max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
prediction/tools/model_warmup/model_warmup.py
gogasca/ai-platform-samples-1
418
12787035
<gh_stars>100-1000 # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generate Warmup requests.""" import tensorflow as tf import requests from tensorflow.python.framework import tensor_util from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_log_pb2 IMAGE_URL = 'https://tensorflow.org/images/blogs/serving/cat.jpg' NUM_RECORDS = 100 def get_image_bytes(): image_content = requests.get(IMAGE_URL, stream=True) image_content.raise_for_status() return image_content.content def main(): """Generate TFRecords for warming up.""" with tf.io.TFRecordWriter("tf_serving_warmup_requests") as writer: image_bytes = get_image_bytes() predict_request = predict_pb2.PredictRequest() predict_request.model_spec.name = 'resnet' predict_request.model_spec.signature_name = 'serving_default' predict_request.inputs['image_bytes'].CopyFrom( tensor_util.make_tensor_proto([image_bytes], tf.string)) log = prediction_log_pb2.PredictionLog( predict_log=prediction_log_pb2.PredictLog(request=predict_request)) for r in range(NUM_RECORDS): writer.write(log.SerializeToString()) if __name__ == "__main__": main()
tests/test_visitors/test_tokenize/test_primitives/test_string_tokens/test_unnecessary_raw_strings.py
cdhiraj40/wemake-python-styleguide
1,931
12787039
<filename>tests/test_visitors/test_tokenize/test_primitives/test_string_tokens/test_unnecessary_raw_strings.py import pytest from wemake_python_styleguide.violations.consistency import ( RawStringNotNeededViolation, ) from wemake_python_styleguide.visitors.tokenize.primitives import ( WrongStringTokenVisitor, ) @pytest.mark.parametrize('raw_strings', [ r"r'some text\\'", r"r'some text\''", r"r'some text\"'", r'r"some text\'"', r"r'some text\t'", r"r'some text\a'", r"r'some text\n'", r"r'some text\u041b'", r"r'some text\043'", r"r'some text\x23'", ]) def test_necessary_raw_string( parse_tokens, assert_errors, default_options, raw_strings, ): """Ensures that correct usage of raw string works.""" file_tokens = parse_tokens(raw_strings) visitor = WrongStringTokenVisitor(default_options, file_tokens=file_tokens) visitor.run() assert_errors(visitor, []) @pytest.mark.parametrize('raw_strings', [ "r'No escaped character'", 'r"Here neither"', "r'''Not here as well'''", 'r"""Not here as well"""', ]) def test_unnecessary_raw_string( parse_tokens, assert_errors, default_options, raw_strings, ): """Ensures that usage of raw string is forbidden if no backslash.""" file_tokens = parse_tokens(raw_strings) visitor = WrongStringTokenVisitor(default_options, file_tokens=file_tokens) visitor.run() assert_errors(visitor, [RawStringNotNeededViolation])
leetcode/188.best-time-to-buy-and-sell-stock-iv.py
geemaple/algorithm
177
12787040
<filename>leetcode/188.best-time-to-buy-and-sell-stock-iv.py class Solution(object): def maxProfit(self, k, prices): """ :type k: int :type prices: List[int] :rtype: int """ if prices is None or len(prices) == 0 or k == 0: return 0 res = 0 m = len(prices) if k > m // 2: # same as stock 2 for i in range(1, m): if prices[i] - prices[i - 1] > 0: res += prices[i] - prices[i - 1] else: # same as stock 3 state = 2 * k + 1 table = [[0 for _ in range(state + 1)] for _ in range(m + 1)] # init for j in range(1, state + 1): table[0][j] = 0 if j == 1 else float('-inf') for i in range(1, m + 1): for j in range(1, state + 1): value = 0 if j % 2 == 1: # 1, 3, 5 # f[i][j] = max(f[i - 1][j], f[i - 1][j - 1] + prices[i - 1] - prices[i - 2]) value = table[i - 1][j] if i - 2 >= 0 and j > 1 and table[i - 1][j - 1] != float('-inf'): value = max(value, table[i - 1][j - 1] + prices[i - 1] - prices[i - 2]) else: # 2, 4, 6 # f[i][j] = max(f[i - 1][j - 1], f[i - 1][j] + prices[i - 1] - prices[i - 2], f[i - 1][j - 2] + prices[i - 1] - prices[i - 2]) value = table[i - 1][j - 1] if i - 2 >= 0 and table[i - 1][j] != float('-inf'): value = max(value, table[i - 1][j] + prices[i - 1] - prices[i - 2]) if i - 2 >= 0 and j > 2 and table[i - 1][j - 2] != float('-inf'): value = max(value, table[i - 1][j - 2] + prices[i - 1] - prices[i - 2]) table[i][j] = value for j in range(1, state + 1, 2): res = max(res, table[m][j]) return res
pyclustering/cluster/rock.py
JosephChataignon/pyclustering
1,013
12787041
"""! @brief Cluster analysis algorithm: ROCK @details Implementation based on paper @cite inproceedings::rock::1. @authors <NAME> (<EMAIL>) @date 2014-2020 @copyright BSD-3-Clause """ from pyclustering.cluster.encoder import type_encoding from pyclustering.utils import euclidean_distance from pyclustering.core.wrapper import ccore_library import pyclustering.core.rock_wrapper as wrapper class rock: """! @brief The class represents clustering algorithm ROCK. Example: @code from pyclustering.cluster import cluster_visualizer from pyclustering.cluster.rock import rock from pyclustering.samples.definitions import FCPS_SAMPLES from pyclustering.utils import read_sample # Read sample for clustering from file. sample = read_sample(FCPS_SAMPLES.SAMPLE_HEPTA) # Create instance of ROCK algorithm for cluster analysis. Seven clusters should be allocated. rock_instance = rock(sample, 1.0, 7) # Run cluster analysis. rock_instance.process() # Obtain results of clustering. clusters = rock_instance.get_clusters() # Visualize clustering results. visualizer = cluster_visualizer() visualizer.append_clusters(clusters, sample) visualizer.show() @endcode """ def __init__(self, data, eps, number_clusters, threshold=0.5, ccore=True): """! @brief Constructor of clustering algorithm ROCK. @param[in] data (list): Input data - list of points where each point is represented by list of coordinates. @param[in] eps (double): Connectivity radius (similarity threshold), points are neighbors if distance between them is less than connectivity radius. @param[in] number_clusters (uint): Defines number of clusters that should be allocated from the input data set. @param[in] threshold (double): Value that defines degree of normalization that influences on choice of clusters for merging during processing. @param[in] ccore (bool): Defines should be CCORE (C++ pyclustering library) used instead of Python code or not. """ self.__pointer_data = data self.__eps = eps self.__number_clusters = number_clusters self.__threshold = threshold self.__clusters = None self.__ccore = ccore if self.__ccore: self.__ccore = ccore_library.workable() self.__verify_arguments() self.__degree_normalization = 1.0 + 2.0 * ((1.0 - threshold) / (1.0 + threshold)) self.__adjacency_matrix = None self.__create_adjacency_matrix() def process(self): """! @brief Performs cluster analysis in line with rules of ROCK algorithm. @return (rock) Returns itself (ROCK instance). @see get_clusters() """ # TODO: (Not related to specification, just idea) First iteration should be investigated. Euclidean distance should be used for clustering between two # points and rock algorithm between clusters because we consider non-categorical samples. But it is required more investigations. if self.__ccore is True: self.__clusters = wrapper.rock(self.__pointer_data, self.__eps, self.__number_clusters, self.__threshold) else: self.__clusters = [[index] for index in range(len(self.__pointer_data))] while len(self.__clusters) > self.__number_clusters: indexes = self.__find_pair_clusters(self.__clusters) if indexes != [-1, -1]: self.__clusters[indexes[0]] += self.__clusters[indexes[1]] self.__clusters.pop(indexes[1]) # remove merged cluster. else: break # totally separated clusters have been allocated return self def get_clusters(self): """! @brief Returns list of allocated clusters, each cluster contains indexes of objects in list of data. @return (list) List of allocated clusters, each cluster contains indexes of objects in list of data. @see process() """ return self.__clusters def get_cluster_encoding(self): """! @brief Returns clustering result representation type that indicate how clusters are encoded. @return (type_encoding) Clustering result representation. @see get_clusters() """ return type_encoding.CLUSTER_INDEX_LIST_SEPARATION def __find_pair_clusters(self, clusters): """! @brief Returns pair of clusters that are best candidates for merging in line with goodness measure. The pair of clusters for which the above goodness measure is maximum is the best pair of clusters to be merged. @param[in] clusters (list): List of clusters that have been allocated during processing, each cluster is represented by list of indexes of points from the input data set. @return (list) List that contains two indexes of clusters (from list 'clusters') that should be merged on this step. It can be equals to [-1, -1] when no links between clusters. """ maximum_goodness = 0.0 cluster_indexes = [-1, -1] for i in range(0, len(clusters)): for j in range(i + 1, len(clusters)): goodness = self.__calculate_goodness(clusters[i], clusters[j]) if goodness > maximum_goodness: maximum_goodness = goodness cluster_indexes = [i, j] return cluster_indexes def __calculate_links(self, cluster1, cluster2): """! @brief Returns number of link between two clusters. @details Link between objects (points) exists only if distance between them less than connectivity radius. @param[in] cluster1 (list): The first cluster. @param[in] cluster2 (list): The second cluster. @return (uint) Number of links between two clusters. """ number_links = 0 for index1 in cluster1: for index2 in cluster2: number_links += self.__adjacency_matrix[index1][index2] return number_links def __create_adjacency_matrix(self): """! @brief Creates 2D adjacency matrix (list of lists) where each element described existence of link between points (means that points are neighbors). """ size_data = len(self.__pointer_data) self.__adjacency_matrix = [[0 for i in range(size_data)] for j in range(size_data)] for i in range(0, size_data): for j in range(i + 1, size_data): distance = euclidean_distance(self.__pointer_data[i], self.__pointer_data[j]) if (distance <= self.__eps): self.__adjacency_matrix[i][j] = 1 self.__adjacency_matrix[j][i] = 1 def __calculate_goodness(self, cluster1, cluster2): """! @brief Calculates coefficient 'goodness measurement' between two clusters. The coefficient defines level of suitability of clusters for merging. @param[in] cluster1 (list): The first cluster. @param[in] cluster2 (list): The second cluster. @return Goodness measure between two clusters. """ number_links = self.__calculate_links(cluster1, cluster2) devider = (len(cluster1) + len(cluster2)) ** self.__degree_normalization - len(cluster1) ** self.__degree_normalization - len(cluster2) ** self.__degree_normalization return number_links / devider def __verify_arguments(self): """! @brief Verify input parameters for the algorithm and throw exception in case of incorrectness. """ if len(self.__pointer_data) == 0: raise ValueError("Input data is empty (size: '%d')." % len(self.__pointer_data)) if self.__eps < 0: raise ValueError("Connectivity radius (current value: '%d') should be greater or equal to 0." % self.__eps) if self.__threshold < 0 or self.__threshold > 1: raise ValueError("Threshold (current value: '%d') should be in range (0, 1)." % self.__threshold) if (self.__number_clusters is not None) and (self.__number_clusters <= 0): raise ValueError("Amount of clusters (current value: '%d') should be greater than 0." % self.__number_clusters)
examples/how_to/start_parameterized_build.py
pingod/python-jenkins_api
556
12787053
""" Start a Parameterized Build """ from __future__ import print_function from jenkinsapi.jenkins import Jenkins jenkins = Jenkins('http://localhost:8080') params = {'VERSION': '1.2.3', 'PYTHON_VER': '2.7'} # This will start the job in non-blocking manner jenkins.build_job('foo', params) # This will start the job and will return a QueueItem object which # can be used to get build results job = jenkins['foo'] qi = job.invoke(build_params=params) # Block this script until build is finished if qi.is_queued() or qi.is_running(): qi.block_until_complete() build = qi.get_build() print(build)
recipes/Python/546543_simple_way_create_change_your_registry/recipe-546543.py
tdiprima/code
2,023
12787063
#IN THE NAME OF ALLAH #Nike Name: Pcrlth0n #(C) 2008 #a simple way to create and change your registry on windows import win32api def new_key(): reg1 = open('C:\\reg1.reg', 'w') reg1.write("""REGEDIT4\n[HKEY_CURRENT_USER\\Example""") reg1.close() win32api.WinExec('reg import C:\\reg1.reg', 0) def new_string_key(): reg2 = open('C:\\reg2.reg', 'w') reg2.write("""REGEDIT4\n[HKEY_CURRENT_USER\\Example]\n"String Key"="C:\\\\\"""") reg2.close() win32api.WinExec('reg import C:\\reg2.reg', 0) def new_dword_key(): reg3 = open('C:\\reg3.reg', 'w') reg3.write("""REGEDIT4\n[HKEY_CURRENT_USER\\Example]\n"Dword key"=dword:00000000 """) reg3.close() win32api.WinExec('reg import C:\\reg3.reg', 0) #new_key() #new_string_key() #new_dword_key()
main.py
pzmarzly/ancs4linux
120
12787072
<filename>main.py #!/usr/bin/env python3 # https://developer.apple.com/library/archive/documentation/CoreBluetooth/Reference/AppleNotificationCenterServiceSpecification/Introduction/Introduction.html import sys import signal import argparse import time from Hci import Hci from Handler import DefaultHandler parser = argparse.ArgumentParser() parser.add_argument("--hci", metavar="INT", type=int, default=0, help="use Bluetooth hciX (default 0, see `hcitool dev')") parser.add_argument("--resolution", metavar="INT", type=int, default=20, help="polling rate (default 20 per second)") args = parser.parse_args() hciID = args.hci resolution = args.resolution def signal_handler(sig, frame): sys.exit(0) signal.signal(signal.SIGINT, signal_handler) handler = DefaultHandler() hci = Hci(hciID) while True: device = hci.search_for_device() while device is None: time.sleep(1) device = hci.search_for_device() handler.device_connected() try: device.main_loop(handler, resolution) except Exception as e: handler.error(exception=e) handler.device_disconnected()
algorithms/larrys-array.py
gajubadge11/HackerRank-1
340
12787103
#!/bin/python3 import sys def rotate(A, pos): A[pos], A[pos+1], A[pos+2] = A[pos+1], A[pos+2], A[pos] def larrysArray(A): for _ in range(len(A)): for ind in range(1, len(A) - 1): a, b, c = A[ind-1], A[ind], A[ind+1] #print("ind = {} A = {} B = {} C = {}".format(ind, a, b, c)) if a > b or c < a: #print("rotating 1") rotate(A, ind-1) if A == sorted(A): return 'YES' else: return 'NO' if __name__ == "__main__": t = int(input().strip()) for a0 in range(t): n = int(input().strip()) A = list(map(int, input().strip().split(' '))) result = larrysArray(A) print(result)
manila/scheduler/weighers/host_affinity.py
kpawar89/manila
159
12787109
# Copyright 2019 NetApp, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from manila import context from manila.db import api as db_api from manila.scheduler.weighers import base_host from manila.share import utils as share_utils class HostAffinityWeigher(base_host.BaseHostWeigher): def _weigh_object(self, obj, weight_properties): """Weigh hosts based on their proximity to the source's share pool. If no snapshot_id was provided will return 0, otherwise, if source and destination hosts are located on: 1. same back ends and pools: host is a perfect choice (100) 2. same back ends and different pools: host is a very good choice (75) 3. different back ends with the same AZ: host is a good choice (50) 4. different back ends and AZs: host isn't so good choice (25) """ ctx = context.get_admin_context() request_spec = weight_properties.get('request_spec') snapshot_id = request_spec.get('snapshot_id') snapshot_host = request_spec.get('snapshot_host') if None in [snapshot_id, snapshot_host]: # NOTE(silvacarlose): if the request does not contain a snapshot_id # or a snapshot_host, the user is not creating a share from a # snapshot and we don't need to weigh the host. return 0 snapshot_ref = db_api.share_snapshot_get(ctx, snapshot_id) # Source host info: pool, backend and availability zone src_pool = share_utils.extract_host(snapshot_host, 'pool') src_backend = share_utils.extract_host( request_spec.get('snapshot_host'), 'backend') src_az = snapshot_ref['share']['availability_zone'] # Destination host info: pool, backend and availability zone dst_pool = share_utils.extract_host(obj.host, 'pool') dst_backend = share_utils.extract_host(obj.host, 'backend') # NOTE(dviroel): All hosts were already filtered by the availability # zone parameter. dst_az = None if weight_properties['availability_zone_id']: dst_az = db_api.availability_zone_get( ctx, weight_properties['availability_zone_id']).name if src_backend == dst_backend: return 100 if (src_pool and src_pool == dst_pool) else 75 else: return 50 if (src_az and src_az == dst_az) else 25
optimum/onnxruntime/preprocessors/passes/fully_connected.py
techthiyanes/optimum
414
12787112
<reponame>techthiyanes/optimum # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Set, Tuple from onnx import ModelProto from onnxruntime.transformers.onnx_model import OnnxModel from optimum.onnxruntime.preprocessors import PreprocessorPass class IncludeFullyConnectedNodes(PreprocessorPass): def __init__(self): super().__init__() def __call__(self, graph: ModelProto, model: OnnxModel) -> Tuple[Set[str], Set[str]]: fc_subgraphs = [] for add_node in model.get_nodes_by_op_type("Add"): fc_components = model.match_parent_path(add_node, ["MatMul"], [1]) if fc_components is not None: fc_components.append(add_node) fc_subgraphs.append(fc_components) fc_components = {node.name for fc in fc_subgraphs for node in fc} return fc_components, set()
spockbot/plugins/core/auth.py
SpockBotMC/SpockBot
171
12787113
""" Provides authorization functions for Mojang's login and session servers """ import hashlib import json # This is for python2 compatibility try: import urllib.request as request from urllib.error import URLError except ImportError: import urllib2 as request from urllib2 import URLError import logging import os from spockbot.mcp.yggdrasil import YggdrasilCore from spockbot.plugins.base import PluginBase, pl_announce logger = logging.getLogger('spockbot') # This function courtesy of barneygale def java_hex_digest(digest): d = int(digest.hexdigest(), 16) if d >> 39 * 4 & 0x8: d = "-%x" % ((-d) & (2 ** (40 * 4) - 1)) else: d = "%x" % d return d class AuthCore(object): def __init__(self, event, online_mode, auth_timeout): self.online_mode = online_mode self.auth_timeout = auth_timeout self.__event = event self.ygg = YggdrasilCore() self._shared_secret = None self._username = None def get_username(self): return self._username def set_username(self, username): self.ygg.username = username username = property(get_username, set_username) def set_password(self, password): if password and not self.online_mode: logger.warning("PASSWORD PROVIDED WITH ONLINE_MODE == FALSE") logger.warning("YOU PROBABLY DIDN'T WANT TO DO THAT") self.ygg.password = password password = property(lambda x: bool(x.ygg.password), set_password) def set_client_token(self, client_token): if not self.online_mode: logger.warning("CLIENT TOKEN PROVIDED WITH ONLINE_MODE == FALSE") logger.warning("YOU PROBABLY DIDN'T WANT TO DO THAT") self.ygg.client_token = client_token client_token = property( lambda x: bool(x.ygg.client_token), set_client_token ) def set_auth_token(self, auth_token): if not self.online_mode: logger.warning("AUTH TOKEN PROVIDED WITH ONLINE_MODE == FALSE") logger.warning("YOU PROBABLY DIDN'T WANT TO DO THAT") self.ygg.auth_token = auth_token auth_token = property( lambda x: bool(x.ygg.auth_token), set_auth_token ) def get_shared_secret(self): self._shared_secret = self._shared_secret or os.urandom(16) return self._shared_secret shared_secret = property(get_shared_secret) def start_session(self): if not self.online_mode: self._username = self.ygg.username return True if self.ygg.login(): self._username = self.ygg.selected_profile['name'] return True self.__event.emit('auth_session_error') return False def send_session_auth(self, pubkey_raw, server_id_raw): server_id = java_hex_digest(hashlib.sha1( server_id_raw.encode('ascii') + self.shared_secret + pubkey_raw )) logger.info('Attempting to authenticate with Mojang session server') url = "https://sessionserver.mojang.com/session/minecraft/join" data = json.dumps({ 'accessToken': self.ygg.access_token, 'selectedProfile': self.ygg.selected_profile, 'serverId': server_id, }).encode('utf-8') headers = {'Content-Type': 'application/json'} req = request.Request(url, data, headers) try: rep = request.urlopen( req, timeout=self.auth_timeout ).read().decode('ascii') except URLError: rep = "Couldn't connect to sessionserver.mojang.com" if rep: logger.warning('Mojang session auth response: %s', rep) logger.info('Session authentication successful') @pl_announce('Auth') class AuthPlugin(PluginBase): requires = 'Event' defaults = { 'online_mode': True, 'auth_timeout': 3, # No idea how long this should be, 3s seems good 'auth_quit': True, 'sess_quit': True, } events = { 'auth_login_error': 'handle_auth_error', 'auth_session_error': 'handle_session_error', } def __init__(self, ploader, settings): super(AuthPlugin, self).__init__(ploader, settings) self.sess_quit = self.settings['sess_quit'] self.auth_quit = self.settings['auth_quit'] ploader.provides('Auth', AuthCore( self.event, self.settings['online_mode'], self.settings['auth_timeout'] )) def handle_auth_error(self, name, data): if self.auth_quit: logger.error('AUTH: Session authentication error, calling kill') self.event.kill() def handle_session_error(self, name, data): if self.sess_quit: logger.error('AUTH: Session start error, calling kill') self.event.kill()
tests/unit/metrics_tests/test_object_keypoint_similarity.py
Joeper214/blueoil
248
12787130
<filename>tests/unit/metrics_tests/test_object_keypoint_similarity.py<gh_stars>100-1000 # -*- coding: utf-8 -*- # Copyright 2018 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import pytest import numpy as np from blueoil.metrics.object_keypoint_similarity import compute_object_keypoint_similarity, _compute_oks # Apply set_test_environment() in conftest.py to all tests in this file. pytestmark = pytest.mark.usefixtures("set_test_environment") def test_compute_oks(): # case1 joints_gt = np.zeros((17, 3)) joints_pred = np.zeros((17, 3)) image_size = (160, 160) joints_gt[0, 0] = 80 joints_gt[0, 1] = 80 joints_gt[0, 2] = 1 joints_pred[0, 0] = 70 joints_pred[0, 1] = 70 joints_pred[0, 2] = 1 joints_pred[2, 0] = 1000 joints_pred[2, 1] = 1000 joints_pred[2, 2] = 1 expected = 0.2358359 result = _compute_oks(joints_gt, joints_pred, image_size) assert np.allclose(result, expected) # case2 joints_gt = np.zeros((17, 3)) joints_pred = np.zeros((17, 3)) image_size = (160, 160) joints_gt[0, 0] = 80 joints_gt[0, 1] = 80 joints_gt[0, 2] = 0 joints_pred[0, 0] = 70 joints_pred[0, 1] = 70 joints_pred[0, 2] = 1 joints_pred[2, 0] = 1000 joints_pred[2, 1] = 1000 joints_pred[2, 2] = 1 expected = -1 result = _compute_oks(joints_gt, joints_pred, image_size) assert np.allclose(result, expected) # case3 joints_gt = np.zeros((17, 3)) joints_pred1 = np.zeros((17, 3)) joints_pred2 = np.zeros((17, 3)) image_size = (160, 160) joints_gt[0, 0] = 80 joints_gt[0, 1] = 80 joints_gt[0, 2] = 1 joints_pred1[0, 0] = 70 joints_pred1[0, 1] = 70 joints_pred1[0, 2] = 1 joints_pred2[0, 0] = 78 joints_pred2[0, 1] = 78 joints_pred2[0, 2] = 1 result1 = _compute_oks(joints_gt, joints_pred1, image_size) result2 = _compute_oks(joints_gt, joints_pred2, image_size) assert result2 > result1 def test_compute_object_keypoint_similarity(): # case1 joints_gt = np.zeros((1, 17, 3)) joints_pred = np.zeros((1, 17, 3)) image_size = (160, 160) joints_gt[0, 0, 0] = 80 joints_gt[0, 0, 1] = 80 joints_gt[0, 0, 2] = 1 joints_pred[0, 0, 0] = 70 joints_pred[0, 0, 1] = 70 joints_pred[0, 0, 2] = 1 expected = 0.2358359 result = compute_object_keypoint_similarity(joints_gt, joints_pred, image_size) assert np.allclose(result, expected) # case2 joints_gt = np.zeros((2, 17, 3)) joints_pred = np.zeros((2, 17, 3)) image_size = (160, 160) joints_gt[0, 0, 0] = 80 joints_gt[0, 0, 1] = 80 joints_gt[0, 0, 2] = 1 joints_pred[0, 0, 0] = 70 joints_pred[0, 0, 1] = 70 joints_pred[0, 0, 2] = 1 joints_gt[1, 0, 0] = 50 joints_gt[1, 0, 1] = 50 joints_gt[1, 0, 2] = 1 joints_pred[1, 0, 0] = 50 joints_pred[1, 0, 1] = 50 joints_pred[1, 0, 2] = 1 expected = 0.61791795 result = compute_object_keypoint_similarity(joints_gt, joints_pred, image_size) assert np.allclose(result, expected) # case3 joints_gt = np.zeros((2, 17, 3)) joints_pred = np.zeros((2, 17, 3)) image_size = (160, 160) joints_gt[0, 0, 0] = 80 joints_gt[0, 0, 1] = 80 joints_pred[0, 0, 0] = 70 joints_pred[0, 0, 1] = 70 joints_pred[0, 0, 2] = 1 joints_gt[1, 0, 0] = 50 joints_gt[1, 0, 1] = 50 joints_pred[1, 0, 0] = 50 joints_pred[1, 0, 1] = 50 joints_pred[1, 0, 2] = 1 try: compute_object_keypoint_similarity(joints_gt, joints_pred, image_size) except ValueError: pass if __name__ == '__main__': test_compute_oks() test_compute_object_keypoint_similarity()
Chapter06/src/features.py
jvstinian/Python-Reinforcement-Learning-Projects
114
12787136
import numpy as np from config import GOPARAMETERS def stone_features(board_state): # 16 planes, where every other plane represents the stones of a particular color # which means we track the stones of the last 8 moves. features = np.zeros([16, GOPARAMETERS.N, GOPARAMETERS.N], dtype=np.uint8) num_deltas_avail = board_state.board_deltas.shape[0] cumulative_deltas = np.cumsum(board_state.board_deltas, axis=0) last_eight = np.tile(board_state.board, [8, 1, 1]) last_eight[1:num_deltas_avail + 1] -= cumulative_deltas last_eight[num_deltas_avail +1:] = last_eight[num_deltas_avail].reshape(1, GOPARAMETERS.N, GOPARAMETERS.N) features[::2] = last_eight == board_state.to_play features[1::2] = last_eight == -board_state.to_play return np.rollaxis(features, 0, 3) def color_to_play_feature(board_state): # 1 plane representing which color is to play # The plane is filled with 1's if the color to play is black; 0's otherwise if board_state.to_play == GOPARAMETERS.BLACK: return np.ones([GOPARAMETERS.N, GOPARAMETERS.N, 1], dtype=np.uint8) else: return np.zeros([GOPARAMETERS.N, GOPARAMETERS.N, 1], dtype=np.uint8) def extract_features(board_state): stone_feat = stone_features(board_state=board_state) turn_feat = color_to_play_feature(board_state=board_state) all_features = np.concatenate([stone_feat, turn_feat], axis=2) return all_features
educative/binarysearch/findhighestnumber.py
monishshah18/python-cp-cheatsheet
140
12787151
<filename>educative/binarysearch/findhighestnumber.py<gh_stars>100-1000 def find_highest_number(A): if len(A) < 3: return None def condition(value) -> bool: leftNeighbor = value - 1 rightNeighbor = value + 1 # TODO: Add conditions for leftmost and rightmost values if A[leftNeighbor] < A[value] < A[rightNeighbor]: return False elif A[leftNeighbor] > A[value] > A[rightNeighbor]: return True elif A[leftNeighbor] < A[value] and A[value] > A[rightNeighbor]: return True left, right = 0, len(A) -1 while left < right: mid = left + (right - left) // 2 if condition(mid): right = mid else: left = mid + 1 return A[left] # Peak element is "5". A = [1, 2, 3, 4, 5, 4, 3, 2, 1] print(find_highest_number(A)) A = [1, 6, 5, 4, 3, 2, 1] print(find_highest_number(A)) A = [1, 2, 3, 4, 5] print(find_highest_number(A)) A = [5, 4, 3, 2, 1] print(find_highest_number(A))
cocrawler/webserver.py
joye1503/cocrawler
166
12787202
<filename>cocrawler/webserver.py import logging import asyncio from aiohttp import web from . import config LOGGER = logging.getLogger(__name__) def make_app(): loop = asyncio.get_event_loop() # TODO switch this to socket.getaddrinfo() -- see https://docs.python.org/3/library/socket.html serverip = config.read('REST', 'ServerIP') if serverip is None: return None serverport = config.read('REST', 'ServerPort') increment = False if isinstance(serverport, str) and serverport.endswith('+'): increment = True serverport = serverport[:-1] app = web.Application() app.router.add_get('/', frontpage) app.router.add_get('/api/{name}', api) # aiohttp 3.0 has AppRunner(). maybe I should switch to it? # also web.run_app(app, access_log=None) to turn off logging handler = app.make_handler() while True: try: f = loop.create_server(handler, serverip, serverport) break except OSError as e: # address already in use if increment: LOGGER.info('OSError starting webserver: %s', repr(e)) serverport += 1 LOGGER.info('incrementing port to %d', serverport) else: raise srv = loop.run_until_complete(f) LOGGER.info('REST serving on %s', srv.sockets[0].getsockname()) app['cocrawler'] = handler, srv return app def close(app): if app is None: return handler, srv = app['cocrawler'] loop = asyncio.get_event_loop() srv.close() loop.run_until_complete(srv.wait_closed()) loop.run_until_complete(app.shutdown()) loop.run_until_complete(app.cleanup()) async def frontpage(request): return web.Response(text='Hello, world!') async def api(request): name = request.match_info['name'] data = {'name': name} return web.json_response(data)
office365/sharepoint/sites/usage_info.py
theodoriss/Office365-REST-Python-Client
544
12787206
<reponame>theodoriss/Office365-REST-Python-Client from office365.runtime.client_value import ClientValue class UsageInfo(ClientValue): """ Provides fields used to access information regarding site collection usage. """ def __init__(self, bandwidth=None, discussion_storage=None, visits=None): """ :param long bandwidth: Contains the cumulative bandwidth used by the site collection on the previous day or on the last day that log files were processed, which is tracked by usage analysis code. :param long discussion_storage: Contains the amount of storage, identified in bytes, used by Web discussion data in the site collection. :param long visits: Contains the cumulative number of visits to the site collection, which is tracked by the usage analysis code. """ super(UsageInfo, self).__init__() self.Bandwidth = bandwidth self.DiscussionStorage = discussion_storage self.Visits = visits
python/paddle_serving_client/metric/auc.py
loveululu/Serving
789
12787208
<filename>python/paddle_serving_client/metric/auc.py # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=doc-string-missing, doc-string-with-all-args, doc-string-with-returns def tied_rank(x): """ Computes the tied rank of elements in x. This function computes the tied rank of elements in x. Parameters ---------- x : list of numbers, numpy array Returns ------- score : list of numbers The tied rank f each element in x """ sorted_x = sorted(zip(x, range(len(x)))) r = [0 for k in x] cur_val = sorted_x[0][0] last_rank = 0 for i in range(len(sorted_x)): if cur_val != sorted_x[i][0]: cur_val = sorted_x[i][0] for j in range(last_rank, i): r[sorted_x[j][1]] = float(last_rank + 1 + i) / 2.0 last_rank = i if i == len(sorted_x) - 1: for j in range(last_rank, i + 1): r[sorted_x[j][1]] = float(last_rank + i + 2) / 2.0 return r def auc(actual, posterior): """ Computes the area under the receiver-operater characteristic (AUC) This function computes the AUC error metric for binary classification. Parameters ---------- actual : list of binary numbers, numpy array The ground truth value posterior : same type as actual Defines a ranking on the binary numbers, from most likely to be positive to least likely to be positive. Returns ------- score : double The mean squared error between actual and posterior """ r = tied_rank(posterior) num_positive = len([0 for x in actual if x == 1]) num_negative = len(actual) - num_positive sum_positive = sum([r[i] for i in range(len(r)) if actual[i] == 1]) auc = ((sum_positive - num_positive * (num_positive + 1) / 2.0) / (num_negative * num_positive)) return auc
pinball/workflow/job.py
DotModus/pinball
1,143
12787280
<reponame>DotModus/pinball # Copyright 2015, Pinterest, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Definition of job metadata included in job tokens. Job object describes job inputs, outputs, and all information required to execute a job (e.g., a command line of a shell job or class name of a data job).""" import abc from pinball.config.utils import get_log from pinball.persistence.token_data import TokenData from pinball.workflow.name import Name __author__ = '<NAME>' __copyright__ = 'Copyright 2015, Pinterest, Inc.' __credits__ = [__author__] __license__ = 'Apache' __version__ = '2.0' LOG = get_log('pinball.workflow.worker') class Job(TokenData): """Parent class for specialized job types.""" __metaclass__ = abc.ABCMeta IS_CONDITION = False def __init__(self, name=None, inputs=None, outputs=None, emails=None, max_attempts=1, retry_delay_sec=0, warn_timeout_sec=None, abort_timeout_sec=None): self.name = name self.inputs = inputs if inputs is not None else [] self.outputs = outputs if outputs is not None else [] self.emails = emails if emails is not None else [] self.max_attempts = max_attempts self.retry_delay_sec = retry_delay_sec self.warn_timeout_sec = warn_timeout_sec self.abort_timeout_sec = abort_timeout_sec assert self.max_attempts > 0 self.disabled = False self.history = [] self.events = [] @property def _COMPATIBILITY_ATTRIBUTES(self): return { 'emails': [], 'disabled': False, 'max_attempts': 1, 'events': [], 'warn_timeout_sec': None, 'abort_timeout_sec': None, 'retry_delay_sec': 0, } @abc.abstractmethod def info(self): return def retry(self): """Decide if the job should be retried. Returns: True if the job should be retried, otherwise False. """ if not self.history: return False last_record = self.history[-1] current_instance = last_record.instance assert last_record.exit_code != 0 failed_runs = 0 for record in reversed(self.history): if record.instance != current_instance: break if record.exit_code != 0: # There may have been successful runs in the past if we are # re-doing an execution. failed_runs += 1 if failed_runs >= self.max_attempts: return False return True def truncate_history(self): if self.IS_CONDITION and len(self.history) > self.max_attempts: self.history = self.history[-self.max_attempts:] def reload(self, new_job): """Reload job config from a new config. Configuration elements defining the workflow topology (inputs and outputs), execution history, or run-time values (events) are not modified. Args: new_job: The new job configuration to update from. """ assert self.__class__ == new_job.__class__ self.emails = new_job.emails self.max_attempts = new_job.max_attempts class ShellJob(Job): """Shell job runs a command when executed.""" def __init__(self, name=None, inputs=None, outputs=None, emails=None, max_attempts=1, retry_delay_sec=0, warn_timeout_sec=None, abort_timeout_sec=None, command=None, cleanup_template=None): super(ShellJob, self).__init__(name, inputs, outputs, emails, max_attempts, retry_delay_sec, warn_timeout_sec, abort_timeout_sec) self.command = command self.cleanup_template = cleanup_template @property def _COMPATIBILITY_ATTRIBUTES(self): result = super(ShellJob, self)._COMPATIBILITY_ATTRIBUTES result['cleanup_template'] = None return result def __str__(self): return ('ShellJob(name=%s, inputs=%s, outputs=%s, emails=%s, ' 'max_attempts=%d, retry_delay_sec=%d, warn_timeout_sec=%s, ' 'abort_timeout_sec=%s, disabled=%s, command=%s, ' 'cleanup_template=%s, events=%s, history=%s)' % ( self.name, self.inputs, self.outputs, self.emails, self.max_attempts, self.retry_delay_sec, self.warn_timeout_sec, self.abort_timeout_sec, self.disabled, self.command, self.cleanup_template, self.events, self.history)) def __repr__(self): return self.__str__() def info(self): return 'command=%s' % self.command def reload(self, new_job): super(ShellJob, self).reload(new_job) self.command = new_job.command self.cleanup_template = new_job.cleanup_template @staticmethod def _get_command_attributes(template): """Extract attributes from a command string template. E.g., for template 'ls %(dir1)s %(dir2)s' the result is ['dir1', 'dir2']. Args: template: The template to extract attributes from. Returns: The list of named attributes extracted from the template. """ class Extractor: """Helper class extracting attributes from a string template. """ def __init__(self): self.attributes = set() def __getitem__(self, attribute): self.attributes.add(attribute) return 0 extractor = Extractor() try: template % extractor except ValueError: LOG.exception('failed to customize template %s', template) return list(extractor.attributes) def _consolidate_event_attributes(self): """Consolidate attributes in triggering events. Iterate over events in the most recent execution record and combine them into one dictionary mapping attribute names to their values. If multiple events contain the same attribute, the return value will be a comma separated string of values from all those events. Returns: Dictionary of consolidated event attribute key-values. """ assert self.history last_execution_record = self.history[-1] result = {} for event in last_execution_record.events: for key, value in event.attributes.items(): new_value = result.get(key) if new_value: new_value += ',%s' % value else: new_value = value result[key] = new_value return result def customize_command(self): """Specialize the command with attribute values extracted from events. Returns: Job command with parameter values replaced by attributes extracted from the triggering events. If a parameter is not present in the event attribute set, it is replaced with an empty string. """ attributes = {} command_attributes = ShellJob._get_command_attributes(self.command) for attribute in command_attributes: attributes[attribute] = '' event_attributes = self._consolidate_event_attributes() attributes.update(event_attributes) try: return self.command % attributes except ValueError: LOG.exception('failed to customize command %s', self.command) return self.command class ShellConditionJob(ShellJob): IS_CONDITION = True def __init__(self, name=None, outputs=None, emails=None, max_attempts=10, retry_delay_sec=5 * 60, warn_timeout_sec=None, abort_timeout_sec=None, command=None, cleanup_template=None): super(ShellConditionJob, self).__init__( name=name, inputs=[Name.WORKFLOW_START_INPUT], outputs=outputs, emails=emails, max_attempts=max_attempts, retry_delay_sec=retry_delay_sec, warn_timeout_sec=warn_timeout_sec, abort_timeout_sec=abort_timeout_sec, command=command, cleanup_template=cleanup_template)
oletools/thirdparty/xglob/__init__.py
maniVix/oletools
2,059
12787289
<gh_stars>1000+ from .xglob import *
code/src/plan2scene/crop_select/util.py
madhawav/plan2scene
305
12787325
