|
--- |
|
base_model: yhavinga/ul2-large-dutch |
|
library_name: peft |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: ul2-large-dutch-finetuned-oba-book-search |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ul2-large-dutch-finetuned-oba-book-search |
|
|
|
This model is a fine-tuned version of [yhavinga/ul2-large-dutch](https://huggingface.co/yhavinga/ul2-large-dutch) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.8688 |
|
- Top-5-accuracy: 4.1194 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.6 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Top-5-accuracy | |
|
|:-------------:|:------:|:-----:|:---------------:|:--------------:| |
|
| 6.4431 | 0.0424 | 500 | 4.7239 | 0.0796 | |
|
| 6.4068 | 0.0848 | 1000 | 5.1338 | 0.0398 | |
|
| 5.7971 | 0.1272 | 1500 | 4.6127 | 0.0199 | |
|
| 5.452 | 0.1696 | 2000 | 4.5181 | 0.1194 | |
|
| 5.3971 | 0.2120 | 2500 | 4.5498 | 0.1393 | |
|
| 5.2693 | 0.2544 | 3000 | 4.3622 | 0.1393 | |
|
| 5.2788 | 0.2968 | 3500 | 4.3456 | 0.1990 | |
|
| 5.2129 | 0.3392 | 4000 | 4.3400 | 0.2388 | |
|
| 5.133 | 0.3815 | 4500 | 4.3021 | 0.2786 | |
|
| 5.0346 | 0.4239 | 5000 | 4.2458 | 0.9751 | |
|
| 5.113 | 0.4663 | 5500 | 4.2746 | 0.7363 | |
|
| 5.1276 | 0.5087 | 6000 | 4.2369 | 0.9552 | |
|
| 5.0586 | 0.5511 | 6500 | 4.1962 | 1.8706 | |
|
| 4.9369 | 0.5935 | 7000 | 4.1843 | 2.9254 | |
|
| 4.9152 | 0.6359 | 7500 | 4.1641 | 3.0846 | |
|
| 4.9369 | 0.6783 | 8000 | 4.1089 | 3.7413 | |
|
| 4.9185 | 0.7207 | 8500 | 4.1150 | 3.6418 | |
|
| 4.8469 | 0.7631 | 9000 | 4.0996 | 3.6418 | |
|
| 4.8854 | 0.8055 | 9500 | 4.0817 | 3.5821 | |
|
| 4.8362 | 0.8479 | 10000 | 4.0456 | 4.2587 | |
|
| 4.7867 | 0.8903 | 10500 | 4.0699 | 3.9204 | |
|
| 4.7926 | 0.9327 | 11000 | 4.0692 | 3.3831 | |
|
| 4.7933 | 0.9751 | 11500 | 4.0356 | 3.1642 | |
|
| 4.793 | 1.0175 | 12000 | 4.0607 | 2.6667 | |
|
| 4.7664 | 1.0599 | 12500 | 4.0430 | 3.5622 | |
|
| 4.7409 | 1.1023 | 13000 | 4.0239 | 3.8806 | |
|
| 4.7558 | 1.1446 | 13500 | 4.0134 | 3.7413 | |
|
| 4.7642 | 1.1870 | 14000 | 3.9884 | 3.9403 | |
|
| 4.7298 | 1.2294 | 14500 | 4.0087 | 3.6219 | |
|
| 4.7433 | 1.2718 | 15000 | 3.9809 | 4.0995 | |
|
| 4.6858 | 1.3142 | 15500 | 3.9984 | 4.2985 | |
|
| 4.7023 | 1.3566 | 16000 | 3.9655 | 4.0199 | |
|
| 4.6963 | 1.3990 | 16500 | 3.9798 | 4.1791 | |
|
| 4.7239 | 1.4414 | 17000 | 4.0001 | 4.0597 | |
|
| 4.7312 | 1.4838 | 17500 | 3.9532 | 4.0796 | |
|
| 4.6408 | 1.5262 | 18000 | 3.9487 | 4.2388 | |
|
| 4.669 | 1.5686 | 18500 | 3.9303 | 4.1990 | |
|
| 4.6589 | 1.6110 | 19000 | 3.9346 | 4.1393 | |
|
| 4.6887 | 1.6534 | 19500 | 3.9563 | 3.9403 | |
|
| 4.5856 | 1.6958 | 20000 | 3.9374 | 4.2786 | |
|
| 4.6744 | 1.7382 | 20500 | 3.9157 | 4.0995 | |
|
| 4.6395 | 1.7806 | 21000 | 3.9279 | 4.1393 | |
|
| 4.6191 | 1.8230 | 21500 | 3.9259 | 3.8408 | |
|
| 4.6256 | 1.8654 | 22000 | 3.9215 | 3.9005 | |
|
| 4.5945 | 1.9077 | 22500 | 3.9214 | 4.0796 | |
|
| 4.6325 | 1.9501 | 23000 | 3.9076 | 3.8607 | |
|
| 4.6476 | 1.9925 | 23500 | 3.8955 | 4.0199 | |
|
| 4.6362 | 2.0349 | 24000 | 3.8923 | 4.0398 | |
|
| 4.5991 | 2.0773 | 24500 | 3.8923 | 4.3383 | |
|
| 4.6189 | 2.1197 | 25000 | 3.8800 | 4.0 | |
|
| 4.5933 | 2.1621 | 25500 | 3.8869 | 3.8806 | |
|
| 4.6165 | 2.2045 | 26000 | 3.8918 | 4.0398 | |
|
| 4.5998 | 2.2469 | 26500 | 3.8819 | 3.9602 | |
|
| 4.5827 | 2.2893 | 27000 | 3.8848 | 3.9204 | |
|
| 4.528 | 2.3317 | 27500 | 3.8847 | 3.9005 | |
|
| 4.5685 | 2.3741 | 28000 | 3.8879 | 3.9204 | |
|
| 4.5698 | 2.4165 | 28500 | 3.8739 | 3.9801 | |
|
| 4.5472 | 2.4589 | 29000 | 3.8761 | 4.0398 | |
|
| 4.5605 | 2.5013 | 29500 | 3.8753 | 4.0398 | |
|
| 4.5329 | 2.5437 | 30000 | 3.8791 | 4.0796 | |
|
| 4.5687 | 2.5861 | 30500 | 3.8698 | 4.0 | |
|
| 4.5716 | 2.6285 | 31000 | 3.8659 | 4.0995 | |
|
| 4.547 | 2.6708 | 31500 | 3.8713 | 4.0597 | |
|
| 4.6466 | 2.7132 | 32000 | 3.8729 | 4.0995 | |
|
| 4.5963 | 2.7556 | 32500 | 3.8698 | 4.1194 | |
|
| 4.629 | 2.7980 | 33000 | 3.8703 | 4.1194 | |
|
| 4.5859 | 2.8404 | 33500 | 3.8699 | 4.1194 | |
|
| 4.6239 | 2.8828 | 34000 | 3.8688 | 4.1393 | |
|
| 4.5052 | 2.9252 | 34500 | 3.8688 | 4.1393 | |
|
| 4.5933 | 2.9676 | 35000 | 3.8688 | 4.1194 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.0 |
|
- Transformers 4.44.2 |
|
- Pytorch 1.13.0+cu116 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |