path and x + '[video]' not in all_path else all_path[x + '[video]'] for x in lr] else: hr_pattern = [x if x not in all_path else all_path[x] for x in hr] lr_pattern = [x if x not in all_path else all_path[x] for x in lr] hr_data = Dataset(root).include(*(_extend_pattern(x) for x in hr_pattern)) lr_data = Dataset(root).include( *(_extend_pattern(x) for x in lr_pattern)) if lr_pattern else None hr_data.recursive = False if lr_data is not None: lr_data.recursive = False if use_as_video: hr_data.use_like_video_() if lr_data is not None: lr_data.use_like_video_() setattr(dataset, i, Config(hr=hr_data, lr=lr_data)) return dataset datasets = Config() with open(describe_file, 'r') as fd: config = yaml.load(fd, Loader=_Loader) root = Path(config["Root"]) if not root.is_absolute(): # make `root` relative to the file root = Path(describe_file).resolve().parent / root root = root.resolve() all_path = config["Path"] if key.upper() in config["Dataset"]: return _get_dataset(config["Dataset"][key.upper()], name=key) elif key.upper() + '[video]' in config["Dataset"]: return _get_dataset(config["Dataset"][key.upper() + '[video]'], True, name=key) elif key.upper() in all_path: return _get_dataset(Config(test=all_path[key.upper()]), name=key) elif key.upper() + '[video]' in all_path: return _get_dataset(Config(test=all_path[key.upper() + '[video]']), True, name=key) for name, value in config["Dataset"].items(): if '[video]' in name: name = name.replace('[video]', '') datasets[name] = _get_dataset(value, True, name=name) else: datasets[name] = _get_dataset(value, name=name) for name in all_path: if '[video]' in name: _name = name.replace('[video]', '') datasets[_name] = _get_dataset(Config(test=all_path[name]), True, name=_name) else: datasets[name] = _get_dataset(Config(test=all_path[name]), name=name) return datasets
tests/casefiles/toplevel_extracode.py
ardovm/wxGlade
225
12782258
<reponame>ardovm/wxGlade #!/usr/bin/env python # -*- coding: UTF-8 -*- # # generated by wxGlade # import wx # begin wxGlade: dependencies # end wxGlade # begin wxGlade: extracode # frame extra code # dialog extra code # end wxGlade class MyFrame(wx.Frame): def __init__(self, *args, **kwds): # begin wxGlade: MyFrame.__init__ # frame extra code before kwds["style"] = kwds.get("style", 0) | wx.DEFAULT_FRAME_STYLE wx.Frame.__init__(self, *args, **kwds) self.SetSize((400, 300)) self.SetTitle("frame") sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_1.Add((0, 0), 0, 0, 0) self.SetSizer(sizer_1) self.Layout() # frame extra code after self.Bind(wx.EVT_CLOSE, self.on_close_frame, self) self.Bind(wx.EVT_MENU_CLOSE, self.on_menu_close_frame, self) # end wxGlade def on_close_frame(self, event): # wxGlade: MyFrame.<event_handler> print("Event handler 'on_close_frame' not implemented!") event.Skip() def on_menu_close_frame(self, event): # wxGlade: MyFrame.<event_handler> print("Event handler 'on_menu_close_frame' not implemented!") event.Skip() # end of class MyFrame class MyDialog(wx.Dialog): def __init__(self, *args, **kwds): # begin wxGlade: MyDialog.__init__ # dialog extra code before kwds["style"] = kwds.get("style", 0) | wx.DEFAULT_DIALOG_STYLE wx.Dialog.__init__(self, *args, **kwds) self.SetTitle("dialog") sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_1.Add((0, 0), 0, 0, 0) self.SetSizer(sizer_1) sizer_1.Fit(self) self.Layout() # dialog extra code after self.Bind(wx.EVT_CLOSE, self.on_close_dialog, self) # end wxGlade def on_close_dialog(self, event): # wxGlade: MyDialog.<event_handler> print("Event handler 'on_close_dialog' not implemented!") event.Skip() # end of class MyDialog class MyMenuBar(wx.MenuBar): def __init__(self, *args, **kwds): # begin wxGlade: MyMenuBar.__init__ # menubar extracode before wx.MenuBar.__init__(self, *args, **kwds) # menubar extracode after # end wxGlade # end of class MyMenuBar class wxToolBar(wx.ToolBar): def __init__(self, *args, **kwds): # begin wxGlade: wxToolBar.__init__ # toolbar extracode before kwds["style"] = kwds.get("style", 0) wx.ToolBar.__init__(self, *args, **kwds) self.Realize() # toolbar extracode after # end wxGlade # end of class wxToolBar class MyDialog1(wx.Panel): def __init__(self, *args, **kwds): # begin wxGlade: MyDialog1.__init__ # panel extracode before kwds["style"] = kwds.get("style", 0) | wx.TAB_TRAVERSAL wx.Panel.__init__(self, *args, **kwds) sizer_1 = wx.BoxSizer(wx.VERTICAL) sizer_1.Add((0, 0), 0, 0, 0) self.SetSizer(sizer_1) sizer_1.Fit(self) self.Layout() # panel extracode after # end wxGlade # end of class MyDialog1 class MyApp(wx.App): def OnInit(self): self.frame = MyFrame(None, wx.ID_ANY, "") self.SetTopWindow(self.frame) self.frame.Show() return True # end of class MyApp if __name__ == "__main__": app = MyApp(0) app.MainLoop()
utils/utils.py
luowensheng/MCN
130
12782272
"""Miscellaneous utility functions.""" from functools import reduce from PIL import Image import numpy as np from matplotlib.colors import rgb_to_hsv, hsv_to_rgb import spacy import re import cv2 import time from keras_bert.tokenizer import Tokenizer from keras_bert.loader import load_trained_model_from_checkpoint, load_vocabulary from keras_bert import extract_embeddings import os def compose(*funcs): """Compose arbitrarily many functions, evaluated left to right. Reference: https://mathieularose.com/function-composition-in-python/ """ # return lambda x: reduce(lambda v, f: f(v), funcs, x) if funcs: return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs) else: raise ValueError('Composition of empty sequence not supported.') def letterbox_image(image, size): '''resize image with unchanged aspect ratio using padding''' iw, ih = image.size w, h = size scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) image = image.resize((nw,nh), Image.BICUBIC) new_image = Image.new('RGB', size, (128,128,128)) new_image.paste(image, ((w-nw)//2, (h-nh)//2)) return new_image def rand(a=0, b=1): return np.random.rand()*(b-a) + a def get_bert_input(text,vocabs,max_len=512): tokenizer = Tokenizer(vocabs, cased=False) token=[] segment=[] token, segment = tokenizer.encode(text, max_len=max_len) token.append(token) segment.append(segment) token.extend([0] * (max_len - len(token))) segment.extend([0] * (max_len - len(token))) return [token,segment] def seq_to_list(s): ''' note: 2018.10.3 use for process sentences ''' t_str = s.lower() for i in [r'\?', r'\!', r'\'', r'\"', r'\$', r'\:', r'\@', r'\(', r'\)', r'\,', r'\.', r'\;', r'\n']: t_str = re.sub(i, '', t_str) for i in [r'\-', r'\/']: t_str = re.sub(i, ' ', t_str) q_list = re.sub(r'\?', '', t_str.lower()).split(' ') q_list = list(filter(lambda x: len(x) > 0, q_list)) return q_list def qlist_to_vec(max_length, q_list,embed): ''' note: 2018.10.3 use for process sentences ''' glove_matrix = [] glove_dict = {} q_len = len(q_list) if q_len > max_length: q_len = max_length for i in range(max_length): if i < q_len: w=q_list[i] if w not in glove_dict: glove_dict[w]=embed(u'%s'%w).vector glove_matrix.append(glove_dict[w]) else: glove_matrix.append(np.zeros(300,dtype=float)) return np.array(glove_matrix) def get_random_data(annotation_line, input_shape,embed,config, train_mode=True, max_boxes=1): '''random preprocessing for real-time data augmentation''' SEG_DIR=config['seg_gt_path'] line = annotation_line.split() h, w = input_shape stop=len(line) for i in range(1,len(line)): if (line[i]=='~'): stop=i break # print(line[1:stop]) box_ = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:stop]]) box=np.zeros([1,5]) seg_id=box_[0][-1] box[0]=box_[0][:-1] seg_map=np.load(os.path.join(SEG_DIR,str(seg_id)+'.npy')) seg_map_ori=np.array(seg_map).astype(np.float32) seg_map=Image.fromarray(seg_map_ori) # print(np.shape(box)) # print(box) ##################################### #sentence process maxlength set to 20 and random choose one for train sentences=[] sent_stop=stop+1 for i in range(stop+1,len(line)): if line[i]=='~': sentences.append(line[sent_stop:i]) sent_stop=i+1 sentences.append(line[sent_stop:len(line)]) choose_index=np.random.choice(len(sentences)) sentence=sentences[choose_index] # print(qlist) if config['use_bert']: vocabs = load_vocabulary(config['bert_path']+'/vocab.txt') word_vec=get_bert_input(sentence,vocabs,512) else: word_vec=qlist_to_vec(config['word_len'], sentence,embed) # print(word_vec) # print(np.shape(word_vec)) ####################################### image = Image.open(os.path.join(config['image_path'],line[0])) iw, ih = image.size scale = min(w / iw, h / ih) nw = int(iw * scale) nh = int(ih * scale) dx = (w - nw) // 2 dy = (h - nh) // 2 ori_image = image image = image.resize((nw, nh), Image.BICUBIC) new_image = Image.new('RGB', (w, h), (128, 128, 128)) new_image.paste(image, (dx, dy)) image_data = np.array(new_image) / 255. seg_map = seg_map.resize((nw, nh)) new_map = Image.new('L', (w, h), (0)) new_map.paste(seg_map, (dx, dy)) seg_map_data = np.array(new_map) seg_map_data = cv2.resize(seg_map_data, ( seg_map_data.shape[0] // config['seg_out_stride'], seg_map_data.shape[0] // config['seg_out_stride']),interpolation=cv2.INTER_NEAREST) seg_map_data = np.reshape(seg_map_data, [np.shape(seg_map_data)[0], np.shape(seg_map_data)[1], 1]) # print(new_image.size) # correct boxes box_data = np.zeros((max_boxes, 5)) if len(box) > 0: if len(box) > max_boxes: box = box[:max_boxes] box[:, [0, 2]] = box[:, [0, 2]] * scale + dx box[:, [1, 3]] = box[:, [1, 3]] * scale + dy box_data[:len(box)] = box box_data = box_data[:, 0:4] #delete classfy if not train_mode: word_vec=[qlist_to_vec(config['word_len'], sent,embed) for sent in sentences] return image_data, box_data,word_vec,ori_image,sentences,np.expand_dims(seg_map_ori ,-1) return image_data, box_data,word_vec,seg_map_data def lr_step_decay(lr_start=0.001, steps=[30, 40]): def get_lr(epoch): decay_rate = len(steps) for i, e in enumerate(steps): if epoch < e: decay_rate = i break lr = lr_start / (10 ** (decay_rate)) return lr return get_lr #powre decay def lr_power_decay(lr_start=2.5e-4,lr_power=0.9, warm_up_lr=0.,step_all=45*1414,warm_up_step=1000): # step_per_epoch=3286 def warm_up(base_lr, lr, cur_step, end_step): return base_lr + (lr - base_lr) * cur_step / end_step def get_learningrate(epoch): if epoch<warm_up_step: lr = warm_up(warm_up_lr, lr_start, epoch, warm_up_step) else: lr = lr_start * ((1 - float(epoch-warm_up_step) / (step_all-warm_up_step)) ** lr_power) return lr # print("learning rate is", lr) return get_learningrate