<gh_stars>100-1000 from plan2scene.common.image_description import ImageDescription, ImageSource from plan2scene.common.residence import Room, House from plan2scene.config_manager import ConfigManager from plan2scene.texture_gen.predictor import TextureGenPredictor from plan2scene.texture_gen.utils.io import load_conf_eval import logging import os.path as osp from plan2scene.utils.io import load_image def fill_texture_embeddings(conf: ConfigManager, house: House, predictor: TextureGenPredictor) -> None: """ Compute surface texture embeddings of a house :param conf: Config Manager :param house: House processed :param predictor: Predictor with loaded checkpoint """ for room_index, room in house.rooms.items(): assert isinstance(room, Room) for photo in room.photos: for surface in conf.surfaces: surface_instances = [i for i in range(conf.texture_gen.masks_per_surface[surface])] for surface_instance in surface_instances: for crop_instance in range(conf.texture_gen.crops_per_mask): candidate_key = <KEY> (photo, surface_instance, crop_instance) if osp.exists(osp.join(conf.data_paths.rectified_crops_path, surface, candidate_key + ".png")): image = load_image( osp.join(conf.data_paths.rectified_crops_path, surface, candidate_key + ".png")) emb, loss = predictor.predict_embs([image]) room.surface_textures[surface][candidate_key] = ImageDescription(image, ImageSource.NEURAL_SYNTH) room.surface_embeddings[surface][candidate_key] = emb room.surface_losses[surface][candidate_key] = loss def fill_house_textures(conf: ConfigManager, house: House, image_source: ImageSource, skip_existing_textures: bool, key="prop", predictor: TextureGenPredictor = None) -> None: """ Synthesize textures for a house using the assigned texture embeddings. :param conf: Config Manager :param house: House to populate textures :param key: Key of candidate texture embeddings. :param image_source: Generator of the images :param predictor: Predictor used to synthesize textures :param skip_existing_textures: Do no synthesize if a texture already exist """ if predictor is None: predictor = TextureGenPredictor( conf=load_conf_eval(config_path=conf.texture_gen.texture_synth_conf), rgb_median_emb=conf.texture_gen.rgb_median_emb) predictor.load_checkpoint(checkpoint_path=conf.texture_gen.checkpoint_path) for room_index, room in house.rooms.items(): assert isinstance(room, Room) for surface in room.surface_embeddings: if key in room.surface_embeddings[surface]: if skip_existing_textures and key in room.surface_textures[surface]: continue generated_crops, substance_names, extra = predictor.predict_textures( combined_embs=[room.surface_embeddings[surface][key]], multiplier=conf.texture_gen.output_multiplier) room.surface_textures[surface][key] = ImageDescription(generated_crops[0], image_source) def fill_textures(conf: ConfigManager, houses: dict, image_source: ImageSource, skip_existing_textures: bool, key: str = "prop", log: bool = True, predictor: TextureGenPredictor = None) -> None: """ Synthesize textures for houses using the assigned texture embeddings. :param conf: Config manager :param houses: Dictionary of houses. :param image_source: Image source specified to the synthesized textures :param skip_existing_textures: Specify true to keep existing textures. Specify false to replace existing textures with new textures. :param key: Key of embeddings used to synthesize textures. :param log: Set true to enable logging. :param predictor: Predictor used to synthesize textures. """ if predictor is None: predictor = TextureGenPredictor( conf=load_conf_eval(config_path=conf.texture_gen.texture_synth_conf), rgb_median_emb=conf.texture_gen.rgb_median_emb) predictor.load_checkpoint(checkpoint_path=conf.texture_gen.checkpoint_path) for i, (house_key, house) in enumerate(houses.items()): if log: logging.info("[%d/%d] Generating Textures %s" % (i, len(houses), house_key)) fill_house_textures(conf, house, skip_existing_textures=skip_existing_textures, key=key, predictor=predictor, image_source=image_source) def get_least_key(kv): """ Given a dictionary, returns the key with minimum value. :param kv: Dictionary considered. :return: Key with the minimum value. """ min_k = None min_v = None for k, v in kv.items(): if min_v is None or v.item() < min_v: min_k = k min_v = v.item() return min_k def vgg_crop_select(conf: ConfigManager, house: House, predictor: TextureGenPredictor) -> None: """ Assigns the least VGG loss crop for each surface of the house. :param conf: ConfigManager :param house: House to update :param predictor: Predictor used to synthesize textures """ for room_index, room in house.rooms.items(): assert isinstance(room, Room) # Calculate the least VGG loss embeddings for surface in room.surface_embeddings: least_key = get_least_key(room.surface_losses[surface]) if least_key is not None: room.surface_embeddings[surface] = {"prop": room.surface_embeddings[surface][least_key]} room.surface_losses[surface] = {"prop": room.surface_losses[surface][least_key]} else: room.surface_embeddings[surface] = {} room.surface_losses[surface] = {} fill_textures(conf, {house.house_key: house}, predictor=predictor, log=False, image_source=ImageSource.VGG_CROP_SELECT, skip_existing_textures=False)
nnet/separate.py
on1262/conv-tasnet
149
12787371
<gh_stars>100-1000 #!/usr/bin/env python # wujian@2018 import os import argparse import torch as th import numpy as np from conv_tas_net import ConvTasNet from libs.utils import load_json, get_logger from libs.audio import WaveReader, write_wav logger = get_logger(__name__) class NnetComputer(object): def __init__(self, cpt_dir, gpuid): self.device = th.device( "cuda:{}".format(gpuid)) if gpuid >= 0 else th.device("cpu") nnet = self._load_nnet(cpt_dir) self.nnet = nnet.to(self.device) if gpuid >= 0 else nnet # set eval model self.nnet.eval() def _load_nnet(self, cpt_dir): nnet_conf = load_json(cpt_dir, "mdl.json") nnet = ConvTasNet(**nnet_conf) cpt_fname = os.path.join(cpt_dir, "best.pt.tar") cpt = th.load(cpt_fname, map_location="cpu") nnet.load_state_dict(cpt["model_state_dict"]) logger.info("Load checkpoint from {}, epoch {:d}".format( cpt_fname, cpt["epoch"])) return nnet def compute(self, samps): with th.no_grad(): raw = th.tensor(samps, dtype=th.float32, device=self.device) sps = self.nnet(raw) sp_samps = [np.squeeze(s.detach().cpu().numpy()) for s in sps] return sp_samps def run(args): mix_input = WaveReader(args.input, sample_rate=args.fs) computer = NnetComputer(args.checkpoint, args.gpu) for key, mix_samps in mix_input: logger.info("Compute on utterance {}...".format(key)) spks = computer.compute(mix_samps) norm = np.linalg.norm(mix_samps, np.inf) for idx, samps in enumerate(spks): samps = samps[:mix_samps.size] # norm samps = samps * norm / np.max(np.abs(samps)) write_wav( os.path.join(args.dump_dir, "spk{}/{}.wav".format( idx + 1, key)), samps, fs=args.fs) logger.info("Compute over {:d} utterances".format(len(mix_input))) if __name__ == "__main__": parser = argparse.ArgumentParser( description= "Command to do speech separation in time domain using ConvTasNet", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("checkpoint", type=str, help="Directory of checkpoint") parser.add_argument( "--input", type=str, required=True, help="Script for input waveform") parser.add_argument( "--gpu", type=int, default=-1, help="GPU device to offload model to, -1 means running on CPU") parser.add_argument( "--fs", type=int, default=8000, help="Sample rate for mixture input") parser.add_argument( "--dump-dir", type=str, default="sps_tas", help="Directory to dump separated results out") args = parser.parse_args() run(args)
pycaw/api/mmdeviceapi/depend/structures.py
Jan-Zeiseweis/pycaw
234
12787386
<gh_stars>100-1000 from ctypes import Structure, Union from ctypes.wintypes import ( DWORD, LONG, LPWSTR, ULARGE_INTEGER, VARIANT_BOOL, WORD) from comtypes import GUID from comtypes.automation import VARTYPE, VT_BOOL, VT_CLSID, VT_LPWSTR, VT_UI4 from future.utils import python_2_unicode_compatible class PROPVARIANT_UNION(Union): _fields_ = [ ('lVal', LONG), ('uhVal', ULARGE_INTEGER), ('boolVal', VARIANT_BOOL), ('pwszVal', LPWSTR), ('puuid', GUID), ] class PROPVARIANT(Structure): _fields_ = [ ('vt', VARTYPE), ('reserved1', WORD), ('reserved2', WORD), ('reserved3', WORD), ('union', PROPVARIANT_UNION), ] def GetValue(self): vt = self.vt if vt == VT_BOOL: return self.union.boolVal != 0 elif vt == VT_LPWSTR: # return Marshal.PtrToStringUni(union.pwszVal) return self.union.pwszVal elif vt == VT_UI4: return self.union.lVal elif vt == VT_CLSID: # TODO # return (Guid)Marshal.PtrToStructure(union.puuid, typeof(Guid)) return else: return "%s:?" % (vt) @python_2_unicode_compatible class PROPERTYKEY(Structure): _fields_ = [ ('fmtid', GUID), ('pid', DWORD), ] def __str__(self): return "%s %s" % (self.fmtid, self.pid)
pymagnitude/third_party/allennlp/modules/token_embedders/token_characters_encoder.py
tpeng/magnitude
1,520
12787403
<filename>pymagnitude/third_party/allennlp/modules/token_embedders/token_characters_encoder.py from __future__ import absolute_import import torch from allennlp.common import Params from allennlp.data.vocabulary import Vocabulary from allennlp.modules.token_embedders.embedding import Embedding from allennlp.modules.seq2vec_encoders.seq2vec_encoder import Seq2VecEncoder from allennlp.modules.time_distributed import TimeDistributed from allennlp.modules.token_embedders.token_embedder import TokenEmbedder class TokenCharactersEncoder(TokenEmbedder): u""" A ``TokenCharactersEncoder`` takes the output of a :class:`~allennlp.data.token_indexers.TokenCharactersIndexer`, which is a tensor of shape (batch_size, num_tokens, num_characters), embeds the characters, runs a token-level encoder, and returns the result, which is a tensor of shape (batch_size, num_tokens, encoding_dim). We also optionally apply dropout after the token-level encoder. We take the embedding and encoding modules as input, so this class is itself quite simple. """ def __init__(self, embedding , encoder , dropout = 0.0) : super(TokenCharactersEncoder, self).__init__() self._embedding = TimeDistributed(embedding) self._encoder = TimeDistributed(encoder) if dropout > 0: self._dropout = torch.nn.Dropout(p=dropout) else: self._dropout = lambda x: x def get_output_dim(self) : return self._encoder._module.get_output_dim() # pylint: disable=protected-access def forward(self, token_characters ) : # pylint: disable=arguments-differ mask = (token_characters != 0).long() return self._dropout(self._encoder(self._embedding(token_characters), mask)) # The setdefault requires a custom from_params @classmethod def from_params(cls, vocab , params ) : # type: ignore # pylint: disable=arguments-differ embedding_params = params.pop(u"embedding") # Embedding.from_params() uses "tokens" as the default namespace, but we need to change # that to be "token_characters" by default. embedding_params.setdefault(u"vocab_namespace", u"token_characters") embedding = Embedding.from_params(vocab, embedding_params) encoder_params = params.pop(u"encoder") encoder = Seq2VecEncoder.from_params(encoder_params) dropout = params.pop_float(u"dropout", 0.0) params.assert_empty(cls.__name__) return cls(embedding, encoder, dropout) TokenCharactersEncoder = TokenEmbedder.register(u"character_encoding")(TokenCharactersEncoder)
tests/Unit/PointwiseFunctions/GeneralRelativity/IndexManipulation.py
nilsvu/spectre
117
12787409
<reponame>nilsvu/spectre # Distributed under the MIT License. # See LICENSE.txt for details. import numpy as np def raise_or_lower_first_index(tensor, metric): return np.einsum("ij,ikl", metric, tensor) def trace_last_indices(tensor, metric): return np.einsum("ij,kij", metric, tensor)
utils_nlp/eval/question_answering.py
Anita1017/nlp-recipes
4,407
12787421
""" Official evaluation script for SQuAD version 2.0. Modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0 """ import collections import json import re import string def get_raw_scores(qa_ids, actuals, preds): """ Computes exact match and F1 scores without applying any unanswerable probability threshold. Args: qa_ids (list): Unique ids corresponding to the answers in `actuals`. actuals (list): List of ground truth answers. preds (dict): Dictionary with qa_id as keys and predicted answers as values. Returns: tuple: (exact_match, f1) """ # Helper functions def _normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) return re.sub(regex, " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def _get_tokens(s): """Normalizes text and returns white-space tokenized tokens. """ if not s: return [] return _normalize_answer(s).split() def _compute_exact(a_gold, a_pred): """Compute the exact match between two sentences after normalization. Returns: int: 1 if two sentences match exactly after normalization, 0 otherwise. """ return int(_normalize_answer(a_gold) == _normalize_answer(a_pred)) def _compute_f1(a_gold, a_pred): """ Compute F1 score based on token overlapping between two sentences. """ gold_toks = _get_tokens(a_gold) pred_toks = _get_tokens(a_pred) common = collections.Counter(gold_toks) & collections.Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 # Helper functions end exact_scores = {} f1_scores = {} for qid, gold_answers in zip(qa_ids, actuals): if not gold_answers: # For unanswerable questions, only correct answer is empty string gold_answers = [""] if qid not in preds: print("Missing prediction for %s" % qid) continue a_pred = preds[qid] # Take max over all gold answers if isinstance(gold_answers, str): gold_answers = [gold_answers] exact_scores[qid] = max(_compute_exact(a, a_pred) for a in gold_answers) f1_scores[qid] = max(_compute_f1(a, a_pred) for a in gold_answers) return exact_scores, f1_scores def find_best_thresh(preds, scores, na_probs, qid_to_has_ans, unanswerable_exists=False): """ Find the best threshold to determine a question is impossible to answer. Args: preds (dict): Dictionary with qa_id as keys and predicted answers as values. scores (dict): Dictionary with qa_id as keys and raw evaluation scores (exact_match or f1) as values. na_probs (dict): Dictionary with qa_id as keys and unanswerable probabilities as values. qid_to_has_ans (dict): Dictionary with qa_id as keys boolean values indicating if the question has answer as values. unanswerable_exists (bool, optional): Whether there is unanswerable questions in the data. Defaults to False. Returns: tuple: score after applying best threshold, best threshold, (score for answerable questions after applying best threshold, if unanswerable_exists=True) """ num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k]) # If na_prob > threshold, the question is considered as unanswerable by the prediction. # Initially, the threshold is 0. All questions are considered as unanswerable by the # predictions. So cur_score is the number of actual unanswerable questions (i.e. correctly # predicted as unanswerable in the data. cur_score = num_no_ans best_score = cur_score best_thresh = 0.0 # Sorted in ascending order qid_list = sorted(na_probs, key=lambda k: na_probs[k]) for i, qid in enumerate(qid_list): # When using the cur_na_prob as threshold, all predictions with na_prob > na_prob_cur are # considered as unanswerable. Current question is considered answerable. if qid not in scores: continue if qid_to_has_ans[qid]: # Current question has ground truth answer, the prediction is correct. The raw score # is added to cur_score diff = scores[qid] else: # Current question doesn't have ground truth answer. if preds[qid]: # Prediction is not empty, incorrect. cur_score -= 1 diff = -1 else: # Prediction is empty, correct, the original score 1 from num_no_ans is preserved. diff = 0 cur_score += diff if cur_score > best_score: # When cur_score > best_score, the threshold can increase so that more questions are # considered as answerable and fewer questions are considered as unanswerable. # Imagine a PDF with two humps with some overlapping, the x axis is the na_prob. The # hump on the left is answerable questions and the hump on the right is unanswerable # questions. # At some point, the number of actual answerable questions decreases, and we got more # penalty from considering unanswerable questions as answerable than the score added # from actual answerable questions, we will not change the threshold anymore and the # optimal threshold is found. best_score = cur_score best_thresh = na_probs[qid] if not unanswerable_exists: return 100.0 * best_score / len(scores), best_thresh else: has_ans_score, has_ans_cnt = 0, 0 for qid in qid_list: if not qid_to_has_ans[qid]: continue has_ans_cnt += 1 if qid not in scores: continue has_ans_score += scores[qid] return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt def find_all_best_thresh( main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans, unanswerable_exists=False ): """ Update raw evaluation scores by finding the best threshold to determine a question is impossible to answer. Args: main_eval (dict): Dictionary with raw evaluation scores without apply any threshold. preds (dict): Dictionary with qa_id as keys and predicted answers as values. exact_raw (dict): Dictionary with qa_id as keys and raw exact_match scores as values. f1_raw (dict): Dictionary with qa_id as keys and raw f1 scores as values. na_probs (dict): Dictionary with qa_id as keys and unanswerable probabilities as values. qid_to_has_ans (dict): Dictionary with qa_id as keys boolean values indicating if the question has answer as values. unanswerable_exists (bool, optional): Whether there is unanswerable questions in the data. Defaults to False. Returns: dict: Updated `main_eval` with scores after applying best threshold and best threshold for each score. """ all_exact = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans, unanswerable_exists) all_f1 = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans, unanswerable_exists) main_eval["best_exact"] = all_exact[0] main_eval["best_exact_thresh"] = all_exact[1] main_eval["best_f1"] = all_f1[0] main_eval["best_f1_thresh"] = all_f1[1] if unanswerable_exists: main_eval["has_ans_exact"] = all_exact[2] main_eval["has_ans_f1"] = all_f1[2] def evaluate_qa( actual_dataset, preds, na_probs=None, na_prob_thresh=0, unanswerable_exists=False, out_file=None ): """ Evaluate question answering prediction results against ground truth answers. Args: Evaluates question answering model performance. Args: actual_dataset (:class:`utils_nlp.dataset.pytorch.QADataset`): Input question answering dataset with ground truth answers. preds (dict): The key of the dictionary is the qa_id in the original :class:`utils_nlp.dataset.pytorch.QADataset`. The values of the dictionary are the predicted answer texts in string type. na_probs (dict, optional): Dictionary of qa_id and unanswerable probability pairs. If None, unanswerable probabilities are all set to zero. Defaults to None. na_prob_thresh (float, optional): Probability threshold to predict a question to be unanswerable. For an unanswerable question, if `na_probs` > `na_prob_thresh`, the prediction is considered as correct. Otherwise, the prediction is considered as incorrect. Defaults to 0. out_file (str, optional): Path of the file to save the evaluation results to. Defaults to None. Returns: dict: A dictionary with exact_match and f1 values. """ # Helper functions def _apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh): """Update the input scores by applying unanswerable probability threshold.""" new_scores = {} for qid, s in scores.items(): pred_na = na_probs[qid] > na_prob_thresh if pred_na: new_scores[qid] = float(not qid_to_has_ans[qid]) else: new_scores[qid] = s return new_scores def _make_eval_dict(exact_scores, f1_scores, qid_list=None): """Create a dictionary of evaluation results.""" if not qid_list: total = len(exact_scores) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values()) / total), ("f1", 100.0 * sum(f1_scores.values()) / total), ("total", total), ] ) else: total = len(qid_list) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total), ("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total), ("total", total), ] ) def _merge_eval(main_eval, new_eval, prefix): """Merge multiple evaluation result dictionaries.""" for k in new_eval: main_eval["%s_%s" % (prefix, k)] = new_eval[k] # Helper functions end if na_probs is None: na_probs_available = False na_probs = {k: 0.0 for k in preds} else: na_probs_available = True qa_ids = [item.qa_id for item in actual_dataset] actuals = [item.answer_text for item in actual_dataset] qid_to_has_ans = {qa_id: bool(ans) for (qa_id, ans) in zip(qa_ids, actuals)} has_ans_qids = [k for k, v in qid_to_has_ans.items() if v] no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v] exact_raw, f1_raw = get_raw_scores(qa_ids, actuals, preds) exact_thresh = _apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans, na_prob_thresh) f1_thresh = _apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans, na_prob_thresh) out_eval = _make_eval_dict(exact_thresh, f1_thresh) if has_ans_qids: has_ans_eval = _make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids) _merge_eval(out_eval, has_ans_eval, "HasAns") if no_ans_qids: no_ans_eval = _make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids) _merge_eval(out_eval, no_ans_eval, "NoAns") if na_probs_available: find_all_best_thresh( out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans, unanswerable_exists ) if out_file: with open(out_file, "w") as f: json.dump(out_eval, f) else: print(json.dumps(out_eval, indent=2)) return out_eval
scripts/issues/issue15.py
Jhsmit/awesome-panel
179
12787427
<reponame>Jhsmit/awesome-panel import panel as pn text = r""" ```math f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x} \,d\xi ``` """ app = pn.Column(pn.pane.Markdown(text)) app.servable()
Configuration/DataProcessing/python/Impl/__init__.py
Purva-Chaudhari/cmssw
852
12787473
<reponame>Purva-Chaudhari/cmssw #!/usr/bin/env python3 """ _Impl_ Scenario Implementations """ __all__ = []
backend/ecs_tasks/delete_files/s3.py
guvenbz/amazon-s3-find-and-forget
165
12787475
import logging from functools import lru_cache from urllib.parse import urlencode, quote_plus from boto_utils import fetch_job_manifest, paginate from botocore.exceptions import ClientError from utils import remove_none, retry_wrapper logger = logging.getLogger(__name__) def save(s3, client, buf, bucket, key, metadata, source_version=None): """ Save a buffer to S3, preserving any existing properties on the object """ # Get Object Settings request_payer_args, _ = get_requester_payment(client, bucket) object_info_args, _ = get_object_info(client, bucket, key, source_version) tagging_args, _ = get_object_tags(client, bucket, key, source_version) acl_args, acl_resp = get_object_acl(client, bucket, key, source_version) extra_args = { **request_payer_args, **object_info_args, **tagging_args, **acl_args, **{"Metadata": metadata}, } logger.info("Object settings: %s", extra_args) # Write Object Back to S3 logger.info("Saving updated object to s3://%s/%s", bucket, key) contents = buf.read() with s3.open("s3://{}/{}".format(bucket, key), "wb", **extra_args) as f: f.write(contents) s3.invalidate_cache() # TODO: remove once https://github.com/dask/s3fs/issues/294 is resolved new_version_id = f.version_id logger.info("Object uploaded to S3") # GrantWrite cannot be set whilst uploading therefore ACLs need to be restored separately write_grantees = ",".join(get_grantees(acl_resp, "WRITE")) if write_grantees: logger.info("WRITE grant found. Restoring additional grantees for object") client.put_object_acl( Bucket=bucket, Key=key, VersionId=new_version_id, **{**request_payer_args, **acl_args, "GrantWrite": write_grantees,} ) logger.info("Processing of file s3://%s/%s complete", bucket, key) return new_version_id @lru_cache() def get_requester_payment(client, bucket): """ Generates a dict containing the request payer args supported when calling S3. GetBucketRequestPayment call will be cached :returns tuple containing the info formatted for ExtraArgs and the raw response """ request_payer = client.get_bucket_request_payment(Bucket=bucket) return ( remove_none( { "RequestPayer": "requester" if request_payer["Payer"] == "Requester" else None, } ), request_payer, ) @lru_cache() def get_object_info(client, bucket, key, version_id=None): """ Generates a dict containing the non-ACL/Tagging args supported when uploading to S3. HeadObject call will be cached :returns tuple containing the info formatted for ExtraArgs and the raw response """ kwargs = {"Bucket": bucket, "Key": key, **get_requester_payment(client, bucket)[0]} if version_id: kwargs["VersionId"] = version_id object_info = client.head_object(**kwargs) return ( remove_none( { "CacheControl": object_info.get("CacheControl"), "ContentDisposition": object_info.get("ContentDisposition"), "ContentEncoding": object_info.get("ContentEncoding"), "ContentLanguage": object_info.get("ContentLanguage"), "ContentType": object_info.get("ContentType"), "Expires": object_info.get("Expires"), "Metadata": object_info.get("Metadata"), "ServerSideEncryption": object_info.get("ServerSideEncryption"), "StorageClass": object_info.get("StorageClass"), "SSECustomerAlgorithm": object_info.get("SSECustomerAlgorithm"), "SSEKMSKeyId": object_info.get("SSEKMSKeyId"), "WebsiteRedirectLocation": object_info.get("WebsiteRedirectLocation"), } ), object_info, ) @lru_cache() def get_object_tags(client, bucket, key, version_id=None): """ Generates a dict containing the Tagging args supported when uploading to S3 GetObjectTagging call will be cached :returns tuple containing tagging formatted for ExtraArgs and the raw response """ kwargs = {"Bucket": bucket, "Key": key} if version_id: kwargs["VersionId"] = version_id tagging = client.get_object_tagging(**kwargs) return ( remove_none( { "Tagging": urlencode( {tag["Key"]: tag["Value"] for tag in tagging["TagSet"]}, quote_via=quote_plus, ) } ), tagging, ) @lru_cache() def get_object_acl(client, bucket, key, version_id=None): """ Generates a dict containing the ACL args supported when uploading to S3 GetObjectAcl call will be cached :returns tuple containing ACL formatted for ExtraArgs and the raw response """ kwargs = {"Bucket": bucket, "Key": key, **get_requester_payment(client, bucket)[0]} if version_id: kwargs["VersionId"] = version_id acl = client.get_object_acl(**kwargs) existing_owner = {"id={}".format(acl["Owner"]["ID"])} return ( remove_none( { "GrantFullControl": ",".join( existing_owner | get_grantees(acl, "FULL_CONTROL") ), "GrantRead": ",".join(get_grantees(acl, "READ")), "GrantReadACP": ",".join(get_grantees(acl, "READ_ACP")), "GrantWriteACP": ",".join(get_grantees(acl, "WRITE_ACP")), } ), acl, ) def get_grantees(acl, grant_type): prop_map = { "CanonicalUser": ("ID", "id"), "AmazonCustomerByEmail": ("EmailAddress", "emailAddress"), "Group": ("URI", "uri"), } filtered = [ grantee["Grantee"] for grantee in acl.get("Grants") if grantee["Permission"] == grant_type ] grantees = set() for grantee in filtered: identifier_type = grantee["Type"] identifier_prop = prop_map[identifier_type] grantees.add("{}={}".format(identifier_prop[1], grantee[identifier_prop[0]])) return grantees @lru_cache() def validate_bucket_versioning(client, bucket): resp = client.get_bucket_versioning(Bucket=bucket) versioning_enabled = resp.get("Status") == "Enabled" mfa_delete_enabled = resp.get("MFADelete") == "Enabled" if not versioning_enabled: raise ValueError("Bucket {} does not have versioning enabled".format(bucket)) if mfa_delete_enabled: raise ValueError("Bucket {} has MFA Delete enabled".format(bucket)) return True @lru_cache() def fetch_manifest(manifest_object): return fetch_job_manifest(manifest_object) def delete_old_versions(client, input_bucket, input_key, new_version): try: resp = list( paginate( client, client.list_object_versions, ["Versions", "DeleteMarkers"], Bucket=input_bucket, Prefix=input_key, VersionIdMarker=new_version, KeyMarker=input_key, ) ) versions = [el[0] for el in resp if el[0] is not None] delete_markers = [el[1] for el in resp if el[1] is not None] versions.extend(delete_markers) sorted_versions = sorted(versions, key=lambda x: x["LastModified"]) version_ids = [v["VersionId"] for v in sorted_versions] errors = [] max_deletions = 1000 for i in range(0, len(version_ids), max_deletions): resp = client.delete_objects( Bucket=input_bucket, Delete={ "Objects": [ {"Key": input_key, "VersionId": version_id} for version_id in version_ids[i : i + max_deletions] ], "Quiet": True, }, ) errors.extend(resp.get("Errors", [])) if len(errors) > 0: raise DeleteOldVersionsError( errors=[ "Delete object {} version {} failed: {}".format( e["Key"], e["VersionId"], e["Message"] ) for e in errors ] ) except ClientError as e: raise DeleteOldVersionsError(errors=[str(e)]) def verify_object_versions_integrity( client, bucket, key, from_version_id, to_version_id ): def raise_exception(msg): raise IntegrityCheckFailedError(msg, client, bucket, key, to_version_id) conflict_error_template = "A {} ({}) was detected for the given object between read and write operations ({} and {})." not_found_error_template = "Previous version ({}) has been deleted." object_versions = retry_wrapper(client.list_object_versions)( Bucket=bucket, Prefix=key, VersionIdMarker=to_version_id, KeyMarker=key, MaxKeys=1, ) versions = object_versions.get("Versions", []) delete_markers = object_versions.get("DeleteMarkers", []) all_versions = versions + delete_markers if not len(all_versions): return raise_exception(not_found_error_template.format(from_version_id)) prev_version = all_versions[0] prev_version_id = prev_version["VersionId"] if prev_version_id != from_version_id: conflicting_version_type = ( "delete marker" if "ETag" not in prev_version else "version" ) return raise_exception( conflict_error_template.format( conflicting_version_type, prev_version_id, from_version_id, to_version_id, ) ) return True def rollback_object_version(client, bucket, key, version, on_error): """ Delete newly created object version as soon as integrity conflict is detected """ try: return client.delete_object(Bucket=bucket, Key=key, VersionId=version) except ClientError as e: err_message = "ClientError: {}. Version rollback caused by version integrity conflict failed".format( str(e) ) on_error(err_message) except Exception as e: err_message = "Unknown error: {}. Version rollback caused by version integrity conflict failed".format( str(e) ) on_error(err_message) class DeleteOldVersionsError(Exception): def __init__(self, errors): super().__init__("\n".join(errors)) self.errors = errors class IntegrityCheckFailedError(Exception): def __init__(self, message, client, bucket, key, version_id): self.message = message self.client = client self.bucket = bucket self.key = key self.version_id = version_id
REST/python/Environments/create-environments.py
gdesai1234/OctopusDeploy-Api
199
12787508
<filename>REST/python/Environments/create-environments.py import json import requests from urllib.parse import quote octopus_server_uri = 'https://your.octopus.app/api' octopus_api_key = 'API-YOURAPIKEY' headers = {'X-Octopus-ApiKey': octopus_api_key} def get_octopus_resource(uri): response = requests.get(uri, headers=headers) response.raise_for_status() return json.loads(response.content.decode('utf-8')) def post_octopus_resource(uri, body): response = requests.post(uri, headers=headers, json=body) response.raise_for_status() return json.loads(response.content.decode('utf-8')) def get_by_name(uri, name): resources = get_octopus_resource(uri) return next((x for x in resources['Items'] if x['Name'] == name), None) space_name = 'Default' environment_names = ['Development', 'Test', 'Staging', 'Production'] space = get_by_name('{0}/spaces?partialName={1}&skip=0&take=100'.format(octopus_server_uri, quote(space_name)), space_name) for environment_name in environment_names: existing_environment = get_by_name('{0}/{1}/environments?partialName={2}&skip=0&take=100'.format(octopus_server_uri, space['Id'], quote(environment_name)), environment_name) if existing_environment is None: print('Creating environment \'{0}\''.format(environment_name)) environment = { 'Name': environment_name } environment_resource = post_octopus_resource('{0}/{1}/environments'.format(octopus_server_uri, space['Id']), environment) print('EnvironmentId: \'{0}\''.format(environment_resource['Id'])) else: print('Environment \'{0}\' already exists. Nothing to create :)'.format(environment_name))
src/mlspace/scripts/__init__.py
abhishekkrthakur/mlspace
283
12787553
from .base import script as base_script from .install_docker import script as install_docker from .install_nvidia_docker import script as install_nvidia_docker from .install_nvidia_drivers import script as install_nvidia_drivers
lib/pipefunc.py
kei-iketani/plex
153
12787573
<reponame>kei-iketani/plex<gh_stars>100-1000 #********************************************************************* # content = common functions # version = 0.1.0 # date = 2019-12-01 # # license = MIT <https://github.com/alexanderrichtertd> # author = <NAME> <<EMAIL>> #********************************************************************* import os import glob import json import time import webbrowser # NO logging since it will break the init #********************************************************************* # FUNCTIONS def help(name=''): from tank import Tank if not name and os.getenv('SOFTWARE'): name = os.getenv('SOFTWARE') project_help = Tank().data_project['HELP'] if name in project_help: webbrowser.open(project_help[name]) else: webbrowser.open(project_help['default']) # GET all (sub) keys in dict def get_all_keys(key_list, dictonary=[]): for key, items in key_list.iteritems(): dictonary.append(key) if isinstance(items, dict): get_all_keys(items, dictonary) return dictonary # decorator: return function duration time def get_duration(func): def timed(*args, **kw): startTime = time.time() resultTime = func(*args, **kw) endTime = time.time() printResult = '%r (%r, %r) %2.2f sec' % (func.__name__, args, kw, endTime-startTime) print(printResult) return resultTime return timed def find_inbetween(text, first, last): try: start = text.index(first) + len(first) end = text.index(last, start) except ValueError: return "" return text[start:end] #********************************************************************* # FOLDER # @BRIEF creates a folder, checks if it already exists, # creates the folder above if the path is a file def create_folder(path): if len(path.split('.')) > 1: path = os.path.dirname(path) if not os.path.exists(path): try: os.makedirs(path) except: print('CANT create folder: {}'.format(path)) # @BRIEF opens folder even if file is given def open_folder(path): path = os.path.normpath(path) if os.path.exists(path): if len(path.split('.')) > 1: path = os.path.dirname(path) webbrowser.open(path) else: print('UNVALID path: {}'.format(path)) return path #********************************************************************* # FILES # @BRIEF get a file/folder list with specifics # # @PARAM path string. # file_type string/string[]. '*.py' # extension bool. True:[name.py] False:[name] # exclude string /string[]. '__init__.py' | '__init__' | ['btnReport48', 'btnHelp48'] # # @RETURN strint[]. def get_file_list(path, file_type='*', extension=False, exclude='*', add_path=False): if(os.path.exists(path)): getFile = [] try: os.chdir(path) except: print('Invalid dir: {}'.format(path)) for file_name in glob.glob(file_type): if exclude in file_name: continue if add_path: file_name = os.path.normpath(('/').join([path,file_name])) if extension: getFile.append(file_name) else: getFile.append((file_name.split('.')[0])) return getFile ## # @BRIEF GET ALL subfolders in the path def get_deep_folder_list(path, add_path=False): if add_path: getFile = map(lambda x: x[0], os.walk(path)) else: getFile = map(lambda x: os.path.basename(x[0]), os.walk(path)) try: getFile.pop(0) except: print('CANT pop file. Path: {}'.format(path)) return getFile #********************************************************************* # REPOSITORY def make_github_issue(title, body=None, assignee='', milestone=None, labels=None): import requests from tank import Tank REPO_DATA = Tank().user.data_user_path if not assignee: assignee = REPO_DATA['username'] # Our url to create issues via POST url = 'https://api.github.com/repos/%s/%s/issues' % (REPO_DATA['owner'], REPO_DATA['repository']) # Create an authenticated session to create the issue session = requests.Session() session.auth = (REPO_DATA['username'], REPO_DATA['password']) issue = {'title': title, 'body': body, 'assignee': assignee, 'milestone': milestone, 'labels': labels} # Add the issue to our repository repo = session.post(url, json.dumps(issue)) if repo.status_code == 201: LOG.info('Successfully created Issue {}'.format(title)) else: LOG.warning('Could not create Issue {}.\nResponse:{}'.format(title, repo.content)) #********************************************************************* # TEST # make_github_issue(title='Login Test', body='Body text', milestone=None, labels=['bug'])
tests/broken_pickle.py
Kyle-Kyle/angr
6,132
12787583
<reponame>Kyle-Kyle/angr<gh_stars>1000+ import pickle import angr import nose def test_pickle_state(): b = angr.Project("/home/angr/angr/angr/tests/blob/x86_64/fauxware") p = b.path_generator.entry_point() p.state.inspect.make_breakpoint('mem_write') nose.tools.assert_true('inspector' in p.state.plugins) s_str = pickle.dumps(p.state) s2 = pickle.loads(s_str) nose.tools.assert_is(p.state, s2) del p del s2 import gc; gc.collect() s2 = pickle.loads(s_str) nose.tools.assert_true('inspector' not in s2.plugins) if __name__ == '__main__': test_pickle_state()
platypush/message/event/music/snapcast.py
RichardChiang/platypush
228
12787609
from platypush.message.event import Event class SnapcastEvent(Event): """ Base class for Snapcast events """ def __init__(self, host='localhost', *args, **kwargs): super().__init__(host=host, *args, **kwargs) class ClientConnectedEvent(SnapcastEvent): """ Event fired upon client connection """ def __init__(self, client, host='localhost', *args, **kwargs): super().__init__(client=client, host=host, *args, **kwargs) class ClientDisconnectedEvent(SnapcastEvent): """ Event fired upon client disconnection """ def __init__(self, client, host='localhost', *args, **kwargs): super().__init__(client=client, host=host, *args, **kwargs) class ClientVolumeChangeEvent(SnapcastEvent): """ Event fired upon volume change or mute status change on a client """ def __init__(self, client, volume, muted, host='localhost', *args, **kwargs): super().__init__(client=client, host=host, volume=volume, muted=muted, *args, **kwargs) class ClientLatencyChangeEvent(SnapcastEvent): """ Event fired upon latency change on a client """ def __init__(self, client, latency, host='localhost', *args, **kwargs): super().__init__(client=client, host=host, latency=latency, *args, **kwargs) class ClientNameChangeEvent(SnapcastEvent): """ Event fired upon name change of a client """ def __init__(self, client, name, host='localhost', *args, **kwargs): super().__init__(client=client, host=host, name=name, *args, **kwargs) class GroupMuteChangeEvent(SnapcastEvent): """ Event fired upon mute status change """ def __init__(self, group, muted, host='localhost', *args, **kwargs): super().__init__(group=group, host=host, muted=muted, *args, **kwargs) class GroupStreamChangeEvent(SnapcastEvent): """ Event fired upon group stream change """ def __init__(self, group, stream, host='localhost', *args, **kwargs): super().__init__(group=group, host=host, stream=stream, *args, **kwargs) class StreamUpdateEvent(SnapcastEvent): """ Event fired upon stream update """ def __init__(self, stream_id, stream, host='localhost', *args, **kwargs): super().__init__(stream_id=stream_id, stream=stream, host=host, *args, **kwargs) class ServerUpdateEvent(SnapcastEvent): """ Event fired upon stream update """ def __init__(self, server, host='localhost', *args, **kwargs): super().__init__(server=server, host=host, *args, **kwargs) # vim:sw=4:ts=4:et:
serieswatcher/sqlobject/tests/test_transactions.py
lightcode/SeriesWatcher
303
12787621
from sqlobject import * from sqlobject.tests.dbtest import * ######################################## ## Transaction test ######################################## class TestSOTrans(SQLObject): #_cacheValues = False class sqlmeta: defaultOrder = 'name' name = StringCol(length=10, alternateID=True, dbName='name_col') def test_transaction(): if not supports('transactions'): return setupClass(TestSOTrans) TestSOTrans(name='bob') TestSOTrans(name='tim') trans = TestSOTrans._connection.transaction() try: TestSOTrans._connection.autoCommit = 'exception' TestSOTrans(name='joe', connection=trans) trans.rollback() trans.begin() assert ([n.name for n in TestSOTrans.select(connection=trans)] == ['bob', 'tim']) b = TestSOTrans.byName('bob', connection=trans) b.name = 'robert' trans.commit() assert b.name == 'robert' b.name = 'bob' trans.rollback() trans.begin() assert b.name == 'robert' finally: TestSOTrans._connection.autoCommit = True def test_transaction_commit_sync(): if not supports('transactions'): return setupClass(TestSOTrans) trans = TestSOTrans._connection.transaction() try: TestSOTrans(name='bob') bOut = TestSOTrans.byName('bob') bIn = TestSOTrans.byName('bob', connection=trans) bIn.name = 'robert' assert bOut.name == 'bob' trans.commit() assert bOut.name == 'robert' finally: TestSOTrans._connection.autoCommit = True def test_transaction_delete(close=False): if not supports('transactions'): return setupClass(TestSOTrans) trans = TestSOTrans._connection.transaction() try: TestSOTrans(name='bob') bIn = TestSOTrans.byName('bob', connection=trans) bIn.destroySelf() bOut = TestSOTrans.select(TestSOTrans.q.name=='bob') assert bOut.count() == 1 bOutInst = bOut[0] bOutID = bOutInst.id trans.commit(close=close) assert bOut.count() == 0 raises(SQLObjectNotFound, "TestSOTrans.get(bOutID)") raises(SQLObjectNotFound, "bOutInst.name") finally: trans.rollback() TestSOTrans._connection.autoCommit = True def test_transaction_delete_with_close(): test_transaction_delete(close=True)
