gdhanush270's picture
Update README.md
bd2737e verified
---
license: gpl-3.0
datasets:
- Msun/modelnet40
language:
- en
metrics:
- accuracy
tags:
- deeplearning
---
# **Automated Defect Detection in 3D Mesh Files Using Multi-Model Deep Learning Approaches**
## **πŸ“Œ Project Overview**
This project introduces a **multi-modal deep learning approach** to detect **defects in 3D mesh files** by combining:
- **CNN (Convolutional Neural Network)** for **object classification** using **ModelNet40** dataset images.
- **GNN (Graph Neural Network)** for **defect identification** in **OFF files (3D mesh models).**
- **Fusion Model** integrating **CNN and GNN** for improved classification accuracy.
## **πŸ“ Dataset & Novelty**
The dataset used in this project is **novel and proprietary**, focusing on defect detection in 3D mesh files. Only the **ModelNet40 dataset** is publicly available.
### **πŸ”Ή Folder Structure**
```
πŸ“¦ Dataset
┣ πŸ“‚ Images
┃ ┣ πŸ“‚ train
┃ ┃ ┣ πŸ“‚ category_1
┃ ┃ ┣ πŸ“‚ category_2
┃ ┃ β”— ...
┃ β”— πŸ“‚ test
β”— πŸ“‚ OFF_files
┣ πŸ“‚ train
┃ ┣ πŸ“‚ category_1
┃ ┃ ┣ πŸ“‚ normal
┃ ┃ β”— πŸ“‚ defected
┃ ┣ πŸ“‚ category_2
┃ ┃ ┣ πŸ“‚ normal
┃ ┃ β”— πŸ“‚ defected
β”— πŸ“‚ test
```
- **Images Folder** β†’ Contains object images categorized into different classes (used for CNN).
- **OFF Files Folder** β†’ Each category has **"normal"** and **"defected"** OFF files (used for GNN).
---
## **πŸš€ Model Architecture**
### **πŸ”Ή CNN Model (Image Classification)**
- Uses a **pretrained CNN model (ResNet)** to classify objects.
### **πŸ”Ή GNN Model (Defect Identification)**
- Processes **OFF files** using **node features** and **adjacency matrices**.
- Uses a **13-layer deep GNN model** to capture mesh structure defects.
### **πŸ”Ή Multi-Modal Fusion Model**
- Combines **CNN and GNN outputs** using **fully connected layers**.
- Improves **accuracy by leveraging both image and graph information**.
---
## **βš™οΈ Installation & Setup**
### **πŸ”Ή 1️⃣ Install Dependencies**
```bash
pip install tensorflow numpy networkx trimesh
```
### **πŸ”Ή 2️⃣ Run Training**
```bash
python Utils/train.py
```
### **πŸ”Ή 3️⃣ Evaluate Model**
```bash
python Utils/evaluate.py
```
---
## **πŸ“Š Results & Evaluation**
- **CNN Classification Accuracy:** **76%**
- **GNN Defect Detection Accuracy:** **78%**
- **Fusion Model Accuracy:** **85%**
---
## **πŸ› οΈ Future Improvements**
- Use **a more complex GNN model** (with at least **13 layers**).
- Improve **multi-modal fusion model** by adding **extra layers**.
- Train on **a larger dataset** to improve generalization.
---
## **πŸ‘¨β€πŸ’» Author**
**Dhanush**
πŸ“§ Contact: [e-mail](mailto:[email protected])
---