saleor/shipping/utils.py
fairhopeweb/saleor
15,337
12782301
<gh_stars>1000+ from typing import TYPE_CHECKING, Optional from django_countries import countries from .interface import ShippingMethodData if TYPE_CHECKING: from .models import ShippingMethod def default_shipping_zone_exists(zone_pk=None): from .models import ShippingZone return ShippingZone.objects.exclude(pk=zone_pk).filter(default=True) def get_countries_without_shipping_zone(): """Return countries that are not assigned to any shipping zone.""" from .models import ShippingZone covered_countries = set() for zone in ShippingZone.objects.all(): covered_countries.update({c.code for c in zone.countries}) return (country[0] for country in countries if country[0] not in covered_countries) def convert_to_shipping_method_data( shipping_method: Optional["ShippingMethod"], ) -> Optional["ShippingMethodData"]: if not shipping_method: return None return ShippingMethodData( id=str(shipping_method.id), name=shipping_method.name, price=getattr(shipping_method, "price", None), description=shipping_method.description, type=shipping_method.type, excluded_products=shipping_method.excluded_products, channel_listings=shipping_method.channel_listings, minimum_order_weight=shipping_method.minimum_order_weight, maximum_order_weight=shipping_method.maximum_order_weight, maximum_delivery_days=shipping_method.maximum_delivery_days, minimum_delivery_days=shipping_method.minimum_delivery_days, metadata=shipping_method.metadata, private_metadata=shipping_method.private_metadata, )
salt/modules/mod_random.py
tomdoherty/salt
9,425
12782321
<filename>salt/modules/mod_random.py """ Provides access to randomness generators. ========================================= .. versionadded:: 2014.7.0 """ import base64 import hashlib import random import salt.utils.pycrypto from salt.exceptions import SaltInvocationError ALGORITHMS_ATTR_NAME = "algorithms_guaranteed" # Define the module's virtual name __virtualname__ = "random" def __virtual__(): return __virtualname__ def hash(value, algorithm="sha512"): """ .. versionadded:: 2014.7.0 Encodes a value with the specified encoder. value The value to be hashed. algorithm : sha512 The algorithm to use. May be any valid algorithm supported by hashlib. CLI Example: .. code-block:: bash salt '*' random.hash 'I am a string' md5 """ if isinstance(value, str): # Under Python 3 we must work with bytes value = value.encode(__salt_system_encoding__) if hasattr(hashlib, ALGORITHMS_ATTR_NAME) and algorithm in getattr( hashlib, ALGORITHMS_ATTR_NAME ): hasher = hashlib.new(algorithm) hasher.update(value) out = hasher.hexdigest() elif hasattr(hashlib, algorithm): hasher = hashlib.new(algorithm) hasher.update(value) out = hasher.hexdigest() else: raise SaltInvocationError("You must specify a valid algorithm.") return out def str_encode(value, encoder="base64"): """ .. versionadded:: 2014.7.0 value The value to be encoded. encoder : base64 The encoder to use on the subsequent string. CLI Example: .. code-block:: bash salt '*' random.str_encode 'I am a new string' base64 """ if isinstance(value, str): value = value.encode(__salt_system_encoding__) if encoder == "base64": try: out = base64.b64encode(value) out = out.decode(__salt_system_encoding__) except TypeError: raise SaltInvocationError("Value must be an encode-able string") else: try: out = value.encode(encoder) except LookupError: raise SaltInvocationError("You must specify a valid encoder") except AttributeError: raise SaltInvocationError("Value must be an encode-able string") return out def get_str( length=20, chars=None, lowercase=True, uppercase=True, digits=True, punctuation=True, whitespace=False, printable=False, ): """ .. versionadded:: 2014.7.0 .. versionchanged:: 3004.0 Changed the default character set used to include symbols and implemented arguments to control the used character set. Returns a random string of the specified length. length : 20 Any valid number of bytes. chars : None .. versionadded:: 3004.0 String with any character that should be used to generate random string. This argument supersedes all other character controlling arguments. lowercase : True .. versionadded:: 3004.0 Use lowercase letters in generated random string. (see :py:data:`string.ascii_lowercase`) This argument is superseded by chars. uppercase : True .. versionadded:: 3004.0 Use uppercase letters in generated random string. (see :py:data:`string.ascii_uppercase`) This argument is superseded by chars. digits : True .. versionadded:: 3004.0 Use digits in generated random string. (see :py:data:`string.digits`) This argument is superseded by chars. printable : False .. versionadded:: 3004.0 Use printable characters in generated random string and includes lowercase, uppercase, digits, punctuation and whitespace. (see :py:data:`string.printable`) It is disabled by default as includes whitespace characters which some systems do not handle well in passwords. This argument also supersedes all other classes because it includes them. This argument is superseded by chars. punctuation : True .. versionadded:: 3004.0 Use punctuation characters in generated random string. (see :py:data:`string.punctuation`) This argument is superseded by chars. whitespace : False .. versionadded:: 3004.0 Use whitespace characters in generated random string. (see :py:data:`string.whitespace`) It is disabled by default as some systems do not handle whitespace characters in passwords well. This argument is superseded by chars. CLI Example: .. code-block:: bash salt '*' random.get_str 128 salt '*' random.get_str 128 chars='abc123.!()' salt '*' random.get_str 128 lowercase=False whitespace=True """ return salt.utils.pycrypto.secure_password( length=length, chars=chars, lowercase=lowercase, uppercase=uppercase, digits=digits, punctuation=punctuation, whitespace=whitespace, printable=printable, ) def shadow_hash(crypt_salt=None, password=None, algorithm="<PASSWORD>"): """ Generates a salted hash suitable for /etc/shadow. crypt_salt : None Salt to be used in the generation of the hash. If one is not provided, a random salt will be generated. password : None Value to be salted and hashed. If one is not provided, a random password will be generated. algorithm : sha512 Hash algorithm to use. CLI Example: .. code-block:: bash salt '*' random.shadow_hash 'My5alT' 'MyP@asswd' md5 """ return salt.utils.pycrypto.gen_hash(crypt_salt, password, algorithm) def rand_int(start=1, end=10, seed=None): """ Returns a random integer number between the start and end number. .. versionadded:: 2015.5.3 start : 1 Any valid integer number end : 10 Any valid integer number seed : Optional hashable object .. versionchanged:: 2019.2.0 Added seed argument. Will return the same result when run with the same seed. CLI Example: .. code-block:: bash salt '*' random.rand_int 1 10 """ if seed is not None: random.seed(seed) return random.randint(start, end) def seed(range=10, hash=None): """ Returns a random number within a range. Optional hash argument can be any hashable object. If hash is omitted or None, the id of the minion is used. .. versionadded:: 2015.8.0 hash: None Any hashable object. range: 10 Any valid integer number CLI Example: .. code-block:: bash salt '*' random.seed 10 hash=None """ if hash is None: hash = __grains__["id"] random.seed(hash) return random.randrange(range)
tests/r/test_friendship.py
hajime9652/observations
199
12782442
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.friendship import friendship def test_friendship(): """Test module friendship.py by downloading friendship.csv and testing shape of extracted data has 0 rows and 7 columns """ test_path = tempfile.mkdtemp() x_train, metadata = friendship(test_path) try: assert x_train.shape == (0, 7) except: shutil.rmtree(test_path) raise()
DS&Algo Programs in Python/inserting_heap.py