preprocess.py
akoksal/Turkish-Word2Vec
175
12787650
<filename>preprocess.py from __future__ import print_function import os.path import sys from gensim.corpora import WikiCorpus import xml.etree.ElementTree as etree import warnings import logging import string from gensim import utils def tokenize_tr(content,token_min_len=2,token_max_len=50,lower=True): if lower: lowerMap = {ord(u'A'): u'a',ord(u'A'): u'a',ord(u'B'): u'b',ord(u'C'): u'c',ord(u'Ç'): u'ç',ord(u'D'): u'd',ord(u'E'): u'e',ord(u'F'): u'f',ord(u'G'): u'g',ord(u'Ğ'): u'ğ',ord(u'H'): u'h',ord(u'I'): u'ı',ord(u'İ'): u'i',ord(u'J'): u'j',ord(u'K'): u'k',ord(u'L'): u'l',ord(u'M'): u'm',ord(u'N'): u'n',ord(u'O'): u'o',ord(u'Ö'): u'ö',ord(u'P'): u'p',ord(u'R'): u'r',ord(u'S'): u's',ord(u'Ş'): u'ş',ord(u'T'): u't',ord(u'U'): u'u',ord(u'Ü'): u'ü',ord(u'V'): u'v',ord(u'Y'): u'y',ord(u'Z'): u'z'} content = content.translate(lowerMap) return [ utils.to_unicode(token) for token in utils.tokenize(content, lower=False, errors='ignore') if token_min_len <= len(token) <= token_max_len and not token.startswith('_') ] if __name__ == '__main__': if len(sys.argv) < 3: print("Please provide two arguments, first one is path to the wikipedia dump, second one is path to the output file") print("Example command: python3 preprocess.py trwiki-20180101-pages-articles.xml.bz2 wiki.tr.txt") sys.exit() logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') inputFile = sys.argv[1] outputFile = sys.argv[2] wiki = WikiCorpus(inputFile, lemmatize=False,tokenizer_func = tokenize_tr) logging.info("Wikipedia dump is opened.") output = open(outputFile,"w",encoding="utf-8") logging.info("Output file is created.") i = 0 for text in wiki.get_texts(): output.write(" ".join(text)+"\n") i+=1 if (i % 10000 == 0): logging.info("Saved " +str(i) + " articles.") output.close()
tests/unit/conftest.py
ckornacker/aws-gate
369
12787672
<reponame>ckornacker/aws-gate import os import boto3 import placebo import pytest @pytest.fixture(name="session") def placebo_session(request): session_kwargs = {"region_name": os.environ.get("AWS_DEFAULT_REGION", "eu-west-1")} profile_name = os.environ.get("PLACEBO_PROFILE", None) if profile_name: session_kwargs["profile_name"] = profile_name session = boto3.Session(**session_kwargs) prefix = request.function.__name__ base_dir = os.environ.get("PLACEBO_DIR", os.path.join(os.getcwd(), "placebo")) record_dir = os.path.join(base_dir, prefix) if not os.path.exists(record_dir): os.makedirs(record_dir) pill = placebo.attach(session, data_path=record_dir) if os.environ.get("PLACEBO_MODE") == "record": pill.record() else: pill.playback() return session @pytest.fixture def ec2(session): return session.resource("ec2", region_name="eu-west-1") @pytest.fixture def ec2_ic(session): return session.resource("ec2-instance-connect", region_name="eu-west-1") @pytest.fixture def ssm(session): return session.client("ssm", region_name="eu-west-1") @pytest.fixture def ec2_mock(mocker): return mocker.MagicMock() @pytest.fixture def ec2_ic_mock(mocker): return mocker.MagicMock() @pytest.fixture def ssm_mock(mocker): mock = mocker.MagicMock() response = { "SessionId": "session-020bf6cd31f912b53", "TokenValue": "randomtokenvalue", } mock.configure_mock( **{ "start_session.return_value": response, "terminate_session.return_value": response, } ) type(mock.meta).endpoint_url = mocker.PropertyMock(return_value="ssm") return mock @pytest.fixture def instance_id(): return "i-0c32153096cd68a6d" @pytest.fixture def ssh_key(mocker): mock = mocker.MagicMock() mock.configure_mock( **{ "public_key.return_value": "ssh-rsa ranodombase64string", "key_path.return_value": "/home/user/.aws-gate/key", } ) return mock @pytest.fixture def config(mocker): mock = mocker.MagicMock() mock.configure_mock( **{ "get_host.return_value": { "alias": "test", "name": "SSM-test", "profile": "default", "region": "eu-west-1", } } ) return mock @pytest.fixture def empty_config(mocker): mock = mocker.MagicMock() mock.configure_mock(**{"get_host.return_value": {}}) return mock @pytest.fixture def get_instance_details_response(): return {"availability_zone": "eu-west-1a"}
authlib/deprecate.py
YPCrumble/authlib
3,172
12787685
import warnings class AuthlibDeprecationWarning(DeprecationWarning): pass warnings.simplefilter('always', AuthlibDeprecationWarning) def deprecate(message, version=None, link_uid=None, link_file=None): if version: message += '\nIt will be compatible before version {}.'.format(version) if link_uid and link_file: message += '\nRead more <https://git.io/{}#file-{}-md>'.format(link_uid, link_file) warnings.warn(AuthlibDeprecationWarning(message), stacklevel=2)
changes/backends/jenkins/generic_builder.py
vault-the/changes
443
12787701
<reponame>vault-the/changes<gh_stars>100-1000 from __future__ import absolute_import from flask import current_app from changes.config import db from changes.models.snapshot import SnapshotImage from changes.models.command import FutureCommand from changes.utils.http import build_internal_uri from changes.buildsteps.base import LXCConfig from .builder import JenkinsBuilder class JenkinsGenericBuilder(JenkinsBuilder): def __init__(self, master_urls=None, setup_script='', teardown_script='', artifacts=(), reset_script='', path='', workspace='', snapshot_script=None, clean=True, cluster=None, *args, **kwargs): """Builder for JenkinsGenericBuildStep. See JenkinsGenericBuildStep for information on most of these arguments. """ self.setup_script = setup_script self.script = kwargs.pop('script') self.teardown_script = teardown_script self.snapshot_script = snapshot_script self.reset_script = reset_script self.path = path self.workspace = workspace self.artifacts = artifacts self.clean = clean # See configuration for more details; by default, the default build type is # legacy which sets up no additional configuration. self.build_type = kwargs.pop('build_type', current_app.config['CHANGES_CLIENT_DEFAULT_BUILD_TYPE']) if self.build_type is None: self.build_type = current_app.config['CHANGES_CLIENT_DEFAULT_BUILD_TYPE'] # If a server url is not provided (default: None), set it to a blank string self.artifact_server_base_url = current_app.config['ARTIFACTS_SERVER'] or '' # we do this as early as possible in order to propagate the # error faster. The build description is simply the configuration # key'd by the build_type, documented in config.py self.build_desc = self.load_build_desc(self.build_type) super(JenkinsGenericBuilder, self).__init__(master_urls, cluster=cluster, *args, **kwargs) def load_build_desc(self, build_type): build_desc = current_app.config['CHANGES_CLIENT_BUILD_TYPES'][build_type] self.validate_build_desc(build_type, build_desc) return build_desc # TODO validate configuration at start of application or use a linter to validate # configuration before pushing/deploying def validate_build_desc(self, build_type, build_desc): if build_desc.get('uses_client', False): if 'jenkins-command' not in build_desc: raise ValueError('[CHANGES_CLIENT_BUILD_TYPES INVALID] build type %s missing required key: jenkins-command' % build_type) if 'adapter' not in build_desc: raise ValueError('[CHANGES_CLIENT_BUILD_TYPES INVALID] build type %s missing required key: adapter' % build_type) # These three methods all describe which build specification, # setup, and teardown should be used to create a snapshot # build. In the generic builder, this is the same as a normal build, # but sharded builds need to override these with the shard equivalents # in order to create the correct snapshot. def get_snapshot_build_desc(self): return self.build_desc def get_snapshot_setup_script(self): return self.setup_script def get_snapshot_teardown_script(self): return self.teardown_script def get_expected_image(self, job_id): """ Get the snapshot-image (filesystem tarball for this jobstep). If this returns None, it is a normal build (the more common case), otherwise it returns the id of the snapshot image, which indicates to where the build agent should upload the snapshot onto s3. """ return db.session.query( SnapshotImage.id, ).filter( SnapshotImage.job_id == job_id, ).scalar() def _get_build_desc(self, jobstep): if self.get_expected_image(jobstep.job_id): return self.get_snapshot_build_desc() return self.build_desc def get_lxc_config(self, jobstep): """ Get the LXC configuration, if the LXC adapter should be used. Args: jobstep (JobStep): The JobStep to get the LXC config for. Returns: LXCConfig: The config to use for this jobstep, or None. """ build_desc = self._get_build_desc(jobstep) if build_desc.get('uses_client') and build_desc.get('adapter') == 'lxc': app_cfg = current_app.config snapshot_bucket = app_cfg.get('SNAPSHOT_S3_BUCKET', '') default_pre = self.debug_config.get('prelaunch_script') or app_cfg.get('LXC_PRE_LAUNCH', '') default_post = app_cfg.get('LXC_POST_LAUNCH', '') default_release = app_cfg.get('LXC_RELEASE', 'trusty') return LXCConfig(s3_bucket=snapshot_bucket, compression='lz4', prelaunch=build_desc.get('pre-launch', default_pre), postlaunch=build_desc.get('post-launch', default_post), release=build_desc.get('release', default_release), template=None, mirror=None, security_mirror=None) return None def get_job_parameters(self, job, changes_bid, setup_script=None, script=None, teardown_script=None, path=None): """ Gets a list containing dictionaries, each with two keys - name and value. These key,value pairs correspond to the input variables in Jenkins. changes_bid is actually the jobstep id, and job is the current job. *_script and path override the corresponding fields of the current builder. """ params = super(JenkinsGenericBuilder, self).get_job_parameters( job, changes_bid=changes_bid) if path is None: path = self.path if setup_script is None: setup_script = self.setup_script if script is None: script = self.script if teardown_script is None: teardown_script = self.teardown_script project = job.project repository = project.repository vcs = repository.get_vcs() if vcs: repo_url = vcs.remote_url else: repo_url = repository.url snapshot_bucket = current_app.config.get('SNAPSHOT_S3_BUCKET', '') default_pre = self.debug_config.get('prelaunch_script') or current_app.config.get('LXC_PRE_LAUNCH', '') default_post = current_app.config.get('LXC_POST_LAUNCH', '') default_release = current_app.config.get('LXC_RELEASE', 'trusty') build_desc = self.build_desc # This is the image we are expected to produce or None # if this is not a snapshot build. expected_image = self.get_expected_image(job.id) # Setting script to be empty essentially forces nothing # but setup/teardown to be run, making a clean snapshot snapshot_id = '' if expected_image: snapshot_id = expected_image.hex # this is a no-op command in sh, essentially equivalent # to '' except it tells changes-client that we are # deliberately doing absolutely nothing. However, # if snapshot script is not None, then we just use # that in place of script (so the normal script is # never used). script = self.snapshot_script or ':' # sharded builds will have different setup/teardown/build_desc # scripts between shards and collector so we need to # use the shard ones build_desc = self.get_snapshot_build_desc() setup_script = self.get_snapshot_setup_script() teardown_script = self.get_snapshot_teardown_script() # CHANGES_BID, the jobstep id, is provided by superclass params.update({ 'CHANGES_PID': project.slug, 'PROJECT_CONFIG': project.get_config_path(), 'REPO_URL': repo_url, 'SETUP_SCRIPT': setup_script, 'SCRIPT': script, 'TEARDOWN_SCRIPT': teardown_script, 'RESET_SCRIPT': self.reset_script, 'REPO_VCS': repository.backend.name, 'WORK_PATH': path, 'C_WORKSPACE': self.workspace, 'ARTIFACTS_SERVER_BASE_URL': self.artifact_server_base_url}) if 'bind_mounts' in self.debug_config: params['bind-mounts'] = self.debug_config['bind_mounts'] if build_desc.get('uses_client', False): params.update({ 'JENKINS_COMMAND': build_desc['jenkins-command'], 'CHANGES_CLIENT_ADAPTER': build_desc['adapter'], 'CHANGES_CLIENT_SERVER': build_internal_uri('/api/0'), 'CHANGES_CLIENT_SNAPSHOT_BUCKET': snapshot_bucket, 'CHANGES_CLIENT_SNAPSHOT_ID': snapshot_id, 'CHANGES_CLIENT_LXC_PRE_LAUNCH': build_desc.get('pre-launch', default_pre), 'CHANGES_CLIENT_LXC_POST_LAUNCH': build_desc.get('post-launch', default_post), 'CHANGES_CLIENT_LXC_RELEASE': build_desc.get('release', default_release) }) return params def get_future_commands(self, env, commands, artifacts): """Create future commands which are later created as comands. See models/command.py. """ return map(lambda command: FutureCommand(command['script'], artifacts=artifacts, env=env), commands) def create_commands(self, jobstep, env): """ This seems slightly redundant, but in fact is necessary for changes-client to work. The issue is mainly that the client is designed for the exact flow of information that mesos uses, in which the commands are taken from changes through an api request. We need to tell changes to run what would normally be ran through the Jenkins configuration - so we move this from the Jenkins configuration into the commands of the build type. Arguments: jobstep (JobStep): jobstep to create commands under env (dict): Env variables to supply to all commands. """ commands = self.build_desc.get('commands', []) artifacts = self.artifacts_for_jobstep(jobstep) env = env.copy() if not self.clean: env['SKIP_GIT_CLEAN'] = "1" index = 0 for future_command in self.get_future_commands(env, commands, artifacts): db.session.add(future_command.as_command(jobstep, index)) index += 1 def can_snapshot(self): """ Whether or not this build can snapshot is purely a function of the build type. Right now the only adapter supporting this is the lxc adapter, but in the scenario that another adapter is added (e.g. docker?) then we would need for multiple adapters to support snapshots, so we just encode whether it can or not as a field, defaulting to false as most types don't support this operation. """ return self.build_desc.get('can_snapshot', False) def artifacts_for_jobstep(self, jobstep): """ The artifact names/patterns we want to collect for a given jobstep. For example, we may want to collect different artifacts for a collection phase jobstep. Arguments: jobstep (JobStep): jobstep in question """ return self.artifacts
arguments.py
mjlbach/Object-Goal-Navigation
106
12787721
import argparse import torch def get_args(): parser = argparse.ArgumentParser( description='Goal-Oriented-Semantic-Exploration') # General Arguments parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument('--auto_gpu_config', type=int, default=1) parser.add_argument('--total_num_scenes', type=str, default="auto") parser.add_argument('-n', '--num_processes', type=int, default=5, help="""how many training processes to use (default:5) Overridden when auto_gpu_config=1 and training on gpus""") parser.add_argument('--num_processes_per_gpu', type=int, default=6) parser.add_argument('--num_processes_on_first_gpu', type=int, default=1) parser.add_argument('--eval', type=int, default=0, help='0: Train, 1: Evaluate (default: 0)') parser.add_argument('--num_training_frames', type=int, default=10000000, help='total number of training frames') parser.add_argument('--num_eval_episodes', type=int, default=200, help="number of test episodes per scene") parser.add_argument('--num_train_episodes', type=int, default=10000, help="""number of train episodes per scene before loading the next scene""") parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument("--sim_gpu_id", type=int, default=0, help="gpu id on which scenes are loaded") parser.add_argument("--sem_gpu_id", type=int, default=-1, help="""gpu id for semantic model, -1: same as sim gpu, -2: cpu""") # Logging, loading models, visualization parser.add_argument('--log_interval', type=int, default=10, help="""log interval, one log per n updates (default: 10) """) parser.add_argument('--save_interval', type=int, default=1, help="""save interval""") parser.add_argument('-d', '--dump_location', type=str, default="./tmp/", help='path to dump models and log (default: ./tmp/)') parser.add_argument('--exp_name', type=str, default="exp1", help='experiment name (default: exp1)') parser.add_argument('--save_periodic', type=int, default=500000, help='Model save frequency in number of updates') parser.add_argument('--load', type=str, default="0", help="""model path to load, 0 to not reload (default: 0)""") parser.add_argument('-v', '--visualize', type=int, default=0, help="""1: Render the observation and the predicted semantic map, 2: Render the observation with semantic predictions and the predicted semantic map (default: 0)""") parser.add_argument('--print_images', type=int, default=0, help='1: save visualization as images') # Environment, dataset and episode specifications parser.add_argument('-efw', '--env_frame_width', type=int, default=640, help='Frame width (default:640)') parser.add_argument('-efh', '--env_frame_height', type=int, default=480, help='Frame height (default:480)') parser.add_argument('-fw', '--frame_width', type=int, default=160, help='Frame width (default:160)') parser.add_argument('-fh', '--frame_height', type=int, default=120, help='Frame height (default:120)') parser.add_argument('-el', '--max_episode_length', type=int, default=500, help="""Maximum episode length""") parser.add_argument("--task_config", type=str, default="tasks/objectnav_gibson.yaml", help="path to config yaml containing task information") parser.add_argument("--split", type=str, default="train", help="dataset split (train | val | val_mini) ") parser.add_argument('--camera_height', type=float, default=0.88, help="agent camera height in metres") parser.add_argument('--hfov', type=float, default=79.0, help="horizontal field of view in degrees") parser.add_argument('--turn_angle', type=float, default=30, help="Agent turn angle in degrees") parser.add_argument('--min_depth', type=float, default=0.5, help="Minimum depth for depth sensor in meters") parser.add_argument('--max_depth', type=float, default=5.0, help="Maximum depth for depth sensor in meters") parser.add_argument('--success_dist', type=float, default=1.0, help="success distance threshold in meters") parser.add_argument('--floor_thr', type=int, default=50, help="floor threshold in cm") parser.add_argument('--min_d', type=float, default=1.5, help="min distance to goal during training in meters") parser.add_argument('--max_d', type=float, default=100.0, help="max distance to goal during training in meters") parser.add_argument('--version', type=str, default="v1.1", help="dataset version") # Model Hyperparameters parser.add_argument('--agent', type=str, default="sem_exp") parser.add_argument('--lr', type=float, default=2.5e-5, help='learning rate (default: 2.5e-5)') parser.add_argument('--global_hidden_size', type=int, default=256, help='global_hidden_size') parser.add_argument('--eps', type=float, default=1e-5, help='RL Optimizer epsilon (default: 1e-5)') parser.add_argument('--alpha', type=float, default=0.99, help='RL Optimizer alpha (default: 0.99)') parser.add_argument('--gamma', type=float, default=0.99, help='discount factor for rewards (default: 0.99)') parser.add_argument('--use_gae', action='store_true', default=False, help='use generalized advantage estimation') parser.add_argument('--tau', type=float, default=0.95, help='gae parameter (default: 0.95)') parser.add_argument('--entropy_coef', type=float, default=0.001, help='entropy term coefficient (default: 0.01)') parser.add_argument('--value_loss_coef', type=float, default=0.5, help='value loss coefficient (default: 0.5)') parser.add_argument('--max_grad_norm', type=float, default=0.5, help='max norm of gradients (default: 0.5)') parser.add_argument('--num_global_steps', type=int, default=20, help='number of forward steps in A2C (default: 5)') parser.add_argument('--ppo_epoch', type=int, default=4, help='number of ppo epochs (default: 4)') parser.add_argument('--num_mini_batch', type=str, default="auto", help='number of batches for ppo (default: 32)') parser.add_argument('--clip_param', type=float, default=0.2, help='ppo clip parameter (default: 0.2)') parser.add_argument('--use_recurrent_global', type=int, default=0, help='use a recurrent global policy') parser.add_argument('--num_local_steps', type=int, default=25, help="""Number of steps the local policy between each global step""") parser.add_argument('--reward_coeff', type=float, default=0.1, help="Object goal reward coefficient") parser.add_argument('--intrinsic_rew_coeff', type=float, default=0.02, help="intrinsic exploration reward coefficient") parser.add_argument('--num_sem_categories', type=float, default=16) parser.add_argument('--sem_pred_prob_thr', type=float, default=0.9, help="Semantic prediction confidence threshold") # Mapping parser.add_argument('--global_downscaling', type=int, default=2) parser.add_argument('--vision_range', type=int, default=100) parser.add_argument('--map_resolution', type=int, default=5) parser.add_argument('--du_scale', type=int, default=1) parser.add_argument('--map_size_cm', type=int, default=2400) parser.add_argument('--cat_pred_threshold', type=float, default=5.0) parser.add_argument('--map_pred_threshold', type=float, default=1.0) parser.add_argument('--exp_pred_threshold', type=float, default=1.0) parser.add_argument('--collision_threshold', type=float, default=0.20) # parse arguments args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() if args.cuda: if args.auto_gpu_config: num_gpus = torch.cuda.device_count() if args.total_num_scenes != "auto": args.total_num_scenes = int(args.total_num_scenes) elif "objectnav_gibson" in args.task_config and \ "train" in args.split: args.total_num_scenes = 25 elif "objectnav_gibson" in args.task_config and \ "val" in args.split: args.total_num_scenes = 5 else: assert False, "Unknown task config, please specify" + \ " total_num_scenes" # GPU Memory required for the SemExp model: # 0.8 + 0.4 * args.total_num_scenes (GB) # GPU Memory required per thread: 2.6 (GB) min_memory_required = max(0.8 + 0.4 * args.total_num_scenes, 2.6) # Automatically configure number of training threads based on # number of GPUs available and GPU memory size gpu_memory = 1000 for i in range(num_gpus): gpu_memory = min(gpu_memory, torch.cuda.get_device_properties( i).total_memory / 1024 / 1024 / 1024) assert gpu_memory > min_memory_required, \ """Insufficient GPU memory for GPU {}, gpu memory ({}GB) needs to be greater than {}GB""".format( i, gpu_memory, min_memory_required) num_processes_per_gpu = int(gpu_memory / 2.6) num_processes_on_first_gpu = \ int((gpu_memory - min_memory_required) / 2.6) if args.eval: max_threads = num_processes_per_gpu * (num_gpus - 1) \ + num_processes_on_first_gpu assert max_threads >= args.total_num_scenes, \ """Insufficient GPU memory for evaluation""" if num_gpus == 1: args.num_processes_on_first_gpu = num_processes_on_first_gpu args.num_processes_per_gpu = 0 args.num_processes = num_processes_on_first_gpu assert args.num_processes > 0, "Insufficient GPU memory" else: num_threads = num_processes_per_gpu * (num_gpus - 1) \ + num_processes_on_first_gpu num_threads = min(num_threads, args.total_num_scenes) args.num_processes_per_gpu = num_processes_per_gpu args.num_processes_on_first_gpu = max( 0, num_threads - args.num_processes_per_gpu * (num_gpus - 1)) args.num_processes = num_threads args.sim_gpu_id = 1 print("Auto GPU config:") print("Number of processes: {}".format(args.num_processes)) print("Number of processes on GPU 0: {}".format( args.num_processes_on_first_gpu)) print("Number of processes per GPU: {}".format( args.num_processes_per_gpu)) else: args.sem_gpu_id = -2 if args.num_mini_batch == "auto": args.num_mini_batch = max(args.num_processes // 2, 1) else: args.num_mini_batch = int(args.num_mini_batch) return args
test/IECoreMaya/FnSceneShapeTest.py
bradleyhenke/cortex
386
12787752
########################################################################## # # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from __future__ import with_statement import os import maya.cmds import imath import IECore import IECoreScene import IECoreMaya class FnSceneShapeTest( IECoreMaya.TestCase ) : __testFile = "test/test.scc" def setUp( self ) : scene = IECoreScene.SceneCache( FnSceneShapeTest.__testFile, IECore.IndexedIO.OpenMode.Write ) sc = scene.createChild( str(1) ) mesh = IECoreScene.MeshPrimitive.createBox(imath.Box3f(imath.V3f(0),imath.V3f(1))) mesh["Cd"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Uniform, IECore.V3fVectorData( [ imath.V3f( 1, 0, 0 ) ] * 6 ) ) sc.writeObject( mesh, 0.0 ) matrix = imath.M44d().translate( imath.V3d( 1, 0, 0 ) ) sc.writeTransform( IECore.M44dData( matrix ), 0.0 ) sc = sc.createChild( "child" ) mesh = IECoreScene.MeshPrimitive.createBox(imath.Box3f(imath.V3f(0),imath.V3f(1))) mesh["Cd"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Uniform, IECore.V3fVectorData( [ imath.V3f( 0, 1, 0 ) ] * 6 ) ) sc.writeObject( mesh, 0.0 ) matrix = imath.M44d().translate( imath.V3d( 2, 0, 0 ) ) sc.writeTransform( IECore.M44dData( matrix ), 0.0 ) sc = sc.createChild( str( 3 ) ) mesh = IECoreScene.MeshPrimitive.createBox(imath.Box3f(imath.V3f(0),imath.V3f(1))) mesh["Cd"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Uniform, IECore.V3fVectorData( [ imath.V3f( 0, 0, 1 ) ] * 6 ) ) sc.writeObject( mesh, 0.0 ) matrix = imath.M44d().translate( imath.V3d( 3, 0, 0 ) ) sc.writeTransform( IECore.M44dData( matrix ), 0.0 ) return scene def __setupTableProp( self ): boxSize = imath.Box3f( imath.V3f( -.5, -.5, -.5 ), imath.V3f( .5, .5, .5 ) ) table = IECoreScene.SceneCache( FnSceneShapeTest.__testFile, IECore.IndexedIO.Write ) table.writeAttribute( 'scene:visible', IECore.BoolData( True ), 0 ) table.writeAttribute( 'user:testBool', IECore.BoolData( True ), 0 ) table.writeAttribute( 'user:testShort', IECore.ShortData( 2 ), 0 ) table.writeAttribute( 'user:testInt', IECore.IntData( 3 ), 0 ) table.writeAttribute( 'user:testInt64', IECore.Int64Data( 4 ), 0 ) table.writeAttribute( 'user:testFloat', IECore.FloatData( 5 ), 0 ) table.writeAttribute( 'user:testDouble', IECore.DoubleData( 6 ), 0 ) table.writeAttribute( 'user:testString', IECore.StringData( 'seven' ), 0 ) mat = imath.M44d( ( 8, 9, 10, 11 ), ( 12, 13, 14, 15 ), ( 16, 17, 18, 19 ), ( 20, 21, 22, 23 ) ) table.writeAttribute( 'user:testMatrixd', IECore.M44dData(mat), 0 ) mat = imath.M44f( ( 24, 25, 26, 27 ), ( 28, 29, 30, 31 ), ( 32, 33, 34, 35 ), ( 36, 37, 38, 39 ) ) table.writeAttribute( 'user:testMatrixf', IECore.M44fData(mat), 0 ) pedestal_GEO = table.createChild( 'pedestal_GEO' ) pedestal_GEO.writeObject( IECoreScene.MeshPrimitive.createBox(boxSize), 0 ) s = imath.V3d(15, 1, 15) r = imath.Eulerd() t = imath.V3d(0, .5, 0) mat = IECore.TransformationMatrixd( s, r, t ) pedestal_GEO.writeTransform( IECore.TransformationMatrixdData(mat), 0 ) column_GEO = pedestal_GEO.createChild( 'column_GEO' ) column_GEO.writeObject( IECoreScene.MeshPrimitive.createBox(boxSize), 0 ) s = imath.V3d(.25, 20, .25) r = imath.Eulerd() t = imath.V3d(0, 10.5, 0) mat = IECore.TransformationMatrixd( s, r, t ) column_GEO.writeTransform( IECore.TransformationMatrixdData(mat), 0 ) tableTop_GEO = column_GEO.createChild( 'tableTop_GEO' ) tableTop_GEO.writeObject( IECoreScene.MeshPrimitive.createBox(boxSize), 0 ) s = imath.V3d(10, 0.05, 10) r = imath.Eulerd() t = imath.V3d(0, .525, 0) mat = IECore.TransformationMatrixd( s, r, t ) tableTop_GEO.writeTransform( IECore.TransformationMatrixdData(mat), 0 ) def testSceneInterface( self ) : maya.cmds.file( new=True, f=True ) node = maya.cmds.createNode( "ieSceneShape" ) maya.cmds.setAttr( node+'.file', FnSceneShapeTest.__testFile,type='string' ) fn = IECoreMaya.FnSceneShape( node ) # Check scene for a wrong path maya.cmds.setAttr( node+'.root', 'blabla', type='string' ) scene = fn.sceneInterface() self.assertEqual( scene, None ) maya.cmds.setAttr( node+'.root', '/', type='string' ) scene = fn.sceneInterface() self.assertTrue( isinstance( scene, IECoreScene.SceneCache ) ) self.assertEqual( scene.childNames(), ['1'] ) self.assertFalse( scene.hasObject() ) maya.cmds.setAttr( node+'.root', '/1', type='string' ) scene = fn.sceneInterface() self.assertTrue( isinstance( scene, IECoreScene.SceneCache ) ) self.assertEqual( scene.childNames(), ['child'] ) self.assertTrue( scene.hasObject() ) def testCreationName( self ) : maya.cmds.file( new=True, f=True ) fn = IECoreMaya.FnSceneShape.create( "bob" ) self.assertEqual( fn.fullPathName(), u"|bob|bobSceneShape" ) fn = IECoreMaya.FnSceneShape.create( "bob1") self.assertEqual( fn.fullPathName(), u"|bob1|bobSceneShape1" ) fn = IECoreMaya.FnSceneShape.create( "bob" ) self.assertEqual( fn.fullPathName(), u"|bob2|bobSceneShape2" ) def testCreationSetup( self ) : maya.cmds.file( new=True, f=True ) fn = IECoreMaya.FnSceneShape.create( "test" ) self.assertTrue( maya.cmds.sets( fn.fullPathName(), isMember="initialShadingGroup" ) ) self.assertTrue( maya.cmds.getAttr( fn.fullPathName()+".objectOnly", l=True ) ) self.assertFalse( maya.cmds.getAttr( fn.fullPathName()+".objectOnly" ) ) self.assertTrue( maya.cmds.isConnected( "time1.outTime", fn.fullPathName()+".time" ) ) def testExpandOnce( self ) : maya.cmds.file( new=True, f=True ) fn = IECoreMaya.FnSceneShape.create( "test" ) maya.cmds.setAttr( fn.fullPathName()+'.file', FnSceneShapeTest.__testFile,type='string' ) result = fn.expandOnce() self.assertTrue( maya.cmds.getAttr( fn.fullPathName()+".objectOnly" ) ) self.assertEqual( maya.cmds.getAttr( fn.fullPathName()+".queryPaths[0]" ), "/1" ) self.assertTrue( len(result) == 1 ) childFn = result[0] self.assertTrue( isinstance( childFn, IECoreMaya.FnSceneShape ) ) self.assertEqual( childFn.fullPathName(), "|test|sceneShape_1|sceneShape_SceneShape1" ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".file" ), FnSceneShapeTest.__testFile ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".root" ), "/1" ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outTranslate", "|test|sceneShape_1.translate" ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outRotate", "|test|sceneShape_1.rotate" ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outScale", "|test|sceneShape_1.scale" ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTime", childFn.fullPathName()+".time" ) ) maya.cmds.setAttr( childFn.fullPathName()+".drawGeometry", 1 ) result = childFn.expandOnce() self.assertTrue( maya.cmds.getAttr( childFn.fullPathName()+".objectOnly" ) ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".queryPaths[0]" ), "/child" ) self.assertTrue( len(result) == 1 ) self.assertTrue( isinstance( result[0], IECoreMaya.FnSceneShape ) ) self.assertEqual( result[0].fullPathName(), "|test|sceneShape_1|child|childSceneShape" ) self.assertEqual( maya.cmds.getAttr( result[0].fullPathName()+".file" ), FnSceneShapeTest.__testFile ) self.assertEqual( maya.cmds.getAttr( result[0].fullPathName()+".root" ), "/1/child" ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTransform[0].outTranslate", "|test|sceneShape_1|child.translate" ) ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTransform[0].outRotate", "|test|sceneShape_1|child.rotate" ) ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTransform[0].outScale", "|test|sceneShape_1|child.scale" ) ) self.assertEqual( maya.cmds.getAttr( result[0].fullPathName()+".drawGeometry"), 1 ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTime", result[0].fullPathName()+".time" ) ) def testExpandOnceNamespace( self ) : maya.cmds.file( new=True, f=True ) namespace = "INPUT" if not maya.cmds.namespace( exists=namespace ): maya.cmds.namespace( addNamespace=namespace ) def addnamespace( path ): return path.replace( "|", "|" + namespace + ":" ) fn = IECoreMaya.FnSceneShape.create( namespace + ":" + "test" ) maya.cmds.setAttr( fn.fullPathName()+'.file', FnSceneShapeTest.__testFile, type='string' ) result = fn.expandOnce( preserveNamespace=True ) self.assertTrue( len(result) == 1 ) childFn = result[ 0 ] self.assertTrue( isinstance( childFn, IECoreMaya.FnSceneShape ) ) self.assertEqual( childFn.fullPathName(), addnamespace ( "|test|sceneShape_1|sceneShape_SceneShape1" ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outTranslate", addnamespace ( "|test|sceneShape_1.translate" ) ) ) def testExpandAll( self ) : maya.cmds.file( new=True, f=True ) fn = IECoreMaya.FnSceneShape.create( "test" ) maya.cmds.setAttr( fn.fullPathName()+'.file', FnSceneShapeTest.__testFile,type='string' ) maya.cmds.setAttr( fn.fullPathName()+".drawGeometry", 1 ) result = fn.expandAll() self.assertTrue( maya.cmds.getAttr( fn.fullPathName()+".objectOnly" ) ) self.assertEqual( maya.cmds.getAttr( fn.fullPathName()+".queryPaths[0]" ), "/1" ) self.assertTrue( len(result) == 3 ) childFn = result[0] self.assertTrue( isinstance( childFn, IECoreMaya.FnSceneShape ) ) self.assertEqual( childFn.fullPathName(), "|test|sceneShape_1|sceneShape_SceneShape1" ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".file" ), FnSceneShapeTest.__testFile ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".root" ), "/1" ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outTranslate", "|test|sceneShape_1.translate" ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outRotate", "|test|sceneShape_1.rotate" ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outScale", "|test|sceneShape_1.scale" ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTime", childFn.fullPathName()+".time" ) ) self.assertTrue( maya.cmds.getAttr( childFn.fullPathName()+".objectOnly" ) ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".queryPaths[0]" ), "/child" ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".drawGeometry"), 1 ) self.assertTrue( isinstance( result[1], IECoreMaya.FnSceneShape ) ) self.assertEqual( result[1].fullPathName(), "|test|sceneShape_1|child|childSceneShape" ) self.assertEqual( maya.cmds.getAttr( result[1].fullPathName()+".file" ), FnSceneShapeTest.__testFile ) self.assertEqual( maya.cmds.getAttr( result[1].fullPathName()+".root" ), "/1/child" ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTransform[0].outTranslate", "|test|sceneShape_1|child.translate" ) ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTransform[0].outRotate", "|test|sceneShape_1|child.rotate" ) ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTransform[0].outScale", "|test|sceneShape_1|child.scale" ) ) self.assertEqual( maya.cmds.getAttr( result[1].fullPathName()+".drawGeometry"), 1 ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTime", result[1].fullPathName()+".time" ) ) def testExpandAllNamespace( self ) : namespace = "INPUT" if not maya.cmds.namespace( exists=namespace ): maya.cmds.namespace( addNamespace=namespace ) def addnamespace( path ): return path.replace( "|", "|" + namespace + ":" ) maya.cmds.file( new=True, f=True ) fn = IECoreMaya.FnSceneShape.create( namespace + ":" + "test" ) maya.cmds.setAttr( fn.fullPathName()+'.file', FnSceneShapeTest.__testFile,type='string' ) maya.cmds.setAttr( fn.fullPathName()+".drawGeometry", 1 ) result = fn.expandAll( preserveNamespace=True ) self.assertTrue( maya.cmds.getAttr( fn.fullPathName()+".objectOnly" ) ) self.assertEqual( maya.cmds.getAttr( fn.fullPathName()+".queryPaths[0]" ), "/1" ) self.assertTrue( len(result) == 3 ) childFn = result[0] self.assertTrue( isinstance( childFn, IECoreMaya.FnSceneShape ) ) self.assertEqual( childFn.fullPathName(), addnamespace( "|test|sceneShape_1|sceneShape_SceneShape1" ) ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".file" ), FnSceneShapeTest.__testFile ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".root" ), "/1" ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outTranslate", addnamespace( "|test|sceneShape_1.translate" ) ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outRotate", addnamespace( "|test|sceneShape_1.rotate" ) ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTransform[0].outScale", addnamespace( "|test|sceneShape_1.scale" ) ) ) self.assertTrue( maya.cmds.isConnected( fn.fullPathName()+".outTime", childFn.fullPathName()+".time" ) ) self.assertTrue( maya.cmds.getAttr( childFn.fullPathName()+".objectOnly" ) ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".queryPaths[0]" ), "/child" ) self.assertEqual( maya.cmds.getAttr( childFn.fullPathName()+".drawGeometry"), 1 ) self.assertTrue( isinstance( result[1], IECoreMaya.FnSceneShape ) ) self.assertEqual( result[1].fullPathName(), addnamespace( "|test|sceneShape_1|child|childSceneShape" ) ) self.assertEqual( maya.cmds.getAttr( result[1].fullPathName()+".file" ), FnSceneShapeTest.__testFile ) self.assertEqual( maya.cmds.getAttr( result[1].fullPathName()+".root" ), "/1/child" ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTransform[0].outTranslate", addnamespace( "|test|sceneShape_1|child.translate" ) ) ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTransform[0].outRotate", addnamespace( "|test|sceneShape_1|child.rotate" ) ) ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTransform[0].outScale", addnamespace( "|test|sceneShape_1|child.scale" ) ) ) self.assertEqual( maya.cmds.getAttr( result[1].fullPathName()+".drawGeometry"), 1 ) self.assertTrue( maya.cmds.isConnected( childFn.fullPathName()+".outTime", result[1].fullPathName()+".time" ) ) def testCollapse( self ) : maya.cmds.file( new=True, f=True ) fn = IECoreMaya.FnSceneShape.create( "test" ) maya.cmds.setAttr( fn.fullPathName()+'.file', FnSceneShapeTest.__testFile,type='string' ) result = fn.expandOnce() result[0].expandOnce() children = set( ["|test|testSceneShape", "|test|sceneShape_1", "|test|sceneShape_1|sceneShape_SceneShape1", "|test|sceneShape_1|child", "|test|sceneShape_1|child|childSceneShape"] ) self.assertEqual( set(maya.cmds.listRelatives( "|test", ad=True, f=True )), children ) fn.collapse() self.assertEqual( maya.cmds.listRelatives( "|test", ad=True, f=True ), ["|test|testSceneShape"] ) self.assertEqual( maya.cmds.getAttr( fn.fullPathName()+".objectOnly" ), 0 ) self.assertEqual( maya.cmds.getAttr( fn.fullPathName()+".visibility" ), 1 ) def testConvertAllToGeometry( self ): maya.cmds.file( new=True, f=True ) fn = IECoreMaya.FnSceneShape.create( "test" ) maya.cmds.setAttr( fn.fullPathName()+'.file', FnSceneShapeTest.__testFile,type='string' ) fn.convertAllToGeometry() children = ["|test|testSceneShape", "|test|sceneShape_1"] self.assertEqual( maya.cmds.listRelatives( "|test", f=True ), children ) self.assertEqual( maya.cmds.getAttr( fn.fullPathName()+".intermediateObject" ), 0 ) children = ["|test|sceneShape_1|sceneShape_SceneShape1", "|test|sceneShape_1|child", "|test|sceneShape_1|sceneShape_Shape1"] self.assertEqual( maya.cmds.listRelatives( "|test|sceneShape_1", f=True ), children ) self.assertEqual( maya.cmds.getAttr( "|test|sceneShape_1|sceneShape_SceneShape1.intermediateObject" ), 1 ) self.assertEqual( maya.cmds.nodeType( "|test|sceneShape_1|sceneShape_Shape1" ), "mesh") self.assertEqual( maya.cmds.getAttr( "|test|sceneShape_1|sceneShape_SceneShape1.queryPaths[1]" ), "/" ) self.assertTrue( maya.cmds.isConnected( "|test|sceneShape_1|sceneShape_SceneShape1.outObjects[1]", "|test|sceneShape_1|sceneShape_Shape1.inMesh" ) ) def testComponentNames( self ): maya.cmds.file( new=True, f=True ) fn = IECoreMaya.FnSceneShape.create( "test" ) maya.cmds.setAttr( fn.fullPathName()+'.file', FnSceneShapeTest.__testFile,type='string' ) maya.cmds.setAttr( fn.fullPathName()+".drawGeometry", 0 ) self.assertEqual( fn.componentNames(), [] ) maya.cmds.setAttr( fn.fullPathName()+".drawGeometry", 1 ) self.assertEqual( fn.componentNames(), ['/', '/1', '/1/child', '/1/child/3'] ) fn.selectComponentNames( ['/', '/1', '/1/child/3'] ) self.assertEqual( fn.selectedComponentNames(), set( ['/', '/1', '/1/child/3'] ) ) def testQuery( self ): maya.cmds.file( new=True, f=True ) def createSceneFile(): scene = IECoreScene.SceneCache( FnSceneShapeTest.__testFile, IECore.IndexedIO.OpenMode.Write ) sc = scene.createChild( str(1) ) curves = IECoreScene.CurvesPrimitive.createBox(imath.Box3f(imath.V3f(0),imath.V3f(1))) # 6 curves. sc.writeObject( curves, 0.0 ) matrix = imath.M44d().translate( imath.V3d( 0, 0, 0 ) ) sc.writeTransform( IECore.M44dData( matrix ), 0.0 ) createSceneFile() node = maya.cmds.createNode( "ieSceneShape" ) maya.cmds.setAttr( node+'.file', FnSceneShapeTest.__testFile,type='string' ) maya.cmds.setAttr( node+'.root', '/',type='string' ) fn = IECoreMaya.FnSceneShape( node ) self.assertEqual( maya.cmds.getAttr(fn.fullPathName()+".outObjects[0]", type=True), None ) self.assertEqual( maya.cmds.getAttr(fn.fullPathName()+".outObjects[1]", type=True), None ) maya.cmds.setAttr( fn.fullPathName()+".queryPaths[0]" , "/1", type="string") maya.cmds.setAttr( fn.fullPathName()+".queryPaths[1]" , "/1", type="string") maya.cmds.setAttr( fn.fullPathName()+".queryConvertParameters[0]", "-index 0", type="string" ) # Set it to output 0 th box curve. maya.cmds.setAttr( fn.fullPathName()+".queryConvertParameters[1]", "-index 1", type="string" ) # Set it to output 1 th box curve. self.assertEqual( maya.cmds.getAttr(fn.fullPathName()+".outObjects[0]", type=True), "nurbsCurve" ) self.assertEqual( maya.cmds.getAttr(fn.fullPathName()+".outObjects[1]", type=True), "nurbsCurve" ) curveShape0 = maya.cmds.createNode( "nurbsCurve" ) curveShape1 = maya.cmds.createNode( "nurbsCurve" ) maya.cmds.connectAttr( fn.fullPathName()+ ".outObjects[0]", curveShape0 + '.create' ) maya.cmds.connectAttr( fn.fullPathName()+ ".outObjects[1]", curveShape1 + '.create' ) self.assertNotEqual( maya.cmds.pointPosition(curveShape0 + '.cv[0]' ), maya.cmds.pointPosition(curveShape1 + '.cv[0]' ) ) maya.cmds.setAttr( fn.fullPathName()+".queryConvertParameters[1]", "-index 0", type="string" ) self.assertEqual( maya.cmds.pointPosition(curveShape0 + '.cv[0]' ), maya.cmds.pointPosition(curveShape1 + '.cv[0]' ) ) def testPromotableAttributeNames( self ): maya.cmds.file( new=True, force=True ) self.__setupTableProp() sceneShapeFn = IECoreMaya.FnSceneShape.create( 'table' ) sceneShapeFn.findPlug( 'file' ).setString( FnSceneShapeTest.__testFile ) expectedAttrs = [ 'user:testBool', 'user:testShort', 'user:testInt', 'user:testInt64', 'user:testFloat', 'user:testDouble', 'user:testString', 'user:testMatrixd', 'user:testMatrixf', 'scene:visible' ] self.assertEquals( set( sceneShapeFn.promotableAttributeNames() ), set( expectedAttrs ) ) def testPromoteAttribute( self ): maya.cmds.file( new=True, force=True ) self.__setupTableProp() sceneShapeFn = IECoreMaya.FnSceneShape.create( 'table' ) sceneShapeFn.findPlug( 'file' ).setString( FnSceneShapeTest.__testFile ) for pAttr in sceneShapeFn.promotableAttributeNames(): sceneShapeFn.promoteAttribute( pAttr ) sceneShape = sceneShapeFn.fullPathName() table = maya.cmds.listRelatives( sceneShape, parent=True )[0] testVisibility = maya.cmds.getAttr( table + '.' + str( IECoreMaya.LiveScene.visibilityOverrideName ) ) testBool = maya.cmds.getAttr( table + '.ieAttr_testBool' ) testShort = maya.cmds.getAttr( table + '.ieAttr_testShort' ) testInt = maya.cmds.getAttr( table + '.ieAttr_testInt' ) testInt64 = maya.cmds.getAttr( table + '.ieAttr_testInt64' ) testFloat = maya.cmds.getAttr( table + '.ieAttr_testFloat' ) testDouble = maya.cmds.getAttr( table + '.ieAttr_testDouble' ) testString = maya.cmds.getAttr( table + '.ieAttr_testString' ) testMatrixd = maya.cmds.getAttr( table + '.ieAttr_testMatrixd' ) testMatrixf = maya.cmds.getAttr( table + '.ieAttr_testMatrixf' ) self.assertTrue( testVisibility ) self.assertTrue( testBool ) self.assertEquals( testShort, 2 ) self.assertEquals( testInt, 3 ) self.assertEquals( testInt64, 4 ) self.assertEquals( testFloat, 5. ) self.assertEquals( testDouble, 6. ) self.assertEquals( testString, 'seven' ) self.assertEquals( testMatrixd, [ 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23. ] ) self.assertEquals( testMatrixf, [ 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39. ] ) def tearDown( self ) : if os.path.exists( FnSceneShapeTest.__testFile ) : os.remove( FnSceneShapeTest.__testFile ) if __name__ == "__main__": IECoreMaya.TestProgram( plugins = [ "ieCore" ] )
