|
---
|
|
license: mit
|
|
---
|
|
|
|
# DepthPro: Human Segmentation
|
|
|
|
- This work is a part of the [DepthPro: Beyond Depth Estimation](https://github.com/geetu040/depthpro-beyond-depth) repository, which further explores this model's capabilities on:
|
|
- Image Segmentation - Human Segmentation
|
|
- Image Super Resolution - 384px to 1536px (4x Upscaling)
|
|
- Image Super Resolution - 256px to 1024px (4x Upscaling)
|
|
|
|
# Usage
|
|
|
|
Install the required libraries:
|
|
```bash
|
|
pip install -q numpy pillow torch torchvision
|
|
pip install -q git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
|
|
```
|
|
|
|
Import the required libraries:
|
|
```py
|
|
import requests
|
|
from PIL import Image
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from huggingface_hub import hf_hub_download
|
|
import matplotlib.pyplot as plt
|
|
|
|
# custom installation from this PR: https://github.com/huggingface/transformers/pull/34583
|
|
# !pip install git+https://github.com/geetu040/transformers.git@depth-pro-projects#egg=transformers
|
|
from transformers import DepthProConfig, DepthProImageProcessorFast, DepthProForDepthEstimation
|
|
```
|
|
|
|
Load the model and image processor:
|
|
```py
|
|
# initialize model
|
|
config = DepthProConfig(use_fov_model=False)
|
|
model = DepthProForDepthEstimation(config)
|
|
features = config.fusion_hidden_size
|
|
semantic_classifier_dropout = 0.1
|
|
num_labels = 1
|
|
model.head.head = nn.Sequential(
|
|
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
|
|
nn.BatchNorm2d(features),
|
|
nn.ReLU(),
|
|
nn.Dropout(semantic_classifier_dropout),
|
|
nn.Conv2d(features, features, kernel_size=1),
|
|
nn.ConvTranspose2d(features, num_labels, kernel_size=2, stride=2, padding=0, bias=True),
|
|
)
|
|
|
|
# load weights
|
|
weights_path = hf_hub_download(repo_id="geetu040/DepthPro_Segmentation_Human", filename="model_weights.pth")
|
|
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'), weights_only=True))
|
|
|
|
# load to device
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model = model.to(device)
|
|
|
|
# load image processor
|
|
image_processor = DepthProImageProcessorFast()
|
|
```
|
|
|
|
Inference:
|
|
```py
|
|
# inference
|
|
|
|
url = "https://huggingface.co/spaces/geetu040/DepthPro_Segmentation_Human/resolve/main/assets/examples/man_with_arms_open.jpg"
|
|
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
image = image.convert("RGB")
|
|
|
|
# prepare image for the model
|
|
inputs = image_processor(images=image, return_tensors="pt")
|
|
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
|
|
# inference
|
|
with torch.no_grad():
|
|
output = model(**inputs)
|
|
|
|
# convert tensors to PIL.Image
|
|
output = output[0] # get output logits
|
|
output = F.interpolate(
|
|
output.unsqueeze(0),
|
|
size=(image.height, image.width)
|
|
) # interpolate to match size
|
|
output = output.squeeze() # get first and only batch and channel
|
|
output = output.sigmoid() # apply sigmoid for binary segmentation
|
|
output = (output > 0.5).float() # threshold to create binary mask
|
|
output = output.cpu() # unload from cuda if used
|
|
output = output * 255 # convert [0, 1] to [0, 255]
|
|
output = output.numpy() # convert to numpy
|
|
output = output.astype('uint8') # convert to PIL.Image compatible format
|
|
output = Image.fromarray(output) # create PIL.Image object
|
|
|
|
# visualize the prediction
|
|
fig, axes = plt.subplots(1, 2, figsize=(20, 20))
|
|
axes[0].imshow(image)
|
|
axes[0].set_title(f'Low-Resolution (LR) {image.size}')
|
|
axes[0].axis('off')
|
|
axes[1].imshow(output)
|
|
axes[1].set_title(f'Super-Resolution (SR) {output.size}')
|
|
axes[1].axis('off')
|
|
plt.subplots_adjust(wspace=0, hspace=0)
|
|
plt.show()
|
|
```
|
|
|