prathimacode-hub/HacktoberFest-2020
386
12782452
<reponame>prathimacode-hub/HacktoberFest-2020 import heapq H = [21,1,45,78,3,5] # Covert to a heap heapq.heapify(H) print(H) # Add element heapq.heappush(H,8) print(H)
Scripts/sims4communitylib/utils/sims/common_buff_utils.py
ColonolNutty/Sims4CommunityLibrary
118
12782469
""" The Sims 4 Community Library is licensed under the Creative Commons Attribution 4.0 International public license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/legalcode Copyright (c) COLONOLNUTTY """ from typing import Union, List, Tuple, Iterator from buffs.buff import Buff from distributor.shared_messages import IconInfoData from protocolbuffers.Localization_pb2 import LocalizedString from server_commands.argument_helpers import TunableInstanceParam, OptionalTargetParam from sims.sim_info import SimInfo from sims4.commands import Command, CommandType, CheatOutput from sims4.resources import Types from sims4communitylib.enums.buffs_enum import CommonBuffId from sims4communitylib.enums.strings_enum import CommonStringId from sims4communitylib.enums.types.component_types import CommonComponentType from sims4communitylib.exceptions.common_exceptions_handler import CommonExceptionHandler from sims4communitylib.logging.has_class_log import HasClassLog from sims4communitylib.mod_support.mod_identity import CommonModIdentity from sims4communitylib.modinfo import ModInfo from sims4communitylib.notifications.common_basic_notification import CommonBasicNotification from sims4communitylib.utils.common_component_utils import CommonComponentUtils from sims4communitylib.utils.localization.common_localization_utils import CommonLocalizationUtils from sims4communitylib.utils.sims.common_sim_name_utils import CommonSimNameUtils from sims4communitylib.utils.sims.common_sim_utils import CommonSimUtils class CommonBuffUtils(HasClassLog): """Utilities for manipulating Buffs on Sims. """ # noinspection PyMissingOrEmptyDocstring @classmethod def get_mod_identity(cls) -> CommonModIdentity: return ModInfo.get_identity() # noinspection PyMissingOrEmptyDocstring @classmethod def get_log_identifier(cls) -> str: return 'common_buff_utils' @staticmethod def has_fertility_boosting_buff(sim_info: SimInfo) -> bool: """has_fertility_boosting_buff(sim_info) Determine if any fertility boosting buffs are currently active on a sim. .. note:: Fertility Boosting Buffs: - Fertility Potion - Fertility Potion Masterwork - Fertility Potion Normal - Fertility Potion Outstanding - Massage Table Fertility Boost - Massage Table Fertility Boost Incense :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if they have any fertility boosting buffs. False, if not. :rtype: bool """ buff_ids = ( CommonBuffId.OBJECT_HERBALIST_POTION_FERTILITY_POTION, CommonBuffId.OBJECT_HERBALIST_POTION_FERTILITY_POTION_MASTERWORK, CommonBuffId.OBJECT_HERBALIST_POTION_FERTILITY_POTION_NORMAL, CommonBuffId.OBJECT_HERBALIST_POTION_FERTILITY_POTION_OUTSTANDING, CommonBuffId.OBJECT_MASSAGE_TABLE_FERTILITY_BOOST, CommonBuffId.OBJECT_MASSAGE_TABLE_FERTILITY_BOOST_INCENSE ) return CommonBuffUtils.has_buff(sim_info, *buff_ids) @staticmethod def has_morning_person_buff(sim_info: SimInfo) -> bool: """has_morning_person_buff(sim_info) Determine if any Morning Person Trait buffs are currently active on a Sim. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if they have any morning person buffs. False, if not. :rtype: bool """ buff_ids = ( CommonBuffId.TRAIT_MORNING_PERSON, CommonBuffId.TRAIT_MORNING_PERSON_ACTIVE, CommonBuffId.TRAIT_MORNING_PERSON_CHECK_ACTIVE ) return CommonBuffUtils.has_buff(sim_info, *buff_ids) @staticmethod def has_night_owl_buff(sim_info: SimInfo) -> bool: """has_night_owl_buff(sim_info) Determine if any Night Owl Trait buffs are currently active on a sim. :param sim_info: The Sim to check. :type sim_info: SimInfo :return: True, if they have any night owl buffs. False, if not. :rtype: bool """ buff_ids = ( CommonBuffId.TRAIT_NIGHT_OWL, CommonBuffId.TRAIT_NIGHT_OWL_ACTIVE, CommonBuffId.TRAIT_NIGHT_OWL_CHECK_ACTIVE ) return CommonBuffUtils.has_buff(sim_info, *buff_ids) @staticmethod def has_buff(sim_info: SimInfo, *buffs: Union[int, CommonBuffId, Buff]) -> bool: """has_buff(sim_info, *buffs) Determine if any of the specified buffs are currently active on a sim. :param sim_info: The sim being checked. :type sim_info: SimInfo :param buffs: The identifiers of Buffs. :type buffs: Union[int, CommonBuffId, Buff] :return: True, if the sim has any of the specified buffs. :rtype: int """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): return False if not buffs: return False buff_ids = [CommonBuffUtils.get_buff_id(buff) for buff in buffs] sim_buff_ids = CommonBuffUtils.get_buff_ids(sim_info) for sim_buff_id in sim_buff_ids: if sim_buff_id in buff_ids: return True return False @staticmethod def get_buffs(sim_info: SimInfo) -> List[Buff]: """get_buffs(sim_info) Retrieve all buffs currently active on a Sim. :param sim_info: The Sim to retrieve the buffs of. :type sim_info: SimInfo :return: A collection of currently active buffs on the Sim. :rtype: Tuple[Buff] """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): return list() from objects.components.buff_component import BuffComponent buff_component: BuffComponent = CommonComponentUtils.get_component(sim_info, CommonComponentType.BUFF) buffs = list() for buff in buff_component: if buff is None or not isinstance(buff, Buff): continue buffs.append(buff) return buffs @staticmethod def get_buff_ids(sim_info: SimInfo) -> List[int]: """get_buff_ids(sim_info) Retrieve decimal identifiers for all Buffs of a sim. :param sim_info: The sim to checked. :type sim_info: SimInfo :return: A collection of Buff identifiers on a Sim. :rtype: List[int] """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): return list() buff_ids = list() sim_buffs = CommonBuffUtils.get_buffs(sim_info) for buff in sim_buffs: buff_id = CommonBuffUtils.get_buff_id(buff) if buff_id is None: continue buff_ids.append(buff_id) return buff_ids @classmethod def add_buff(cls, sim_info: SimInfo, *buffs: Union[int, CommonBuffId], buff_reason: Union[int, str, LocalizedString, CommonStringId]=None) -> bool: """add_buff(sim_info, *buffs, buff_reason=None) Add the specified buffs to a sim. :param sim_info: The sim to add the specified buffs to. :type sim_info: SimInfo :param buffs: An iterable of identifiers of buffs being added. :type buffs: Union[int, CommonBuffId, Buff] :param buff_reason: The text that will display when the player hovers over the buffs. What caused the buffs to be added. :type buff_reason: Union[int, str, LocalizedString, CommonStringId], optional :return: True, if all of the specified buffs were successfully added. False, if not. :rtype: bool """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): cls.get_log().format_with_message('Failed to add Buff to Sim. They did not have a Buff component!', buffs=buffs, sim=sim_info, buff_reason=buff_reason) return False localized_buff_reason = None if buff_reason is not None: localized_buff_reason = CommonLocalizationUtils.create_localized_string(buff_reason) has_any = False success = True for buff_id in buffs: buff = CommonBuffUtils.load_buff_by_id(buff_id) if buff is None: cls.get_log().format_with_message('No buff found using identifier.', buffs=buffs, sim=sim_info, buff_reason=buff_reason, buff_id=buff_id) continue if not sim_info.add_buff_from_op(buff, buff_reason=localized_buff_reason): cls.get_log().format_with_message('Failed to add buff for unknown reasons.', buff=buff, sim=sim_info, buff_reason=buff_reason) success = False else: cls.get_log().format_with_message('Successfully added buff.', buff=buff, sim=sim_info, buff_reason=buff_reason) has_any = True cls.get_log().format_with_message('Finished adding buffs to Sim.', buffs=buffs, sim=sim_info, buff_reason=buff_reason, success=success, has_any=has_any) return success and has_any @staticmethod def remove_buff(sim_info: SimInfo, *buffs: Union[int, CommonBuffId, Buff]) -> bool: """remove_buff(sim_info, *buffs) Remove the specified buffs from a sim. :param sim_info: The sim to remove the specified buffs from. :type sim_info: SimInfo :param buffs: An iterable of identifiers of buffs being removed. :type buffs: Union[int, CommonBuffId, Buff] :return: True, if all of the specified buffs were successfully removed. False, if not. :rtype: bool """ if sim_info is None: raise AssertionError('Argument sim_info was None') if not CommonComponentUtils.has_component(sim_info, CommonComponentType.BUFF): return False has_any = False success = True for buff in buffs: buff = CommonBuffUtils.load_buff_by_id(buff) if buff is None: continue sim_info.remove_buff_by_type(buff) has_any = True if CommonBuffUtils.has_buff(sim_info, buff): success = False return success and has_any @staticmethod def get_buff_id(buff_identifier: Union[int, Buff]) -> Union[int, None]: """get_buff_id(buff_identifier) Retrieve the decimal identifier of a Buff. :param buff_identifier: The identifier or instance of a Buff. :type buff_identifier: Union[int, Buff] :return: The decimal identifier of the Buff or None if the Buff does not have an id. :rtype: Union[int, None] """ if isinstance(buff_identifier, int): return buff_identifier return getattr(buff_identifier, 'guid64', None) @staticmethod def get_buff_name(buff: Buff) -> Union[str, None]: """get_buff_name(buff) Retrieve the Name of a Buff. :param buff: An instance of a Buff. :type buff: Buff :return: The name of a Buff or None if a problem occurs. :rtype: Union[str, None] """ if buff is None: return None # noinspection PyBroadException try: return buff.