moya/testprojects/expose/site/py/exposed.py
moyaproject/moya
129
12787759
from __future__ import unicode_literals from moya.expose import View class TestView(View): name = "hello" def get(self, context): return "Hello, World"
rnnt/args.py
lahiruts/Online-Speech-Recognition
201
12787765
<reponame>lahiruts/Online-Speech-Recognition<gh_stars>100-1000 from absl import flags FLAGS = flags.FLAGS flags.DEFINE_string('name', 'rnn-t-v5', help='session name') flags.DEFINE_enum('mode', 'train', ['train', 'resume', 'eval'], help='mode') flags.DEFINE_integer('resume_step', None, help='model step') # dataset flags.DEFINE_string('LibriSpeech_train_100', "../librispeech/LibriSpeech/train-clean-100", help='LibriSpeech train') flags.DEFINE_string('LibriSpeech_train_360', "../librispeech/LibriSpeech/train-clean-360", help='LibriSpeech train') flags.DEFINE_string('LibriSpeech_train_500', "../librispeech/LibriSpeech/train-other-500", help='LibriSpeech train') flags.DEFINE_string('LibriSpeech_test', "../librispeech/LibriSpeech/test-clean", help='LibriSpeech test') flags.DEFINE_string('LibriSpeech_dev', "../librispeech/LibriSpeech/dev-clean", help='LibriSpeech dev') flags.DEFINE_string('TEDLIUM_train', "../speech_data/TEDLIUM/TEDLIUM_release1/train", help='TEDLIUM 1 train') flags.DEFINE_string('TEDLIUM_test', "../speech_data/TEDLIUM/TEDLIUM_release1/test", help='TEDLIUM 1 test') flags.DEFINE_string('CommonVoice', "../speech_data/common_voice", help='common voice') flags.DEFINE_string('YT_bloomberg2', "../speech_data/common_voice", help='common voice') flags.DEFINE_string('YT_life', "../speech_data/common_voice", help='common voice') flags.DEFINE_integer('num_workers', 4, help='dataloader workers') # learning flags.DEFINE_bool('use_pretrained', default=False, help='Use pretrained enncoder') flags.DEFINE_enum('optim', "adam", ['adam', 'sgd', 'sm3'], help='optimizer') flags.DEFINE_float('lr', 1e-4, help='initial lr') flags.DEFINE_bool('sched', True, help='lr reduce rate on plateau') flags.DEFINE_integer('sched_patience', 1, help='lr reduce rate on plateau') flags.DEFINE_float('sched_factor', 0.5, help='lr reduce rate on plateau') flags.DEFINE_float('sched_min_lr', 1e-6, help='lr reduce rate on plateau') flags.DEFINE_integer('warmup_step', 10000, help='linearly warmup lr') flags.DEFINE_integer('epochs', 30, help='epoch') flags.DEFINE_integer('batch_size', 8, help='batch size') flags.DEFINE_integer('sub_batch_size', 8, help='accumulate batch size') flags.DEFINE_integer('eval_batch_size', 4, help='evaluation batch size') flags.DEFINE_float('gradclip', None, help='clip norm value') # encoder flags.DEFINE_string('enc_type', 'LSTM', help='encoder rnn type') flags.DEFINE_integer('enc_hidden_size', 600, help='encoder hidden dimension') flags.DEFINE_integer('enc_layers', 4, help='encoder layers') flags.DEFINE_integer('enc_proj_size', 600, help='encoder layers') flags.DEFINE_float('enc_dropout', 0, help='encoder dropout') # decoder flags.DEFINE_integer('dec_hidden_size', 150, help='decoder hidden dimension') flags.DEFINE_integer('dec_layers', 2, help='decoder layers') flags.DEFINE_integer('dec_proj_size', 150, help='encoder layers') flags.DEFINE_float('dec_dropout', 0., help='decoder dropout') # joint flags.DEFINE_integer('joint_size', 512, help='Joint hidden dimension') # tokenizer flags.DEFINE_enum('tokenizer', 'char', ['char', 'bpe'], help='tokenizer') flags.DEFINE_integer('bpe_size', 256, help='BPE vocabulary size') flags.DEFINE_integer('vocab_embed_size', 16, help='vocabulary embedding size') # data preprocess flags.DEFINE_float('audio_max_length', 14, help='max length in seconds') flags.DEFINE_enum('feature', 'mfcc', ['mfcc', 'melspec', 'logfbank'], help='audio feature') flags.DEFINE_integer('feature_size', 80, help='mel_bins') flags.DEFINE_integer('n_fft', 400, help='spectrogram') flags.DEFINE_integer('win_length', 400, help='spectrogram') flags.DEFINE_integer('hop_length', 200, help='spectrogram') flags.DEFINE_bool('delta', False, help='concat delta and detal of dealt') flags.DEFINE_bool('cmvn', False, help='normalize spectrogram') flags.DEFINE_integer('downsample', 3, help='downsample audio feature') flags.DEFINE_integer('T_mask', 50, help='downsample audio feature') flags.DEFINE_integer('T_num_mask', 2, help='downsample audio feature') flags.DEFINE_integer('F_mask', 5, help='downsample audio feature') flags.DEFINE_integer('F_num_mask', 1, help='downsample audio feature') # apex flags.DEFINE_bool('apex', default=True, help='fp16 training') flags.DEFINE_string('opt_level', 'O1', help='use mix precision') # parallel flags.DEFINE_bool('multi_gpu', False, help='DataParallel') # log flags.DEFINE_integer('loss_step', 5, help='frequency to show loss in pbar') flags.DEFINE_integer('save_step', 10000, help='frequency to save model') flags.DEFINE_integer('eval_step', 10000, help='frequency to save model') flags.DEFINE_integer('sample_size', 20, help='size of visualized examples')
tools/todos.py
mrjrty/rpaframework
518
12787809
<gh_stars>100-1000 #!/usr/bin/env python3 import argparse import json import os import re import sys from collections import defaultdict from contextlib import contextmanager from io import StringIO from pathlib import Path from pylint.lint import Run TODO_PATTERN = re.compile(r"(todo|fixme|xxx)[\:\.]?\s*(.+)", re.IGNORECASE) @contextmanager def redirect(): stdout = sys.stdout sys.stdout = StringIO() try: yield sys.stdout finally: sys.stdout.close() sys.stdout = stdout def todo_msg(msg): match = TODO_PATTERN.match(msg) if match: return match.group(2) else: return msg def main(): parser = argparse.ArgumentParser(description="Write all todo items as rst") parser.add_argument("input", help="Path to source files") parser.add_argument("output", help="Path to output rst file") args = parser.parse_args() cmd = [ "pylint", "--disable=all", "--enable=fixme", "--exit-zero", "-f", "json", Path(args.input).name, ] cwd = os.getcwd() os.chdir(Path(args.input).parent) try: with redirect() as stdout: Run(cmd, exit=False) result = json.loads(stdout.getvalue()) finally: os.chdir(cwd) todos = defaultdict(list) for item in result: # Remove given search path from module path name = ".".join(item["module"].split(".")[1:]) message = todo_msg(item["message"]) todos[name].append({"message": todo_msg(item["message"]), "line": item["line"]}) output = ["****", "TODO", "****", ""] for module, items in sorted(todos.items()): items.sort(key=lambda item: item["line"]) output.append(f"{module}:") output.append("=" * (len(module) + 1)) output.append("") output.append(".. csv-table::") output.append(" :header: \"Line\", \"Message\"") output.append(" :widths: 10, 40") output.append("") for item in items: output.append(" \"{line}\", \"{message}\"".format(**item)) output.append("") with open(args.output, "w") as outfile: outfile.write("\n".join(output)) if __name__ == "__main__": main()
configs/deepsvg/defaults_fonts.py
naoto0804/deepsvg
573
12787852
from .default_icons import * class Config(Config): def __init__(self, num_gpus=1): super().__init__(num_gpus=num_gpus) # Dataset self.data_dir = "./dataset/fonts_tensor/" self.meta_filepath = "./dataset/fonts_meta.csv"
dbcArchives/2021/000_6-sds-3-x-dl/055_DLbyABr_04-ConvolutionalNetworks.py
r-e-x-a-g-o-n/scalable-data-science
138
12787866
<filename>dbcArchives/2021/000_6-sds-3-x-dl/055_DLbyABr_04-ConvolutionalNetworks.py<gh_stars>100-1000 # Databricks notebook source # MAGIC %md # MAGIC ScaDaMaLe Course [site](https://lamastex.github.io/scalable-data-science/sds/3/x/) and [book](https://lamastex.github.io/ScaDaMaLe/index.html) # MAGIC # MAGIC This is a 2019-2021 augmentation and update of [<NAME>](https://www.linkedin.com/in/adbreind)'s initial notebooks. # MAGIC # MAGIC _Thanks to [<NAME>](https://www.linkedin.com/in/christianvonkoch/) and [<NAME>](https://www.linkedin.com/in/william-anz%C3%A9n-b52003199/) for their contributions towards making these materials Spark 3.0.1 and Python 3+ compliant._ # COMMAND ---------- # MAGIC %md # MAGIC # Convolutional Neural Networks # MAGIC ## aka CNN, ConvNet # COMMAND ---------- # MAGIC %md # MAGIC As a baseline, let's start a lab running with what we already know. # MAGIC # MAGIC We'll take our deep feed-forward multilayer perceptron network, with ReLU activations and reasonable initializations, and apply it to learning the MNIST digits. # MAGIC # MAGIC The main part of the code looks like the following (full code you can run is in the next cell): # MAGIC # MAGIC ``` # MAGIC # imports, setup, load data sets # MAGIC # MAGIC model = Sequential() # MAGIC model.add(Dense(20, input_dim=784, kernel_initializer='normal', activation='relu')) # MAGIC model.add(Dense(15, kernel_initializer='normal', activation='relu')) # MAGIC model.add(Dense(10, kernel_initializer='normal', activation='softmax')) # MAGIC model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy']) # MAGIC # MAGIC categorical_labels = to_categorical(y_train, num_classes=10) # MAGIC # MAGIC history = model.fit(X_train, categorical_labels, epochs=100, batch_size=100) # MAGIC # MAGIC # print metrics, plot errors # MAGIC ``` # MAGIC # MAGIC Note the changes, which are largely about building a classifier instead of a regression model: # MAGIC * Output layer has one neuron per category, with softmax activation # MAGIC * __Loss function is cross-entropy loss__ # MAGIC * Accuracy metric is categorical accuracy # COMMAND ---------- # MAGIC %md # MAGIC Let's hold pointers into wikipedia for these new concepts. # COMMAND ---------- # MAGIC %scala # MAGIC //This allows easy embedding of publicly available information into any other notebook # MAGIC //Example usage: # MAGIC // displayHTML(frameIt("https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation#Topics_in_LDA",250)) # MAGIC def frameIt( u:String, h:Int ) : String = { # MAGIC """<iframe # MAGIC src=""""+ u+"""" # MAGIC width="95%" height="""" + h + """" # MAGIC sandbox> # MAGIC <p> # MAGIC <a href="http://spark.apache.org/docs/latest/index.html"> # MAGIC Fallback link for browsers that, unlikely, don't support frames # MAGIC </a> # MAGIC </p> # MAGIC </iframe>""" # MAGIC } # MAGIC displayHTML(frameIt("https://en.wikipedia.org/wiki/Cross_entropy#Cross-entropy_error_function_and_logistic_regression",500)) # COMMAND ---------- # MAGIC %scala # MAGIC displayHTML(frameIt("https://en.wikipedia.org/wiki/Softmax_function",380)) # COMMAND ---------- # MAGIC %md # MAGIC The following is from: [https://www.quora.com/How-does-Keras-calculate-accuracy](https://www.quora.com/How-does-Keras-calculate-accuracy). # MAGIC # MAGIC **Categorical accuracy:** # MAGIC # MAGIC ```%python # MAGIC def categorical_accuracy(y_true, y_pred): # MAGIC return K.cast(K.equal(K.argmax(y_true, axis=-1), # MAGIC K.argmax(y_pred, axis=-1)), # MAGIC K.floatx()) # MAGIC ``` # MAGIC # MAGIC > `K.argmax(y_true)` takes the highest value to be the prediction and matches against the comparative set. # COMMAND ---------- # MAGIC %md # MAGIC Watch (1:39) # MAGIC * [![Udacity: Deep Learning by <NAME> - Cross-entropy](http://img.youtube.com/vi/tRsSi_sqXjI/0.jpg)](https://www.youtube.com/watch?v=tRsSi_sqXjI) # MAGIC # MAGIC Watch (1:54) # MAGIC * [![Udacity: Deep Learning by <NAME> - Minimizing Cross-entropy](http://img.youtube.com/vi/x449QQDhMDE/0.jpg)](https://www.youtube.com/watch?v=x449QQDhMDE) # COMMAND ---------- from keras.models import Sequential from keras.layers import Dense from keras.utils import to_categorical import sklearn.datasets import datetime import matplotlib.pyplot as plt import numpy as np train_libsvm = "/dbfs/databricks-datasets/mnist-digits/data-001/mnist-digits-train.txt" test_libsvm = "/dbfs/databricks-datasets/mnist-digits/data-001/mnist-digits-test.txt" X_train, y_train = sklearn.datasets.load_svmlight_file(train_libsvm, n_features=784) X_train = X_train.toarray() X_test, y_test = sklearn.datasets.load_svmlight_file(test_libsvm, n_features=784) X_test = X_test.toarray() model = Sequential() model.add(Dense(20, input_dim=784, kernel_initializer='normal', activation='relu')) model.add(Dense(15, kernel_initializer='normal', activation='relu')) model.add(Dense(10, kernel_initializer='normal', activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy']) categorical_labels = to_categorical(y_train, num_classes=10) start = datetime.datetime.today() history = model.fit(X_train, categorical_labels, epochs=40, batch_size=100, validation_split=0.1, verbose=2) scores = model.evaluate(X_test, to_categorical(y_test, num_classes=10)) print for i in range(len(model.metrics_names)): print("%s: %f" % (model.metrics_names[i], scores[i])) print ("Start: " + str(start)) end = datetime.datetime.today() print ("End: " + str(end)) print ("Elapse: " + str(end-start)) # COMMAND ---------- # MAGIC %md # MAGIC after about a minute we have: # MAGIC # MAGIC ``` # MAGIC ... # MAGIC # MAGIC Epoch 40/40 # MAGIC 1s - loss: 0.0610 - categorical_accuracy: 0.9809 - val_loss: 0.1918 - val_categorical_accuracy: 0.9583 # MAGIC # MAGIC ... # MAGIC # MAGIC loss: 0.216120 # MAGIC # MAGIC categorical_accuracy: 0.955000 # MAGIC # MAGIC Start: 2017-12-06 07:35:33.948102 # MAGIC # MAGIC End: 2017-12-06 07:36:27.046130 # MAGIC # MAGIC Elapse: 0:00:53.098028 # MAGIC ``` # COMMAND ---------- import matplotlib.pyplot as plt fig, ax = plt.subplots() fig.set_size_inches((5,5)) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'val'], loc='upper left') display(fig) # COMMAND ---------- # MAGIC %md # MAGIC What are the big takeaways from this experiment? # MAGIC # MAGIC 1. We get pretty impressive "apparent error" accuracy right from the start! A small network gets us to training accuracy 97% by epoch 20 # MAGIC 2. The model *appears* to continue to learn if we let it run, although it does slow down and oscillate a bit. # MAGIC 3. Our test accuracy is about 95% after 5 epochs and never gets better ... it gets worse! # MAGIC 4. Therefore, we are overfitting very quickly... most of the "training" turns out to be a waste. # MAGIC 5. For what it's worth, we get 95% accuracy without much work. # MAGIC # MAGIC This is not terrible compared to other, non-neural-network approaches to the problem. After all, we could probably tweak this a bit and do even better. # MAGIC # MAGIC But we talked about using deep learning to solve "95%" problems or "98%" problems ... where one error in 20, or 50 simply won't work. If we can get to "multiple nines" of accuracy, then we can do things like automate mail sorting and translation, create cars that react properly (all the time) to street signs, and control systems for robots or drones that function autonomously. # MAGIC # MAGIC Try two more experiments (try them separately): # MAGIC 1. Add a third, hidden layer. # MAGIC 2. Increase the size of the hidden layers. # MAGIC # MAGIC Adding another layer slows things down a little (why?) but doesn't seem to make a difference in accuracy. # MAGIC # MAGIC Adding a lot more neurons into the first topology slows things down significantly -- 10x as many neurons, and only a marginal increase in accuracy. Notice also (in the plot) that the learning clearly degrades after epoch 50 or so. # MAGIC # MAGIC ... We need a new approach! # MAGIC # MAGIC --- # MAGIC # MAGIC ... let's think about this: # MAGIC # MAGIC ### What is layer 2 learning from layer 1? Combinations of pixels # MAGIC # MAGIC #### Combinations of pixels contain information but... # MAGIC # MAGIC There are a lot of them (combinations) and they are "fragile" # MAGIC # MAGIC In fact, in our last experiment, we basically built a model that memorizes a bunch of "magic" pixel combinations. # MAGIC # MAGIC What might be a better way to build features? # MAGIC # MAGIC * When humans perform this task, we look not at arbitrary pixel combinations, but certain geometric patterns -- lines, curves, loops. # MAGIC * These features are made up of combinations of pixels, but they are far from arbitrary # MAGIC * We identify these features regardless of translation, rotation, etc. # MAGIC # MAGIC Is there a way to get the network to do the same thing? # MAGIC # MAGIC I.e., in layer one, identify pixels. Then in layer 2+, identify abstractions over pixels that are translation-invariant 2-D shapes? # MAGIC # MAGIC We could look at where a "filter" that represents one of these features (e.g., and edge) matches the image. # MAGIC # MAGIC How would this work? # MAGIC # MAGIC ### Convolution # MAGIC # MAGIC Convolution in the general mathematical sense is define as follows: # MAGIC # MAGIC <img src="https://i.imgur.com/lurC2Cx.png" width=300> # MAGIC # MAGIC The convolution we deal with in deep learning is a simplified case. We want to compare two signals. Here are two visualizations, courtesy of Wikipedia, that help communicate how convolution emphasizes features: # MAGIC # MAGIC <img src="http://i.imgur.com/EDCaMl2.png" width=500> # MAGIC # MAGIC --- # MAGIC # MAGIC #### Here's an animation (where we change \\({\tau}\\)) # MAGIC <img src="http://i.imgur.com/0BFcnaw.gif"> # MAGIC # MAGIC __In one sense, the convolution captures and quantifies the pattern matching over space__ # MAGIC # MAGIC If we perform this in two dimensions, we can achieve effects like highlighting edges: # MAGIC # MAGIC <img src="http://i.imgur.com/DKEXIII.png"> # MAGIC # MAGIC The matrix here, also called a convolution kernel, is one of the functions we are convolving. Other convolution kernels can blur, "sharpen," etc. # MAGIC # MAGIC ### So we'll drop in a number of convolution kernels, and the network will learn where to use them? Nope. Better than that. # MAGIC # MAGIC ## We'll program in the *idea* of discrete convolution, and the network will learn what kernels extract meaningful features! # MAGIC # MAGIC The values in a (fixed-size) convolution kernel matrix will be variables in our deep learning model. Although inuitively it seems like it would be hard to learn useful params, in fact, since those variables are used repeatedly across the image data, it "focuses" the error on a smallish number of parameters with a lot of influence -- so it should be vastly *less* expensive to train than just a huge fully connected layer like we discussed above. # MAGIC # MAGIC This idea was developed in the late 1980s, and by 1989, <NAME> (at AT&T/Bell Labs) had built a practical high-accuracy system (used in the 1990s for processing handwritten checks and mail). # MAGIC # MAGIC __How do we hook this into our neural networks?__ # MAGIC # MAGIC * First, we can preserve the geometric properties of our data by "shaping" the vectors as 2D instead of 1D. # MAGIC # MAGIC * Then we'll create a layer whose value is not just activation applied to weighted sum of inputs, but instead it's the result of a dot-product (element-wise multiply and sum) between the kernel and a patch of the input vector (image). # MAGIC * This value will be our "pre-activation" and optionally feed into an activation function (or "detector") # MAGIC # MAGIC <img src="http://i.imgur.com/ECyi9lL.png"> # MAGIC # MAGIC # MAGIC If we perform this operation at lots of positions over the image, we'll get lots of outputs, as many as one for every input pixel. # MAGIC # MAGIC # MAGIC <img src="http://i.imgur.com/WhOrJ0Y.jpg"> # MAGIC # MAGIC * So we'll add another layer that "picks" the highest convolution pattern match from nearby pixels, which # MAGIC * makes our pattern match a little bit translation invariant (a fuzzy location match) # MAGIC * reduces the number of outputs significantly # MAGIC * This layer is commonly called a pooling layer, and if we pick the "maximum match" then it's a "max pooling" layer. # MAGIC # MAGIC <img src="http://i.imgur.com/9iPpfpb.png"> # MAGIC # MAGIC __The end result is that the kernel or filter together with max pooling creates a value in a subsequent layer which represents the appearance of a pattern in a local area in a prior layer.__ # MAGIC # MAGIC __Again, the network will be given a number of "slots" for these filters and will learn (by minimizing error) what filter values produce meaningful features. This is the key insight into how modern image-recognition networks are able to generalize -- i.e., learn to tell 6s from 7s or cats from dogs.__ # MAGIC # MAGIC <img src="http://i.imgur.com/F8eH3vj.png"> # MAGIC # MAGIC ## Ok, let's build our first ConvNet: # MAGIC # MAGIC First, we want to explicity shape our data into a 2-D configuration. We'll end up with a 4-D tensor where the first dimension is the training examples, then each example is 28x28 pixels, and we'll explicitly say it's 1-layer deep. (Why? with color images, we typically process over 3 or 4 channels in this last dimension) # MAGIC # MAGIC A step by step animation follows: # MAGIC * http://cs231n.github.io/assets/conv-demo/index.html # COMMAND ---------- train_libsvm = "/dbfs/databricks-datasets/mnist-digits/data-001/mnist-digits-train.txt" test_libsvm = "/dbfs/databricks-datasets/mnist-digits/data-001/mnist-digits-test.txt" X_train, y_train = sklearn.datasets.load_svmlight_file(train_libsvm, n_features=784) X_train = X_train.toarray() X_test, y_test = sklearn.datasets.load_svmlight_file(test_libsvm, n_features=784) X_test = X_test.toarray() X_train = X_train.reshape( (X_train.shape[0], 28, 28, 1) ) X_train = X_train.astype('float32') X_train /= 255 y_train = to_categorical(y_train, num_classes=10) X_test = X_test.reshape( (X_test.shape[0], 28, 28, 1) ) X_test = X_test.astype('float32') X_test /= 255 y_test = to_categorical(y_test, num_classes=10) # COMMAND ---------- # MAGIC %md # MAGIC Now the model: # COMMAND ---------- from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D model = Sequential() model.add(Conv2D(8, # number of kernels (4, 4), # kernel size padding='valid', # no padding; output will be smaller than input input_shape=(28, 28, 1))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) # alternative syntax for applying activation model.add(Dense(10)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # COMMAND ---------- # MAGIC %md # MAGIC ... and the training loop and output: # COMMAND ---------- start = datetime.datetime.today() history = model.fit(X_train, y_train, batch_size=128, epochs=8, verbose=2, validation_split=0.1) scores = model.evaluate(X_test, y_test, verbose=1) print for i in range(len(model.metrics_names)): print("%s: %f" % (model.metrics_names[i], scores[i])) # COMMAND ---------- fig, ax = plt.subplots() fig.set_size_inches((5,5)) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'val'], loc='upper left') display(fig) # COMMAND ---------- # MAGIC %md # MAGIC ### Our MNIST ConvNet # MAGIC # MAGIC In our first convolutional MNIST experiment, we get to almost 99% validation accuracy in just a few epochs (a minutes or so on CPU)! # MAGIC # MAGIC The training accuracy is effectively 100%, though, so we've almost completely overfit (i.e., memorized the training data) by this point and need to do a little work if we want to keep learning. # MAGIC # MAGIC Let's add another convolutional layer: # COMMAND ---------- model = Sequential() model.add(Conv2D(8, # number of kernels (4, 4), # kernel size padding='valid', input_shape=(28, 28, 1))) model.add(Activation('relu')) model.add(Conv2D(8, (4, 4))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dense(10)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(X_train, y_train, batch_size=128, epochs=15, verbose=2, validation_split=0.1) scores = model.evaluate(X_test, y_test, verbose=1) print for i in range(len(model.metrics_names)): print("%s: %f" % (model.metrics_names[i], scores[i])) # COMMAND ---------- # MAGIC %md # MAGIC While that's running, let's look at a number of "famous" convolutional networks! # MAGIC # MAGIC ### LeNet (<NAME>, 1998) # MAGIC # MAGIC <img src="http://i.imgur.com/k5hMtMK.png"> # MAGIC # MAGIC <img src="http://i.imgur.com/ERV9pHW.gif"> # COMMAND ---------- # MAGIC %md <img src="http://i.imgur.com/TCN9C4P.png"> # COMMAND ---------- # MAGIC %md # MAGIC ### AlexNet (2012) # MAGIC # MAGIC <img src="http://i.imgur.com/CpokDKV.jpg"> # MAGIC # MAGIC <img src="http://i.imgur.com/Ld2QhXr.jpg"> # COMMAND ---------- # MAGIC %md # MAGIC ### Back to our labs: Still Overfitting # MAGIC # MAGIC We're making progress on our test error -- about 99% -- but just a bit for all the additional time, due to the network overfitting the data. # MAGIC # MAGIC There are a variety of techniques we can take to counter this -- forms of regularization. # MAGIC # MAGIC Let's try a relatively simple solution solution that works surprisingly well: add a pair of `Dropout` filters, a layer that randomly omits a fraction of neurons from each training batch (thus exposing each neuron to only part of the training data). # MAGIC # MAGIC We'll add more convolution kernels but shrink them to 3x3 as well. # COMMAND ---------- model = Sequential() model.add(Conv2D(32, # number of kernels (3, 3), # kernel size padding='valid', input_shape=(28, 28, 1))) model.add(Activation('relu')) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(rate=1-0.25)) # <- regularize, new parameter rate added (rate=1-keep_prob) model.add(Flatten()) model.add(Dense(128)) model.add(Activation('relu')) model.add(Dropout(rate=1-0.5)) # <-regularize, new parameter rate added (rate=1-keep_prob) model.add(Dense(10)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(X_train, y_train, batch_size=128, epochs=15, verbose=2) scores = model.evaluate(X_test, y_test, verbose=2) print for i in range(len(model.metrics_names)): print("%s: %f" % (model.metrics_names[i], scores[i])) # COMMAND ---------- # MAGIC %md # MAGIC While that's running, let's look at some more recent ConvNet architectures: # MAGIC # MAGIC ### VGG16 (2014) # MAGIC # MAGIC <img src="http://i.imgur.com/gl4kZDf.png"> # COMMAND ---------- # MAGIC %md # MAGIC ### GoogLeNet (2014) # MAGIC # MAGIC <img src="http://i.imgur.com/hvmtDqN.png"> # MAGIC # MAGIC *"Inception" layer: parallel convolutions at different resolutions* # MAGIC # MAGIC ### Residual Networks (2015-) # MAGIC # MAGIC Skip layers to improve training (error propagation). Residual layers learn from details at multiple previous layers. # MAGIC # MAGIC <img src="http://i.imgur.com/32g8Ykl.png"> # COMMAND ---------- # MAGIC %md # MAGIC --- # MAGIC # MAGIC > __ASIDE: Atrous / Dilated Convolutions__ # MAGIC # MAGIC > An atrous or dilated convolution is a convolution filter with "holes" in it. Effectively, it is a way to enlarge the filter spatially while not adding as many parameters or attending to every element in the input. # MAGIC # MAGIC > Why? Covering a larger input volume allows recognizing coarser-grained patterns; restricting the number of parameters is a way of regularizing or constraining the capacity of the model, making training easier. # MAGIC # MAGIC --- # COMMAND ---------- # MAGIC %md # MAGIC ## *Lab Wrapup* # MAGIC # MAGIC From the last lab, you should have a test accuracy of over 99.1% # MAGIC # MAGIC For one more activity, try changing the optimizer to old-school "sgd" -- just to see how far we've come with these modern gradient descent techniques in the last few years. # MAGIC # MAGIC Accuracy will end up noticeably worse ... about 96-97% test accuracy. Two key takeaways: # MAGIC # MAGIC * Without a good optimizer, even a very powerful network design may not achieve results # MAGIC * In fact, we could replace the word "optimizer" there with # MAGIC * initialization # MAGIC * activation # MAGIC * regularization # MAGIC * (etc.) # MAGIC * All of these elements we've been working with operate together in a complex way to determine final performance # COMMAND ---------- # MAGIC %md # MAGIC Of course this world evolves fast - see the new kid in the CNN block -- **capsule networks** # MAGIC # MAGIC > Hinton: “The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster.” # MAGIC # MAGIC Well worth the 8 minute read: # MAGIC * [https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b](https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b) # MAGIC # MAGIC To understand deeper: # MAGIC * original paper: [https://arxiv.org/abs/1710.09829](https://arxiv.org/abs/1710.09829) # MAGIC # MAGIC [Keras capsule network example](https://keras.io/examples/cifar10_cnn_capsule/) # COMMAND ---------- # MAGIC %md # MAGIC # More resources # MAGIC # MAGIC - http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ # MAGIC - https://openai.com/ # COMMAND ----------
_integration/python-pymysql/test.py
jfrabaute/go-mysql-server
114
12787892
# Copyright 2020-2021 Dolthub, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import pymysql.cursors class TestMySQL(unittest.TestCase): def test_connect(self): connection = pymysql.connect(host='127.0.0.1', user='root', password='', db='', cursorclass=pymysql.cursors.DictCursor) try: with connection.cursor() as cursor: sql = "SELECT name, email FROM mytable ORDER BY name, email" cursor.execute(sql) rows = cursor.fetchall() expected = [ {"name": "<NAME>", "email": "<EMAIL>"}, {"name": "<NAME>", "email": "<EMAIL>"}, {"name": "<NAME>", "email": "<EMAIL>"}, {"name": "<NAME>", "email": "<EMAIL>"} ] self.assertEqual(expected, rows) finally: connection.close() if __name__ == '__main__': unittest.main()
tests/test___main__.py
oterrier/openapi-python-client
172
12787900
def test_main(mocker): app = mocker.patch("openapi_python_client.cli.app") # noinspection PyUnresolvedReferences from openapi_python_client import __main__ app.assert_called_once()
platypush/plugins/tcp.py
RichardChiang/platypush
228
12787910
import base64 import json import socket from typing import Optional, Union from platypush.plugins import Plugin, action class TcpPlugin(Plugin): """ Plugin for raw TCP communications. """ def __init__(self, **kwargs): super().__init__(**kwargs) self._sockets = {} def _connect(self, host: str, port: int, timeout: Optional[float] = None) -> socket.socket: sd = self._sockets.get((host, port)) if sd: return sd sd = socket.socket(socket.AF_INET, socket.SOCK_STREAM) if timeout: sd.settimeout(timeout) sd.connect((host, port)) self._sockets[(host, port)] = sd return sd @action def connect(self, host: str, port: int, timeout: Optional[float] = None): """ Open a TCP connection. :param host: Host IP/name. :param port: TCP port. :param timeout: Connection timeout in seconds (default: None). """ self._connect(host, port, timeout) @action def close(self, host: str, port: int): """ Close an active TCP connection. :param host: Host IP/name. :param port: TCP port. """ sd = self._sockets.get((host, port)) if not sd: self.logger.warning('Not connected to ({}, {})'.format(host, port)) return sd.close() @action def send(self, data: Union[bytes, str], host: str, port: int, binary: bool = False, timeout: Optional[float] = None, recv_response: bool = False, **recv_opts): """ Send data over a TCP connection. If the connection isn't active it will be created. :param data: Data to be sent, as bytes or string. :param host: Host IP/name. :param port: TCP port. :param binary: If set to True and ``data`` is a string then will be treated as base64-encoded binary input. :param timeout: Connection timeout in seconds (default: None). :param recv_response: If True then the action will wait for a response from the server before closing the connection. Note that ``recv_opts`` must be specified in this case - at least ``length``. """ if isinstance(data, list) or isinstance(data, dict): data = json.dumps(data) if isinstance(data, str): data = data.encode() if binary: data = base64.decodebytes(data) sd = self._connect(host, port, timeout) try: sd.send(data) if recv_response: recv_opts.update({ 'host': host, 'port': port, 'timeout': timeout, 'binary': binary, }) return self.recv(**recv_opts) finally: self.close(host, port) @action def recv(self, length: int, host: str, port: int, binary: bool = False, timeout: Optional[float] = None) -> str: """ Receive data from a TCP connection. If the connection isn't active it will be created. :param length: Maximum number of bytes to be received. :param host: Host IP/name. :param port: TCP port. :param binary: If set to True then the output will be base64-encoded, otherwise decoded as string. :param timeout: Connection timeout in seconds (default: None). """ sd = self._connect(host, port, timeout) try: data = sd.recv(length) if binary: data = base64.encodebytes(data).decode() else: data = data.decode() return data finally: self.close(host, port) # vim:sw=4:ts=4:et:
mbuild/lib/bulk_materials/__init__.py
daico007/mbuild
101
12787915
"""mBuild bulk materials library.""" from mbuild.lib.bulk_materials.amorphous_silica_bulk import AmorphousSilicaBulk
recipes/Python/577236_ur1ca_commandline_client/recipe-577236.py
tdiprima/code
2,023
12787927
#!/usr/bin/env python """ur1.py -- command-line ur1.ca client. ur1.ca is the URL shortening services provided by status.net. This script makes it possible to access the service from the command line. This is done by scraping the returned page and look for the shortened URL. USAGE: ur1.py LONGURL RETURN STATUS: If the URL is succesfully shortened by ur1.ca, it is written to the standard output, and the program exits with status 0. If ur1.ca fails to shorten the long URL, the error message provided by ur1.ca is written to the standard error, and the program exits with status 1. If the input URL is malformed, no attempts of contacting the server is made, and the program exits with status 2. """ import sys import urllib import urlparse import re UR1CA = "http://ur1.ca/" ESUCCESS = 0 EFAIL = 1 EBADARG = 2 RE_GOOD = re.compile(r'<p class="success">Your ur1 is: <a href="(?P<shorturl>.+)">(?P=shorturl)</a></p>') RE_BAD = re.compile(r'<p class="error">(?P<errormsg>.+)</p>') def isgoodarg(url): """Check if the input URL makes "sense". A URL does not make sense if the scheme is neither http or https, or the host part is missing. url: input URL Returns boolean indicating whether the URL makes sense. """ parse_result = urlparse.urlparse(url) #pylint: disable-msg=E1101 isgoodscheme = (parse_result.scheme == "http" or parse_result.scheme == "https") isgoodhost = parse_result.hostname return isgoodscheme and isgoodhost def parameterize(url): """Encode input URL as POST parameter. url: a string which is the URL to be passed to ur1.ca service. Returns the POST parameter constructed from the URL. """ return urllib.urlencode({"longurl": url}) def request(parameter): """Send POST request to ur1.ca using the parameter. parameter: the parameter to the POST request, as returned by parameterize(). Returns the file-like object as returned by urllib.urlopen. """ return urllib.urlopen(UR1CA, parameter) def retrievedoc(response): """Retrieve the HTML text from the ur1.ca response. response: the file-like HTTP response file returned by ur1.ca. Returns the text as a string. """ #XXX: ensure all bytes are read res_info = response.info() clength = int(res_info["content-length"]) return response.read(clength) def scrape(document): """Scrape the HTML document returned from ur1.ca for the answer. document: HTML document returned from ur1.ca Returns a 2-tuple (success, answer) where -- success: boolean value indicating whether the service returned some meaningful result answer: if success, this is the shortened URL, otherwise a string indicating the possible problem """ goodguess = RE_GOOD.search(document) if goodguess: matchdict = goodguess.groupdict() return (True, matchdict["shorturl"]) badguess = RE_BAD.search(document) if badguess: matchdict = badguess.groupdict() return (False, matchdict["errormsg"]) else: return (False, "Unknown local error.") def __do_main(): """Do everything.""" try: arg = sys.argv[1] except IndexError: sys.exit(EBADARG) if not isgoodarg(arg): sys.exit(EBADARG) post_param = parameterize(arg) answerfile = request(post_param) doc = retrievedoc(answerfile) answerfile.close() status, msg = scrape(doc) if status: print msg sys.exit(ESUCCESS) else: print >> sys.stderr, msg sys.exit(EFAIL) if __name__ == "__main__": __do_main()
