dmusingu's picture
End of training
f5265bd verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
  - generated_from_trainer
datasets:
  - common_voice_14_0
metrics:
  - wer
model-index:
  - name: XLS-R-SWAHILI-ASR-CV-14-1B
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_14_0
          type: common_voice_14_0
          config: sw
          split: test
          args: sw
        metrics:
          - name: Wer
            type: wer
            value: 0.2794303764906829

XLS-R-SWAHILI-ASR-CV-14-1B

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_14_0 dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.2794
  • Cer: 0.0903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
1.9691 0.33 400 0.2374 inf 0.6776
0.5464 0.66 800 0.1758 inf 0.5598
0.4909 1.0 1200 0.1680 inf 0.5243
0.4263 1.33 1600 0.1502 inf 0.4706
0.4047 1.66 2000 0.1580 inf 0.4858
0.4054 1.99 2400 0.1426 inf 0.4348
0.3542 2.32 2800 0.1340 inf 0.4185
0.3525 2.66 3200 0.1400 inf 0.4311
0.3359 2.99 3600 0.1308 inf 0.4012
0.3006 3.32 4000 0.1278 inf 0.3939
0.326 1.83 4400 inf 0.4232 0.1362
0.326 1.99 4800 inf 0.4136 0.1350
0.3034 2.16 5200 inf 0.4282 0.1419
0.2925 2.32 5600 inf 0.3901 0.1282
0.2822 2.49 6000 inf 0.3876 0.1270
0.2659 2.66 6400 inf 0.3586 0.1159
0.2582 2.82 6800 inf 0.3536 0.1168
0.2414 2.99 7200 inf 0.3327 0.1069
0.208 3.15 7600 inf 0.3249 0.1053
0.1934 3.32 8000 inf 0.3120 0.1015
0.1881 3.49 8400 inf 0.3058 0.0993
0.1774 3.65 8800 inf 0.2962 0.0959
0.1736 3.82 9200 inf 0.2902 0.0935
0.1679 3.98 9600 inf 0.2843 0.0917
0.1436 4.15 10000 inf 0.2794 0.0903

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1
  • Datasets 2.17.0
  • Tokenizers 0.15.2