__class__.__name__ or '' except: return '' @staticmethod def get_buff_names(buffs: Iterator[Buff]) -> Tuple[str]: """get_buff_names(buffs) Retrieve the Names of a collection of Buffs. :param buffs: A collection of Buff instances. :type buffs: Iterator[Buff] :return: A collection of names for all specified Buffs. :rtype: Tuple[str] """ if buffs is None or not buffs: return tuple() names: List[str] = [] for buff in buffs: # noinspection PyBroadException try: name = CommonBuffUtils.get_buff_name(buff) if not name: continue except: continue names.append(name) return tuple(names) @staticmethod def load_buff_by_id(buff: Union[int, CommonBuffId, Buff]) -> Union[Buff, None]: """load_buff_by_id(buff) Load an instance of a Buff by its identifier. :param buff: The identifier of a Buff. :type buff: Union[int, CommonBuffId, Buff] :return: An instance of a Buff matching the decimal identifier or None if not found. :rtype: Union[Buff, None] """ if isinstance(buff, Buff): return buff # noinspection PyBroadException try: buff: int = int(buff) except: buff: Buff = buff return buff from sims4.resources import Types from sims4communitylib.utils.common_resource_utils import CommonResourceUtils return CommonResourceUtils.load_instance(Types.BUFF, buff) @Command('s4clib.add_buff', command_type=CommandType.Live) def _common_add_buff(buff: TunableInstanceParam(Types.BUFF), opt_sim: OptionalTargetParam=None, buff_reason: str=None, _connection: int=None): from server_commands.argument_helpers import get_optional_target output = CheatOutput(_connection) if buff is None: output('Failed, Buff not specified or Buff did not exist! s4clib.add_buff <buff_name_or_id> [opt_sim=None]') return sim_info = CommonSimUtils.get_sim_info(get_optional_target(opt_sim, _connection)) if sim_info is None: output('Failed, no Sim was specified or the specified Sim was not found!') return sim_name = CommonSimNameUtils.get_full_name(sim_info) output('Adding buff {} to Sim {}'.format(str(buff), sim_name)) try: if CommonBuffUtils.add_buff(sim_info, buff, buff_reason=buff_reason): output('Successfully added buff.') else: output('Failed to add buff.') except Exception as ex: CommonExceptionHandler.log_exception(ModInfo.get_identity(), 'Failed to add buff {} to Sim {}.'.format(str(buff), sim_name), exception=ex) output('Failed to add buff {} to Sim {}. {}'.format(str(buff), sim_name, str(ex))) @Command('s4clib.remove_buff', command_type=CommandType.Live) def _common_remove_buff(buff: TunableInstanceParam(Types.BUFF), opt_sim: OptionalTargetParam=None, _connection: int=None): from server_commands.argument_helpers import get_optional_target output = CheatOutput(_connection) if buff is None: output('Failed, Buff not specified or Buff did not exist! s4clib.remove_buff <buff_name_or_id> [opt_sim=None]') return sim_info = CommonSimUtils.get_sim_info(get_optional_target(opt_sim, _connection)) if sim_info is None: output('Failed, no Sim was specified or the specified Sim was not found!') return sim_name = CommonSimNameUtils.get_full_name(sim_info) output('Removing buff {} from Sim {}'.format(str(buff), sim_name)) try: if CommonBuffUtils.remove_buff(sim_info, buff): output('Successfully removed buff.') else: output('Failed to remove buff.') except Exception as ex: CommonExceptionHandler.log_exception(ModInfo.get_identity(), 'Failed to remove buff {} from Sim {}.'.format(str(buff), sim_name), exception=ex) output('Failed to remove buff {} from Sim {}. {}'.format(str(buff), sim_name, str(ex))) @Command('s4clib.show_active_buffs', command_type=CommandType.Live) def _common_show_active_buffs(opt_sim: OptionalTargetParam=None, _connection: int=None): from server_commands.argument_helpers import get_optional_target output = CheatOutput(_connection) sim = get_optional_target(opt_sim, _connection) sim_info = CommonSimUtils.get_sim_info(sim) if sim_info is None: output('Failed, no Sim was specified or the specified Sim was not found!') return sim_name = CommonSimNameUtils.get_full_name(sim_info) output('Showing active buffs of Sim {}'.format(sim_name)) try: sim_buff_strings: List[str] = list() for buff in CommonBuffUtils.get_buffs(sim_info): buff_name = CommonBuffUtils.get_buff_name(buff) buff_id = CommonBuffUtils.get_buff_id(buff) sim_buff_strings.append('{} ({})'.format(buff_name, buff_id)) sim_buff_strings = sorted(sim_buff_strings, key=lambda x: x) sim_buffs = ', '.join(sim_buff_strings) text = '' text += 'Active Buffs:\n{}\n\n'.format(sim_buffs) CommonBasicNotification( CommonLocalizationUtils.create_localized_string('{} Active Buffs ({})'.format(sim_name, CommonSimUtils.get_sim_id(sim_info))), CommonLocalizationUtils.create_localized_string(text) ).show( icon=IconInfoData(obj_instance=CommonSimUtils.get_sim_instance(sim_info)) ) except Exception as ex: CommonExceptionHandler.log_exception(ModInfo.get_identity(), 'Failed to show active buffs of Sim {}.'.format(sim_name), exception=ex) output('Failed to show active buffs of Sim {}. {}'.format(sim_name, str(ex)))
tests/recipes/test_libffi.py
syrykh/python-for-android
6,278
12782529
import unittest from tests.recipes.recipe_lib_test import BaseTestForMakeRecipe class TestLibffiRecipe(BaseTestForMakeRecipe, unittest.TestCase): """ An unittest for recipe :mod:`~pythonforandroid.recipes.libffi` """ recipe_name = "libffi" sh_command_calls = ["./autogen.sh", "autoreconf", "./configure"] def test_get_include_dirs(self): list_of_includes = self.recipe.get_include_dirs(self.arch) self.assertIsInstance(list_of_includes, list) self.assertTrue(list_of_includes[0].endswith("include"))
examples/demo_purge.py
shirui-japina/tensorboardX
5,378
12782537
from time import sleep from tensorboardX import SummaryWriter with SummaryWriter(logdir='runs/purge') as w: for i in range(100): w.add_scalar('purgetest', i, i) sleep(1.0) with SummaryWriter(logdir='runs/purge', purge_step=42) as w: # event 42~99 are removed (inclusively) for i in range(42, 100): w.add_scalar('purgetest', 42, i)
asset/test.py
745184532/cmdb
251
12782542
<reponame>745184532/cmdb import time print(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
quspin/basis/basis_1d/_check_1d_symm.py
anton-buyskikh/QuSpin
195
12782575
<gh_stars>100-1000 from __future__ import print_function, division import warnings def flip_sublat(opstr,indx,lat=0): sign = 1 opstr = [str(s) for s in opstr] for s,i,j in zip(opstr,indx,range(len(indx))): if ((i % 2) == (lat % 2)): if (s in ['z','y']): sign *= -1 elif (s == "+"): opstr[j] = '-' elif (s == "-"): opstr[j] = '+' return sign,"".join(opstr) def check_T(sort_opstr,operator_list,L,a): missing_ops=[] for i in range(0,L//a,1): for op in operator_list: opstr = str(op[0]) indx = list(op[1]) for j,ind in enumerate(indx): indx[j] = (ind+i*a)%L new_op = list(op) new_op[1] = indx new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return missing_ops def check_Z(sort_opstr,operator_list): missing_ops=[] odd_ops=[] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) z_count = opstr[:i].count("z") y_count = opstr[:i].count("y") if ((y_count + z_count) % 2) != 0: odd_ops.append(op) new_op = list(op) new_op[0] = new_op[0][:i].replace("+","#").replace("-","+").replace("#","-") + op[0][i:] new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return odd_ops,missing_ops def check_P(sort_opstr,operator_list,L): missing_ops = [] for op in operator_list: indx = list(op[1]) for j,ind in enumerate(indx): indx[j] = (L-1-ind) % L new_op = list(op) new_op[1] = indx new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return missing_ops def check_PZ(sort_opstr,operator_list,L): missing_ops = [] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) for j,ind in enumerate(indx): indx[j] = (L-1-ind) % L sign = (-1)**(opstr[:i].count('z')+opstr.count('y')) new_op = list(op) new_op[0] = new_op[0][:i].replace("+","#").replace("-","+").replace("#","-") + op[0][i:] new_op[1] = indx new_op[2] *= sign new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return missing_ops def check_ZA(sort_opstr,operator_list): missing_ops=[] odd_ops=[] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) sign,new_opstr = flip_sublat(opstr[:i],indx[:i],lat=0) if sign == -1: odd_ops.append(op) new_op = list(op) new_op[0] = new_opstr + opstr[i:] new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return odd_ops,missing_ops def check_ZB(sort_opstr,operator_list): missing_ops=[] odd_ops=[] for op in operator_list: opstr = str(op[0]) indx = list(op[1]) if opstr.count("|") == 1: i = opstr.index("|") else: i = len(opstr) sign,new_opstr = flip_sublat(opstr[:i],indx[:i],lat=1) if sign == -1: odd_ops.append(op) new_op = list(op) new_op[0] = new_opstr + opstr[i:] new_op = sort_opstr(new_op) if not (new_op in operator_list): missing_ops.append(new_op) return odd_ops,missing_ops