petridish/app/directory.py
Bhaskers-Blu-Org2/petridishnn
121
12787943
<reponame>Bhaskers-Blu-Org2/petridishnn # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import glob import re from petridish.philly.container import is_philly from petridish.app.multi_proc import has_stopped """ Dir structures """ def _updir(d, n=1): for _ in range(n): d = os.path.dirname(d) return d """ Philly specific dir structures regarding multiple trials of the same experiment """ def previous_trial_log_root(log_root): if not is_philly(): return None # e.g., xx/application_xx-xx/logs/2/petridish_main log_root = os.path.normpath(log_root) triali = int(os.path.basename(_updir(log_root, 1))) if triali == 1: return None return os.path.join(_updir(log_root, 2), str(triali - 1), os.path.basename(log_root)) def previous_trial_model_root(model_root): if not is_philly(): return None # e.g., xxx/application_xx-xx/models return os.path.normpath(model_root) #model_root = os.path.normpath(model_root) #triali = int(os.path.basename(model_root)) #if triali == 1: # return None #return os.path.join(_updir(model_root, 1), str(triali - 1)) """ Helper functions to create names for communication over file-system. Direct connections are not available. """ def _auto_script_fn(i, prefix=None): if prefix is not None: return '{}_{}.sh'.format(prefix, i) return '{}.sh'.format(i) def _auto_script_dir(log_dir, is_critic, is_log_dir_root=False): n_updir = 1 + int(bool(is_critic)) - int(bool(is_log_dir_root)) #+ 2 * is_philly() return os.path.join(_updir(log_dir, n_updir), 'auto_scripts') def _all_mi(dir_root): all_mi = [] for dn in os.listdir(dir_root): try: mi = int(os.path.basename(dn.strip())) all_mi.append(mi) except: continue return all_mi def _dn_to_mi(dn): try: mi = int(os.path.basename(os.path.normpath(dn))) return mi except: return None def _mi_to_dn(dir_root, model_iter): return os.path.join(dir_root, str(model_iter)) def _dn_to_ci(dn): try: ci = int(os.path.basename(os.path.normpath(dn))) return ci except: return None def _ci_to_dn(dir_root, critic_iter, queue_name): if critic_iter is None: return os.path.join(dir_root, queue_name) return os.path.join(dir_root, queue_name, str(critic_iter)) def _all_critic_dn(dir_root, queue_name): return glob.glob(os.path.join(dir_root, queue_name, '*')) def _latest_ci(log_dir_root, model_dir_root, queue_name): l_dns = _all_critic_dn(log_dir_root, queue_name) max_ci = None for dn in l_dns: dn = os.path.normpath(dn.strip()) try: # make sure the dirname is an int so it is actually a dir for critic ci = int(os.path.basename(dn)) except: continue if not has_stopped(dn): # make sure model is mark finished. continue if not os.path.exists(_ci_to_dn(model_dir_root, ci, queue_name)): # make sure model exists continue if max_ci is None or max_ci < ci: max_ci = ci return max_ci def _mi_info_save_fn(log_dir_root): return os.path.join(log_dir_root, 'mi_info.npz')
recipes/Python/576587_Sort_sections_keys_ini/recipe-576587.py
tdiprima/code
2,023
12787986
#!/usr/bin/python # -*- coding: cp1250 -*- __version__ = '$Id: sort_ini.py 543 2008-12-19 13:44:59Z mn $' # author: <NAME> import sys USAGE = 'USAGE:\n\tsort_ini.py file.ini' def sort_ini(fname): """sort .ini file: sorts sections and in each section sorts keys""" f = file(fname) lines = f.readlines() f.close() section = '' sections = {} for line in lines: line = line.strip() if line: if line.startswith('['): section = line continue if section: try: sections[section].append(line) except KeyError: sections[section] = [line, ] if sections: sk = sections.keys() sk.sort() for k in sk: vals = sections[k] vals.sort() print k print '\n'.join(vals) print if '--version' in sys.argv: print __version__ elif len(sys.argv) < 2: print USAGE else: sort_ini(sys.argv[1])
tests/gdb/complete.py
cohortfsllc/cohort-cocl2-sandbox
2,151
12787993
# -*- python -*- # Copyright (c) 2014 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import gdb_test class CompleteTest(gdb_test.GdbTest): def test_complete(self): # Test that continue causes the debugged program to run to completion. self.gdb.ResumeCommand('continue') def tearDown(self): # Test program should run to completion and return a special value. # Intentionally bypass superclass's tearDown as it assumes gdb exits first. self.AssertSelLdrExits(expected_returncode=123) self.gdb.Quit() self.gdb.Wait() if __name__ == '__main__': gdb_test.Main()
src/connectors/airwatch_devices.py
sfc-gh-kmaurya/SnowAlert
144
12787996
<gh_stars>100-1000 """Airwatch Collect Device information using API Key, Host, and CMSURL Authentication """ from runners.helpers import log from runners.helpers import db from runners.helpers.dbconfig import ROLE as SA_ROLE from datetime import datetime import requests from urllib.error import HTTPError from .utils import yaml_dump PAGE_SIZE = 500 CONNECTION_OPTIONS = [ { 'name': 'api_key', 'title': "Airwatch API Key", 'prompt': "Your Airwatch API Key", 'type': 'str', 'secret': True, 'required': True, }, { 'name': 'host_airwatch', 'title': "Airwatch Host", 'prompt': "Your Airwatch Host", 'type': 'str', 'secret': True, 'required': True, }, { 'name': 'device_auth', 'title': "Device URL", 'prompt': "Your Airwatch CMS Auth for Device URL", 'type': 'str', 'secret': True, 'required': True, }, { 'name': 'custom_attributes_auth', 'title': "Custom Attributes URL", 'prompt': "Your Airwatch CMS Auth for Custom Attributes URL", 'type': 'str', 'secret': True, 'required': True, }, ] LANDING_TABLE_COLUMNS_DEVICE = [ ('INSERT_ID', 'NUMBER IDENTITY START 1 INCREMENT 1'), ('SNAPSHOT_AT', 'TIMESTAMP_LTZ(9)'), ('RAW', 'VARIANT'), ('EAS_IDS', 'VARIANT'), ('UDID', 'VARCHAR(256)'), ('SERIAL_NUMBER', 'VARCHAR(256)'), ('MAC_ADDRESS', 'VARCHAR(256)'), ('IMEI', 'VARCHAR(256)'), ('EAS_ID', 'VARCHAR(256)'), ('ASSET_NUMBER', 'VARCHAR(256)'), ('DEVICE_FRIENDLY_NAME', 'VARCHAR(256)'), ('LOCATION_GROUP_ID', 'VARIANT'), ('LOCATION_GROUP_NAME', 'VARCHAR(256)'), ('USER_ID', 'VARIANT'), ('USER_NAME', 'VARCHAR(256)'), ('DATA_PROTECTION_STATUS', 'NUMBER(38,0)'), ('USER_EMAIL_ADDRESS', 'VARCHAR(256)'), ('OWNERSHIP', 'VARCHAR(256)'), ('PLATFORM_ID', 'VARIANT'), ('PLATFORM', 'VARCHAR(256)'), ('MODEL_ID', 'VARIANT'), ('MODEL', 'VARCHAR(256)'), ('OPERATING_SYSTEM', 'VARCHAR(256)'), ('PHONE_NUMBER', 'VARCHAR(256)'), ('LAST_SEEN', 'TIMESTAMP_LTZ(9)'), ('ENROLLMENT_STATUS', 'VARCHAR(256)'), ('COMPLIANCE_STATUS', 'VARCHAR(256)'), ('COMPROMISED_STATUS', 'BOOLEAN'), ('LAST_ENROLLED_ON', 'TIMESTAMP_LTZ(9)'), ('LAST_COMPLIANCE_CHECK_ON', 'TIMESTAMP_LTZ(9)'), ('LAST_COMPROMISED_CHECK_ON', 'TIMESTAMP_LTZ(9)'), ('IS_SUPERVISED', 'BOOLEAN'), ('VIRTUAL_MEMORY', 'NUMBER(38,0)'), ('DEVICE_CAPACITY', 'FLOAT'), ('AVAILABLE_DEVICE_CAPACITY', 'FLOAT'), ('IS_DEVICE_DND_ENABLED', 'BOOLEAN'), ('IS_DEVICE_LOCATOR_ENABLED', 'BOOLEAN'), ('IS_CLOUD_BACKUP_ENABLED', 'BOOLEAN'), ('IS_ACTIVATION_LOCK_ENABLED', 'BOOLEAN'), ('IS_NETWORKTETHERED', 'BOOLEAN'), ('BATTERY_LEVEL', 'VARCHAR(256)'), ('IS_ROAMING', 'BOOLEAN'), ('SYSTEM_INTEGRITY_PROTECTION_ENABLED', 'BOOLEAN'), ('PROCESSOR_ARCHITECTURE', 'NUMBER(38,0)'), ('TOTAL_PHYSICAL_MEMORY', 'NUMBER(38,0)'), ('AVAILABLE_PHYSICAL_MEMORY', 'NUMBER(38,0)'), ('DEVICE_CELLULAR_NETWORK_INFO', 'VARIANT'), ('ENROLLMENT_USER_UUID', 'VARCHAR(256)'), ('ID', 'VARIANT'), ('UUID', 'VARCHAR(256)'), ] LANDING_TABLE_COLUMNS_CUSTOM_ATTRIBUTES = [ ('INSERT_ID', 'NUMBER IDENTITY START 1 INCREMENT 1'), ('SNAPSHOT_AT', 'TIMESTAMP_LTZ(9)'), ('RAW', 'VARIANT'), ('DEVICE_ID', 'INT'), ('UDID', 'VARCHAR(256)'), ('SERIAL_NUMBER', 'VARCHAR(256)'), ('ENROLLMENT_USER_NAME', 'VARCHAR(256)'), ('ASSET_NUMBER', 'VARCHAR(256)'), ('CUSTOM_ATTRIBUTES', 'VARIANT'), ] def get_data(url: str, cms_auth: str, api_key: str, params: dict = {}) -> dict: headers: dict = { 'Content-Type': 'application/json', 'aw-tenant-code': api_key, 'Accept': 'application/json', 'Authorization': cms_auth, } try: log.debug(f"Preparing GET: url={url} with params={params}") req = requests.get(url, params=params, headers=headers) req.raise_for_status() except HTTPError as http_err: log.error(f"Error GET: url={url}") log.error(f"HTTP error occurred: {http_err}") raise return req.json() def connect(connection_name, options): landing_table_device = f'data.airwatch_devices_{connection_name}_device_connection' landing_table_custom_attributes = ( f'data.airwatch_devices_{connection_name}_custom_attributes_connection' ) comment = yaml_dump(module='airwatch_devices', **options) db.create_table( name=landing_table_device, cols=LANDING_TABLE_COLUMNS_DEVICE, comment=comment, rw_role=SA_ROLE ) db.create_table( name=landing_table_custom_attributes, cols=LANDING_TABLE_COLUMNS_CUSTOM_ATTRIBUTES, comment=comment, rw_role=SA_ROLE ) return {'newStage': 'finalized', 'newMessage': "Airwatch ingestion tables created!"} def ingest(table_name, options): host_airwatch = options['host_airwatch'] api_key = options['api_key'] device_auth = options['device_auth'] custom_attributes_auth = options['custom_attributes_auth'] ingest_type = ( 'device' if table_name.endswith('_DEVICE_CONNECTION') else 'custom_attributes' ) timestamp = datetime.utcnow() landing_table = f'data.{table_name}' if ingest_type == 'device': device_params: dict = {'PageSize': PAGE_SIZE, 'Page': 0} url = f'https://{host_airwatch}/api/mdm/devices/search' while 1: result: dict = get_data(url, device_auth, api_key, device_params) devices = result['Devices'] db.insert( landing_table, values=[ ( timestamp, device, device.get('EasIds'), device.get('Udid'), device.get('SerialNumber'), device.get('MacAddress'), device.get('Imei'), device.get('EasId'), device.get('AssetNumber'), device.get('DeviceFriendlyName'), device.get('LocationGroupId'), device.get('LocationGroupName'), device.get('UserId'), device.get('UserName'), device.get('DataProtectionStatus'), device.get('UserEmailAddress'), device.get('Ownership'), device.get('PlatformId'), device.get('Platform'), device.get('ModelId'), device.get('Model'), device.get('OperatingSystem'), device.get('PhoneNumber'), device.get('LastSeen'), device.get('EnrollmentStatus'), device.get('ComplianceStatus'), device.get('CompromisedStatus'), device.get('LastEnrolledOn'), device.get('LastComplianceCheckOn'), device.get('LastCompromisedCheckOn'), device.get('IsSupervised'), device.get('VirtualMemory'), device.get('DeviceCapacity'), device.get('AvailableDeviceCapacity'), device.get('IsDeviceDNDEnabled'), device.get('IsDeviceLocatorEnabled'), device.get('IsCloudBackupEnabled'), device.get('IsActivationLockEnabled'), device.get('IsNetworkTethered'), device.get('BatteryLevel'), device.get('IsRoaming'), device.get('SystemIntegrityProtectionEnabled'), device.get('ProcessorArchitecture'), device.get('TotalPhysicalMemory'), device.get('AvailablePhysicalMemory'), device.get('DeviceCellularNetworkInfo'), device.get('EnrollmentUserUuid'), device.get('Id'), device.get('Uuid'), ) for device in devices ], select=db.derive_insert_select(LANDING_TABLE_COLUMNS_DEVICE), columns=db.derive_insert_columns(LANDING_TABLE_COLUMNS_DEVICE), ) log.info(f'Inserted {len(devices)} rows ({landing_table}).') yield len(devices) processed_total = (result['Page'] + 1) * result['PageSize'] if processed_total >= result['Total']: break device_params['Page'] += 1 else: custom_device_params: dict = {'PageSize': PAGE_SIZE, 'Page': 0} url = f'https://{host_airwatch}/api/mdm/devices/customattribute/search' while 1: result: dict = get_data( url, custom_attributes_auth, api_key, custom_device_params ) device_attributes = result['Devices'] db.insert( landing_table, values=[ ( timestamp, device_attr, device_attr.get('DeviceId'), device_attr.get('Udid'), device_attr.get('SerialNumber'), device_attr.get('EnrollmentUserName'), device_attr.get('AssetNumber'), device_attr.get('CustomAttributes'), ) for device_attr in device_attributes ], select=db.derive_insert_select(LANDING_TABLE_COLUMNS_CUSTOM_ATTRIBUTES), columns=db.derive_insert_columns( LANDING_TABLE_COLUMNS_CUSTOM_ATTRIBUTES ), ) log.info(f'Inserted {len(device_attributes)} rows ({landing_table}).') yield len(device_attributes) processed_total = (result['Page'] + 1) * result['PageSize'] if processed_total >= result['Total']: break custom_device_params['Page'] += 1
glazier/lib/logs_test.py
ItsMattL/glazier
1,233
12788000
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for glazier.lib.logs.""" import os import zipfile from absl.testing import absltest from glazier.lib import constants from glazier.lib import file_util from glazier.lib import logs import mock from pyfakefs.fake_filesystem_unittest import Patcher TEST_ID = '1A19SEL90000R90DZN7A-1234567' class LoggingTest(absltest.TestCase): def testCollect(self): with Patcher() as patcher: files = [ os.path.join(constants.SYS_LOGS_PATH, 'log1.log'), os.path.join(constants.SYS_LOGS_PATH, 'log2.log'), ] patcher.fs.create_dir(constants.SYS_LOGS_PATH) patcher.fs.create_file(files[0], contents='log1 content') patcher.fs.create_file(files[1], contents='log2 content') logs.Collect(r'C:\glazier.zip') with zipfile.ZipFile(r'C:\glazier.zip', 'r') as out: with out.open(files[1].lstrip('/')) as f2: self.assertEqual(f2.read(), b'log2 content') def testCollectIOErr(self): with Patcher() as patcher: patcher.fs.create_dir(constants.SYS_LOGS_PATH) with self.assertRaises(logs.LogError): logs.Collect(constants.SYS_LOGS_PATH) @mock.patch.object(zipfile.ZipFile, 'write', autospec=True) def testCollectValueErr(self, wr): wr.side_effect = ValueError('ZIP does not support timestamps before 1980') with Patcher() as patcher: patcher.fs.create_dir(constants.SYS_LOGS_PATH) patcher.fs.create_file(os.path.join(constants.SYS_LOGS_PATH, 'log1.log')) with self.assertRaises(logs.LogError): logs.Collect(r'C:\glazier.zip') @mock.patch.object(logs.winpe, 'check_winpe', autospec=True) def testGetLogsPath(self, wpe): # WinPE wpe.return_value = True self.assertEqual(logs.GetLogsPath(), logs.constants.WINPE_LOGS_PATH) # Host wpe.return_value = False self.assertEqual(logs.GetLogsPath(), logs.constants.SYS_LOGS_PATH) @mock.patch.object(file_util, 'CreateDirectories') @mock.patch.object(logs.buildinfo.BuildInfo, 'ImageID', autospec=True) @mock.patch.object(logs.winpe, 'check_winpe', autospec=True) @mock.patch.object(logs.logging, 'FileHandler') def testSetup(self, fh, wpe, ii, create_dir): ii.return_value = TEST_ID wpe.return_value = False logs.Setup() create_dir.assert_called_with(r'%s\glazier.log' % logs.constants.SYS_LOGS_PATH) fh.assert_called_with(r'%s\glazier.log' % logs.constants.SYS_LOGS_PATH) @mock.patch.object(file_util, 'CreateDirectories') @mock.patch.object(logs.buildinfo.BuildInfo, 'ImageID', autospec=True) @mock.patch.object(logs.winpe, 'check_winpe', autospec=True) @mock.patch.object(logs.logging, 'FileHandler') def testSetupError(self, fh, wpe, ii, create_dir): ii.return_value = TEST_ID wpe.return_value = False fh.side_effect = IOError with self.assertRaises(logs.LogError): logs.Setup() self.assertTrue(create_dir.called) if __name__ == '__main__': absltest.main()
sysidentpy/polynomial_basis/tests/test_simulation.py
neylsoncrepalde/sysidentpy
107
12788010
from numpy.testing._private.utils import assert_allclose from sysidentpy.polynomial_basis import PolynomialNarmax from sysidentpy.utils.generate_data import get_miso_data, get_siso_data import numpy as np from numpy.testing import assert_almost_equal, assert_array_equal from numpy.testing import assert_raises from sysidentpy.polynomial_basis import SimulatePolynomialNarmax def test_get_index_from_regressor_code(): s = SimulatePolynomialNarmax() model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) regressor_space = np.array( [ [0, 0], [1001, 0], [2001, 0], [2002, 0], [1001, 1001], [2001, 1001], [2002, 1001], [2001, 2001], [2002, 2001], [2002, 2002], ] ) index = s._get_index_from_regressor_code( regressor_code=regressor_space, model_code=model ) assert (index == np.array([1, 3, 5])).all() def test_list_output_regressor(): s = SimulatePolynomialNarmax() model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) y_code = s._list_output_regressor_code(model) assert (y_code == np.array([1001, 1001])).all() def test_list_input_regressor(): s = SimulatePolynomialNarmax() model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) x_code = s._list_input_regressor_code(model) assert (x_code == np.array([2001, 2002])).all() def test_get_lag_from_regressor_code(): s = SimulatePolynomialNarmax() list_regressor1 = np.array([2001, 2002]) list_regressor2 = np.array([1004, 1002]) max_lag1 = s._get_lag_from_regressor_code(list_regressor1) max_lag2 = s._get_lag_from_regressor_code(list_regressor2) assert max_lag1 == 2 assert max_lag2 == 4 def test_simulate(): x_train, x_valid, y_train, y_valid = get_siso_data( n=1000, colored_noise=False, sigma=0.001, train_percentage=90 ) s = SimulatePolynomialNarmax() # the model must be a numpy array model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) # theta must be a numpy array of shape (n, 1) where n is the number of regressors theta = np.array([[0.2, 0.9, 0.1]]).T yhat, results = s.simulate( X_test=x_valid, y_test=y_valid, model_code=model, theta=theta, plot=False ) assert yhat.shape == (100, 1) assert len(results) == 3 def test_simulate_theta(): x_train, x_valid, y_train, y_valid = get_siso_data( n=1000, colored_noise=False, sigma=0.001, train_percentage=90 ) s = SimulatePolynomialNarmax(estimate_parameter=True) # the model must be a numpy array model = np.array( [ [1001, 0], # y(k-1) [2001, 1001], # x1(k-1)y(k-1) [2002, 0], # x1(k-2) ] ) yhat, results = s.simulate( X_train=x_train, y_train=y_train, X_test=x_valid, y_test=y_valid, model_code=model, plot=False, ) theta = np.array([[0.2, 0.9, 0.1]]).T assert_almost_equal(s.theta, theta, decimal=1) def test_estimate_parameter(): assert_raises(TypeError, SimulatePolynomialNarmax, estimmate_parameter=1)
office365/planner/tasks/check_list_items.py
theodoriss/Office365-REST-Python-Client
544
12788084
from office365.planner.tasks.check_list_item import PlannerChecklistItem from office365.runtime.client_value_collection import ClientValueCollection class PlannerChecklistItems(ClientValueCollection): """The plannerChecklistItemCollection resource represents the collection of checklist items on a task. It is an Open Type. It is part of the task details object. The value in the property-value pair is the checklistItem object. """ def __init__(self, initial_values=None): super(PlannerChecklistItems, self).__init__(PlannerChecklistItem, initial_values)
cellphonedb/src/tests/cellphone_flask_test_case.py
chapuzzo/cellphonedb
278
12788099
import os import random import string import time from flask_testing import TestCase from cellphonedb.src.app.cellphonedb_app import cellphonedb_app from cellphonedb.src.local_launchers.local_collector_launcher import LocalCollectorLauncher from cellphonedb.utils import utils class CellphoneFlaskTestCase(TestCase): @staticmethod def fixtures_dir(): current_dir = os.path.dirname(os.path.realpath(__file__)) fixtures_dir = '{}/fixtures'.format(current_dir) return fixtures_dir @staticmethod def reset_db(): cellphonedb_app.cellphonedb.database_manager.database.drop_everything() cellphonedb_app.cellphonedb.database_manager.database.create_all() def populate_db(self): LocalCollectorLauncher().all('collect_protein.csv', 'collect_gene.csv', 'collect_complex.csv', 'collect_interaction.csv', self.fixtures_dir()) @staticmethod def remove_file(file): os.remove(file) @staticmethod def rand_string(digits=5): return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(digits)) @staticmethod def get_test_filename(original_namefile, extension, prefix='TESTING'): namefile = '{}_{}_{}_{}.{}'.format(prefix, original_namefile, int(time.time()), CellphoneFlaskTestCase.rand_string(), extension) return namefile def assert_file_not_empty(self, file, message=''): if not message: message = 'File {} is empty'.format(file) read_data = utils.read_data_table_from_file(file) self.assertFalse(read_data.empty, message) def assert_file_exist(self, path_file, message=''): if not message: message = 'File {} didnt exist'.format(path_file) self.assertTrue(os.path.isfile(path_file), message)
454 4Sum II.py
krishna13052001/LeetCode
872
12788157
#!/usr/bin/python3 """ Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l) there are such that A[i] + B[j] + C[k] + D[l] is zero. To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -2^28 to 2^28 - 1 and the result is guaranteed to be at most 2^31 - 1. Example: Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0 """ from collections import defaultdict class Solution: def fourSumCount(self, A, B, C, D): """ Brute force with map: O(N^3) O(N^3) is pretty large, O(N^2) or O(N log N)? O(N^2) to sum cartesian product (A, B) to construct index similar to C, D. Then index loop up :type A: List[int] :type B: List[int] :type C: List[int] :type D: List[int] :rtype: int """ N = len(A) AB = defaultdict(int) CD = defaultdict(int) for i in range(N): for j in range(N): AB[A[i] + B[j]] += 1 CD[C[i] + D[j]] += 1 ret = 0 # O(N^2) for gross, count in AB.items(): target = 0 - gross ret += count * CD[target] return ret if __name__ == "__main__": A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] assert Solution().fourSumCount(A, B, C, D) == 2
21爬虫入门/day01/note.py
HaoZhang95/PythonAndMachineLearning
937
12788244
""" 爬虫的用途:12306抢票,短信轰炸,数据获取 分类:通用爬虫:是搜索引擎抓取系统的重要部分,主要是把互联网上的页面下载到本地作为一个镜像备份 聚焦爬虫:对特定需求进行数据获取,会对页面的内容进行筛选,保证只抓取和需求相关的网页信息 Http:端口号80 Https: 端口号443 使用第三方的requests进行请求:支持python2和3,在urllib中2和3的语法有些不一样 """ import requests kw = {'wd': '长城'} # headers伪装成一个浏览器进行的请求 # 不加这个的话,网页会识别出请求来自一个python而不是浏览器的正常请求 headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36"} response = requests.get("https://www.baidu.com/s?", params=kw, headers=headers) # 返回的是unicode格式解码的str的数据 print(response.text) # 返回字节流的二进制数据,并根据unicode进行解码 print(response.content) print(response.content.decode()) # 返回完整的url地址 print(response.url) # 返回字符编码 print(response.encoding) # 返回状态吗 print(response.status_code) # 保存响应结果 with open('baidu.html', 'wb') as f: f.write(response.content)
apps/modules/theme_setting/process/nav_setting.py
Bension/osroom
579
12788260
<gh_stars>100-1000 #!/usr/bin/env python # -*-coding:utf-8-*- # @Time : 2019/12/2 14:43 # @Author : <NAME> from bson import ObjectId from flask import request, g from flask_babel import gettext from apps.app import mdbs, cache from apps.core.flask.reqparse import arg_verify from apps.utils.format.obj_format import json_to_pyseq, objid_to_str, str_to_num @cache.cached(timeout=86400, key_base64=False, db_type="redis") def get_global_theme_navs(theme_name, lang): langs = g.site_global["language"]["all_language"].keys() navs = mdbs["sys"].dbs["theme_nav_setting"].find( { "language": lang, "theme_name": theme_name }, {"_id": 0} ).sort([("order", 1)]) if navs.count(True): return list(navs) else: for la in langs: if la == lang: continue navs = mdbs["sys"].dbs["theme_nav_setting"].find( { "language": la, "theme_name": theme_name }, {"_id": 0} ).sort([("order", 1)]) if navs.count(True): return list(navs) return [] def get_navs(): theme_name = request.argget.all("theme_name") lang = request.argget.all("language") s, r = arg_verify( [ (gettext("theme name"), theme_name), (gettext("language"), lang) ], required=True ) if not s: return r navs = mdbs["sys"].dbs["theme_nav_setting"].find( {"language": lang, "theme_name": theme_name} ).sort([("order", 1)]) navs = objid_to_str(navs) data = { "navs": navs } return data def nav_setting(): """ Update :RETURN: """ cid = request.argget.all("id") theme_name = request.argget.all("theme_name") lang = request.argget.all("language") display_name = request.argget.all("display_name") order = str_to_num(request.argget.all("order", 99)) json_data = json_to_pyseq(request.argget.all("json_data")) s, r = arg_verify( [(gettext("Display name"), display_name), (gettext("theme name"), theme_name), (gettext("language"), lang), (gettext("Json data"), json_data) ], required=True ) if not s: return r if not isinstance(json_data, dict): data = { "msg": gettext('Value must be of type json'), "msg_type": "e", "custom_status": 400 } return data if not cid: updata = { 'theme_name': theme_name, 'display_name': display_name, 'language': lang, 'json_data': json_data, "order": order } r = mdbs["sys"].dbs["theme_nav_setting"].insert_one(updata) if r.inserted_id: data = { "msg": gettext("Navigation added successfully"), "msg_type": "s", "custom_status": 200 } else: data = { "msg": gettext("Failed to add navigation"), "msg_type": "w", "custom_status": 400 } else: updata = { 'theme_name': theme_name, 'display_name': display_name, 'language': lang, 'json_data': json_data, "order": order } r = mdbs["sys"].dbs["theme_nav_setting"].update_one( {"_id": ObjectId(cid)}, {"$set": updata} ) if r.modified_count: data = { "msg": gettext("Updated successfully"), "msg_type": "s", "custom_status": 200 } elif r.matched_count: data = { "msg": gettext("Unmodified"), "msg_type": "w", "custom_status": 200 } else: data = { "msg": gettext("Update failed"), "msg_type": "w", "custom_status": 400 } cache.delete_autokey( fun="get_global_theme_navs", theme_name=".*", lang=".*", db_type="redis", key_regex=True ) return data def del_navs(): ids = json_to_pyseq(request.argget.all("ids")) s, r = arg_verify( [(gettext("ids"), ids)], required=True ) if not s: return r del_ids = [] for id in ids: del_ids.append(ObjectId(id)) r = mdbs["sys"].dbs["theme_nav_setting"].delete_many({"_id": {"$in": del_ids}}) if r.deleted_count: data = { "msg": gettext("Deleted successfully"), "msg_type": "s", "custom_status": 200 } else: data = { "msg": gettext("Delete failed"), "msg_type": "s", "custom_status": 200 } cache.delete_autokey( fun="get_global_theme_navs", theme_name=".*", lang=".*", db_type="redis", key_regex=True ) return data
explainaboard/tasks/re/eval_spec.py
Shadowlized/ExplainaBoard
255
12788263
# -*- coding: utf-8 -*- import explainaboard.error_analysis as ea import numpy import os def get_aspect_value(sample_list, dict_aspect_func): dict_span2aspect_val = {} dict_span2aspect_val_pred = {} for aspect, fun in dict_aspect_func.items(): dict_span2aspect_val[aspect] = {} dict_span2aspect_val_pred[aspect] = {} # maintain it for print error case dict_sid2sent = {} sample_id = 0 for info_list in sample_list: # # # # word_list = word_segment(sent).split(" ") # Sentence Entities Paragraph True Relation Label Predicted Relation Label # Sentence Length Paragraph Length Number of Entities in Ground Truth Relation Average Distance of Entities sent, entities, paragraph, true_label, pred_label, sent_length, para_length, n_entity, avg_distance = info_list dict_sid2sent[str(sample_id)] = ea.format4json2(entities + "|||" + sent) sent_pos = ea.tuple2str((sample_id, true_label)) sent_pos_pred = ea.tuple2str((sample_id, pred_label)) # Sentence Length: sentALen aspect = "sLen" if aspect in dict_aspect_func.keys(): dict_span2aspect_val[aspect][sent_pos] = float(sent_length) dict_span2aspect_val_pred[aspect][sent_pos_pred] = float(sent_length) # Paragraph Length: pLen aspect = "pLen" if aspect in dict_aspect_func.keys(): dict_span2aspect_val[aspect][sent_pos] = float(para_length) dict_span2aspect_val_pred[aspect][sent_pos_pred] = float(para_length) # Number of Entity: nEnt aspect = "nEnt" if aspect in dict_aspect_func.keys(): dict_span2aspect_val[aspect][sent_pos] = float(n_entity) dict_span2aspect_val_pred[aspect][sent_pos_pred] = float(n_entity) # Average Distance: avgDist aspect = "avgDist" if aspect in dict_aspect_func.keys(): dict_span2aspect_val[aspect][sent_pos] = float(avg_distance) dict_span2aspect_val_pred[aspect][sent_pos_pred] = float(avg_distance) # Tag: tag aspect = "tag" ############## MUST Be Gold Tag for text classification task if aspect in dict_aspect_func.keys(): dict_span2aspect_val[aspect][sent_pos] = true_label dict_span2aspect_val_pred[aspect][sent_pos_pred] = true_label sample_id += 1 # print(dict_span2aspect_val["bleu"]) return dict_span2aspect_val, dict_span2aspect_val_pred, dict_sid2sent def evaluate(task_type="ner", analysis_type="single", systems=[], dataset_name = 'dataset_name', model_name = 'model_name', output_filename="./output.json", is_print_ci=False, is_print_case=False, is_print_ece=False): path_text = systems[0] if analysis_type == "single" else "" path_comb_output = "model_name" + "/" + path_text.split("/")[-1] dict_aspect_func, dict_precomputed_path, obj_json = ea.load_task_conf(task_dir=os.path.dirname(__file__)) sample_list, sent_list, entity_list, true_list, pred_list = file_to_list(path_text) error_case_list = [] if is_print_case: error_case_list = get_error_case(sent_list, entity_list, true_list, pred_list) print(" -*-*-*- the number of error casse:\t", len(error_case_list)) dict_span2aspect_val, dict_span2aspect_val_pred, dict_sid2sent = get_aspect_value(sample_list, dict_aspect_func) holistic_performance = ea.accuracy(true_list, pred_list) holistic_performance = format(holistic_performance, '.3g') # Confidence Interval of Holistic Performance confidence_low, confidence_up = 0, 0 if is_print_ci: confidence_low, confidence_up = ea.compute_confidence_interval_acc(true_list, pred_list, n_times=1000) dict_span2aspect_val, dict_span2aspect_val_pred, dict_sid2sent = get_aspect_value(sample_list, dict_aspect_func) print("------------------ Holistic Result----------------------") print(holistic_performance) # print(f1(list_true_tags_token, list_pred_tags_token)["f1"]) dict_bucket2span = {} dict_bucket2span_pred = {} dict_bucket2f1 = {} aspect_names = [] for aspect, func in dict_aspect_func.items(): # print(aspect, dict_span2aspect_val[aspect]) dict_bucket2span[aspect] = ea.select_bucketing_func(func[0], func[1], dict_span2aspect_val[aspect]) # print(aspect, dict_bucket2span[aspect]) # exit() dict_bucket2span_pred[aspect] = ea.bucket_attribute_specified_bucket_interval(dict_span2aspect_val_pred[aspect], dict_bucket2span[aspect].keys()) # dict_bucket2span_pred[aspect] = __select_bucketing_func(func[0], func[1], dict_span2aspect_val_pred[aspect]) dict_bucket2f1[aspect] = get_bucket_acc_with_error_case(dict_bucket2span[aspect], dict_bucket2span_pred[aspect], dict_sid2sent, is_print_ci, is_print_case) aspect_names.append(aspect) print("aspect_names: ", aspect_names) print("------------------ Breakdown Performance") for aspect in dict_aspect_func.keys(): ea.print_dict(dict_bucket2f1[aspect], aspect) print("") # Calculate databias w.r.t numeric attributes dict_aspect2bias = {} for aspect, aspect2Val in dict_span2aspect_val.items(): if type(list(aspect2Val.values())[0]) != type("string"): dict_aspect2bias[aspect] = numpy.average(list(aspect2Val.values())) print("------------------ Dataset Bias") for k, v in dict_aspect2bias.items(): print(k + ":\t" + str(v)) print("") dict_fine_grained = {} for aspect, metadata in dict_bucket2f1.items(): dict_fine_grained[aspect] = [] for bucket_name, v in metadata.items(): # print("---------debug--bucket name old---") # print(bucket_name) bucket_name = ea.beautify_interval(bucket_name) # print("---------debug--bucket name new---") # print(bucket_name) # bucket_value = format(v[0]*100,'.4g') bucket_value = format(v[0], '.4g') n_sample = v[1] confidence_low_bucket = format(v[2], '.4g') confidence_up_bucket = format(v[3], '.4g') bucket_error_case = v[4] # instantiation dict_fine_grained[aspect].append({"bucket_name": bucket_name, "bucket_value": bucket_value, "num": n_sample, "confidence_low": confidence_low_bucket, "confidence_up": confidence_up_bucket, "bucket_error_case": bucket_error_case}) obj_json["task"] = task_type obj_json["data"]["language"] = "English" obj_json["data"]["name"] = dataset_name obj_json["data"]["bias"] = dict_aspect2bias obj_json["data"]["output"] = path_comb_output obj_json["model"]["name"] = model_name obj_json["model"]["results"]["overall"]["error_case"] = error_case_list obj_json["model"]["results"]["overall"]["performance"] = holistic_performance obj_json["model"]["results"]["overall"]["confidence_low"] = confidence_low obj_json["model"]["results"]["overall"]["confidence_up"] = confidence_up obj_json["model"]["results"]["fine_grained"] = dict_fine_grained raise NotImplementedError('RE is not fully implemented yet, see below') # ece = 0 # dic_calibration = None # if is_print_ece: # ece, dic_calibration = process_all(path_text, # size_of_bin=10, dataset=corpus_type, model=model_name) # obj_json["model"]["results"]["calibration"] = dic_calibration # # print(dic_calibration) # ea.save_json(obj_json, output_filename) # # def main(): # # parser = argparse.ArgumentParser(description='Interpretable Evaluation for NLP') # # # parser.add_argument('--task', type=str, required=True, # help="absa") # # parser.add_argument('--ci', type=str, required=False, default= False, # help="True|False") # # parser.add_argument('--case', type=str, required=False, default= False, # help="True|False") # # parser.add_argument('--ece', type=str, required=False, default= False, # help="True|False") # # # parser.add_argument('--type', type=str, required=False, default="single", # help="analysis type: single|pair|combine") # parser.add_argument('--systems', type=str, required=True, # help="the directories of system outputs. Multiple one should be separated by comma, for example, system1,system2 (no space)") # # parser.add_argument('--output', type=str, required=True, # help="analysis output file") # args = parser.parse_args() # # # is_print_ci = args.ci # is_print_case = args.case # is_print_ece = args.ece # # task = args.task # analysis_type = args.type # systems = args.systems.split(",") # output = args.output # # # print("task", task) # print("type", analysis_type) # print("systems", systems) # # sample_list = file_to_list_re(systems[0]) # # print(sample_list[0]) # evaluate(task_type=task, analysis_type=analysis_type, systems=systems, output=output, is_print_ci = is_print_ci, is_print_case = is_print_case, is_print_ece = is_print_ece) # # # python eval_spec.py --task re --systems ./test_re.tsv --output ./a.json # if __name__ == '__main__': # main() def get_bucket_acc_with_error_case(dict_bucket2span, dict_bucket2span_pred, dict_sid2sent, is_print_ci, is_print_case): # The structure of span_true or span_pred # 2345|||Positive # 2345 represents sentence id # Positive represents the "label" of this instance dict_bucket2f1 = {} for bucket_interval, spans_true in dict_bucket2span.items(): spans_pred = [] if bucket_interval not in dict_bucket2span_pred.keys(): raise ValueError("Predict Label Bucketing Errors") else: spans_pred = dict_bucket2span_pred[bucket_interval] # loop over samples from a given bucket error_case_bucket_list = [] if is_print_case: for info_true, info_pred in zip(spans_true, spans_pred): sid_true, label_true = info_true.split("|||") sid_pred, label_pred = info_pred.split("|||") if sid_true != sid_pred: continue sent_entities = dict_sid2sent[sid_true] if label_true != label_pred: error_case_info = label_true + "|||" + label_pred + "|||" + sent_entities error_case_bucket_list.append(error_case_info) accuracy_each_bucket = ea.accuracy(spans_pred, spans_true) confidence_low, confidence_up = 0, 0 if is_print_ci: confidence_low, confidence_up = ea.compute_confidence_interval_acc(spans_pred, spans_true) dict_bucket2f1[bucket_interval] = [accuracy_each_bucket, len(spans_true), confidence_low, confidence_up, error_case_bucket_list] return ea.sort_dict(dict_bucket2f1) def get_error_case(sent_list, entity_list, true_label_list, pred_label_list): error_case_list = [] for sent, entities, true_label, pred_label in zip(sent_list, entity_list, true_label_list, pred_label_list): if true_label != pred_label: error_case_list.append(true_label + "|||" + pred_label + "|||" + entities + "|||" + ea.format4json2(sent)) return error_case_list def file_to_list(file_path): sample_list = [] fin = open(file_path, "r") true_list = [] pred_list = [] sent_list = [] entity_list = [] for idx, line in enumerate(fin): if idx == 0: continue info_list = line.rstrip("\n").split("\t") sample_list.append([info for info in info_list]) true_list.append(info_list[3]) pred_list.append(info_list[4]) sent_list.append(info_list[0]) entity_list.append(info_list[1]) return sample_list, sent_list, entity_list, true_list, pred_list
examples/wsecho.py
VladimirKuzmin/werkzeug
4,200
12788332
<reponame>VladimirKuzmin/werkzeug """Shows how you can implement a simple WebSocket echo server using the wsproto library. """ from werkzeug.exceptions import InternalServerError from werkzeug.serving import run_simple from werkzeug.wrappers import Request from werkzeug.wrappers import Response from wsproto import ConnectionType from wsproto import WSConnection from wsproto.events import AcceptConnection from wsproto.events import CloseConnection from wsproto.events import Message from wsproto.events import Ping from wsproto.events import Request as WSRequest from wsproto.events import TextMessage from wsproto.frame_protocol import CloseReason @Request.application def websocket(request): # The underlying socket must be provided by the server. Gunicorn and # Werkzeug's dev server are known to support this. stream = request.environ.get("werkzeug.socket") if stream is None: stream = request.environ.get("gunicorn.socket") if stream is None: raise InternalServerError() # Initialize the wsproto connection. Need to recreate the request # data that was read by the WSGI server already. ws = WSConnection(ConnectionType.SERVER) in_data = b"GET %s HTTP/1.1\r\n" % request.path.encode("utf8") for header, value in request.headers.items(): in_data += f"{header}: {value}\r\n".encode() in_data += b"\r\n" ws.receive_data(in_data) running = True while True: out_data = b"" for event in ws.events(): if isinstance(event, WSRequest): out_data += ws.send(AcceptConnection()) elif isinstance(event, CloseConnection): out_data += ws.send(event.response()) running = False elif isinstance(event, Ping): out_data += ws.send(event.response()) elif isinstance(event, TextMessage): # echo the incoming message back to the client if event.data == "quit": out_data += ws.send( CloseConnection(CloseReason.NORMAL_CLOSURE, "bye") ) running = False else: out_data += ws.send(Message(data=event.data)) if out_data: stream.send(out_data) if not running: break in_data = stream.recv(4096) ws.receive_data(in_data) # The connection will be closed at this point, but WSGI still # requires a response. return Response("", status=204) if __name__ == "__main__": run_simple("localhost", 5000, websocket)
desktop/core/ext-py/future-0.16.0/docs/futureext.py
kokosing/hue
908
12788361
# -*- coding: utf-8 -*- """ Python-Future Documentation Extensions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Support for automatically documenting filters and tests. Based on the Jinja2 documentation extensions. :copyright: Copyright 2008 by <NAME>. :license: BSD. """ import collections import os import re import inspect from itertools import islice from types import BuiltinFunctionType from docutils import nodes from docutils.statemachine import ViewList from sphinx.ext.autodoc import prepare_docstring from sphinx.application import TemplateBridge from pygments.style import Style from pygments.token import Keyword, Name, Comment, String, Error, \ Number, Operator, Generic def parse_rst(state, content_offset, doc): node = nodes.section() # hack around title style bookkeeping surrounding_title_styles = state.memo.title_styles surrounding_section_level = state.memo.section_level state.memo.title_styles = [] state.memo.section_level = 0 state.nested_parse(doc, content_offset, node, match_titles=1) state.memo.title_styles = surrounding_title_styles state.memo.section_level = surrounding_section_level return node.children class FutureStyle(Style): title = 'Future Style' default_style = "" styles = { Comment: 'italic #0B6A94', # was: #0066ff', Comment.Preproc: 'noitalic #B11414', Comment.Special: 'italic #505050', Keyword: 'bold #D15E27', Keyword.Type: '#D15E27', Operator.Word: 'bold #B80000', Name.Builtin: '#333333', Name.Function: '#333333', Name.Class: 'bold #333333', Name.Namespace: 'bold #333333', Name.Entity: 'bold #363636', Name.Attribute: '#686868', Name.Tag: 'bold #686868', Name.Decorator: '#686868', String: '#AA891C', Number: '#444444', Generic.Heading: 'bold #000080', Generic.Subheading: 'bold #800080', Generic.Deleted: '#aa0000', Generic.Inserted: '#00aa00', Generic.Error: '#aa0000', Generic.Emph: 'italic', Generic.Strong: 'bold', Generic.Prompt: '#555555', Generic.Output: '#888888', Generic.Traceback: '#aa0000', Error: '#F00 bg:#FAA' } def setup(app): pass # uncomment for inline toc. links are broken unfortunately ##app.connect('doctree-resolved', inject_toc)
src/__init__.py