asana/resources/project_memberships.py
FiyaFly/python-asana
266
12782626
<filename>asana/resources/project_memberships.py from .gen.project_memberships import _ProjectMemberships class ProjectMemberships(_ProjectMemberships): """Project Memberships resource""" def find_by_project(self, project, params={}, **options): """Returns the compact project membership records for the project. Parameters ---------- project : {Gid} The project for which to fetch memberships. [params] : {Object} Parameters for the request - [user] : {String} If present, the user to filter the memberships to. """ path = "/projects/%s/project_memberships" % (project) return self.client.get_collection(path, params, **options) def find_by_id(self, project_membership, params={}, **options): """Returns the project membership record. Parameters ---------- project_membership : {Gid} Globally unique identifier for the project membership. [params] : {Object} Parameters for the request """ path = "/project_memberships/%s" % (project_membership) return self.client.get(path, params, **options)
amlb/utils/serialization.py
PGijsbers/automlbenchmark
282
12782644
<filename>amlb/utils/serialization.py import logging import math import os import pickle import re from typing import Optional from .core import Namespace as ns, json_dump, json_load from .process import profile log = logging.getLogger(__name__) def _import_data_libraries(): try: import numpy as np except ImportError: np = None try: import pandas as pd except ImportError: pd = None try: import scipy.sparse as sp except ImportError: sp = None return np, pd, sp ser_config = ns( # the serializer to use when there's no specific serializer available. # mainly intended to serialize simple data structures like lists. # allowed=['pickle', 'json'] fallback_serializer='json', # if numpy can use pickle to serialize ndarrays, numpy_allow_pickle=True, # format used to serialize pandas dataframes/series between processes. # allowed=['pickle', 'parquet', 'hdf', 'json'] pandas_serializer='parquet', # the compression format used when serializing pandas dataframes/series. # allowed=[None, 'infer', 'bz2', 'gzip'] # 'infer' (= None) is the fastest but no compression, # 'gzip' fast write and read with good compression. # 'bz2' looks like the best compression/time ratio (faster write, sometimes slightly slower read) pandas_compression='infer', # the compression format used when serializing pandas dataframes/series to parquet. # allowed=[None, 'snappy', 'gzip', 'brotli'] pandas_parquet_compression=None, # if sparse matrices should be compressed during serialization. sparse_matrix_compression=True, # if sparse matrices should be deserialized to some specific format: # allowed=[None, 'array', 'dense'] # None (no change), 'array' (numpy), 'dense' (dense matrix). sparse_matrix_deserialized_format=None, # if sparse dataframes should be deserialized to some specific format: # allowed=[None, 'array', 'dense'] # None (no change), 'array' (numpy), 'dense' (dense dataframe/series). sparse_dataframe_deserialized_format=None, ) __series__ = '_series_' class SerializationError(Exception): pass def is_serializable_data(data): np, pd, sp = _import_data_libraries() return isinstance(data, (np.ndarray, sp.spmatrix, pd.DataFrame, pd.Series)) def is_sparse(data): np, pd, sp = _import_data_libraries() return ((sp and isinstance(data, sp.spmatrix)) # sparse matrix or (pd and isinstance(data, pd.Series) and pd.api.types.is_sparse(data.dtype)) # sparse Series or (pd and isinstance(data, pd.DataFrame) # if one column is sparse, the dataframe is considered as sparse and any(pd.api.types.is_sparse(dt) for dt in data.dtypes))) def unsparsify(*data, fmt='dense'): if len(data) == 1: return _unsparsify(data[0], fmt=fmt) else: return tuple(_unsparsify(d, fmt=fmt) for d in data) def _unsparsify(data, fmt=None): """ :param data: the matrix to process. :param fmt: one of None, 'array', 'dense' :return: the original matrix is fmt is None, a numpy array if fmt is 'array', a dense version of the data type if fmt is 'dense'. """ if fmt is None: return data np, pd, sp = _import_data_libraries() if sp and isinstance(data, sp.spmatrix): return (data.toarray() if fmt == 'array' else data.todense() if fmt == 'dense' else data) elif pd and isinstance(data, (pd.DataFrame, pd.Series)): return (data.to_numpy(copy=False) if fmt == 'array' else _pd_to_dense(pd, data) if fmt == 'dense' and is_sparse(data) else data) else: return data def _pd_to_dense(pd, df): if hasattr(df, 'sparse'): return df.sparse.to_dense() data = {k: (v.sparse.to_dense() if hasattr(v, 'sparse') else v) for k, v in df.items()} return pd.DataFrame(data, index=df.index, columns=df.columns) def _pd_dtypes_to_str(pd, df): return {k: str(v) for k, v in df.dtypes.items()} def _pd_dtypes_from_str(pd, dt): def dt_from_str(s): m_sparse = re.match(r"Sparse\[(.*)]", s) if m_sparse: sub_type, fill_value = [t.strip() for t in m_sparse.group(1).split(",", 1)] try: fill_value = eval(fill_value, {'nan': math.nan, '<NA>': pd.NA}) except ValueError: pass dt = pd.api.types.pandas_dtype(f"Sparse[{sub_type}]") return pd.SparseDtype(dt, fill_value=fill_value) else: return pd.api.types.pandas_dtype(s) return {k: dt_from_str(v) for k, v in dt.items()} @profile(log) def serialize_data(data, path, config: Optional[ns] = None): config = (config | ser_config) if config else ser_config root, ext = os.path.splitext(path) np, pd, sp = _import_data_libraries() if np and isinstance(data, np.ndarray): path = f"{root}.npy" np.save(path, data, allow_pickle=config.numpy_allow_pickle) elif sp and isinstance(data, sp.spmatrix): # use custom extension to recognize sparsed matrices from file name. # .npz is automatically appended if missing, and can also potentially be used for numpy arrays. path = f"{root}.spy.npz" sp.save_npz(path, data, compressed=config.sparse_matrix_compression) elif pd and isinstance(data, (pd.DataFrame, pd.Series)): path = f"{root}.pd" if isinstance(data, pd.DataFrame): # pandas has this habit of inferring value types when data are loaded from file, # for example, 'true' and 'false' are converted automatically to booleans, even for column names… data.rename(str, axis='columns', inplace=True) ser = config.pandas_serializer if ser == 'pickle': data.to_pickle(path, compression=config.pandas_compression) elif ser == 'parquet': if isinstance(data, pd.Series): data = pd.DataFrame({__series__: data}) # parquet serialization doesn't support sparse dataframes if is_sparse(data): path = f"{root}.sparse.pd" dtypes = _pd_dtypes_to_str(pd, data) json_dump(dtypes, f"{path}.dtypes", style='compact') data = unsparsify(data) data.to_parquet(path, compression=config.pandas_parquet_compression) elif ser == 'hdf': data.to_hdf(path, os.path.basename(path), mode='w', format='table') elif ser == 'json': data.to_json(path, compression=config.pandas_compression) else: # fallback serializer if config.fallback_serializer == 'json': path = f"{root}.json" json_dump(data, path, style='compact') else: path = f"{root}.pkl" with open(path, 'wb') as f: pickle.dump(data, f) return path @profile(log) def deserialize_data(path, config: Optional[ns] = None): config = (config | ser_config) if config else ser_config np, pd, sp = _import_data_libraries() base, ext = os.path.splitext(path) if ext == '.npy': if np is None: raise SerializationError(f"Numpy is required to deserialize {path}.") return np.load(path, allow_pickle=config.numpy_allow_pickle) elif ext == '.npz': _, ext2 = os.path.splitext(base) if ext2 == '.spy': if sp is None: raise SerializationError(f"Scipy is required to deserialize {path}.") sp_matrix = sp.load_npz(path) return unsparsify(sp_matrix, fmt=config.sparse_matrix_deserialized_format) else: if np is None: raise SerializationError(f"Numpy is required to deserialize {path}.") with np.load(path, allow_pickle=config.numpy_pickle) as loaded: return loaded elif ext == '.pd': if pd is None: raise SerializationError(f"Pandas is required to deserialize {path}.") ser = config.pandas_serializer df = None if ser == 'pickle': df = pd.read_pickle(path, compression=config.pandas_compression) elif ser == 'parquet': df = pd.read_parquet(path) if len(df.columns) == 1 and df.columns[0] == __series__: df = df.squeeze() _, ext2 = os.path.splitext(base) if config.sparse_dataframe_deserialized_format is None and ext2 == '.sparse': # trying to restore dataframe as sparse if it was as such before serialization # and if the dataframe format should remain unchanged j_dtypes = json_load(f"{path}.dtypes") dtypes = _pd_dtypes_from_str(pd, j_dtypes) df = df.astype(dtypes, copy=False) elif ser == 'hdf': df = pd.read_hdf(path, os.path.basename(path)) elif ser == 'json': df = pd.read_json(path, compression=config.pandas_compression) return unsparsify(df, fmt=config.sparse_dataframe_deserialized_format) elif ext == '.json': return json_load(path) elif ext == '.pkl': with open(path, 'rb') as f: return pickle.load(f) else: raise SerializationError(f"Can not deserialize file `{path}` in unknown format.")
lib/galaxy/job_metrics/formatting.py
rikeshi/galaxy
1,085
12782656
<reponame>rikeshi/galaxy """Utilities related to formatting job metrics for human consumption.""" class JobMetricFormatter: """Format job metric key-value pairs for human consumption in Web UI.""" def format(self, key, value): return (str(key), str(value)) def seconds_to_str(value): """Convert seconds to a simple simple string describing the amount of time.""" mins, secs = divmod(value, 60) hours, mins = divmod(mins, 60) if value < 60: return f"{secs} second{'s' if secs != 1 else ''}" elif value < 3600: return f"{mins} minute{'s' if mins != 1 else ''}" else: return f"{hours} hour{'s' if hours != 1 else ''} and {mins} minute{'s' if mins != 1 else ''}"
aliyun-python-sdk-nlp-automl/aliyunsdknlp_automl/__init__.py
yndu13/aliyun-openapi-python-sdk
1,001
12782660
__version__ = '0.0.9'
sdk/attestation/azure-security-attestation/tests/preparers_async.py
rsdoherty/azure-sdk-for-python
2,728
12782663
<filename>sdk/attestation/azure-security-attestation/tests/preparers_async.py<gh_stars>1000+ # coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from typing import Awaitable, List from azure.security.attestation import AttestationType try: from typing import TYPE_CHECKING except ImportError: TYPE_CHECKING = False from typing import Awaitable, Callable, Dict, Optional, Any, TypeVar, overload T = TypeVar("T") def AllAttestationTypes(func: Callable[..., Awaitable[T]] = None, **kwargs: Any): """Decorator to apply to function to add attestation_type kwarg for each attestation type.""" async def wrapper(*args, **kwargs) -> Callable[..., Awaitable[T]]: for attestation_type in [ AttestationType.SGX_ENCLAVE, AttestationType.OPEN_ENCLAVE, AttestationType.TPM, ]: await func(*args, attestation_type=attestation_type, **kwargs) return wrapper def AllInstanceTypes( func: Callable[..., Awaitable[T]] = None, include_shared: bool = True, **kwargs: Any ): """Decorator to apply to function to add instance_url kwarg for each instance type.""" async def wrapper(*args, **kwargs) -> Callable[..., Awaitable[T]]: instances = [] # type:List[str] instances.append(kwargs.get("attestation_aad_url")) instances.append(kwargs.get("attestation_isolated_url")) if include_shared: instances.append( "https://shared" + kwargs.get("attestation_location_short_name") + "." + kwargs.get("attestation_location_short_name") + ".attest.azure.net" ) for instance_url in instances: await func(*args, instance_url=instance_url, **kwargs) return wrapper
mrec/evaluation/__init__.py
imall100/mrec
392
12782669
class Evaluator(object): """ Compute metrics for recommendations that have been written to file. Parameters ---------- compute_metrics : function(list,list) The evaluation function which should accept two lists of predicted and actual item indices. max_items : int The number of recommendations needed to compute the evaluation function. """ def __init__(self,compute_metrics,max_items): self.compute_metrics = compute_metrics self.max_items = max_items def _add_metrics(self,predicted,actual): metrics = self.compute_metrics(predicted,actual) if metrics: for m,val in metrics.iteritems(): self.cum_metrics[m] += val self.count += 1 def process(self,testdata,recsfile,start,end,offset=1): """ Parameters ---------- testdata : scipy sparse matrix The test items for each user. recsfile : str Filepath to the recommendations. The file should contain TSV of the form: user, item, score. IMPORTANT: the recommendations must be sorted by user and score. start : int First user to evaluate. end: int One after the last user to evaluate. offset : int Index offset for users and items in recommendations file. Returns ------- cum_metrics : dict Aggregated metrics i.e. total values for all users. count : int The number of users for whom metrics were computed. """ from collections import defaultdict self.cum_metrics = defaultdict(float) self.count = 0 last_user = start recs = [] for line in open(recsfile): user,item,score = line.strip().split('\t') user = int(user)-1 # convert to 0-indxed item = int(item)-1 if user >= end: break if user < start: continue if user != last_user: self._add_metrics(recs,testdata[last_user,:].indices.tolist()) last_user = user recs = [] if len(recs) < self.max_items: recs.append(item) self._add_metrics(recs,testdata[last_user,:].indices.tolist()) return self.cum_metrics,self.count
Data Structures/Linked Lists/Singly Linked List/Single-linked-list-operations.py
siddhi-244/CompetitiveProgrammingQuestionBank
931
12782676
# A pythom program for all operations performed on singly linked-list. # Time-Complexity = O(n) # Space-Complexity = O(n) class Node: def __init__(self, data=None, next=None): # Creation of Node self.data = data self.next = next class LinkedList: def __init__(self): self.head = None # head points the first node def print(self): if self.head is None: print("Linked list is empty") return itr = self.head llstr = '' # empty string while itr: llstr += str(itr.data)+' --> ' if itr.next else str(itr.data) itr = itr.next print(llstr) def length(self): # will calculate length of the linked list count = 0 itr = self.head while itr: count += 1 itr = itr.next return count def insert_at_begining(self, data): node = Node(data, self.head) # Creating a new node calling Node method self.head = node def insert_at_end(self, data): if self.head is None: self.head = Node(data, None) return itr = self.head while itr.next: itr = itr.next itr.next = Node(data, None) def insert_at(self, index, data): if index < 0 or index > self.length(): raise Exception("Invalid Index") if index == 0: self.insert_at_begining(data) return count = 0 itr = self.head while itr: if count == index - 1: node = Node(data, itr.next) itr.next = node break itr = itr.next count += 1 def remove_at(self, index): if index < 0 or index >= self.length(): raise Exception("Invalid Index") if index == 0: self.head = self.head.next return count = 0 itr = self.head while itr: if count == index - 1: itr.next = itr.next.next # to delete the specified node break itr = itr.next count += 1 def insert_values(self, data_list): self.head = None for data in data_list: self.insert_at_end(data) # removing element at linkedlist with Value def removeval(self, value): count = 0 temp = self.head while temp: if value != temp.data: count += 1 temp = temp.next if count == self.length(): print("Value is not present") else: if value == self.head.data: self.head = self.head.next return temp = self.head while temp: if value == temp.next.data: temp.next = temp.next.next break temp = temp.next if __name__ == '__main__': node1 = LinkedList() ins = list(input("Enter a values to be inserted by giving space[eg: python c++ java] : ").rstrip().split()) node1.insert_values(ins) node1.print() ind = int(input("Enter the index to be added: ")) val = input('Enter the value: ') node1.insert_at(ind, val) node1.print() remm = int(input('Enter the index to be removed: ')) node1.remove_at(remm) node1.print() remval = input('Enter the value to be removed: ') node1.removeval(remval) node1.print() inss = list(input("Enter a values to be inserted by giving space[eg: 45 30 22] : ").rstrip().split()) node1.insert_values(inss) node1. print() inend = int(input('Enter the number to be inserted at the end: ')) node1.insert_at_end(inend) node1.print() remval1 = input('Enter the value to be removed: ') node1.removeval(remval1) node1.print()
opennre/tokenization/word_piece_tokenizer.py
WinterSoHot/OpenNRE
3,284
12782735
<filename>opennre/tokenization/word_piece_tokenizer.py # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """WordpieceTokenizer classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unicodedata from .utils import (load_vocab, convert_to_unicode, clean_text, split_on_whitespace, convert_by_vocab, tokenize_chinese_chars) class WordpieceTokenizer(object): """Runs WordPiece tokenziation.""" def __init__(self, vocab = None, unk_token="[UNK]", max_input_chars_per_word=200): self.vocab = load_vocab(vocab) self.inv_vocab = {v: k for k, v in self.vocab.items()} self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer`. Returns: output_tokens: A list of wordpiece tokens. current_positions: A list of the current positions for the original words in text . """ text = convert_to_unicode(text) text = clean_text(text) text = tokenize_chinese_chars(text) output_tokens = [] current_positions = [] token_list = split_on_whitespace(text) for chars in token_list: if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) if start > 0: substr = "##" + chars[start:end] else: substr = chars[start:end] cur_substr = None while start < end: if substr in self.vocab: cur_substr = substr break end -= 1 substr = substr[:-1] if cur_substr is None: is_bad = True break else: sub_tokens.append(cur_substr) start = end current_positions.append([]) if is_bad: current_positions[-1].append(len(output_tokens)) output_tokens.append(self.unk_token) current_positions[-1].append(len(output_tokens)) else: current_positions[-1].append(len(output_tokens)) output_tokens.extend(sub_tokens) current_positions[-1].append(len(output_tokens)) return output_tokens, current_positions def convert_tokens_to_ids(self, tokens): return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): return convert_by_vocab(self.inv_vocab, ids)