cynth-s/Information_retrieval
191
12788374
<reponame>cynth-s/Information_retrieval __author__ = '<NAME>' __all__ = ['invdx', 'parse', 'query', 'rank']
attic/concurrency/flags/getthreadpool.py
matteoshen/example-code
5,651
12788391
<reponame>matteoshen/example-code from concurrent import futures import sys import requests import countryflags as cf import time from getsequential import fetch DEFAULT_NUM_THREADS = 100 GLOBAL_TIMEOUT = 300 # seconds times = {} def main(source, num_threads): pool = futures.ThreadPoolExecutor(num_threads) pending = {} t0 = time.time() # submit all jobs for iso_cc in sorted(cf.cc2name): print('get:', iso_cc) times[iso_cc] = [time.time() - t0] job = pool.submit(fetch, iso_cc, source) pending[job] = iso_cc to_download = len(pending) downloaded = 0 # get results as jobs are done for job in futures.as_completed(pending, timeout=GLOBAL_TIMEOUT): try: octets, file_name = job.result() times[pending[job]].append(time.time() - t0) downloaded += 1 print('\t--> {}: {:5d} bytes'.format(file_name, octets)) except Exception as exc: print('\t***', pending[job], 'generated an exception:', exc) ratio = downloaded / to_download print('{} of {} downloaded ({:.1%})'.format(downloaded, to_download, ratio)) for iso_cc in sorted(times): start, end = times[iso_cc] print('{}\t{:.6g}\t{:.6g}'.format(iso_cc, start, end)) if __name__ == '__main__': import argparse source_names = ', '.join(sorted(cf.SOURCE_URLS)) parser = argparse.ArgumentParser(description='Download flag images.') parser.add_argument('source', help='one of: ' + source_names) parser.add_argument('-t', '--threads', type=int, default=DEFAULT_NUM_THREADS, help='number of threads (default: %s)' % DEFAULT_NUM_THREADS) args = parser.parse_args() main(args.source, args.threads) """ From CIA, 1 thread: real 2m0.832s user 0m4.685s sys 0m0.366s """
deep_qa/testing/test_case.py
richarajpal/deep_qa
459
12788397
# pylint: disable=invalid-name,protected-access from copy import deepcopy from unittest import TestCase import codecs import gzip import logging import os import shutil from keras import backend as K import numpy from numpy.testing import assert_allclose from deep_qa.common.checks import log_keras_version_info from deep_qa.data.instances.instance import TextInstance from deep_qa.data.tokenizers import tokenizers from deep_qa.common.params import Params class DeepQaTestCase(TestCase): # pylint: disable=too-many-public-methods TEST_DIR = './TMP_TEST/' TRAIN_FILE = TEST_DIR + 'train_file' VALIDATION_FILE = TEST_DIR + 'validation_file' TEST_FILE = TEST_DIR + 'test_file' TRAIN_BACKGROUND = TEST_DIR + 'train_background' VALIDATION_BACKGROUND = TEST_DIR + 'validation_background' SNLI_FILE = TEST_DIR + 'snli_file' PRETRAINED_VECTORS_FILE = TEST_DIR + 'pretrained_glove_vectors_file' PRETRAINED_VECTORS_GZIP = TEST_DIR + 'pretrained_glove_vectors_file.gz' def setUp(self): logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', level=logging.DEBUG) log_keras_version_info() os.makedirs(self.TEST_DIR, exist_ok=True) def tearDown(self): shutil.rmtree(self.TEST_DIR) TextInstance.tokenizer = tokenizers["words"](Params({})) K.clear_session() def get_model_params(self, additional_arguments=None): params = Params({}) params['save_models'] = False params['model_serialization_prefix'] = self.TEST_DIR params['train_files'] = [self.TRAIN_FILE] params['validation_files'] = [self.VALIDATION_FILE] params['embeddings'] = {'words': {'dimension': 6}, 'characters': {'dimension': 2}} params['encoder'] = {"default": {'type': 'bow'}} params['num_epochs'] = 1 params['validation_split'] = 0.0 if additional_arguments: for key, value in additional_arguments.items(): params[key] = deepcopy(value) return params def get_model(self, model_class, additional_arguments=None): params = self.get_model_params(additional_arguments) return model_class(params) def ensure_model_trains_and_loads(self, model_class, args: Params): args['save_models'] = True # Our loading tests work better if you're not using data generators. Unless you # specifically request it in your test, we'll avoid using them here, and if you _do_ use # them, we'll skip some of the stuff below that isn't compatible. args.setdefault('data_generator', None) model = self.get_model(model_class, args) model.train() # load the model that we serialized loaded_model = self.get_model(model_class, args) loaded_model.load_model() # verify that original model and the loaded model predict the same outputs if model._uses_data_generators(): # We shuffle the data in the data generator. Instead of making that logic more # complicated, we'll just pass on the loading tests here. See comment above. pass else: model_predictions = model.model.predict(model.validation_arrays[0]) loaded_model_predictions = loaded_model.model.predict(model.validation_arrays[0]) for model_prediction, loaded_prediction in zip(model_predictions, loaded_model_predictions): assert_allclose(model_prediction, loaded_prediction) # We should get the same result if we index the data from the original model and the loaded # model. _, indexed_validation_arrays = loaded_model.load_data_arrays(model.validation_files) if model._uses_data_generators(): # As above, we'll just pass on this. pass else: model_predictions = model.model.predict(model.validation_arrays[0]) loaded_model_predictions = loaded_model.model.predict(indexed_validation_arrays[0]) for model_prediction, loaded_prediction in zip(model_predictions, loaded_model_predictions): assert_allclose(model_prediction, loaded_prediction) return model, loaded_model @staticmethod def one_hot(index, length): vector = numpy.zeros(length) vector[index] = 1 return vector def write_snli_files(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\ttext 1\thypothesis1\tentails\n') train_file.write('2\ttext 2\thypothesis2\tcontradicts\n') train_file.write('3\ttext3\thypothesis3\tentails\n') train_file.write('4\ttext 4\thypothesis4\tneutral\n') train_file.write('5\ttext5\thypothesis 5\tentails\n') train_file.write('6\ttext6\thypothesis6\tcontradicts\n') with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\ttext 1 with extra words\thypothesis1\tentails\n') validation_file.write('2\ttext 2\tlonger hypothesis 2\tcontradicts\n') validation_file.write('3\ttext3\thypothesis withreallylongfakeword\tentails\n') def write_sequence_tagging_files(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('cats###N\tare###V\tanimals###N\t.###N\n') train_file.write('dogs###N\tare###V\tanimals###N\t.###N\n') train_file.write('snakes###N\tare###V\tanimals###N\t.###N\n') train_file.write('birds###N\tare###V\tanimals###N\t.###N\n') with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('horses###N\tare###V\tanimals###N\t.###N\n') validation_file.write('blue###N\tcows###N\tare###V\tanimals###N\t.###N\n') validation_file.write('monkeys###N\tare###V\tanimals###N\t.###N\n') validation_file.write('caterpillars###N\tare###V\tanimals###N\t.###N\n') def write_verb_semantics_files(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('root####absorb####water\t1,1\t2,2\tMOVE\t-1,-1\t0,0\n') train_file.write('this####mixture####is####converted####into####sugar####inside####leaf' '\t2,3\t5,5\tCREATE\t7,7\t-1,-1\n') train_file.write('lakes####contain####water\t1,1\t2,2\tNONE\t-1,-1\t-1,-1\n') with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('root####absorb####water\t1,1\t2,2\tMOVE\t-1,-1\t0,0\n') validation_file.write('this####mixture####is####converted####into####sugar####inside####leaf' '\t2,3\t5,5\tCREATE\t7,7\t-1,-1\n') validation_file.write('lakes####contain####water\t1,1\t2,2\tNONE\t-1,-1\t-1,-1\n') def write_true_false_model_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tq1a1\t0\n') validation_file.write('2\tq1a2\t1\n') validation_file.write('3\tq1a3\t0\n') validation_file.write('4\tq1a4\t0\n') validation_file.write('5\tq2a1\t0\n') validation_file.write('6\tq2a2\t0\n') validation_file.write('7\tq2a3\t1\n') validation_file.write('8\tq2a4\t0\n') validation_file.write('9\tq3a1\t0\n') validation_file.write('10\tq3a2\t0\n') validation_file.write('11\tq3a3\t0\n') validation_file.write('12\tq3a4\t1\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\tsentence1\t0\n') train_file.write('2\tsentence2 word2 word3\t1\n') train_file.write('3\tsentence3 word2\t0\n') train_file.write('4\tsentence4\t1\n') train_file.write('5\tsentence5\t0\n') train_file.write('6\tsentence6\t0\n') with codecs.open(self.TEST_FILE, 'w', 'utf-8') as test_file: test_file.write('1\ttestsentence1\t0\n') test_file.write('2\ttestsentence2 word2 word3\t1\n') test_file.write('3\ttestsentence3 word2\t0\n') test_file.write('4\ttestsentence4\t1\n') test_file.write('5\ttestsentence5 word4\t0\n') test_file.write('6\ttestsentence6\t0\n') def write_additional_true_false_model_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tq4a1\t0\n') validation_file.write('2\tq4a2\t1\n') validation_file.write('3\tq4a3\t0\n') validation_file.write('4\tq4a4\t0\n') validation_file.write('5\tq5a1\t0\n') validation_file.write('6\tq5a2\t0\n') validation_file.write('7\tq5a3\t1\n') validation_file.write('8\tq5a4\t0\n') validation_file.write('9\tq6a1\t0\n') validation_file.write('10\tq6a2\t0\n') validation_file.write('11\tq6a3\t0\n') validation_file.write('12\tq6a4\t1\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\tsentence7\t0\n') train_file.write('2\tsentence8 word4 word5\t1\n') train_file.write('3\tsentence9 word4\t0\n') train_file.write('4\tsentence10\t1\n') train_file.write('5\tsentence11 word3 word2\t0\n') train_file.write('6\tsentence12\t0\n') def write_question_answer_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tquestion1\tanswer1###answer2\t0\n') with codecs.open(self.VALIDATION_BACKGROUND, 'w', 'utf-8') as validation_background: validation_background.write('1\tvb1\tvb2\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\ta b e i d\tanswer 1###answer2\t0\n') train_file.write('2\ta b c d\tanswer3###answer4\t1\n') train_file.write('3\te d w f d s a b\tanswer5###answer6###answer9\t2\n') train_file.write('4\te fj k w q\tanswer7###answer8\t0\n') with codecs.open(self.TRAIN_BACKGROUND, 'w', 'utf-8') as train_background: train_background.write('1\tsb1\tsb2\n') train_background.write('2\tsb3\n') train_background.write('3\tsb4\n') train_background.write('4\tsb5\tsb6\n') def write_who_did_what_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tHe went to the store to buy goods, because he wanted to.' '\tHe bought xxxxx\tgoods###store\t0\n') validation_file.write('1\tShe hiking on the weekend with her friend.' '\tShe went xxxxx\thiking###friend###weekend###her friend\t0\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: # document, question, answers train_file.write('1\tFred hit the ball with the bat.\tHe hit the ball with the xxxxx\tbat###ball\t0\n') train_file.write('1\tShe walked the dog today.\tThe xxxxx was walked today.\tShe###dog###today\t1\n') train_file.write('1\tHe kept typing at his desk.\tHe typed at his xxxxx\tdesk###kept\t0\n') train_file.write('1\tThe pup at the bone but not the biscuit.\tThe pup ate the xxxxx\t' 'bone###biscuit\t0\n') def write_tuple_inference_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tss<>v f d<>oo o<>c$$$s<>v ff<>o i###ss r<>v<>o e<>o ee\t' 'ss ss<>ve gg<>o sd<>ccs\t0\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: # document, question, answers train_file.write('1\tss<>v<>oo o<>c$$$s e<>ff<>o ii i###ss r<>rr<>o e<>o ee\t' 'ss<>ve gg<>o sd<>ccs\t0\n') train_file.write('2\tsg g<>vg<>oo o<>c$$$s e<>v ff<>o ii i###ss<>v rr<>o e<>o ee' '###hh kk<>hdj d<>hh\tss ss<>ve gg<>o sd<>ccs\t2\n') train_file.write('3\ts r<>v f d<>o ss<>c$$$s e<>v ff<>o ss i$$$r<>v ss<>s o e<>o ee\t' 'ss ss<>v g<>o sd<>ccs\t0\n') train_file.write('4\tty y<>cf fv ss<>s ss<>c$$$rt e<>vv f<>oss i i###ss<>v<>os e<>o ee\t' 'ss ss<>ve gg<>o sd<>ccs\t1\n') def write_span_prediction_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tquestion 1 with extra words\t' 'passage with answer and a reallylongword\t13,18\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\tquestion 1\tpassage1 with answer1\t14,20\n') train_file.write('2\tquestion 2\tpassage2 with answer2\t0,8\n') train_file.write('3\tquestion 3\tpassage3 with answer3\t9,13\n') train_file.write('4\tquestion 4\tpassage4 with answer4\t14,20\n') def write_sentence_selection_files(self): with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: validation_file.write('1\tWhere is Paris?\tParis is the capital of France.###It ' 'is by the Seine.###It is quite old###this is a ' 'very long sentence meant to test that loading ' 'and padding works properly in the model.\t1\n') with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write('1\tWho won Super Bowl 50?\tSuper Bowl 50 was in Santa ' 'Clara.###The Patriots beat the Broncos.\t1\n') train_file.write('2\tWhen is Thanksgiving?\tFolk tales tell ' 'of the Pilgrims celebrating the holiday.###Many ' 'people eat a lot.###It is in November.\t2\n') train_file.write('3\tWhen were computers invented?\tThe ancient Chinese used ' 'abacuses.###Alan Turing cracked Enigma.###It is hard to ' 'pinpoint an inventor of the computer.\t2\n') def write_pretrained_vector_files(self): # write the file with codecs.open(self.PRETRAINED_VECTORS_FILE, 'w', 'utf-8') as vector_file: vector_file.write('word2 0.21 0.57 0.51 0.31\n') vector_file.write('sentence1 0.81 0.48 0.19 0.47\n') # compress the file with open(self.PRETRAINED_VECTORS_FILE, 'rb') as f_in: with gzip.open(self.PRETRAINED_VECTORS_GZIP, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) def write_sentence_data(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: train_file.write("This is a sentence for language modelling.\n") train_file.write("Here's another one for language modelling.\n") def write_original_snli_data(self): with codecs.open(self.TRAIN_FILE, 'w', 'utf-8') as train_file: # pylint: disable=line-too-long train_file.write("""{"annotator_labels": ["neutral"],"captionID": "3416050480.jpg#4", "gold_label": "neutral", "pairID": "3416050480.jpg#4r1n", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is training his horse for a competition.", "sentence2_binary_parse": "( ( A person ) ( ( is ( ( training ( his horse ) ) ( for ( a competition ) ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (VP (VBG training) (NP (PRP$ his) (NN horse)) (PP (IN for) (NP (DT a) (NN competition))))) (. .)))"}\n""") train_file.write("""{"annotator_labels": ["contradiction"], "captionID": "3416050480.jpg#4", "gold_label": "contradiction", "pairID": "3416050480.jpg#4r1c", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is at a diner, ordering an omelette.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is ( at ( a diner ) ) ) , ) ( ordering ( an omelette ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (PP (IN at) (NP (DT a) (NN diner))) (, ,) (S (VP (VBG ordering) (NP (DT an) (NN omelette))))) (. .)))"}\n""") train_file.write("""{"annotator_labels": ["entailment"], "captionID": "3416050480.jpg#4", "gold_label": "entailment", "pairID": "3416050480.jpg#4r1e", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is outdoors, on a horse.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is outdoors ) , ) ( on ( a horse ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (ADVP (RB outdoors)) (, ,) (PP (IN on) (NP (DT a) (NN horse)))) (. .)))"}\n""") # pylint: enable=line-too-long with codecs.open(self.VALIDATION_FILE, 'w', 'utf-8') as validation_file: # pylint: disable=line-too-long validation_file.write("""{"annotator_labels": ["neutral"],"captionID": "3416050480.jpg#4", "gold_label": "neutral", "pairID": "3416050480.jpg#4r1n", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is training his horse for a competition.", "sentence2_binary_parse": "( ( A person ) ( ( is ( ( training ( his horse ) ) ( for ( a competition ) ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (VP (VBG training) (NP (PRP$ his) (NN horse)) (PP (IN for) (NP (DT a) (NN competition))))) (. .)))"}\n""") validation_file.write("""{"annotator_labels": ["contradiction"], "captionID": "3416050480.jpg#4", "gold_label": "contradiction", "pairID": "3416050480.jpg#4r1c", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is at a diner, ordering an omelette.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is ( at ( a diner ) ) ) , ) ( ordering ( an omelette ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (PP (IN at) (NP (DT a) (NN diner))) (, ,) (S (VP (VBG ordering) (NP (DT an) (NN omelette))))) (. .)))"}\n""") validation_file.write("""{"annotator_labels": ["entailment"], "captionID": "3416050480.jpg#4", "gold_label": "entailment", "pairID": "3416050480.jpg#4r1e", "sentence1": "A person on a horse jumps over a broken down airplane.", "sentence1_binary_parse": "( ( ( A person ) ( on ( a horse ) ) ) ( ( jumps ( over ( a ( broken ( down airplane ) ) ) ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (NP (DT A) (NN person)) (PP (IN on) (NP (DT a) (NN horse)))) (VP (VBZ jumps) (PP (IN over) (NP (DT a) (JJ broken) (JJ down) (NN airplane)))) (. .)))", "sentence2": "A person is outdoors, on a horse.", "sentence2_binary_parse": "( ( A person ) ( ( ( ( is outdoors ) , ) ( on ( a horse ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (DT A) (NN person)) (VP (VBZ is) (ADVP (RB outdoors)) (, ,) (PP (IN on) (NP (DT a) (NN horse)))) (. .)))"}\n""") # pylint: enable=line-too-long
cpmoptimize/recompiler.py
borzunov/cpmoptimize
121
12788400
<reponame>borzunov/cpmoptimize<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import byteplay from matcode import * class RecompilationError(Exception): def __init__(self, message, state): self.message = "Can't optimize loop: %s" % message if state.lineno is not None: self.message += ' at line %s' % state.lineno self.message += ' in %s' % state.settings['function_info'] def __str__(self): return self.message class UnpredictableArgsError(Exception): pass class RecompilerState(object): def __init__(self, settings): self._settings = settings self.lineno = settings['head_lineno'] self.stack = [] self._content = [] # List of straight references of all used variables self._vars_storage = [] # List of indexes of really existing variables in # self._vars_storage (we need to save their values at the end of # the loop) self._real_vars_indexes = [] # Map from a straight variable reference to a pair of variable # index in a unified storage (actually in # self._vars_storage) and its effective unified # reference (VAR, index) or (CONST, const_no) self._vars_map = {} # Storage for folded instructions sets of constants. This # instructions will be executed during run-time once. Calculated # values will be inserted into matrices. self._consts = [] @property def settings(self): return self._settings @property def content(self): return self._content @property def consts(self): return self._consts @property def vars_storage(self): return self._vars_storage @property def real_vars_indexes(self): return self._real_vars_indexes _real_folded_arr = '__cpm::folded' @property def real_folded_arr(self): return self._real_folded_arr def add_const(self, straight): arg_type, arg = straight if arg_type == FOLD_TOS: lines = self.stack[-arg - 1] if lines is None: raise ValueError( 'Unpredictable value to fold for FOLD_TOS' ) elif arg_type == FOLD: lines = arg else: raise ValueError(( "Can't add constant from argument with type %s " + "to matrix code" ) % arg_type) index = len(self._consts) self._consts.append(lines) return CONST, index def add_var(self, straight, mutation): # If a variable was changed at least once in a loop's body, we need # mark it as mutable at the beginning of compilation. # During the compilation its value can become predictable. try: index, unified = self._vars_map[straight] if mutation and unified[0] != VAR: unified = VAR, index self.store_var(straight, unified) except KeyError: index = len(self._vars_storage) self._vars_storage.append(straight) var_type = straight[0] if var_type in (NAME, GLOBAL, FAST, DEREF): self._real_vars_indexes.append(index) if mutation: unified = VAR, index else: load_oper = VARIABLE_OPERATION_MAP[var_type][0] unified = self.add_const((FOLD, [ (load_oper, straight[1]), ])) self._vars_map[straight] = [index, unified] return unified def _translate_arg(self, arg): # Translate argument of types used in matcode generation to # argument with type VALUE, CONST or VAR (make unified # reference from straight) arg_type = arg[0] if arg_type in (VALUE, CONST, PARAM): return arg if arg_type == FOLD_TOS: return self.add_const(arg) if arg_type not in VARIABLE_OPERATION_MAP.keys() + [COUNTER, TOS]: raise ValueError(( "Can't add variable from argument with type %s " + "to matrix code" ) % arg_type) if arg_type == TOS: # If argument type was TOS, translate it to argument with # type STACK first (make absolute reference from relative) arg = STACK, len(self.stack) - 1 - arg[1] return self.add_var(arg, True) def append(self, *instrs): for instr in instrs: oper = instr[0] args = map(self._translate_arg, instr[1:]) self._content.append([oper] + args) def load_var(self, straight): return self._vars_map[straight][1] def store_var(self, straight, unified): self._vars_map[straight][1] = unified def handle_nop(state, instr): pass def handle_pop_top(state, instr): state.stack.pop() def create_rot(count): def handle_rot(state, instr): for index in xrange(-1, count - 1): if state.stack[-index - 2] is None: state.append( [MOV, (TOS, index), (TOS, index + 1)], ) if state.stack[-1] is None: state.append( [MOV, (TOS, count - 1), (TOS, -1)], ) if state.settings['opt_clear_stack']: # Stack clearing is busy because program will works # slower if big values will remains on the stack state.append( [MOV, (TOS, -1), (VALUE, 0)], ) state.stack[-count:] = ( [state.stack[-1]] + state.stack[-count:-1] ) return handle_rot def create_dup(count): def handle_dup(state, instr): for index in xrange(count): if state.stack[-count + index] is None: state.append( [MOV, (TOS, index - count), (TOS, index)], ) state.stack += state.stack[-count:] return handle_dup def handle_dup_topx(state, instr): create_dup(instr[1])(state, instr) def handle_unary_negative(state, instr): if state.stack[-1] is not None: state.stack[-1].append(instr) else: state.append( [MOV, (TOS, -1), (TOS, 0)], [MOV, (TOS, 0), (VALUE, 0)], [SUB, (TOS, 0), (TOS, -1)], ) if state.settings['opt_clear_stack']: state.append( [MOV, (TOS, -1), (VALUE, 0)], ) def handle_unary_const(state, instr): if state.stack[-1] is not None: state.stack[-1].append(instr) else: raise UnpredictableArgsError def handle_binary_multiply(state, instr): if state.stack[-2] is not None and state.stack[-1] is not None: state.stack[-2] += state.stack[-1] + [instr] state.stack.pop() elif state.stack[-2] is not None: state.append( [MUL, (TOS, 0), (FOLD_TOS, 1)], [MOV, (TOS, 1), (TOS, 0)], ) if state.settings['opt_clear_stack']: state.append( [MOV, (TOS, 0), (VALUE, 0)], ) state.stack[-2] = None state.stack.pop() elif state.stack[-1] is not None: state.append( [MUL, (TOS, 1), (FOLD_TOS, 0)], ) state.stack.pop() else: raise RecompilationError(( 'Multiplication of two unpredictable values is unsupported' ), state) def handle_binary_add(state, instr): if state.stack[-2] is not None and state.stack[-1] is not None: state.stack[-2] += state.stack[-1] + [instr] state.stack.pop() elif state.stack[-2] is not None: state.append( [ADD, (TOS, 0), (FOLD_TOS, 1)], [MOV, (TOS, 1), (TOS, 0)], ) if state.settings['opt_clear_stack']: state.append( [MOV, (TOS, 0), (VALUE, 0)], ) state.stack[-2] = None state.stack.pop() elif state.stack[-1] is not None: state.append( [ADD, (TOS, 1), (FOLD_TOS, 0)], ) state.stack.pop() else: state.append( [ADD, (TOS, 1), (TOS, 0)], ) if state.settings['opt_clear_stack']: state.append( [MOV, (TOS, 0), (VALUE, 0)], ) state.stack.pop() def handle_binary_subtract(state, instr): if state.stack[-2] is not None and state.stack[-1] is not None: state.stack[-2] += state.stack[-1] + [instr] state.stack.pop() elif state.stack[-2] is not None: state.append( [SUB, (TOS, 0), (FOLD_TOS, 1)], [MOV, (TOS, 1), (VALUE, 0)], [SUB, (TOS, 1), (TOS, 0)], ) if state.settings['opt_clear_stack']: state.append( [MOV, (TOS, 0), (VALUE, 0)], ) state.stack[-2] = None state.stack.pop() elif state.stack[-1] is not None: state.append( [SUB, (TOS, 1), (FOLD_TOS, 0)], ) state.stack.pop() else: state.append( [SUB, (TOS, 1), (TOS, 0)], ) if state.settings['opt_clear_stack']: state.append( [MOV, (TOS, 0), (VALUE, 0)], ) state.stack.pop() def handle_binary_const(state, instr): if state.stack[-2] is not None and state.stack[-1] is not None: state.stack[-2] += state.stack[-1] + [instr] state.stack.pop() else: raise UnpredictableArgsError def handle_load_const(state, instr): arg = instr[1] if not isinstance(arg, state.settings['types']): allowed_types = ', '.join(map(repr, state.settings['types'])) raise RecompilationError(( 'Constant %s has an unallowed type %s instead of ' + 'one of allowed types: %s' ) % (repr(arg), type(arg), allowed_types), state) state.stack.append([instr]) def handle_load_var(state, instr): oper, name = instr straight = VARIABLE_TYPE_MAP[oper][0], name unified = state.load_var(straight) if unified[0] == CONST: state.stack.append([ (byteplay.LOAD_FAST, state.real_folded_arr), (byteplay.LOAD_CONST, unified[1]), (byteplay.BINARY_SUBSCR, None), ]) else: state.append( [MOV, (TOS, -1), straight], ) state.stack.append(None) def handle_store_var(state, instr): oper, name = instr straight = VARIABLE_TYPE_MAP[oper][0], name lines = state.stack[-1] if lines is not None: if ( len(lines) == 3 and lines[0] == (byteplay.LOAD_FAST, state.real_folded_arr) and lines[1][0] == byteplay.LOAD_CONST and isinstance(lines[1][1], int) and lines[2] == (byteplay.BINARY_SUBSCR, None) ): const_ref = CONST, lines[1][1] else: const_ref = state.add_const((FOLD_TOS, 0)) state.append( [MOV, straight, const_ref], ) state.store_var(straight, const_ref) else: state.append( [MOV, straight, (TOS, 0)], ) if state.settings['opt_clear_stack']: state.append( [MOV, (TOS, 0), (VALUE, 0)], ) state.store_var(straight, straight) state.stack.pop() LOAD_OPERATIONS, STORE_OPERATIONS = zip(*VARIABLE_OPERATION_MAP.values()) BYTECODE_HANDLERS = [ (handle_nop, [byteplay.NOP]), (handle_pop_top, [byteplay.POP_TOP]), (create_rot(2), [byteplay.ROT_TWO]), (create_rot(3), [byteplay.ROT_THREE]), (create_rot(4), [byteplay.ROT_FOUR]), (create_dup(1), [byteplay.DUP_TOP]), (handle_nop, [byteplay.UNARY_POSITIVE]), (handle_unary_negative, [byteplay.UNARY_NEGATIVE]), (handle_unary_const, [ byteplay.UNARY_NOT, byteplay.UNARY_INVERT, ]), (handle_binary_const, [byteplay.BINARY_POWER]), (handle_binary_multiply, [byteplay.BINARY_MULTIPLY]), (handle_binary_const, [ byteplay.BINARY_DIVIDE, byteplay.BINARY_FLOOR_DIVIDE, byteplay.BINARY_TRUE_DIVIDE, byteplay.BINARY_MODULO, ]), (handle_binary_add, [byteplay.BINARY_ADD]), (handle_binary_subtract, [byteplay.BINARY_SUBTRACT]), (handle_binary_const, [ byteplay.BINARY_LSHIFT, byteplay.BINARY_RSHIFT, byteplay.BINARY_AND, byteplay.BINARY_XOR, byteplay.BINARY_OR, ]), (handle_binary_const, [byteplay.INPLACE_POWER]), (handle_binary_multiply, [byteplay.INPLACE_MULTIPLY]), (handle_binary_const, [ byteplay.INPLACE_DIVIDE, byteplay.INPLACE_FLOOR_DIVIDE, byteplay.INPLACE_TRUE_DIVIDE, byteplay.INPLACE_MODULO, ]), (handle_binary_add, [byteplay.INPLACE_ADD]), (handle_binary_subtract, [byteplay.INPLACE_SUBTRACT]), (handle_binary_const, [ byteplay.INPLACE_LSHIFT, byteplay.INPLACE_RSHIFT, byteplay.INPLACE_AND, byteplay.INPLACE_XOR, byteplay.INPLACE_OR, ]), (handle_dup_topx, [byteplay.DUP_TOPX]), (handle_load_const, [byteplay.LOAD_CONST]), (handle_load_var, LOAD_OPERATIONS), (handle_store_var, STORE_OPERATIONS), ] SUPPORTED_OPERATIONS = {} for handler, opers in BYTECODE_HANDLERS: for oper in opers: SUPPORTED_OPERATIONS[oper] = handler def browse_vars(state, body): # Browse used in loop's body variables to determine their mutability for oper, arg in body: try: arg_type, mutation = VARIABLE_TYPE_MAP[oper] state.add_var((arg_type, arg), mutation) except KeyError: pass def browse_counter(state, body): store_instr = body[0] oper, name = store_instr try: arg_type, mutation = VARIABLE_TYPE_MAP[oper] if not mutation: raise KeyError except KeyError: raise RecompilationError(( 'Unsupported iterator usage in instruction %s' % repr(instr) ), state) load_instr = VARIABLE_OPERATION_MAP[arg_type][0], name if state.settings['opt_min_rows']: status = 'n' # A loop counter was not used for index in xrange(1, len(body)): instr = body[index] if instr == store_instr: status = 'w' # The counter was changed at least once break if instr == load_instr: status = 'r' # The counter was not changed but was read at least once else: status = 'w' return (arg_type, name), status, body[1:] def recompile_body(settings, body): state = RecompilerState(settings) elem_straight, counter_status, rem_body = browse_counter( state, body, ) if counter_status == 'w': # If real counter is mutable, we need special variable to # store real counter value counter_service = COUNTER, None elif counter_status == 'r': # If real counter isn't mutable but used, we need to # maintain its value counter_service = elem_straight if counter_status == 'n': # If real counter isn't used at all, we don't need to # maintain this variable in the loop, but we need to save # its final value after the loop state.manual_store_counter = elem_straight else: # We must mark real counter as mutable at the beginning of the # loop, because first instruction (counter storing) was removed # from rem_body and system doesn't know that counter is mutable state.add_var(elem_straight, True) state.manual_store_counter = None browse_vars(state, rem_body) if counter_status != 'n': state.append( [MOV, counter_service, (PARAM, 'start')], ) state.append( [LOOP, (PARAM, 'iters_count')], ) if counter_status == 'w': state.append( [MOV, elem_straight, (COUNTER, None)], ) for instr in rem_body: oper = instr[0] if oper == byteplay.SetLineno: state.lineno = instr[1] continue try: SUPPORTED_OPERATIONS[oper](state, instr) except UnpredictableArgsError: raise RecompilationError(('All operands of instruction %s must be a constant ' + 'or must have a predictable value') % oper, state) except IndexError: raise RecompilationError('Unsupported loop type or invalid stack usage in bytecode', state) except KeyError: raise RecompilationError('Unsupported instruction %s' % repr(instr), state) if counter_status != 'n': state.append( [ADD, counter_service, (PARAM, 'step')], ) state.append( [END], ) if counter_status == 'r': state.append( [SUB, counter_service, (PARAM, 'step')], ) return state
readability/text/syllables.py
rbamos/py-readability-metrics
198
12788478
import re def count(word): """ Simple syllable counting """ word = word if type(word) is str else str(word) word = word.lower() if len(word) <= 3: return 1 word = re.sub('(?:[^laeiouy]es|[^laeiouy]e)$', '', word) # removed ed| word = re.sub('^y', '', word) matches = re.findall('[aeiouy]{1,2}', word) return len(matches)
recc/emulators/python/linux-emulator-example.py
oscourse-tsinghua/OS2018spring-projects-g02
249
12788485
<gh_stars>100-1000 # Copyright 2016 <NAME> Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sys import select import time import sys, tty, termios from op_cpu_package.python_l0_module import OpCPUData from op_cpu_package.op_cpu_module import OpCPU # A Linux interface to using the python implementation of the One Page CPU emulator def main_loop(): loader_data = OpCPUData() op_cpu = OpCPU(loader_data) fd = sys.stdin.fileno() old_settings = termios.tcgetattr(fd) tty.setraw(sys.stdin.fileno()) input_buffer = [] # Characters to be sent to emulator while not op_cpu.is_halted(): in_chrs = select.select([sys.stdin], [], [], 0.0001)[0] if not in_chrs: for x in range(0, 10000): r = op_cpu.vm_getc() if 'chr' in r: sys.stdout.write(chr(r['chr'])) if r['chr'] == 10: sys.stdout.write('\r') sys.stdout.flush() if len(input_buffer): inchr = input_buffer.pop() if op_cpu.vm_putc(inchr): # Not able to input chr input_buffer = [inchr] + input_buffer op_cpu.step() else: dobreak = False for file in in_chrs: c = file.read(1) input_buffer = input_buffer + [ord(c)] if ord(c) == 3: dobreak = True if dobreak: break termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) main_loop()
train/labeler.py
lvaughn/nnsplit
248
12788502
from typing import List from fractions import Fraction from abc import ABC, abstractmethod import spacy import string import random import pandas as pd import numpy as np import diskcache import sys from somajo import SoMaJo from spacy.lang.tr import Turkish from spacy.lang.sv import Swedish from spacy.lang.uk import Ukrainian NO_MODEL_LANGUAGE_LOOKUP = { "turkish": Turkish, "swedish": Swedish, "ukrainian": Ukrainian, } def noise(text, insert_chance, delete_chance, repeat_chance): assert insert_chance == delete_chance == repeat_chance chances = np.random.random(len(text) * 3) if (chances < insert_chance).all(): return text out = "" for i, char in enumerate(text): if chances[i * 3] >= delete_chance: out += char if chances[(i * 3) + 1] < repeat_chance: out += char if chances[(i * 3) + 2] < insert_chance: out += random.choice(string.ascii_letters) return out def get_model(name): try: nlp = spacy.load(name, disable=["tagger", "parser", "ner"]) except OSError: nlp = NO_MODEL_LANGUAGE_LOOKUP[name]() return nlp def has_space(text: str) -> bool: return any(x.isspace() for x in text) class Tokenizer(ABC): def __init__(self): self.training = True def train(self, mode=True): self.training = mode def eval(self): self.train(False) @abstractmethod def tokenize(self, text: str) -> List[str]: pass def remove_last_punct(text: str, punctuation) -> str: for i in range(len(text))[::-1]: if text[i] in punctuation: return text[:i] + text[i + 1 :] elif not text[i].isspace(): return text return text class SpacySentenceTokenizer(Tokenizer): def __init__( self, model_name: str, lower_start_prob: Fraction, remove_end_punct_prob: Fraction, punctuation: str, ): super().__init__() self.nlp = get_model(model_name) self.nlp.add_pipe("sentencizer") self.lower_start_prob = lower_start_prob self.remove_end_punct_prob = remove_end_punct_prob self.punctuation = punctuation def tokenize(self, text: str) -> List[str]: out_sentences = [] current_sentence = "" end_sentence = False for token in self.nlp(text): text = token.text whitespace = token.whitespace_ if token.is_sent_start: end_sentence = True if end_sentence and not text.isspace(): if self.training and random.random() < self.remove_end_punct_prob: current_sentence = remove_last_punct(current_sentence, self.punctuation) out_sentences.append(current_sentence) current_sentence = "" end_sentence = False if ( self.training and len(current_sentence) == 0 and random.random() < self.lower_start_prob ): text = text.lower() current_sentence += text + whitespace out_sentences.append(current_sentence) return [x for x in out_sentences if len(x) > 0] class SpacyWordTokenizer(Tokenizer): def __init__(self, model_name: str): super().__init__() self.tokenizer = get_model(model_name).tokenizer def tokenize(self, text: str) -> List[str]: out_tokens = [] current_token = "" for token in self.tokenizer(text): if not token.text.isspace(): out_tokens.append(current_token) current_token = "" current_token += token.text + token.whitespace_ out_tokens.append(current_token) return [x for x in out_tokens if len(x) > 0] class SoMaJoSentenceTokenizer(Tokenizer): def __init__(self, model_name: str): super().__init__() self.tokenizer = SoMaJo(model_name) def tokenize(self, text: str) -> List[str]: out_sentences = [] sentences = list(self.tokenizer.tokenize_text([text])) for i, sentence in enumerate(sentences): text = "" for token in sentence: if "SpaceAfter=No" in token.extra_info: whitespace = "" else: whitespace = " " text += token.text + whitespace if i == len(sentences) - 1: text = text.rstrip() out_sentences.append(text) return out_sentences class SoMaJoWordTokenizer(Tokenizer): def __init__(self, model_name: str): super().__init__() self.tokenizer = SoMaJo(model_name, split_sentences=False) def tokenize(self, text: str) -> List[str]: out_tokens = [] tokens = next(self.tokenizer.tokenize_text([text])) for i, token in enumerate(tokens): if "SpaceAfter=No" in token.extra_info or i == len(tokens) - 1: whitespace = "" else: whitespace = " " # sometimes sample more spaces than one space so the model learns to deal with it while random.random() < 0.05: whitespace += " " out_tokens.append(token.text + whitespace) return [x for x in out_tokens if len(x) > 0] class WhitespaceTokenizer(Tokenizer): def tokenize(self, text: str) -> List[str]: out = None for i in range(len(text))[::-1]: if not text[i].isspace(): out = [text[: i + 1], text[i + 1 :]] break if out is None: out = [text, ""] return out class SECOSCompoundTokenizer(Tokenizer): def __init__(self, secos_path: str): super().__init__() sys.path.append(secos_path) import decompound_server self.decompound = decompound_server.make_decompounder( [ "decompound_server.py", f"{secos_path}data/denews70M_trigram__candidates", f"{secos_path}data/denews70M_trigram__WordCount", "50", "3", "3", "5", "3", "upper", "0.01", "2020", ] ) self.disk_cache = diskcache.Index("secos_cache") self.cache = {} for key in self.disk_cache: self.cache[key] = self.disk_cache[key] def tokenize(self, text: str) -> List[str]: if text.isspace(): return [text] text_bytes = text.encode("utf-8") compounds = self.cache.get(text_bytes) if compounds is None: assert not has_space(text), text compounds = self.decompound(text) if len(compounds) == 0: compounds = text compound_bytes = compounds.encode("utf-8") self.disk_cache[text_bytes] = compound_bytes self.cache[text_bytes] = compound_bytes else: compounds = compounds.decode("utf-8") compounds = compounds.split() compounds = [noise(x, 0.001, 0.001, 0.001) for x in compounds] return compounds if len(compounds) > 0 else [noise(text, 0.001, 0.001, 0.001)] class Labeler: def __init__(self, tokenizers): self.tokenizers = tokenizers def _annotate(self, text: str, tok_index=0): if tok_index >= len(self.tokenizers): return [(text, set())] out = [] for token in self.tokenizers[tok_index].tokenize(text): out += self._annotate(token, tok_index=tok_index + 1) out[-1][1].add(tok_index) return out def _to_dense_label(self, annotations): input_bytes = [] label = [] all_zeros = [0] * len(self.tokenizers) for (token, annotation) in annotations: token_bytes = token.encode("utf-8") input_bytes += token_bytes label += [all_zeros.copy() for _ in range(len(token_bytes))] if len(label) > 0: for idx in annotation: label[-1][idx] = 1 return input_bytes, label def label(self, text): return self._to_dense_label(self._annotate(text)) def visualize(self, text): text, label = self.label(text) data = [] for char, label_col in zip(text, label): data.append([char, *label_col]) df = pd.DataFrame( data, columns=["byte", *[x.__class__.__name__ for x in self.tokenizers]] ).T df.columns = ["" for _ in range(len(df.columns))] with pd.option_context( "display.max_columns", len(text), ): print(df) if __name__ == "__main__": labeler = Labeler( [ SpacySentenceTokenizer( "de_core_news_sm", lower_start_prob=0.7, remove_end_punct_prob=0.7, punctuation=".?!" ), SpacyWordTokenizer("de_core_news_sm"), WhitespaceTokenizer(), SECOSCompoundTokenizer("../../../Experiments/SECOS/"), ] ) labeler.visualize("KNN (ANN).")