PyEngine3D/Utilities/Config.py
ubuntunux/PyEngine3D
121
12782761
<reponame>ubuntunux/PyEngine3D<gh_stars>100-1000 import os import configparser import traceback from . import Logger # util class class Empty: pass def evaluation(value): # find value type try: evalValue = eval(value) if type(evalValue) in [int, float, list, tuple, dict]: return evalValue except: return value def getValue(config, section, option, default_value=None): return evaluation(config[section][option]) if config.has_option(section, option) else default_value def setValue(config, section, option, value): if not config.has_section(section): config.add_section(section) config.set(section, option, value) # ------------------------------ # # CLASS : Configure # Usage : # config = Configure() # # get value example, section:Screen, option:wdith # print(config.Screen.width) # ------------------------------ # class Config: def __init__(self, configFilename, log_level=Logger.WARN, prevent_lowercase=True): self.log_level = log_level self.isChanged = False self.filename = configFilename self.config = configparser.ConfigParser() self.config.read(configFilename) # prevent the key value being lowercase if prevent_lowercase: self.config.optionxform = lambda option_name: option_name if self.log_level <= Logger.INFO: print("Load Config : %s" % self.filename) # set sections for section in self.config.sections(): if self.log_level == Logger.DEBUG: print("[%s]" % section) if not hasattr(self, section): setattr(self, section, Empty()) # set value to member variables current_section = getattr(self, section) for option in self.config[section]: value = self.config.get(section, option) if self.log_level == Logger.DEBUG: print("%s = %s" % (option, value)) setattr(current_section, option, evaluation(value)) def hasValue(self, section, option): return self.config.has_option(section, option) def getValue(self, section, option, default_value=None): return evaluation(self.config[section][option]) if self.config.has_option(section, option) else default_value def setValue(self, section, option, value): # set value if not self.config.has_section(section): self.config.add_section(section) self.config[section][option] = str(value) # set value to member variables if not hasattr(self, section): setattr(self, section, Empty()) self.isChanged = True elif not self.isChanged: self.isChanged = value != getattr(self, section) current_section = getattr(self, section) setattr(current_section, option, value) def setDefaultValue(self, section, option, value): if not self.hasValue(section, option): self.setValue(section, option, value) def save(self): if self.isChanged or not os.path.exists(self.filename): with open(self.filename, 'w') as configfile: self.config.write(configfile) if self.log_level <= Logger.INFO: print("Saved Config : " + self.filename) self.isChanged = False def getFilename(self): return self.filename if __name__ == '__main__': import unittest class test(unittest.TestCase): def testConfig(self): # load test testConfig = Config("TestConfig.ini", debug=False) # set value testConfig.setValue("TestSection", "test_int", 45) testConfig.setValue("TestSection", "test_float", 0.1) testConfig.setValue("TestSection", "test_string", "Hello, World") testConfig.setValue("TestSection", "test_list", [1, 2, 3]) testConfig.setValue("TestSection", "test_tuple", (4, 5, 6)) testConfig.setValue("TestSection", "test_dict", {"x":7.0, "y":8.0}) # call test self.assertEqual(testConfig.TestSection.test_int, 45) self.assertEqual(testConfig.TestSection.test_float, 0.1) self.assertEqual(testConfig.TestSection.test_string, "Hello, World") self.assertEqual(testConfig.TestSection.test_list, [1, 2, 3]) self.assertEqual(testConfig.TestSection.test_tuple, (4, 5, 6)) self.assertEqual(testConfig.TestSection.test_dict['x'], 7.0) self.assertEqual(testConfig.TestSection.test_dict['y'], 8.0) # set value test testConfig.setValue("TestSection", "test_int", 99) self.assertEqual(testConfig.TestSection.test_int, 99) testConfig.save() unittest.main()
test/binaries/foo_v1.py
drmikecrowe/cod
405
12782809
#!/usr/bin/env python3 """ Usage: foo [OPTION]... --foo1 useful option foo --bar1 useful option bar """ import sys if __name__ == "__main__": print(__doc__, file=sys.stderr)
tests/integration/helper.py
covx/graypy_v6
181
12782811
<filename>tests/integration/helper.py #!/usr/bin/env python # -*- coding: utf-8 -*- """helper functions for testing graypy with a local Graylog instance""" from time import sleep from uuid import uuid4 import requests def get_unique_message(): return str(uuid4()) DEFAULT_FIELDS = [ "message", "full_message", "source", "level", "func", "file", "line", "module", "logger_name", ] BASE_API_URL = 'http://127.0.0.1:9000/api/search/universal/relative?query=message:"{0}"&range=300&fields=' def get_graylog_response(message, fields=None): """Search for a given log message (with possible additional fields) within a local Graylog instance""" fields = fields if fields else [] tries = 0 while True: try: return _parse_api_response( api_response=_get_api_response(message, fields), wanted_message=message ) except ValueError: sleep(2) if tries == 5: raise tries += 1 def _build_api_string(message, fields): return BASE_API_URL.format(message) + "%2C".join(set(DEFAULT_FIELDS + fields)) def _get_api_response(message, fields): url = _build_api_string(message, fields) api_response = requests.get( url, auth=("admin", "admin"), headers={"accept": "application/json"} ) return api_response def _parse_api_response(api_response, wanted_message): assert api_response.status_code == 200 print(api_response.json()) for message in api_response.json()["messages"]: if message["message"]["message"] == wanted_message: return message["message"] raise ValueError( "wanted_message: '{}' not within api_response: {}".format( wanted_message, api_response ) )
tests/test_installation_commands.py
figufema/TesteClone
1,521
12782823
# -*- coding: utf-8 -*- # Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the google.colab._installation_commands package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import unittest import IPython from IPython.utils import io from google.colab import load_ipython_extension MOCKED_COMMANDS = { 'pip install pandas': """ Requirement already satisfied: pandas in /usr/local/lib/python2.7/dist-packages (0.22.0) Requirement already satisfied: pytz>=2011k in /usr/local/lib/python2.7/dist-packages (from pandas) (2018.9) Requirement already satisfied: python-dateutil in /usr/local/lib/python2.7/dist-packages (from pandas) (2.5.3) Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python2.7/dist-packages (from pandas) (1.16.2) Requirement already satisfied: six>=1.5 in /usr/local/lib/python2.7/dist-packages (from python-dateutil->pandas) (1.11.0) """, 'pip install -U numpy': """ Collecting numpy Downloading https://files.pythonhosted.org/packages/c4/33/8ec8dcdb4ede5d453047bbdbd01916dbaccdb63e98bba60989718f5f0876/numpy-1.16.2-cp27-cp27mu-manylinux1_x86_64.whl (17.0MB) 100% |============================| 17.0MB 660kB/s fastai 0.7.0 has requirement torch<0.4, but you'll have torch 1.0.1.post2 which is incompatible. albumentations 0.1.12 has requirement imgaug<0.2.7,>=0.2.5, but you'll have imgaug 0.2.8 which is incompatible. featuretools 0.4.1 has requirement pandas>=0.23.0, but you'll have pandas 0.22.0 which is incompatible. Installing collected packages: numpy Found existing installation: numpy 1.14.6 Uninstalling numpy-1.14.6: Successfully uninstalled numpy-1.14.6 Successfully installed numpy-1.16.2 """ } class MockInteractiveShell(IPython.InteractiveShell): """Interactive shell that mocks some commands.""" def system(self, cmd): if cmd in MOCKED_COMMANDS: sys.stderr.write('') sys.stdout.write(MOCKED_COMMANDS[cmd]) self.user_ns['_exit_code'] = 0 else: return super(MockInteractiveShell, self).system(cmd) class InstallationCommandsTest(unittest.TestCase): @classmethod def setUpClass(cls): super(InstallationCommandsTest, cls).setUpClass() cls.ip = MockInteractiveShell() load_ipython_extension(cls.ip) def testPipMagicPandas(self): output = self.run_cell('%pip install pandas') self.assertEqual([], output.outputs) self.assertEqual('', output.stderr) self.assertIn('pandas', output.stdout) def testPipMagicNumpy(self): output = self.run_cell('%pip install -U numpy') self.assertEqual([], output.outputs) self.assertEqual('', output.stderr) self.assertIn('numpy', output.stdout) def run_cell(self, cell_contents): with io.capture_output() as captured: self.ip.run_cell(cell_contents) return captured
sfn-log-export/src/functions/export_status_check/index.py