scripts/analysis/scheduling_duration_cdf.py
Container-Projects/firmament
287
12788515
#!/usr/bin/python import sys, re from datetime import datetime import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt if len(sys.argv) < 2: print "usage: scheduling_duration_cdf.py <log file 0> <label 0> " \ "<log file 1> <label 1> ..." sys.exit(1) durations = {} for i in range(1, len(sys.argv), 2): inputfile = sys.argv[i] label = sys.argv[i+1] att_start = None # read and process log file for line in open(inputfile).readlines(): rec = re.match("[A-Z][0-9]+ ([0-9:\.]+)\s+[0-9]+ .+\] (.+)", line) if not rec: #print "ERROR: failed to match line %s" % (line) pass else: timestamp_str = rec.group(1) message_str = rec.group(2) timestamp = datetime.strptime(timestamp_str, "%H:%M:%S.%f") m = re.match("START SCHEDULING (.+)", message_str) if m: if att_start == None: job_id = m.group(1) att_start = timestamp else: print "ERROR: overlapping scheduling events?" m = re.match("STOP SCHEDULING (.+).", message_str) if m: if att_start != None: job_id = m.group(1) duration = timestamp - att_start if not label in durations: durations[label] = [] durations[label].append(duration.total_seconds()) att_start = None else: print "ERROR: overlapping scheduling events?" plt.figure() for l, d in durations.items(): plt.hist(d, bins=200, label=l) plt.legend(loc=4) plt.ylabel("Count") plt.xlabel("Scheduler runtime [sec]") plt.savefig("scheduling_duration_hist.pdf", format="pdf", bbox_inches='tight') plt.clf() for l, d in durations.items(): plt.hist(d, bins=200, histtype='step', cumulative=True, normed=True, label=l, lw=2.0) plt.legend(loc=4) plt.ylim(0, 1) plt.xlabel("Scheduler runtime [sec]") plt.savefig("scheduling_duration_cdf.pdf", format="pdf", bbox_inches='tight')
tests/test_fds.py
CyberFlameGO/fds
322
12788527
<reponame>CyberFlameGO/fds import unittest from unittest.mock import patch import pytest import re from fds.version import __version__ from fds.services.fds_service import FdsService from fds.run import HooksRunner BOOLS = [True, False] # NOTE unittest.mock:_Call backport def patch_unittest_mock_call_cls(): import sys if sys.version_info.minor >= 8: return import unittest.mock def _get_call_arguments(self): if len(self) == 2: args, kwargs = self else: name, args, kwargs = self return args, kwargs @property def args(self): return self._get_call_arguments()[0] @property def kwargs(self): return self._get_call_arguments()[1] unittest.mock._Call._get_call_arguments = _get_call_arguments unittest.mock._Call.args = args unittest.mock._Call.kwargs = kwargs patch_unittest_mock_call_cls() class TestFds(unittest.TestCase): @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_init_success(self, mock_git_service, mock_dvc_service): fds_service = FdsService(mock_git_service, mock_dvc_service) fds_service.init() assert mock_git_service.init.called assert mock_dvc_service.init.called @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_status_success(self, mock_git_service, mock_dvc_service): fds_service = FdsService(mock_git_service, mock_dvc_service) fds_service.status() assert mock_git_service.status.called assert mock_dvc_service.status.called @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_status_git_failure(self, mock_git_service, mock_dvc_service): mock_git_service.status.side_effect = Exception fds_service = FdsService(mock_git_service, mock_dvc_service) self.assertRaises(Exception, mock_git_service.status) self.assertRaises(Exception, fds_service.status) assert mock_git_service.status.called assert mock_dvc_service.status.notcalled @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_status_dvc_failure(self, mock_git_service, mock_dvc_service): mock_dvc_service.status.side_effect = Exception fds_service = FdsService(mock_git_service, mock_dvc_service) self.assertRaises(Exception, fds_service.status) self.assertRaises(Exception, mock_dvc_service.status) assert mock_git_service.status.called assert mock_dvc_service.status.called @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_add_success(self, mock_git_service, mock_dvc_service): fds_service = FdsService(mock_git_service, mock_dvc_service) fds_service.add(".") assert mock_git_service.add.called assert mock_dvc_service.add.called @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_add_git_failure(self, mock_git_service, mock_dvc_service): mock_git_service.add.side_effect = Exception fds_service = FdsService(mock_git_service, mock_dvc_service) self.assertRaises(Exception, mock_git_service.add) with self.assertRaises(Exception): fds_service.add(".") assert mock_git_service.add.called assert mock_dvc_service.add.called @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_add_dvc_failure(self, mock_git_service, mock_dvc_service): mock_dvc_service.add.side_effect = Exception fds_service = FdsService(mock_git_service, mock_dvc_service) with self.assertRaises(Exception): fds_service.add(".") self.assertRaises(Exception, mock_dvc_service.add) assert mock_dvc_service.add.called assert mock_git_service.add.notcalled @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_commit_success(self, mock_git_service, mock_dvc_service): fds_service = FdsService(mock_git_service, mock_dvc_service) fds_service.commit("some commit message", True) assert mock_git_service.commit.called assert mock_dvc_service.commit.called @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_commit_git_failure(self, mock_git_service, mock_dvc_service): mock_git_service.commit.side_effect = Exception fds_service = FdsService(mock_git_service, mock_dvc_service) with self.assertRaises(Exception): fds_service.commit("some commit message", True) self.assertRaises(Exception, mock_git_service.commit) assert mock_git_service.commit.called assert mock_dvc_service.commit.called @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_commit_dvc_failure(self, mock_git_service, mock_dvc_service): mock_dvc_service.commit.side_effect = Exception fds_service = FdsService(mock_git_service, mock_dvc_service) with self.assertRaises(Exception): fds_service.commit("some commit message", False) self.assertRaises(Exception, mock_dvc_service.commit) assert mock_dvc_service.commit.called assert mock_git_service.commit.notcalled @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_clone_dvc_failure(self, mock_git_service, mock_dvc_service): mock_dvc_service.pull.side_effect = Exception fds_service = FdsService(mock_git_service, mock_dvc_service) with self.assertRaises(Exception): fds_service.clone("https://github.com/dagshub/fds.git", None, None) self.assertRaises(Exception, mock_dvc_service.pull) mock_git_service.clone.assert_called_with("https://github.com/dagshub/fds.git", None) @patch('fds.services.dvc_service.DVCService') @patch('fds.services.git_service.GitService') def test_clone_git_failure(self, mock_git_service, mock_dvc_service): mock_git_service.clone.side_effect = Exception fds_service = FdsService(mock_git_service, mock_dvc_service) with self.assertRaises(Exception): fds_service.clone("https://github.com/dagshub/fds.git", None, None) self.assertRaises(Exception, mock_git_service.clone) assert mock_dvc_service.pull.notcalled class TestFdsHooks: @pytest.mark.parametrize("dvc_preinstalled", BOOLS) @pytest.mark.parametrize("install_prompt_accept", BOOLS) @patch('fds.run.execute_command') @patch('fds.run.get_confirm_from_user') @patch('fds.services.fds_service.FdsService') @patch('fds.run.which') def test_dvc_installed( self, mock_which, mock_fds_service, mock_prompt, mock_execute_command, dvc_preinstalled: bool, install_prompt_accept: bool ): mock_which.return_value = dvc_preinstalled or None mock_prompt.return_value = install_prompt_accept hooks_runner = HooksRunner( mock_fds_service.service, mock_fds_service.printer, mock_fds_service.logger, ) ret = hooks_runner._ensure_dvc_installed() mock_which.assert_called_with("dvc") if dvc_preinstalled: return assert mock_prompt.call_count == 1 if not install_prompt_accept: assert ret != 0 # TODO validate printer containing "install dvc manually" return assert ret == 0 assert mock_execute_command.call_count == 1 args = mock_execute_command.call_args_list[0].args[0] assert re.findall(r"^pip3 install .*'dvc", args[0]) @pytest.mark.parametrize("git_preinstalled", BOOLS) @patch('fds.run.sys.exit') @patch('fds.services.fds_service.FdsService') @patch('fds.run.which') def test_git_installed( self, mock_which, mock_fds_service, mock_sys_exit, git_preinstalled: bool, ): mock_which.return_value = git_preinstalled or None hooks_runner = HooksRunner( mock_fds_service.service, mock_fds_service.printer, mock_fds_service.logger, ) ret = hooks_runner._ensure_git_installed() mock_which.assert_called_with("git") if git_preinstalled: assert ret == 0 return assert mock_sys_exit.call_count == 1 assert 0 not in mock_sys_exit.called_with @pytest.mark.parametrize("is_latest", BOOLS) @pytest.mark.parametrize("install_prompt_accept", BOOLS) @patch('fds.run.rerun_in_new_shell_and_exit') @patch('fds.run.execute_command') @patch('fds.run.get_confirm_from_user') @patch('fds.services.fds_service.FdsService') @patch('fds.run.requests.get') def test_fds_update( self, mock_requests_get, mock_fds_service, mock_prompt, mock_execute_command, mock_rerun, is_latest: bool, install_prompt_accept: bool ): mock_requests_get.return_value = type( "Response", (), { "json": lambda self: { "info": { "version": __version__ + ("b3" if not is_latest else "") } } } )() mock_prompt.return_value = install_prompt_accept hooks_runner = HooksRunner( mock_fds_service.service, mock_fds_service.printer, mock_fds_service.logger, ) ret = hooks_runner._ensure_fds_updated() mock_requests_get.assert_called_with("https://pypi.python.org/pypi/fastds/json") assert ret == 0 if is_latest: return assert mock_prompt.call_count == 1 # # TODO validate stdout contains "Should we upgrade..." if not install_prompt_accept: return assert mock_execute_command.call_count == 1 lst = mock_execute_command.call_args_list[0] assert re.findall(r"^pip3 install .*fastds.*--upgrade", lst.args[0][0]) assert mock_rerun.call_count == 1 mock_rerun.assert_called_with() @pytest.mark.parametrize("raise_on_reject", BOOLS) @pytest.mark.parametrize("service_preinitialized", BOOLS) @pytest.mark.parametrize("initialize_prompt_accept", BOOLS) @pytest.mark.parametrize("service_name", ["git", "dvc"]) @patch('fds.run.sys.exit') @patch('fds.run.get_confirm_from_user') @patch('fds.services.fds_service.FdsService') def test_service_initialized( self, mock_fds_service, mock_prompt, mock_sys_exit, raise_on_reject: bool, service_preinitialized: bool, initialize_prompt_accept: bool, service_name: str, tmpdir, ): attr_name = f"{service_name}_service" svc = getattr(mock_fds_service.service, attr_name) fut_name = f"_ensure_{service_name}_initialized" hooks_runner = HooksRunner( mock_fds_service.service, mock_fds_service.printer, mock_fds_service.logger, ) fut = getattr(hooks_runner, fut_name) mock_prompt.return_value = initialize_prompt_accept with patch.object( svc, "repo_path", tmpdir.strpath, ), patch.object( svc, "is_initialized", return_value=service_preinitialized, ), patch.object( svc, "init", ): ret = fut() assert svc.is_initialized.call_count == 1 if service_preinitialized: assert ret == 0 return assert mock_prompt.call_count == 1 if initialize_prompt_accept: assert svc.init.call_count == 1 assert ret == 0 return assert re.findall( r"You can initialize.*{}.*manually by running".format(service_name), mock_fds_service.printer.warn.call_args_list[0].args[0] ) if raise_on_reject: assert mock_sys_exit.call_count == 1 else: assert 0 not in mock_sys_exit.called_with
venv/Lib/site-packages/pdfminer/pslexer.py
richung99/digitizePlots
202
12788528
import re import ply.lex as lex states = ( ('instring', 'exclusive'), ) tokens = ( 'COMMENT', 'HEXSTRING', 'INT', 'FLOAT', 'LITERAL', 'KEYWORD', 'STRING', 'OPERATOR' ) delimiter = r'\(\)\<\>\[\]\{\}\/\%\s' delimiter_end = r'(?=[%s]|$)' % delimiter def t_COMMENT(t): # r'^%!.+\n' r'%.*\n' pass RE_SPC = re.compile(r'\s') RE_HEX_PAIR = re.compile(r'[0-9a-fA-F]{2}|.') @lex.TOKEN(r'<[0-9A-Fa-f\s]*>') def t_HEXSTRING(t): cleaned = RE_SPC.sub('', t.value[1:-1]) pairs = RE_HEX_PAIR.findall(cleaned) token_bytes = bytes([int(pair, 16) for pair in pairs]) try: t.value = token_bytes.decode('ascii') except UnicodeDecodeError: # should be kept as bytes t.value = token_bytes return t @lex.TOKEN(r'(\-|\+)?[0-9]+' + delimiter_end) def t_INT(t): t.value = int(t.value) return t @lex.TOKEN(r'(\-|\+)?([0-9]+\.|[0-9]*\.[0-9]+|[0-9]+\.[0-9]*)((e|E)[0-9]+)?' + delimiter_end) def t_FLOAT(t): t.value = float(t.value) return t RE_LITERAL_HEX = re.compile(r'#[0-9A-Fa-f]{2}') @lex.TOKEN(r'/.+?' + delimiter_end) def t_LITERAL(t): newvalue = t.value[1:] # If there's '#' chars in the literal, we much de-hex it def re_sub(m): # convert any hex str to int (without the # char) and the convert that return bytes.fromhex(m.group(0)[1:]).decode('latin-1') newvalue = RE_LITERAL_HEX.sub(re_sub , newvalue) # If there's any lone # char left, remove them newvalue = newvalue.replace('#', '') t.value = newvalue return t def t_OPERATOR(t): r'{|}|<<|>>|\[|\]' return t t_KEYWORD = r'.+?' + delimiter_end def t_instring(t): r'\(' t.lexer.value_buffer = [] t.lexer.string_startpos = t.lexpos t.lexer.level = 1 t.lexer.begin('instring') # The parens situation: it's complicated. We can have both escaped parens and unescaped parens. # If they're escaped, there's nothing special, we unescape them and add them to the string. If # they're not escaped, we have to count how many of them there are, to know when a rparen is the # end of the string. The regular expression for this is messed up, so what we do is when we hit # a paren, we look if the previous buffer ended up with a backslash. If it did, we don't to paren # balancing. def t_instring_lparen(t): r'\(' is_escaped = t.lexer.value_buffer and t.lexer.value_buffer[-1].endswith('\\') if is_escaped: t.lexer.value_buffer[-1] = t.lexer.value_buffer[-1][:-1] else: t.lexer.level +=1 t.lexer.value_buffer.append('(') def t_instring_rparen(t): r'\)' is_escaped = t.lexer.value_buffer and t.lexer.value_buffer[-1].endswith('\\') if is_escaped: t.lexer.value_buffer[-1] = t.lexer.value_buffer[-1][:-1] else: t.lexer.level -=1 if t.lexer.level == 0: t.value = ''.join(t.lexer.value_buffer) if any(ord(c) > 0x7f for c in t.value): t.value = t.value.encode('latin-1') t.type = "STRING" t.lexpos = t.lexer.string_startpos t.lexer.begin('INITIAL') return t else: t.lexer.value_buffer.append(')') RE_STRING_ESCAPE = re.compile(r'\\[btnfr\\]') RE_STRING_OCTAL = re.compile(r'\\[0-7]{1,3}') RE_STRING_LINE_CONT = re.compile(r'\\\n|\\\r|\\\r\n') ESC_STRING = { 'b': '\b', 't': '\t', 'n': '\n', 'f': '\f', 'r': '\r', '\\': '\\' } def repl_string_escape(m): return ESC_STRING[m.group(0)[1]] def repl_string_octal(m): i = int(m.group(0)[1:], 8) if i < 0xff: # we never want to go above 256 because it's unencodable return chr(i) else: return m.group(0) def t_instring_contents(t): r'[^()]+' s = t.value s = RE_STRING_ESCAPE.sub(repl_string_escape, s) s = RE_STRING_OCTAL.sub(repl_string_octal, s) s = RE_STRING_LINE_CONT.sub('', s) t.lexer.value_buffer.append(s) t_instring_ignore = '' t_ignore = ' \t\r\n' # Error handling rule def t_error(t): print("Illegal character '%r'" % t.value[0]) t.lexer.skip(1) t_instring_error = t_error lexer = lex.lex()
algs4/merge.py
dumpmemory/algs4-py
230
12788536
""" Sorts a sequence of strings from standard input using merge sort. % more tiny.txt S O R T E X A M P L E % python merge.py < tiny.txt A E E L M O P R S T X [ one string per line ] % more words3.txt bed bug dad yes zoo ... all bad yet % python merge.py < words3.txt all bad bed bug dad ... yes yet zoo [ one string per line ] """ class Merge: @classmethod def merge(cls, arr, lo, mid, hi): aux = list(arr) # copy to aux i = lo j = mid + 1 k = lo while k <= hi: if i > mid: arr[k] = aux[j] j += 1 elif j > hi: arr[k] = aux[i] i += 1 elif aux[i] < aux[j]: arr[k] = aux[i] i += 1 else: arr[k] = aux[j] j += 1 k += 1 @classmethod def mergesort(cls, arr, lo, hi): if lo >= hi: return mid = (lo + hi) // 2 cls.mergesort(arr, lo, mid) cls.mergesort(arr, mid + 1, hi) cls.merge(arr, lo, mid, hi) return arr @classmethod def sort(cls, arr): return cls.mergesort(arr, 0, len(arr) - 1) @classmethod def is_sorted(cls, arr): for i in range(1, len(arr)): if arr[i] < arr[i-1]: return False return True if __name__ == '__main__': import sys items = [] for line in sys.stdin: items.extend(line.split()) print(' items: ', items) print('sort items: ', Merge.sort(items)) assert Merge.is_sorted(items)
observations/r/capm.py
hajime9652/observations
199
12788542
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv import numpy as np import os import sys from observations.util import maybe_download_and_extract def capm(path): """Stock Market Data monthly observations from 1960–01 to 2002–12 *number of observations* : 516 A time serie containing : rfood excess returns food industry rdur excess returns durables industry rcon excess returns construction industry rmrf excess returns market portfolio rf riskfree return most of the above data are from Kenneth French's data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. Args: path: str. Path to directory which either stores file or otherwise file will be downloaded and extracted there. Filename is `capm.csv`. Returns: Tuple of np.ndarray `x_train` with 516 rows and 5 columns and dictionary `metadata` of column headers (feature names). """ import pandas as pd path = os.path.expanduser(path) filename = 'capm.csv' if not os.path.exists(os.path.join(path, filename)): url = 'http://dustintran.com/data/r/Ecdat/Capm.csv' maybe_download_and_extract(path, url, save_file_name='capm.csv', resume=False) data = pd.read_csv(os.path.join(path, filename), index_col=0, parse_dates=True) x_train = data.values metadata = {'columns': data.columns} return x_train, metadata
Dynamic Programming/741. Cherry Pickup.py
beckswu/Leetcode
138
12788554
""" 741. Cherry Pickup """ class Solution: def cherryPickup(self, grid): """ :type grid: List[List[int]] :rtype: int """ n = len(grid) if grid[0][0] == -1 or grid[n-1][n-1] == -1: return 0 dp = [[-1,]*n for _ in range(n)] # 很重要, """ 因为比如[[1,-1,1],[-1,1,1],[1,1,1]], 如果初始化为0,k=1 后 , dp = [[-1,-1,0],[-1,-1,0],[0, 0,0]] 然后k = 2, i = 2, j = 2, 只能从(1,0) (1,0) 过来, dp[1][1] = -1,但是因为初始化为0,通过比较max,所以dp最后应该为-1,但是结果为0 """ dp[0][0] = grid[0][0] for k in range(1,2*n-1): for i in range(min(k,n-1),max(-1, k-n),-1): for j in range(min(k,n-1),max(-1, k-n),-1): if grid[i][k-i] == -1 or grid[j][k-j] == -1: dp[i][j] = -1 continue if i>0 : dp[i][j] = max(dp[i][j], dp[i-1][j]) #向下向右 if j>0 : dp[i][j] = max(dp[i][j], dp[i][j-1]) #向右向下 if i>0 and j>0: dp[i][j] = max(dp[i][j], dp[i-1][j-1]) #向下向下 if dp[i][j]<0 :continue dp[i][j] += grid[i][k-i] if i!=j: dp[i][j] += grid[j][k-j] return max(dp[-1][-1],0) class Solution: def cherryPickup(self, grid: List[List[int]]) -> int: n = len(grid) if grid[0][0] == -1 or grid[n-1][n-1] == -1: return 0 dp = [[-1,]*n for _ in range(n)] dp[0][0] = grid[0][0] for k in range(1,2*n-1): for i in range(n-1,-1,-1): for j in range(n-1,-1,-1): p, q = k-i, k -j if p < 0 or p >= n or q<0 or q>=n or grid[i][p] == -1 or grid[j][q] == -1: dp[i][j] = -1 continue if i>0 : dp[i][j] = max(dp[i][j], dp[i-1][j]) #向下向右 if j>0 : dp[i][j] = max(dp[i][j], dp[i][j-1]) #向右向下 if i>0 and j>0: dp[i][j] = max(dp[i][j], dp[i-1][j-1]) #向下向下 if dp[i][j]<0 :continue dp[i][j] += grid[i][p] if i!=j: dp[i][j] += grid[j][q] return max(dp[-1][-1],0) # Top-Down class Solution: def cherryPickup(self, grid: List[List[int]]) -> int: N = len(grid) lookup = {} def solve(x1, y1, x2, y2): # check if we reached bottom right corner if x1 == N-1 and y1 == N-1: return grid[x1][y1] if grid[x1][y1] != -1 else float("-inf") # out of the grid and thorn check if x1 == N or y1 == N or x2 == N or y2 == N or grid[x1][y1] == -1 or grid[x2][y2] == -1: return float("-inf") # memorization check lookup_key = (x1, y1, x2, y2) if lookup_key in lookup: return lookup[lookup_key] # pick your cherries if x1 == x2 and y1 == y2: cherries = grid[x1][y1] else: cherries = grid[x1][y1] + grid[x2][y2] res = cherries + max( solve(x1 + 1, y1, x2 + 1, y2), # right, right solve(x1, y1 + 1, x2, y2 + 1), # down, down solve(x1 + 1, y1, x2, y2 + 1), # right, down solve(x1, y1 + 1, x2 + 1, y2), # down, right ) lookup[lookup_key] = res return res res = solve(0, 0, 0, 0) return res if res > 0 else 0
torchnlp/samplers/noisy_sorted_sampler.py
MPetrochuk/PyTorch-NLP
2,125
12788560
<reponame>MPetrochuk/PyTorch-NLP import random from torch.utils.data.sampler import Sampler from torchnlp.utils import identity def _uniform_noise(_): return random.uniform(-1, 1) class NoisySortedSampler(Sampler): """ Samples elements sequentially with noise. **Background** ``NoisySortedSampler`` is similar to a ``BucketIterator`` found in popular libraries like `AllenNLP` and `torchtext`. A ``BucketIterator`` pools together examples with a similar size length to reduce the padding required for each batch. ``BucketIterator`` also includes the ability to add noise to the pooling. **AllenNLP Implementation:** https://github.com/allenai/allennlp/blob/e125a490b71b21e914af01e70e9b00b165d64dcd/allennlp/data/iterators/bucket_iterator.py **torchtext Implementation:** https://github.com/pytorch/text/blob/master/torchtext/data/iterator.py#L225 Args: data (iterable): Data to sample from. sort_key (callable): Specifies a function of one argument that is used to extract a numerical comparison key from each list element. get_noise (callable): Noise added to each numerical ``sort_key``. Example: >>> from torchnlp.random import set_seed >>> set_seed(123) >>> >>> import random >>> get_noise = lambda i: round(random.uniform(-1, 1)) >>> list(NoisySortedSampler(range(10), sort_key=lambda i: i, get_noise=get_noise)) [0, 1, 2, 3, 5, 4, 6, 7, 9, 8] """ def __init__(self, data, sort_key=identity, get_noise=_uniform_noise): super().__init__(data) self.data = data self.sort_key = sort_key self.get_noise = get_noise def __iter__(self): zip_ = [] for i, row in enumerate(self.data): value = self.get_noise(row) + self.sort_key(row) zip_.append(tuple([i, value])) zip_ = sorted(zip_, key=lambda r: r[1]) return iter([item[0] for item in zip_]) def __len__(self): return len(self.data)
care/facility/migrations/0190_auto_20201001_1134.py
gigincg/care
189
12788591
<filename>care/facility/migrations/0190_auto_20201001_1134.py<gh_stars>100-1000 # Generated by Django 2.2.11 on 2020-10-01 06:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('facility', '0189_auto_20200929_1258'), ] operations = [ migrations.AlterField( model_name='shiftingrequest', name='status', field=models.IntegerField(choices=[(10, 'PENDING'), (15, 'ON HOLD'), (20, 'APPROVED'), (30, 'REJECTED'), (40, 'DESTINATION APPROVED'), (50, 'DESTINATION REJECTED'), (60, 'AWAITING TRANSPORTATION'), (70, 'TRANSFER IN PROGRESS'), (80, 'COMPLETED')], default=10), ), ]
nuplan/planning/metrics/evaluation_metrics/common/ego_lat_jerk.py
motional/nuplan-devkit
128
12788592
<gh_stars>100-1000 from typing import List from nuplan.planning.metrics.evaluation_metrics.base.within_bound_metric_base import WithinBoundMetricBase from nuplan.planning.metrics.metric_result import MetricStatistics from nuplan.planning.metrics.utils.state_extractors import extract_ego_jerk from nuplan.planning.scenario_builder.abstract_scenario import AbstractScenario from nuplan.planning.simulation.history.simulation_history import SimulationHistory class EgoLatJerkStatistics(WithinBoundMetricBase): """Ego lateral jerk metric.""" def __init__(self, name: str, category: str) -> None: """ Initializes the EgoLatJerkStatistics class :param name: Metric name :param category: Metric category. """ super().__init__(name=name, category=category) def compute(self, history: SimulationHistory, scenario: AbstractScenario) -> List[MetricStatistics]: """ Returns the lateral jerk metric :param history: History from a simulation engine :param scenario: Scenario running this metric :return the estimated lateral jerk metric. """ return self._compute_statistics( # type: ignore history=history, scenario=scenario, statistic_unit_name='meters_per_second_cubed', extract_function=extract_ego_jerk, extract_function_params={'acceleration_coordinate': 'y'}, )
scale/job/messages/failed_jobs.py
kaydoh/scale
121
12788596
<filename>scale/job/messages/failed_jobs.py """Defines a command message that sets FAILED status for job models""" from __future__ import unicode_literals import logging from collections import namedtuple from django.db import transaction from error.models import get_error from job.models import Job from messaging.messages.message import CommandMessage from util.parse import datetime_to_string, parse_datetime from util.retry import retry_database_query # This is the maximum number of job models that can fit in one message. This maximum ensures that every message of this # type is less than 25 KiB long. MAX_NUM = 100 FailedJob = namedtuple('FailedJob', ['job_id', 'exe_num', 'error_id']) logger = logging.getLogger(__name__) def create_failed_jobs_messages(failed_jobs, when): """Creates messages to fail the given jobs :param failed_jobs: The failed jobs :type failed_jobs: :func:`list` :param when: When the jobs failed :type when: :class:`datetime.datetime` :return: The list of messages :rtype: :func:`list` """ messages = [] message = None for failed_job in failed_jobs: if not message: message = FailedJobs() message.ended = when elif not message.can_fit_more(): messages.append(message) message = FailedJobs() message.ended = when message.add_failed_job(failed_job) if message: messages.append(message) return messages class FailedJobs(CommandMessage): """Command message that sets FAILED status for job models """ def __init__(self): """Constructor """ super(FailedJobs, self).__init__('failed_jobs') self._count = 0 self._failed_jobs = {} # {Error ID: [FailedJob]} self.ended = None def add_failed_job(self, failed_job): """Adds the given failed job to this message :param failed_job: The failed job :type failed_job: :class:`job.messages.failed_jobs.FailedJob` """ self._count += 1 if failed_job.error_id in self._failed_jobs: self._failed_jobs[failed_job.error_id].append(failed_job) else: self._failed_jobs[failed_job.error_id] = [failed_job] def can_fit_more(self): """Indicates whether more failed jobs can fit in this message :return: True if more failed jobs can fit, False otherwise :rtype: bool """ return self._count < MAX_NUM def to_json(self): """See :meth:`messaging.messages.message.CommandMessage.to_json` """ error_list = [] for error_id, job_list in self._failed_jobs.items(): jobs_list = [] for failed_job in job_list: jobs_list.append({'id': failed_job.job_id, 'exe_num': failed_job.exe_num}) error_list.append({'id': error_id, 'jobs': jobs_list}) return {'ended': datetime_to_string(self.ended), 'errors': error_list} @staticmethod def from_json(json_dict): """See :meth:`messaging.messages.message.CommandMessage.from_json` """ message = FailedJobs() message.ended = parse_datetime(json_dict['ended']) for error_dict in json_dict['errors']: error_id = error_dict['id'] for job_dict in error_dict['jobs']: job_id = job_dict['id'] exe_num = job_dict['exe_num'] message.add_failed_job(FailedJob(job_id, exe_num, error_id)) return message @retry_database_query(max_tries=5, base_ms_delay=1000, max_ms_delay=5000) def execute(self): """See :meth:`messaging.messages.message.CommandMessage.execute` """ from queue.messages.queued_jobs import create_queued_jobs_messages, QueuedJob job_ids = [] for job_list in self._failed_jobs.values(): for failed_job in job_list: job_ids.append(failed_job.job_id) root_recipe_ids = set() with transaction.atomic(): # Retrieve locked job models job_models = {} for job in Job.objects.get_locked_jobs(job_ids): job_models[job.id] = job if job.root_recipe_id: root_recipe_ids.add(job.root_recipe_id) # Get job models with related fields # TODO: once long running job types are gone, the related fields are not needed for job in Job.objects.get_jobs_with_related(job_ids): job_models[job.id] = job jobs_to_retry = [] all_failed_job_ids = [] for error_id, job_list in self._failed_jobs.items(): error = get_error(error_id) jobs_to_fail = [] for failed_job in job_list: job_model = job_models[failed_job.job_id] # If job cannot be failed or execution number does not match, then this update is obsolete if not job_model.can_be_failed() or job_model.num_exes != failed_job.exe_num: # Ignore this job continue # Re-try job if error supports re-try and there are more tries left retry = error.should_be_retried and job_model.num_exes < job_model.max_tries # Also re-try long running jobs retry = retry or job_model.job_type.is_long_running # Do not re-try superseded jobs retry = retry and not job_model.is_superseded if retry: jobs_to_retry.append(QueuedJob(job_model.id, job_model.num_exes)) else: jobs_to_fail.append(job_model) # Update jobs that failed with this error if jobs_to_fail: failed_job_ids = Job.objects.update_jobs_to_failed(jobs_to_fail, error_id, self.ended) logger.info('Set %d job(s) to FAILED status with error %s', len(failed_job_ids), error.name) all_failed_job_ids.extend(failed_job_ids) # Need to update recipes of failed jobs so that dependent jobs are BLOCKED if root_recipe_ids: from recipe.messages.update_recipe import create_update_recipe_messages_from_node self.new_messages.extend(create_update_recipe_messages_from_node(root_recipe_ids)) # Place jobs to retry back onto the queue if jobs_to_retry: self.new_messages.extend(create_queued_jobs_messages(jobs_to_retry, requeue=True)) # Send messages to update recipe metrics from recipe.messages.update_recipe_metrics import create_update_recipe_metrics_messages_from_jobs self.new_messages.extend(create_update_recipe_metrics_messages_from_jobs(job_ids)) return True
carball/json_parser/actor/team.py
unitedroguegg/carball
119
12788613
<reponame>unitedroguegg/carball from .ball import * class TeamHandler(BaseActorHandler): @classmethod def can_handle(cls, actor: dict) -> bool: return actor['ClassName'] == 'TAGame.Team_Soccar_TA' def update(self, actor: dict, frame_number: int, time: float, delta: float) -> None: self.parser.team_dicts[actor['Id']] = actor self.parser.team_dicts[actor['Id']]['colour'] = 'blue' if actor["TypeName"] == "Archetypes.Teams.Team0" else \ 'orange'
build_fake_image__build_exe/__injected_code.py
DazEB2/SimplePyScripts
117
12788651
<reponame>DazEB2/SimplePyScripts import os.path from pathlib import Path file_name = Path(os.path.expanduser("~/Desktop")).resolve() / "README_YOU_WERE_HACKED.txt" file_name.touch(exist_ok=True)
CalibTracker/SiStripCommon/python/ShallowGainCalibration_cfi.py
ckamtsikis/cmssw
852
12788655
<reponame>ckamtsikis/cmssw<filename>CalibTracker/SiStripCommon/python/ShallowGainCalibration_cfi.py import FWCore.ParameterSet.Config as cms shallowGainCalibration = cms.EDProducer("ShallowGainCalibration", Tracks=cms.InputTag("generalTracks",""), Prefix=cms.string("GainCalibration"), Suffix=cms.string(""))
docs/source/conf.py
steven-lang/SPFlow
199
12788662
# -- Path setup -------------------------------------------------------------- import os import sys sys.path.insert(0, os.path.abspath("../../src")) import sphinx_gallery # -- Project information ----------------------------------------------------- project = "SPFlow" copyright = "2020, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>" author = "<NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>" # Get __version__ from _meta from spn._meta import __version__ version = __version__ release = __version__ extensions = [ "sphinx.ext.linkcode", "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.doctest", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.githubpages", "sphinx.ext.napoleon", "sphinx_gallery.gen_gallery", ] templates_path = ["_templates"] source_suffix = ".rst" master_doc = "index" exclude_patterns = ["build", "Thumbs.db", ".DS_Store", "env"] pygments_style = "sphinx" html_theme = "sphinx_rtd_theme" html_static_path = ["_static"] html_logo = "../../Documentation/logo/spflow_logoSquare.png" # -- Extension configuration ------------------------------------------------- autosummary_generate = True autodoc_default_options = {"undoc-members": None} # -- Options for intersphinx extension --------------------------------------- intersphinx_mapping = { "python": ("https://docs.python.org/3/", None), "numpy": ("https://numpy.org/doc/stable/", None), "sklearn": ("https://scikit-learn.org/stable", None), } # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # Linkcode extension def linkcode_resolve(domain, info): if domain != "py": return None if not info["module"]: return None filename = info["module"].replace(".", "/") return "https://github.com/SPFlow/SPFlow/blob/master/src/%s.py" % filename # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = False # Napoleon settings napoleon_google_docstring = False napoleon_numpy_docstring = True napoleon_include_init_with_doc = False napoleon_include_private_with_doc = False napoleon_include_special_with_doc = True napoleon_use_admonition_for_examples = False napoleon_use_admonition_for_notes = False napoleon_use_admonition_for_references = False napoleon_use_ivar = False napoleon_use_param = True napoleon_use_rtype = True # sphinx_gallery.gen_gallery settings sphinx_gallery_conf = { "doc_module": "spn", "backreferences_dir": os.path.join("generated"), "reference_url": {"spn": None}, "remove_config_comments": True, }
lib-opencc-android/src/main/jni/OpenCC/binding.gyp
huxiaomao/android-opencc
5,895
12788682
{ "includes": [ "node/global.gypi", "node/configs.gypi", "node/dicts.gypi", "node/node_opencc.gypi", ] }
adadelta.py
morpheusthewhite/twitter-sent-dnn
314
12788688
<gh_stars>100-1000 """ Adadelta algorithm implementation """ import numpy as np import theano import theano.tensor as T def build_adadelta_updates(params, param_shapes, param_grads, rho=0.95, epsilon=0.001): # AdaDelta parameter update # E[g^2] # initialized to zero egs = [ theano.shared( value = np.zeros(param_shape, dtype = theano.config.floatX ), borrow = True, name = "Eg:" + param.name ) for param_shape, param in zip(param_shapes, params) ] # E[\delta x^2], initialized to zero exs = [ theano.shared( value = np.zeros(param_shape, dtype = theano.config.floatX ), borrow = True, name = "Ex:" + param.name ) for param_shape, param in zip(param_shapes, params) ] new_egs = [ rho * eg + (1 - rho) * g ** 2 for eg, g in zip(egs, param_grads) ] delta_x = [ -(T.sqrt(ex + epsilon) / T.sqrt(new_eg + epsilon)) * g for new_eg, ex, g in zip(new_egs, exs, param_grads) ] new_exs = [ rho * ex + (1 - rho) * (dx ** 2) for ex, dx in zip(exs, delta_x) ] egs_updates = zip(egs, new_egs) exs_updates = zip(exs, new_exs) param_updates = [ (p, p + dx) for dx, g, p in zip(delta_x, param_grads, params) ] updates = egs_updates + exs_updates + param_updates return updates
qtrader/simulation/tests/__init__.py
aaron8tang/qtrader
381
12788691
<reponame>aaron8tang/qtrader from qtrader.simulation.tests.arbitrage import Arbitrage from qtrader.simulation.tests.moments import Moments
tests/unittests/analysis/test_lpi.py
obilaniu/orion
177
12788742
<filename>tests/unittests/analysis/test_lpi.py # -*- coding: utf-8 -*- """Tests :func:`orion.analysis.lpi`""" import copy import numpy import pandas as pd import pytest from orion.analysis.base import to_numpy, train_regressor from orion.analysis.lpi_utils import compute_variances, lpi, make_grid from orion.core.io.space_builder import SpaceBuilder data = pd.DataFrame( data={ "id": ["a", "b", "c", "d"], "x": [0, 1, 2, 3], "y": [1, 2, 0, 3], "objective": [0.1, 0.2, 0.3, 0.5], } ) space = SpaceBuilder().build({"x": "uniform(0, 6)", "y": "uniform(0, 3)"}) def test_accept_empty(): """Tests an empty dataframe is returned if you give an empty dataframe""" empty_frame = pd.DataFrame() results = lpi(empty_frame, space) assert results.columns.tolist() == ["LPI"] assert results.index.tolist() == list(space.keys()) assert results["LPI"].tolist() == [0, 0] empty_frame = pd.DataFrame(columns=["x", "y", "objective"]) results = lpi(empty_frame, space) assert results.columns.tolist() == ["LPI"] assert results.index.tolist() == list(space.keys()) assert results["LPI"].tolist() == [0, 0] def test_parameter_not_modified(): """Tests the original dataframe is not modified""" original = copy.deepcopy(data) lpi(data, space) pd.testing.assert_frame_equal(data, original) def test_make_grid(): """Test grid has correct format""" trials = to_numpy(data, space) model = train_regressor("RandomForestRegressor", trials) best_point = trials[numpy.argmin(trials[:, -1])] grid = make_grid(best_point, space, model, 4) # Are fixed to anchor value numpy.testing.assert_equal(grid[0][:, 1], best_point[1]) numpy.testing.assert_equal(grid[1][:, 0], best_point[0]) # Is a grid in search space numpy.testing.assert_equal(grid[0][:, 0], [0, 2, 4, 6]) numpy.testing.assert_equal(grid[1][:, 1], [0, 1, 2, 3]) def test_make_grid_predictor(monkeypatch): """Test grid contains corresponding predictions from the model""" trials = to_numpy(data, space) model = train_regressor("RandomForestRegressor", trials) best_point = trials[numpy.argmin(trials[:, -1])] # Make sure model is not predicting exactly the original objective with numpy.testing.assert_raises(AssertionError): numpy.testing.assert_equal( best_point[-1], model.predict(best_point[:-1].reshape(1, -1)) ) grid = make_grid(best_point, space, model, 4) # Verify that grid predictions are those of the model numpy.testing.assert_equal(grid[0][:, -1], model.predict(grid[0][:, :-1])) numpy.testing.assert_equal(grid[1][:, -1], model.predict(grid[1][:, :-1])) # Verify model predictions differ on different points with numpy.testing.assert_raises(AssertionError): numpy.testing.assert_equal(grid[0][:, -1], grid[1][:, -1]) def test_compute_variance(): """Test variance computation over the grid""" grid = numpy.arange(3 * 5 * 4).reshape(3, 5, 4) grid[0, :, -1] = 10 grid[1, :, -1] = [0, 1, 2, 3, 4] grid[2, :, -1] = [0, 10, 20, 30, 40] variances = compute_variances(grid) assert variances.shape == (3,) assert variances[0] == 0 assert variances[1] == numpy.var([0, 1, 2, 3, 4]) assert variances[2] == numpy.var([0, 10, 20, 30, 40]) def test_lpi_results(): """Verify LPI results in DataFrame""" results = lpi(data, space, random_state=1) assert results.columns.tolist() == ["LPI", "STD"] assert results.index.tolist() == list(space.keys()) # The data is made such that x correlates more strongly with objective than y assert results["LPI"].loc["x"] > results["LPI"].loc["y"] def test_lpi_with_categorical_data(): """Verify LPI can be computed on categorical dimensions""" data = pd.DataFrame( data={ "id": ["a", "b", "c", "d"], "x": [0, 1, 2, 3], "y": ["b", "c", "a", "d"], "objective": [0.1, 0.2, 0.3, 0.5], } ) space = SpaceBuilder().build( {"x": "uniform(0, 6)", "y": 'choices(["a", "b", "c", "d"])'} ) results = lpi(data, space, random_state=1) assert results.columns.tolist() == ["LPI", "STD"] assert results.index.tolist() == ["x", "y"] # The data is made such that x correlates more strongly with objective than y assert results["LPI"].loc["x"] > results["LPI"].loc["y"] def test_lpi_with_multidim_data(): """Verify LPI can be computed on categorical dimensions""" data = pd.DataFrame( data={ "id": ["a", "b", "c", "d"], "x": [[0, 2, 4], [1, 1, 3], [2, 2, 2], [3, 0, 3]], "y": [["b", "b"], ["c", "b"], ["a", "a"], ["d", "c"]], "objective": [0.1, 0.2, 0.3, 0.5], } ) space = SpaceBuilder().build( {"x": "uniform(0, 6, shape=3)", "y": 'choices(["a", "b", "c", "d"], shape=2)'} ) results = lpi(data, space, random_state=1) assert results.columns.tolist() == ["LPI", "STD"] assert results.index.tolist() == ["x[0]", "x[1]", "x[2]", "y[0]", "y[1]"] # The data is made such some x correlates more strongly with objective than other x and most y assert results["LPI"].loc["x[0]"] > results["LPI"].loc["x[1]"] assert results["LPI"].loc["x[1]"] > results["LPI"].loc["x[2]"] assert results["LPI"].loc["x[0]"] > results["LPI"].loc["y[0]"] assert results["LPI"].loc["x[0]"] > results["LPI"].loc["y[1]"] def test_lpi_n_points(monkeypatch): """Verify given number of points is used""" N_POINTS = numpy.random.randint(2, 50) def mock_make_grid(*args, **kwargs): grid = make_grid(*args, **kwargs) assert grid.shape == (len(space), N_POINTS, len(space) + 1) return grid monkeypatch.setattr("orion.analysis.lpi_utils.make_grid", mock_make_grid) lpi(data, space, random_state=1, n_points=N_POINTS) def test_lpi_n_runs(monkeypatch): """Verify number of runs""" N_RUNS = 5 seeds = set() n_runs = 0 def mock_train_regressor(*args, **kwargs): nonlocal n_runs n_runs += 1 seeds.add(kwargs["random_state"]) return train_regressor(*args, **kwargs) monkeypatch.setattr( "orion.analysis.lpi_utils.train_regressor", mock_train_regressor ) lpi(data, space, random_state=1, n_runs=N_RUNS) assert n_runs == N_RUNS assert len(seeds) > 0
esda/tests/test_local_geary_mv.py
jeffcsauer/esda
145
12788744
import unittest import libpysal from libpysal.common import pandas, RTOL, ATOL from esda.geary_local_mv import Geary_Local_MV import numpy as np PANDAS_EXTINCT = pandas is None class Geary_Local_MV_Tester(unittest.TestCase): def setUp(self): np.random.seed(100) self.w = libpysal.io.open(libpysal.examples.get_path("stl.gal")).read() f = libpysal.io.open(libpysal.examples.get_path("stl_hom.txt")) self.y1 = np.array(f.by_col['HR8893']) self.y2 = np.array(f.by_col['HC8488']) def test_local_geary_mv(self): lG_mv = Geary_Local_MV(connectivity=self.w).fit([self.y1, self.y2]) print(lG_mv.p_sim[0]) self.assertAlmostEqual(lG_mv.localG[0], 0.4096931479581422) self.assertAlmostEqual(lG_mv.p_sim[0], 0.211) suite = unittest.TestSuite() test_classes = [ Geary_Local_MV_Tester ] for i in test_classes: a = unittest.TestLoader().loadTestsFromTestCase(i) suite.addTest(a) if __name__ == "__main__": runner = unittest.TextTestRunner() runner.run(suite)
pybaseball/cache/file_utils.py
reddigari/pybaseball
650
12788749
import json import os import pathlib from typing import Any, Dict, List, Union, cast JSONData = Union[List[Any], Dict[str, Any]] # Splitting this out for testing with no side effects def mkdir(directory: str) -> None: return pathlib.Path(directory).mkdir(parents=True, exist_ok=True) # Splitting this out for testing with no side effects def remove(filename: str) -> None: return os.remove(filename) def safe_jsonify(directory: str, filename: str, data: JSONData) -> None: mkdir(directory) fname = os.path.join(directory, filename) with open(fname, 'w') as json_file: json.dump(data, json_file) def load_json(filename: str) -> JSONData: with open(filename) as json_file: return cast(JSONData, json.load(json_file))
grr/server/grr_response_server/check_lib/__init__.py
khanhgithead/grr
4,238
12788826
<reponame>khanhgithead/grr #!/usr/bin/env python """This is the check capabilities used to post-process host data.""" # pylint: disable=g-import-not-at-top,unused-import from grr_response_server.check_lib import checks from grr_response_server.check_lib import hints from grr_response_server.check_lib import triggers
tests/micropython/opt_level.py
sebi5361/micropython
181
12788851
<reponame>sebi5361/micropython import micropython as micropython # check we can get and set the level micropython.opt_level(0) print(micropython.opt_level()) micropython.opt_level(1) print(micropython.opt_level()) # check that the optimisation levels actually differ micropython.opt_level(0) exec('print(__debug__)') micropython.opt_level(1) exec('print(__debug__)') exec('assert 0')
vergeml/sources/mnist.py
ss18/vergeml
324
12788866
<gh_stars>100-1000 from vergeml.img import INPUT_PATTERNS, open_image, fixext, ImageType from vergeml.io import source, SourcePlugin, Sample from vergeml.data import Labels from vergeml.utils import VergeMLError from vergeml.sources.labeled_image import LabeledImageSource import random import numpy as np from PIL import Image import os.path import json from operator import methodcaller import io from typing import List import gzip import hashlib _FILES = ("train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz", "t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz") _MNIST_LABELS = ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9") _FASHION_MNIST_LABELS = ("tshirt_top", "trouser", "pullover", "dress", "coat", "sandal", "shirt", "sneaker", "sag", "ankle_boot") # we use the md5 to check for fashion mnist, so we can provide the labels # automatically _MD5_FASHION = "8d4fb7e6c68d591d4c3dfef9ec88bf0d" def _md5(fname): hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() @source('image', descr="Load images in MNIST format.") class InputMnist(SourcePlugin): data = None def num_samples(self, split: str) -> int: return len(self.data[split]) def read_sample(self, split: str, index: int): return self.data[split][index] def _check_files(self): self.data = dict(train=[], val=[], test=[]) samples_dir = self.config["samples_dir"] files = [os.path.join(samples_dir, file) for file in _FILES] for path in files: if not os.path.exists(path): raise VergeMLError("File not found in samples_dir: {}".format( os.path.basename(path))) if _md5(files[0]) == _MD5_FASHION: self.meta['labels'] = _FASHION_MNIST_LABELS else: self.meta['labels'] = _MNIST_LABELS # preload for split, images, labels in (('train', files[0], files[1]), ('test', files[2], files[3])): with gzip.open(images) as f: # First 16 bytes are magic_number, n_imgs, n_rows, n_cols pixels = np.frombuffer(f.read(), 'B', offset=16) pixels = pixels.reshape(-1, 28, 28) with gzip.open(labels) as f: # First 8 bytes are magic_number, n_labels integer_labels = np.frombuffer(f.read(), 'B', offset=8) n_cols = integer_labels.max() + 1 for ix, imagearr in enumerate(pixels): label = integer_labels[ix] onehot = np.zeros((n_cols), dtype='float32') onehot[label] = 1.0 self.data[split].append((Image.fromarray(imagearr), onehot, dict(labels=self.meta['labels'], filename=images, split=split, types=('pil', 'labels')))) if split == 'train': n = self.config['val_num'] if self.config['val_perc'] is not None: n = int(len(self.data['train']) * self.config['val_perc'] // 100) if n is not None: if n > len(self.data['train']): raise VergeMLError("number of test samples is greater than number of available samples.") rng = random.Random(self.config['random_seed']) count = len(self.data[split]) indices = rng.sample(range(count), count) self.data['val'] = [self.data['train'][i] for i in indices[:n]] self.data['train'] = [self.data['train'][i] for i in indices[n:]] else: if self.config['test_num']: if self.config['test_num'] > len(self.data['test']): raise VergeMLError("number of test samples is greater than number of available samples.") rng = random.Random(self.config['random_seed']) indices = rng.sample(range(len(self.data[split])), len(pixels)) self.data['test'] = [self.data['test'][i] for i in indices[:n]] plugin = InputMnist
pycket/prims/hash.py
namin/pycket
129
12788878
#! /usr/bin/env python # -*- coding: utf-8 -*- import sys from pycket import impersonators as imp from pycket import values, values_string from pycket.hash.base import W_HashTable, W_ImmutableHashTable, w_missing from pycket.hash.simple import ( W_EqvMutableHashTable, W_EqMutableHashTable, W_EqvImmutableHashTable, W_EqImmutableHashTable, make_simple_mutable_table, make_simple_mutable_table_assocs, make_simple_immutable_table, make_simple_immutable_table_assocs) from pycket.hash.equal import W_EqualHashTable from pycket.impersonators.baseline import W_ImpHashTable, W_ChpHashTable from pycket.cont import continuation, loop_label from pycket.error import SchemeException from pycket.prims.expose import default, expose, procedure, define_nyi from rpython.rlib import jit, objectmodel _KEY = 0 _VALUE = 1 _KEY_AND_VALUE = 2 _PAIR = 3 PREFIXES = ["unsafe-mutable", "unsafe-immutable"] def prefix_hash_names(base): result = [base] for pre in PREFIXES: result.append("%s-%s" % (pre, base)) return result @expose(prefix_hash_names("hash-iterate-first"), [W_HashTable]) def hash_iterate_first(ht): if ht.length() == 0: return values.w_false return values.W_Fixnum.ZERO @expose(prefix_hash_names("hash-iterate-next"), [W_HashTable, values.W_Fixnum]) def hash_iterate_next(ht, pos): return ht.hash_iterate_next(pos) @objectmodel.specialize.arg(4) def hash_iter_ref(ht, n, env, cont, returns): from pycket.interpreter import return_value, return_multi_vals try: w_key, w_val = ht.get_item(n) if returns == _KEY: return return_value(w_key, env, cont) if returns == _VALUE: return return_value(w_val, env, cont) if returns == _KEY_AND_VALUE: vals = values.Values._make2(w_key, w_val) return return_multi_vals(vals, env, cont) if returns == _PAIR: vals = values.W_Cons.make(w_key, w_val) return return_value(vals, env, cont) assert False, "unknown return code" except KeyError: raise SchemeException("hash-iterate-key: invalid position") except IndexError: raise SchemeException("hash-iterate-key: invalid position") @expose(prefix_hash_names("hash-iterate-key"), [W_HashTable, values.W_Fixnum], simple=False) def hash_iterate_key(ht, pos, env, cont): return hash_iter_ref(ht, pos.value, env, cont, returns=_KEY) @expose(prefix_hash_names("hash-iterate-value"), [W_HashTable, values.W_Fixnum], simple=False) def hash_iterate_value(ht, pos, env, cont): return hash_iter_ref(ht, pos.value, env, cont, returns=_VALUE) @expose(prefix_hash_names("hash-iterate-key+value"), [W_HashTable, values.W_Fixnum], simple=False) def hash_iterate_key_value(ht, pos, env, cont): return hash_iter_ref(ht, pos.value, env, cont, returns=_KEY_AND_VALUE) @expose(prefix_hash_names("hash-iterate-pair"), [W_HashTable, values.W_Fixnum], simple=False) def hash_iterate_pair(ht, pos, env, cont): return hash_iter_ref(ht, pos.value, env, cont, returns=_PAIR) @expose("hash-for-each", [W_HashTable, procedure, default(values.W_Object, values.w_false)], simple=False) def hash_for_each(ht, f, try_order, env, cont): # FIXME: implmeent try-order? -- see hash-map return hash_for_each_loop(ht, f, 0, env, cont) @loop_label def hash_for_each_loop(ht, f, index, env, cont): from pycket.interpreter import return_value try: w_key, w_value = ht.get_item(index) except KeyError: return hash_for_each_loop(ht, f, index + 1, env, cont) except IndexError: return return_value(values.w_void, env, cont) return f.call([w_key, w_value], env, hash_for_each_cont(ht, f, index, env, cont)) @continuation def hash_for_each_cont(ht, f, index, env, cont, _vals): return hash_for_each_loop(ht, f, index + 1, env, cont) @expose("hash-map", [W_HashTable, procedure, default(values.W_Object, values.w_false)], simple=False) def hash_map(h, f, try_order, env, cont): # FIXME : If try-order? is true, then the order of keys and values # passed to proc is normalized under certain circumstances, such # as when the keys are all symbols and hash is not an # impersonator. from pycket.interpreter import return_value acc = values.w_null return hash_map_loop(f, h, 0, acc, env, cont) # f.enable_jitting() # return return_value(w_missing, env, # hash_map_cont(f, h, 0, acc, env, cont)) @loop_label def hash_map_loop(f, ht, index, w_acc, env, cont): from pycket.interpreter import return_value try: w_key, w_value = ht.get_item(index) except KeyError: return hash_map_loop(f, ht, index + 1, w_acc, env, cont) except IndexError: return return_value(w_acc, env, cont) after = hash_map_cont(f, ht, index, w_acc, env, cont) return f.call([w_key, w_value], env, after) @continuation def hash_map_cont(f, ht, index, w_acc, env, cont, _vals): from pycket.interpreter import check_one_val w_val = check_one_val(_vals) w_acc = values.W_Cons.make(w_val, w_acc) return hash_map_loop(f, ht, index + 1, w_acc, env, cont) @jit.elidable def from_assocs(assocs, fname): if not assocs.is_proper_list(): raise SchemeException("%s: expected proper list" % fname) keys = [] vals = [] while isinstance(assocs, values.W_Cons): val, assocs = assocs.car(), assocs.cdr() if not isinstance(val, values.W_Cons): raise SchemeException("%s: expected list of pairs" % fname) keys.append(val.car()) vals.append(val.cdr()) return keys[:], vals[:] @expose("make-weak-hasheq", [default(values.W_List, values.w_null)]) def make_weak_hasheq(assocs): # FIXME: not actually weak return make_simple_mutable_table_assocs(W_EqMutableHashTable, assocs, "make-weak-hasheq") @expose("make-weak-hasheqv", [default(values.W_List, values.w_null)]) def make_weak_hasheqv(assocs): # FIXME: not actually weak return make_simple_mutable_table_assocs(W_EqvMutableHashTable, assocs, "make-weak-hasheqv") @expose(["make-weak-hash", "make-late-weak-hasheq"], [default(values.W_List, None)]) def make_weak_hash(assocs): if assocs is None: return W_EqualHashTable([], [], immutable=False) return W_EqualHashTable(*from_assocs(assocs, "make-weak-hash"), immutable=False) @expose("make-immutable-hash", [default(values.W_List, values.w_null)]) def make_immutable_hash(assocs): keys, vals = from_assocs(assocs, "make-immutable-hash") return W_EqualHashTable(keys, vals, immutable=True) @expose("make-immutable-hasheq", [default(values.W_List, values.w_null)]) def make_immutable_hasheq(assocs): return make_simple_immutable_table_assocs(W_EqImmutableHashTable, assocs, "make-immutable-hasheq") @expose("make-immutable-hasheqv", [default(values.W_List, values.w_null)]) def make_immutable_hasheqv(assocs): return make_simple_immutable_table_assocs(W_EqvImmutableHashTable, assocs, "make-immutable-hasheq") @expose("hash") def hash(args): if len(args) % 2 != 0: raise SchemeException("hash: key does not have a corresponding value") keys = [args[i] for i in range(0, len(args), 2)] vals = [args[i] for i in range(1, len(args), 2)] return W_EqualHashTable(keys, vals, immutable=True) @expose("hasheq") def hasheq(args): if len(args) % 2 != 0: raise SchemeException("hasheq: key does not have a corresponding value") keys = [args[i] for i in range(0, len(args), 2)] vals = [args[i] for i in range(1, len(args), 2)] return make_simple_immutable_table(W_EqImmutableHashTable, keys, vals) @expose("hasheqv") def hasheqv(args): if len(args) % 2 != 0: raise SchemeException("hasheqv: key does not have a corresponding value") keys = [args[i] for i in range(0, len(args), 2)] vals = [args[i] for i in range(1, len(args), 2)] return make_simple_immutable_table(W_EqvImmutableHashTable, keys, vals) @expose("make-hash", [default(values.W_List, values.w_null)]) def make_hash(pairs): return W_EqualHashTable(*from_assocs(pairs, "make-hash")) @expose("make-hasheq", [default(values.W_List, values.w_null)]) def make_hasheq(pairs): return make_simple_mutable_table_assocs(W_EqMutableHashTable, pairs, "make-hasheq") @expose("make-hasheqv", [default(values.W_List, values.w_null)]) def make_hasheqv(pairs): return make_simple_mutable_table_assocs(W_EqvMutableHashTable, pairs, "make-hasheqv") @expose("hash-set!", [W_HashTable, values.W_Object, values.W_Object], simple=False) def hash_set_bang(ht, k, v, env, cont): if ht.immutable(): raise SchemeException("hash-set!: given immutable table") return ht.hash_set(k, v, env, cont) @continuation def hash_set_cont(key, val, env, cont, _vals): from pycket.interpreter import check_one_val table = check_one_val(_vals) return table.hash_set(key, val, env, return_table_cont(table, env, cont)) @continuation def return_table_cont(table, env, cont, _vals): from pycket.interpreter import return_value return return_value(table, env, cont) @expose("hash-set", [W_HashTable, values.W_Object, values.W_Object], simple=False) def hash_set(table, key, val, env, cont): from pycket.interpreter import return_value if not table.immutable(): raise SchemeException("hash-set: not given an immutable table") # Fast path if isinstance(table, W_ImmutableHashTable): new_table = table.assoc(key, val) return return_value(new_table, env, cont) return hash_copy(table, env, hash_set_cont(key, val, env, cont)) @continuation def hash_ref_cont(default, k, env, cont, _vals): from pycket.interpreter import return_value, check_one_val val = check_one_val(_vals) if val is not w_missing: return return_value(val, env, cont) if default is None: raise SchemeException("key %s not found"%k.tostring()) if default.iscallable(): return default.call([], env, cont) return return_value(default, env, cont) @expose("hash-ref", [W_HashTable, values.W_Object, default(values.W_Object, None)], simple=False) def hash_ref(ht, k, default, env, cont): return ht.hash_ref(k, env, hash_ref_cont(default, k, env, cont)) @expose("hash-remove!", [W_HashTable, values.W_Object], simple=False) def hash_remove_bang(ht, k, env, cont): if ht.immutable(): raise SchemeException("hash-remove!: expected mutable hash table") return ht.hash_remove_inplace(k, env, cont) @expose("hash-remove", [W_HashTable, values.W_Object], simple=False) def hash_remove(ht, k, env, cont): if not ht.immutable(): raise SchemeException("hash-remove: expected immutable hash table") return ht.hash_remove(k, env, cont) @continuation def hash_clear_cont(ht, env, cont, _vals): return hash_clear_loop(ht, env, cont) def hash_clear_loop(ht, env, cont): from pycket.interpreter import return_value if ht.length() == 0: return return_value(values.w_void, env, cont) w_k, w_v = ht.get_item(0) return ht.hash_remove_inplace(w_k, env, hash_clear_cont(ht, env, cont)) @expose("hash-clear!", [W_HashTable], simple=False) def hash_clear_bang(ht, env, cont): from pycket.interpreter import return_value if ht.is_impersonator(): ht.hash_clear_proc(env, cont) return hash_clear_loop(ht, env, cont) else: ht.hash_empty() return return_value(values.w_void, env, cont) define_nyi("hash-clear", [W_HashTable]) @expose("hash-count", [W_HashTable]) def hash_count(hash): return values.W_Fixnum(hash.length()) @continuation def hash_keys_subset_huh_cont(keys_vals, hash_2, idx, env, cont, _vals): from pycket.interpreter import return_value, check_one_val val = check_one_val(_vals) if val is values.w_false: return return_value(values.w_false, env, cont) else: return hash_keys_subset_huh_loop(keys_vals, hash_2, idx + 1, env, cont) @loop_label def hash_keys_subset_huh_loop(keys_vals, hash_2, idx, env, cont): from pycket.interpreter import return_value if idx >= len(keys_vals): return return_value(values.w_true, env, cont) else: return hash_ref([hash_2, keys_vals[idx][0], values.w_false], env, hash_keys_subset_huh_cont(keys_vals, hash_2, idx, env, cont)) @jit.elidable def uses_same_eq_comparison(hash_1, hash_2): h_1 = hash_1 h_2 = hash_2 if hash_1.is_impersonator() or hash_1.is_chaperone(): h_1 = hash_1.get_proxied() if hash_2.is_impersonator() or hash_2.is_chaperone(): h_2 = hash_2.get_proxied() if isinstance(h_1, W_EqualHashTable): return isinstance(h_2, W_EqualHashTable) elif isinstance(h_1, W_EqMutableHashTable) or isinstance(h_1, W_EqImmutableHashTable): return isinstance(h_2, W_EqMutableHashTable) or isinstance(h_2, W_EqImmutableHashTable) elif isinstance(h_1, W_EqvMutableHashTable) or isinstance(h_1, W_EqvImmutableHashTable): return isinstance(h_2, W_EqvMutableHashTable) or isinstance(h_2, W_EqvImmutableHashTable) else: return False @expose("hash-keys-subset?", [W_HashTable, W_HashTable], simple=False) def hash_keys_subset_huh(hash_1, hash_2, env, cont): if not uses_same_eq_comparison(hash_1, hash_2): raise SchemeException("hash-keys-subset?: given hash tables do not use the same key comparison -- first table : %s - second table: %s" % (hash_1.tostring(), hash_2.tostring())) return hash_keys_subset_huh_loop(hash_1.hash_items(), hash_2, 0, env, cont) @continuation def hash_copy_ref_cont(keys, idx, src, new, env, cont, _vals): from pycket.interpreter import check_one_val val = check_one_val(_vals) return new.hash_set(keys[idx][0], val, env, hash_copy_set_cont(keys, idx, src, new, env, cont)) @continuation def hash_copy_set_cont(keys, idx, src, new, env, cont, _vals): return hash_copy_loop(keys, idx + 1, src, new, env, cont) @loop_label def hash_copy_loop(keys, idx, src, new, env, cont): from pycket.interpreter import return_value if idx >= len(keys): return return_value(new, env, cont) return src.hash_ref(keys[idx][0], env, hash_copy_ref_cont(keys, idx, src, new, env, cont)) def hash_copy(src, env, cont): from pycket.interpreter import return_value if isinstance(src, W_ImmutableHashTable): new = src.make_copy() return return_value(new, env, cont) new = src.make_empty() if src.length() == 0: return return_value(new, env, cont) return hash_copy_loop(src.hash_items(), 0, src, new, env, cont) expose("hash-copy", [W_HashTable], simple=False)(hash_copy) # FIXME: not implemented @expose("equal-hash-code", [values.W_Object]) def equal_hash_code(v): # only for improper path cache entries if isinstance(v, values.W_Cons): if v.is_proper_list(): return values.W_Fixnum.ZERO nm = v.car() p = v.cdr() if isinstance(nm, values_string.W_String) and \ isinstance(p, values.W_Path) and \ isinstance(p.path, str): return values.W_Fixnum(objectmodel.compute_hash((nm.tostring(), p.path))) return values.W_Fixnum.ZERO @expose("equal-secondary-hash-code", [values.W_Object]) def equal_secondary_hash_code(v): return values.W_Fixnum.ZERO @expose("eq-hash-code", [values.W_Object]) def eq_hash_code(v): t = type(v) if t is values.W_Fixnum: return v if t is values.W_Flonum: hash = objectmodel.compute_hash(v.value) elif t is values.W_Character: hash = objectmodel.compute_hash(v.value) else: hash = objectmodel.compute_hash(v) return values.W_Fixnum(hash) @expose("eqv-hash-code", [values.W_Object]) def eqv_hash_code(v): hash = v.hash_eqv() return values.W_Fixnum(hash)
linAlgVis.py
testinggg-art/Linear_Algebra_With_Python
1,719
12788895
<filename>linAlgVis.py import matplotlib.pyplot as plt import numpy as np import numpy def linearCombo(a, b, c): '''This function is for visualizing linear combination of standard basis in 3D. Function syntax: linearCombo(a, b, c), where a, b, c are the scalar multiplier, also the elements of the vector. ''' fig = plt.figure(figsize = (10,10)) ax = fig.add_subplot(projection='3d') ######################## Standard basis and Scalar Multiplid Vectors######################### vec = np.array([[[0, 0, 0, 1, 0, 0]], # e1 [[0, 0, 0, 0, 1, 0]], # e2 [[0, 0, 0, 0, 0, 1]], # e3 [[0, 0, 0, a, 0, 0]], # a* e1 [[0, 0, 0, 0, b, 0]], # b* e2 [[0, 0, 0, 0, 0, c]], # c* e3 [[0, 0, 0, a, b, c]]]) # ae1 + be2 + ce3 colors = ['b','b','b','r','r','r','g'] for i in range(vec.shape[0]): X, Y, Z, U, V, W = zip(*vec[i,:,:]) ax.quiver(X, Y, Z, U, V, W, length=1, normalize=False, color = colors[i] ,arrow_length_ratio = .08, pivot = 'tail', linestyles = 'solid',linewidths = 3, alpha =.6) #################################Plot Rectangle Boxes############################## dlines = np.array([[[a, 0, 0],[a, b, 0]], [[0, b, 0],[a, b, 0]], [[0, 0, c],[a, b, c]], [[0, 0, c],[a, 0, c]], [[a, 0, c],[a, b, c]], [[0, 0, c],[0, b, c]], [[0, b, c],[a, b, c]], [[a, 0, 0],[a, 0, c]], [[0, b, 0],[0, b, c]], [[a, b, 0],[a, b, c]]]) colors = ['k','k','g','k','k','k','k','k','k'] for i in range(dlines.shape[0]): ax.plot(dlines[i,:,0], dlines[i,:,1], dlines[i,:,2], lw =3, ls = '--', color = 'black', alpha=0.5) #################################Annotation######################################## ax.text(x = a, y = b, z = c, s= ' $(%0.d, %0.d, %.0d)$'% (a, b, c), size = 18) ax.text(x = a, y = 0, z = 0, s= ' $%0.d e_1 = (%0.d, 0, 0)$'% (a, a), size = 15) ax.text(x = 0, y = b, z = 0, s= ' $%0.d e_2 = (0, %0.d, 0)$'% (b, b), size = 15) ax.text(x = 0, y = 0, z = c, s= ' $%0.d e_3 = (0, 0, %0.d)$' %(c, c), size = 15) #################################Axis Setting###################################### ax.grid() ax.set_xlim([0, a+1]) ax.set_ylim([0, b+1]) ax.set_zlim([0, c+1]) ax.set_xlabel('x-axis', size = 18) ax.set_ylabel('y-axis', size = 18) ax.set_zlabel('z-axis', size = 18) ax.set_title('Vector $(%0.d, %0.d, %.0d)$ Visualization' %(a, b, c), size = 20) ax.view_init(elev=20., azim=15) if __name__ == '__main__': a = 7 b = 4 c = 9 linearCombo(a, b, c) def linearComboNonStd(a, b, c, vec1, vec2, vec3): '''This function is for visualizing linear combination of non-standard basis in 3D. Function syntax: linearCombo(a, b, c, vec1, vec2, vec3), where a, b, c are the scalar multiplier, ve1, vec2 and vec3 are the basis. ''' fig = plt.figure(figsize = (10,10)) ax = fig.add_subplot(projection='3d') ########################Plot basis############################## vec1 = np.array([[0, 0, 0, vec1[0], vec1[1], vec1[2]]]) X, Y, Z, U, V, W = zip(*vec1) ax.quiver(X, Y, Z, U, V, W, length=1, normalize=False, color = 'blue',arrow_length_ratio = .08, pivot = 'tail', linestyles = 'solid',linewidths = 3) vec2 = np.array([[0, 0, 0, vec2[0], vec2[1], vec2[2]]]) X, Y, Z, U, V, W = zip(*vec2) ax.quiver(X, Y, Z, U, V, W, length=1, normalize=False, color = 'blue',arrow_length_ratio = .08, pivot = 'tail', linestyles = 'solid',linewidths = 3) vec3 = np.array([[0, 0, 0, vec3[0], vec3[1], vec3[2]]]) X, Y, Z, U, V, W = zip(*vec3) ax.quiver(X, Y, Z, U, V, W, length=1, normalize=False, color = 'blue',arrow_length_ratio = .08, pivot = 'tail', linestyles = 'solid',linewidths = 3) ###########################Plot Scalar Muliplied Vectors#################### avec1 = a * vec1 X, Y, Z, U, V, W = zip(*avec1) ax.quiver(X, Y, Z, U, V, W, length=1, normalize=False, color = 'red', alpha = .6,arrow_length_ratio = a/100, pivot = 'tail', linestyles = 'solid',linewidths = 3) bvec2 = b * vec2 X, Y, Z, U, V, W = zip(*bvec2) ax.quiver(X, Y, Z, U, V, W, length=1, normalize=False, color = 'red', alpha = .6,arrow_length_ratio = b/100, pivot = 'tail', linestyles = 'solid',linewidths = 3) cvec3 = c * vec3 X, Y, Z, U, V, W = zip(*cvec3) ax.quiver(X, Y, Z, U, V, W, length=1, normalize=False, color = 'red', alpha = .6,arrow_length_ratio = c/100, pivot = 'tail', linestyles = 'solid',linewidths = 3) combo = avec1 + bvec2 + cvec3 X, Y, Z, U, V, W = zip(*combo) ax.quiver(X, Y, Z, U, V, W, length=1, normalize=False, color = 'green', alpha = .7,arrow_length_ratio = np.linalg.norm(combo)/300, pivot = 'tail', linestyles = 'solid',linewidths = 3) #################################Plot Rectangle Boxes############################## point1 = [avec1[0, 3], avec1[0, 4], avec1[0, 5]] point2 = [avec1[0, 3]+bvec2[0, 3], avec1[0, 4]+bvec2[0, 4], avec1[0, 5]+bvec2[0, 5]] line1 = np.array([point1, point2]) ax.plot(line1[:,0], line1[:,1], line1[:,2], lw =3, ls = '--', color = 'black', alpha=0.5) point1 = [bvec2[0, 3], bvec2[0, 4], bvec2[0, 5]] point2 = [avec1[0, 3]+bvec2[0, 3], avec1[0, 4]+bvec2[0, 4], avec1[0, 5]+bvec2[0, 5]] line1 = np.array([point1, point2]) ax.plot(line1[:,0], line1[:,1], line1[:,2], lw =3, ls = '--', color = 'black', alpha=0.5) point1 = [bvec2[0, 3], bvec2[0, 4], bvec2[0, 5]] point2 = [cvec3[0, 3]+bvec2[0, 3], cvec3[0, 4]+bvec2[0, 4], cvec3[0, 5]+bvec2[0, 5]] line1 = np.array([point1, point2]) ax.plot(line1[:,0], line1[:,1], line1[:,2], lw =3, ls = '--', color = 'black', alpha=0.5) point1 = [cvec3[0, 3], cvec3[0, 4], cvec3[0, 5]] point2 = [cvec3[0, 3]+bvec2[0, 3], cvec3[0, 4]+bvec2[0, 4], cvec3[0, 5]+bvec2[0, 5]] line1 = np.array([point1, point2]) ax.plot(line1[:,0], line1[:,1], line1[:,2], lw =3, ls = '--', color = 'black', alpha=0.5) point1 = [cvec3[0, 3], cvec3[0, 4], cvec3[0, 5]] point2 = [cvec3[0, 3]+avec1[0, 3], cvec3[0, 4]+avec1[0, 4], cvec3[0, 5]+avec1[0, 5]] line1 = np.array([point1, point2]) ax.plot(line1[:,0], line1[:,1], line1[:,2], lw =3, ls = '--', color = 'black', alpha=0.5) point1 = [avec1[0, 3], avec1[0, 4], avec1[0, 5]] point2 = [cvec3[0, 3]+avec1[0, 3], cvec3[0, 4]+avec1[0, 4], cvec3[0, 5]+avec1[0, 5]] line1 = np.array([point1, point2]) ax.plot(line1[:,0], line1[:,1], line1[:,2], lw =3, ls = '--', color = 'black', alpha=0.5) ## point1 = [avec1[0, 3]+bvec2[0, 3]+cvec3[0, 3], avec1[0, 4]+bvec2[0, 4]+cvec3[0, 4], avec1[0, 5]+bvec2[0, 5]+cvec3[0, 5]] point2 = [cvec3[0, 3]+avec1[0, 3], cvec3[0, 4]+avec1[0, 4], cvec3[0, 5]+avec1[0, 5]] line1 = np.array([point1, point2]) ax.plot(line1[:,0], line1[:,1], line1[:,2], lw =3, ls = '--', color = 'black', alpha=0.5) ## point1 = [avec1[0, 3]+bvec2[0, 3]+cvec3[0, 3], avec1[0, 4]+bvec2[0, 4]+cvec3[0, 4], avec1[0, 5]+bvec2[0, 5]+cvec3[0, 5]] point2 = [cvec3[0, 3]+bvec2[0, 3], cvec3[0, 4]+bvec2[0, 4], cvec3[0, 5]+bvec2[0, 5]] line1 = np.array([point1, point2]) ax.plot(line1[:,0], line1[:,1], line1[:,2], lw =3, ls = '--', color = 'black', alpha=0.5) ## point1 = [avec1[0, 3]+bvec2[0, 3]+cvec3[0, 3], avec1[0, 4]+bvec2[0, 4]+cvec3[0, 4], avec1[0, 5]+bvec2[0, 5]+cvec3[0, 5]] point2 = [bvec2[0, 3]+avec1[0, 3], bvec2[0, 4]+avec1[0, 4], bvec2[0, 5]+avec1[0, 5]] line1 = np.array([point1, point2]) ax.plot(line1[:,0], line1[:,1], line1[:,2], lw =3, ls = '--', color = 'black', alpha=0.5) #################################Annotation######################################## ax.text(x = vec1[0,3], y = vec1[0,4], z = vec1[0,5], s= ' $v_1 =(%0.d, %0.d, %.0d)$'% (vec1[0,3], vec1[0,4], vec1[0,4]), size = 8) ax.text(x = vec2[0,3], y = vec2[0,4], z = vec2[0,5], s= ' $v_2 =(%0.d, %0.d, %.0d)$'% (vec2[0,3], vec2[0,4], vec2[0,4]), size = 8) ax.text(x = vec3[0,3], y = vec3[0,4], z = vec3[0,5], s= ' $v_3= (%0.d, %0.d, %.0d)$'% (vec3[0,3], vec3[0,4], vec3[0,4]), size = 8) ax.text(x = avec1[0,3], y = avec1[0,4], z = avec1[0,5], s= ' $%.0d v_1 =(%0.d, %0.d, %.0d)$'% (a, avec1[0,3], avec1[0,4], avec1[0,4]), size = 8) ax.text(x = bvec2[0,3], y = bvec2[0,4], z = bvec2[0,5], s= ' $%.0d v_2 =(%0.d, %0.d, %.0d)$'% (b, bvec2[0,3], bvec2[0,4], bvec2[0,4]), size = 8) ax.text(x = cvec3[0,3], y = cvec3[0,4], z = cvec3[0,5], s= ' $%.0d v_3= (%0.d, %0.d, %.0d)$'% (c, cvec3[0,3], cvec3[0,4], cvec3[0,4]), size = 8) # ax.text(x = 0, y = b, z = 0, s= ' $%0.d e_2 = (0, %0.d, 0)$'% (b, b), size = 15) # ax.text(x = 0, y = 0, z = c, s= ' $%0.d e_3 = (0, 0, %0.d)$' %(c, c), size = 15) #################################Axis Setting###################################### ax.grid() ax.set_xlim([0, 15]) ax.set_ylim([0, 15]) ax.set_zlim([0, 15]) ax.set_xlabel('x-axis', size = 18) ax.set_ylabel('y-axis', size = 18) ax.set_zlabel('z-axis', size = 18) #ax.set_title('Vector $(%0.d, %0.d, %.0d)$ Visualization' %(a, b, c), size = 20) ax.view_init(elev=20., azim=15) if __name__ == '__main__': a = 2 b = 3 c = 4 vec1 = np.array([2,1,0]) vec2 = np.array([0,3,1]) vec3 = np.array([1,2,3]) linearComboNonStd(a, b, c, vec1,vec2,vec3)
mmdet/det_core/utils/mAP_utils.py
Karybdis/mmdetection-mini
834
12788937
import numpy as np from multiprocessing import Pool from ..bbox import bbox_overlaps # https://zhuanlan.zhihu.com/p/34655990 def calc_PR_curve(pred, label): pos = label[label == 1] # 正样本 threshold = np.sort(pred)[::-1] # pred是每个样本的正例预测概率值,逆序 label = label[pred.argsort()[::-1]] precision = [] recall = [] tp = 0 fp = 0 ap = 0 # 平均精度 for i in range(len(threshold)): if label[i] == 1: tp += 1 recall.append(tp / len(pos)) precision.append(tp / (tp + fp)) # 近似曲线下面积 ap += (recall[i] - recall[i - 1]) * precision[i] else: fp += 1 recall.append(tp / len(pos)) precision.append(tp / (tp + fp)) return precision, recall, ap def tpfp_voc(det_bboxes, gt_bboxes, iou_thr=0.5): num_dets = det_bboxes.shape[0] num_gts = gt_bboxes.shape[0] # tp和fp都是针对预测个数而言,不是gt个数 tp = np.zeros(num_dets, dtype=np.float32) fp = np.zeros(num_dets, dtype=np.float32) # 如果gt=0,那么所有预测框都算误报,所有预测bbox位置的fp都设置为1 if gt_bboxes.shape[0] == 0: fp[...] = 1 return tp, fp if num_dets == 0: return tp, fp ious = bbox_overlaps(det_bboxes[:, :4], gt_bboxes).numpy() # print(ious) # 对于每个预测框,找到最匹配的gt iou ious_max = ious.max(axis=1) # 对于每个预测框,找到最匹配gt的索引 ious_argmax = ious.argmax(axis=1) # 按照预测概率分支降序排列 sort_inds = np.argsort(-det_bboxes[:, -1]) gt_covered = np.zeros(num_gts, dtype=bool) # 多对一情况下,除了概率分值最大且大于阈值的预测框算tp外,其他框全部算fp for i in sort_inds: # 如果大于iou,则表示匹配 if ious_max[i] >= iou_thr: matched_gt = ious_argmax[i] # 每个gt bbox只匹配一次,且是和预测概率最大的匹配,不是按照iou if not gt_covered[matched_gt]: gt_covered[matched_gt] = True tp[i] = 1 else: fp[i] = 1 else: fp[i] = 1 return tp, fp def _average_precision(recalls, precisions, mode='voc2007'): recalls = recalls[np.newaxis, :] precisions = precisions[np.newaxis, :] assert recalls.shape == precisions.shape and recalls.ndim == 2 num_scales = recalls.shape[0] ap = np.zeros(num_scales, dtype=np.float32) if mode == 'voc2012': # 平滑后就是标准的PR曲线算法 zeros = np.zeros((num_scales, 1), dtype=recalls.dtype) ones = np.ones((num_scales, 1), dtype=recalls.dtype) mrec = np.hstack((zeros, recalls, ones)) mpre = np.hstack((zeros, precisions, zeros)) # 写法比较高级,高效 for i in range(mpre.shape[1] - 1, 0, -1): mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i]) # 每段区间内,精度都是取最大值,也就是水平线 for i in range(num_scales): ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0] # 找到召回率转折点,表示x轴移动区间索引 ap[i] = np.sum( (mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1]) # 每段面积和 elif mode == 'voc2007': # 11点法,需要平平滑处理 for i in range(num_scales): for thr in np.arange(0, 1 + 1e-3, 0.1): precs = precisions[i, recalls[i, :] >= thr] prec = precs.max() if precs.size > 0 else 0 ap[i] += prec ap /= 11 else: raise ValueError( 'Unrecognized mode, only "area" and "11points" are supported') return ap # code ref from mmdetection def voc_eval_map(results, annotations, iou_thr=0.5, name='voc2007', nproc=4): """ :param results: list[list],外层list是指代图片编号,内层list是指代类别编号, 假设一共20个类,则内层list长度为20,每个List内部是numpy矩阵,nx5表示每张图片对应的每个类别的检测bbox,xyxyconf格式 :param annotations:和results一样 :param iou_thr: 是否算TP的阈值,voc默认是0.5 :param name: 采用哪一种评估指标,voc2007是11点,voc2012是标准pr曲线计算 :return: """ assert len(results) == len(annotations) num_imgs = len(results) # 图片个数 num_classes = len(results[0]) # positive class num pool = Pool(nproc) eval_results = [] for i in range(num_classes): cls_dets = [img_res[i] for img_res in results] cls_gts = [img_res[i] for img_res in annotations] tpfp = pool.starmap( tpfp_voc, zip(cls_dets, cls_gts, [iou_thr for _ in range(num_imgs)])) # 得到每个预测bbox的tp和fp情况 tp, fp = tuple(zip(*tpfp)) # 统计gt bbox数目 num_gts = 0 for j, bbox in enumerate(cls_gts): num_gts += bbox.shape[0] # 合并所有图片所有预测bbox cls_dets = np.vstack(cls_dets) num_dets = cls_dets.shape[0] # 检测bbox个数 # 以上计算出了每个预测bbox的tp和fp情况 # 此处计算精度和召回率,写的比较高级 sort_inds = np.argsort(-cls_dets[:, -1]) # 按照预测概率分值降序排列 # 仔细思考这种写法,其实是c3_pr_roc.py里面calc_PR_curve的高级快速写法 tp = np.hstack(tp)[sort_inds][None] fp = np.hstack(fp)[sort_inds][None] tp = np.cumsum(tp, axis=1) fp = np.cumsum(fp, axis=1) eps = np.finfo(np.float32).eps recalls = tp / np.maximum(num_gts, eps) precisions = tp / np.maximum((tp + fp), eps) recalls = recalls[0, :] precisions = precisions[0, :] # print('recalls', recalls, 'precisions', precisions) ap = _average_precision(recalls, precisions, name)[0] eval_results.append({ 'num_gts': num_gts, 'num_dets': num_dets, 'recall': recalls, 'precision': precisions, 'ap': ap }) pool.close() aps = [] for cls_result in eval_results: if cls_result['num_gts'] > 0: aps.append(cls_result['ap']) mean_ap = np.array(aps).mean().item() if aps else 0.0 return mean_ap
deepscm/experiments/medical/ukbb/sem_vi/conditional_sem.py
mobarakol/deepscm
183
12788960
import torch import pyro from pyro.nn import pyro_method from pyro.distributions import Normal, Bernoulli, TransformedDistribution from pyro.distributions.conditional import ConditionalTransformedDistribution from deepscm.distributions.transforms.affine import ConditionalAffineTransform from pyro.nn import DenseNN from deepscm.experiments.medical.ukbb.sem_vi.base_sem_experiment import BaseVISEM, MODEL_REGISTRY class ConditionalVISEM(BaseVISEM): context_dim = 2 def __init__(self, **kwargs): super().__init__(**kwargs) # ventricle_volume flow ventricle_volume_net = DenseNN(2, [8, 16], param_dims=[1, 1], nonlinearity=torch.nn.LeakyReLU(.1)) self.ventricle_volume_flow_components = ConditionalAffineTransform(context_nn=ventricle_volume_net, event_dim=0) self.ventricle_volume_flow_transforms = [self.ventricle_volume_flow_components, self.ventricle_volume_flow_constraint_transforms] # brain_volume flow brain_volume_net = DenseNN(2, [8, 16], param_dims=[1, 1], nonlinearity=torch.nn.LeakyReLU(.1)) self.brain_volume_flow_components = ConditionalAffineTransform(context_nn=brain_volume_net, event_dim=0) self.brain_volume_flow_transforms = [self.brain_volume_flow_components, self.brain_volume_flow_constraint_transforms] @pyro_method def pgm_model(self): sex_dist = Bernoulli(logits=self.sex_logits).to_event(1) _ = self.sex_logits sex = pyro.sample('sex', sex_dist) age_base_dist = Normal(self.age_base_loc, self.age_base_scale).to_event(1) age_dist = TransformedDistribution(age_base_dist, self.age_flow_transforms) age = pyro.sample('age', age_dist) age_ = self.age_flow_constraint_transforms.inv(age) # pseudo call to thickness_flow_transforms to register with pyro _ = self.age_flow_components brain_context = torch.cat([sex, age_], 1) brain_volume_base_dist = Normal(self.brain_volume_base_loc, self.brain_volume_base_scale).to_event(1) brain_volume_dist = ConditionalTransformedDistribution(brain_volume_base_dist, self.brain_volume_flow_transforms).condition(brain_context) brain_volume = pyro.sample('brain_volume', brain_volume_dist) # pseudo call to intensity_flow_transforms to register with pyro _ = self.brain_volume_flow_components brain_volume_ = self.brain_volume_flow_constraint_transforms.inv(brain_volume) ventricle_context = torch.cat([age_, brain_volume_], 1) ventricle_volume_base_dist = Normal(self.ventricle_volume_base_loc, self.ventricle_volume_base_scale).to_event(1) ventricle_volume_dist = ConditionalTransformedDistribution(ventricle_volume_base_dist, self.ventricle_volume_flow_transforms).condition(ventricle_context) # noqa: E501 ventricle_volume = pyro.sample('ventricle_volume', ventricle_volume_dist) # pseudo call to intensity_flow_transforms to register with pyro _ = self.ventricle_volume_flow_components return age, sex, ventricle_volume, brain_volume @pyro_method def model(self): age, sex, ventricle_volume, brain_volume = self.pgm_model() ventricle_volume_ = self.ventricle_volume_flow_constraint_transforms.inv(ventricle_volume) brain_volume_ = self.brain_volume_flow_constraint_transforms.inv(brain_volume) z = pyro.sample('z', Normal(self.z_loc, self.z_scale).to_event(1)) latent = torch.cat([z, ventricle_volume_, brain_volume_], 1) x_dist = self._get_transformed_x_dist(latent) x = pyro.sample('x', x_dist) return x, z, age, sex, ventricle_volume, brain_volume @pyro_method def guide(self, x, age, sex, ventricle_volume, brain_volume): with pyro.plate('observations', x.shape[0]): hidden = self.encoder(x) ventricle_volume_ = self.ventricle_volume_flow_constraint_transforms.inv(ventricle_volume) brain_volume_ = self.brain_volume_flow_constraint_transforms.inv(brain_volume) hidden = torch.cat([hidden, ventricle_volume_, brain_volume_], 1) latent_dist = self.latent_encoder.predict(hidden) z = pyro.sample('z', latent_dist) return z MODEL_REGISTRY[ConditionalVISEM.__name__] = ConditionalVISEM
keras_maskrcnn/utils/overlap.py
akashdeepjassal/keras-maskrcnn
432
12788972
<filename>keras_maskrcnn/utils/overlap.py """ Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np def compute_overlap(a, b): """ Args a: (N, H, W) ndarray of float b: (K, H, W) ndarray of float Returns overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ intersection = np.zeros((a.shape[0], b.shape[0])) union = np.zeros((a.shape[0], b.shape[0])) for index, mask in enumerate(a): intersection[index, :] = np.sum(np.count_nonzero(b & mask, axis=1), axis=1) union[index, :] = np.sum(np.count_nonzero(b + mask, axis=1), axis=1) return intersection / union
Python/43. MultiplyStrings.py
nizD/LeetCode-Solutions
263
12788976
""" Leetcode's Medium challege #43 - Multiply Strings (Solution) <https://leetcode.com/problems/multiply-strings/> Description: Given two non-negative integers num1 and num2 represented as strings, return the product of num1 and num2, also represented as a string. EXAMPLE: Input: num1 = "2", num2 = "3" Output: "6" Author: <Curiouspaul1> github: https://github.com/Curiouspaul1 """ def int_(s): """ Converts strings to int, raises exception for non-int literals """ reslt = 0 for i in s: if ord(i) in range(48,58): # checks that string character is something in [0-9] reslt = reslt*10 + (ord(i) - ord('0')) else: raise ValueError return reslt class Solution: def multiply(self, num1: str, num2: str) -> str: if len(num1) >= 110 or len(num2) >= 110: # constraints from leetcode return 0 try: num1, num2 = int_(num1), int_(num2) result = num1 * num2 return str(result) except ValueError: print("Invalid Entry") return 0