Domt301/serverless-patterns
883
12782875
<gh_stars>100-1000 import boto3 log_client = boto3.client('logs') def handler(event, context): task_id = event['taskId'] result = log_client.describe_export_tasks(taskId=task_id) # per documentation, only one export can run at a time per account, # therefore ensure none are running in this account # https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/logs.html#CloudWatchLogs.Client.describe_export_tasks # result = log_client.describe_export_tasks(statusCode='CANCELLED' | 'PENDING' | 'PENDING_CANCEL' | 'RUNNING') status = 'RUNNING' task_status = result.get('exportTasks') if len(task_status) != 0: task_status = task_status[0].get('status').get('code') if task_status not in ['PENDING', 'PENDING_CANCEL', 'RUNNING']: status = 'NOT_RUNNING' return {"Status": status}
scripts/gen_chainercv_test.py
disktnk/chainer-compiler
116
12782999
<reponame>disktnk/chainer-compiler """Tests for ChainerCV related custom ops.""" import chainer import chainer.functions as F import chainer.links as L import numpy as np import onnx import onnx_script import test_case _has_chnainercv = True try: import chainercv_rpn except ImportError: _has_chnainercv = False def aranges(*shape): r = np.prod(shape) v = np.arange(r).reshape(shape).astype(np.float32) v -= r / 2 + 0.1 return v def _get_scales(): return (1 / 4, 1 / 8, 1 / 16, 1 / 32, 1 / 64) def _get_hs(num_channels): hs = [] for h, w in [(200, 272), (100, 136), (50, 68), (25, 34), (13, 17)]: hs.append(aranges(1, num_channels, h, w)) return hs def _get_rpn_locs_confs(): locs = [] confs = [] for i in [163200, 40800, 10200, 2550, 663]: locs.append(aranges(1, i, 4)) confs.append(aranges(1, i)) return locs, confs def chainercv_test_rpn_decode(test_name): rpn = chainercv_rpn.RPN(_get_scales()) hs = _get_hs(1) locs, confs = _get_rpn_locs_confs() anchors = rpn.anchors(h.shape[2:] for h in hs) in_shape = (1, 3, 800, 1088) rois, roi_indices = rpn.decode( [chainer.Variable(l) for l in locs], [chainer.Variable(c) for c in confs], anchors, in_shape) gb = onnx_script.GraphBuilder(test_name) hs_v = [gb.input('hs_%d' % i, h) for i, h in enumerate(hs)] locs_v = [gb.input('loc_%d' % i, l) for i, l in enumerate(locs)] confs_v = [gb.input('conf_%d' % i, c) for i, c in enumerate(confs)] in_shape_v = gb.input('in_shape', np.array(in_shape)) rois_v = 'rois' roi_indices_v = 'roi_indices' gb.ChainerDoSomething(hs_v + locs_v + confs_v + [in_shape_v], outputs=[rois_v, roi_indices_v], function_name='ChainerCVRPNDecode') gb.output(rois_v, rois) gb.output(roi_indices_v, roi_indices) gb.gen_test() class TestCase(test_case.TestCase): def __init__(self, name, func, **kwargs): super(TestCase, self).__init__('out', name, **kwargs) self.func = func def get_tests(): if not _has_chnainercv: return [] tests = [] def test(name, func, **kwargs): tests.append(TestCase(name, func, **kwargs)) test('chainercv_test_rpn_decode', chainercv_test_rpn_decode) return tests
events/migrations/0001_initial.py
Akash1S/meethub
428
12783016
# Generated by Django 2.0.4 on 2018-04-21 15:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, unique=True)), ('description', models.TextField(max_length=500)), ], ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('post', models.TextField(max_length=500)), ('created_date', models.DateField(auto_now=True)), ('created_time', models.TimeField(auto_now=True)), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('created_date', 'created_time'), }, ), migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('details', models.TextField(max_length=1000)), ('venue', models.CharField(max_length=50)), ('date', models.DateField(help_text='Please use the following format: <em>YYYY-MM-DD</em>.')), ('time', models.TimeField()), ('attendees', models.ManyToManyField(blank=True, related_name='attending', to=settings.AUTH_USER_MODEL)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='events', to='events.Category')), ('creator', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name_plural': 'events', 'verbose_name': 'event', }, ), migrations.AddField( model_name='comment', name='event', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='comments', to='events.Event'), ), ]
packs/reamaze/actions/article_create.py
userlocalhost2000/st2contrib
164
12783028
<gh_stars>100-1000 from lib.actions import BaseAction class ArticleCreate(BaseAction): def run(self, title, body, topic=None, status=0): if topic: topic = self._convert_slug(topic) path = '/topics/%s/articles' % topic else: path = '/articles' payload = self._create_article(title=title, body=body, status=status) response = self._api_post(path, json=payload) return response def _create_article(self, title, body, status=0): payload = { 'article': { 'title': title, 'body': body, 'status': int(status) } } return payload
kitsune/questions/urls_api.py
AndrewDVXI/kitsune
929
12783040
from rest_framework import routers from kitsune.questions.api import QuestionViewSet, AnswerViewSet router = routers.SimpleRouter() router.register(r"question", QuestionViewSet) router.register(r"answer", AnswerViewSet) urlpatterns = router.urls
desktop/core/ext-py/urllib3-1.25.8/test/appengine/test_urlfetch.py
yetsun/hue
5,079
12783052
<reponame>yetsun/hue """These tests ensure that when running in App Engine standard with the App Engine sandbox enabled that urllib3 appropriately uses the App Engine-patched version of httplib to make requests.""" import httplib import StringIO from mock import patch import pytest from ..test_no_ssl import TestWithoutSSL class MockResponse(object): def __init__(self, content, status_code, content_was_truncated, final_url, headers): self.content = content self.status_code = status_code self.content_was_truncated = content_was_truncated self.final_url = final_url self.header_msg = httplib.HTTPMessage( StringIO.StringIO( "".join(["%s: %s\n" % (k, v) for k, v in headers.iteritems()] + ["\n"]) ) ) self.headers = headers @pytest.mark.usefixtures("sandbox") class TestHTTP(TestWithoutSSL): def test_urlfetch_called_with_http(self): """Check that URLFetch is used to fetch non-https resources.""" resp = MockResponse( "OK", 200, False, "http://www.google.com", {"content-type": "text/plain"} ) fetch_patch = patch("google.appengine.api.urlfetch.fetch", return_value=resp) with fetch_patch as fetch_mock: import urllib3 pool = urllib3.HTTPConnectionPool("www.google.com", "80") r = pool.request("GET", "/") assert r.status == 200, r.data assert fetch_mock.call_count == 1 @pytest.mark.usefixtures("sandbox") class TestHTTPS(object): @pytest.mark.xfail( reason="This is not yet supported by urlfetch, presence of the ssl " "module will bypass urlfetch." ) def test_urlfetch_called_with_https(self): """ Check that URLFetch is used when fetching https resources """ resp = MockResponse( "OK", 200, False, "https://www.google.com", {"content-type": "text/plain"} ) fetch_patch = patch("google.appengine.api.urlfetch.fetch", return_value=resp) with fetch_patch as fetch_mock: import urllib3 pool = urllib3.HTTPSConnectionPool("www.google.com", "443") pool.ConnectionCls = urllib3.connection.UnverifiedHTTPSConnection r = pool.request("GET", "/") assert r.status == 200, r.data assert fetch_mock.call_count == 1
RecoEcal/EgammaClusterProducers/python/egammaRechitFilter_cfi.py
ckamtsikis/cmssw
852
12783079
<filename>RecoEcal/EgammaClusterProducers/python/egammaRechitFilter_cfi.py import FWCore.ParameterSet.Config as cms # # module for filtering of rechits. user provides noise threshold in GeV units # Author: <NAME>, University of Rome & INFN # rechitFilter = cms.EDProducer("RecHitFilter", noiseEnergyThreshold = cms.double(0.08), noiseChi2Threshold = cms.double(40), hitCollection = cms.InputTag('EcalRecHit','EcalRecHitsEB'), reducedHitCollection = cms.string('FilteredEcalRecHitCollection') )
tools/launch_tensorboard.py
isn-dev/imagenet18
716
12783081
<filename>tools/launch_tensorboard.py #!/usr/bin/env python # Usage: # ./launch_tensorboard.py # # This will launch r5.large machine on AWS with tensoboard, and print URL # in the console import ncluster ncluster.use_aws() task = ncluster.make_task('tensorboard', instance_type='r5.large', image_name='Deep Learning AMI (Ubuntu) Version 13.0') task.run('source activate tensorflow_p36') task.run(f'tensorboard --logdir={task.logdir}/..', non_blocking=True) print(f"Tensorboard at http://{task.public_ip}:6006")