metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta_large_hostel_ner
results: []
roberta_large_hostel_ner
This model is a fine-tuned version of FacebookAI/roberta-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0480
- Precision: 0.6916
- Recall: 0.7347
- F1: 0.7125
- Accuracy: 0.8223
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 307 | 0.6049 | 0.5460 | 0.6836 | 0.6071 | 0.8031 |
0.7077 | 2.0 | 614 | 0.5622 | 0.5902 | 0.7044 | 0.6423 | 0.8194 |
0.7077 | 3.0 | 921 | 0.6149 | 0.6159 | 0.7155 | 0.6620 | 0.8174 |
0.3967 | 4.0 | 1228 | 0.6661 | 0.5917 | 0.7185 | 0.6490 | 0.8112 |
0.2371 | 5.0 | 1535 | 0.7497 | 0.6154 | 0.7145 | 0.6612 | 0.8126 |
0.2371 | 6.0 | 1842 | 0.8418 | 0.6138 | 0.7293 | 0.6666 | 0.8059 |
0.1496 | 7.0 | 2149 | 0.8446 | 0.6258 | 0.7231 | 0.6710 | 0.8190 |
0.1496 | 8.0 | 2456 | 0.9823 | 0.6399 | 0.7229 | 0.6789 | 0.8150 |
0.1073 | 9.0 | 2763 | 0.9789 | 0.6372 | 0.7235 | 0.6776 | 0.8163 |
0.0792 | 10.0 | 3070 | 1.0675 | 0.6607 | 0.7254 | 0.6915 | 0.8219 |
0.0792 | 11.0 | 3377 | 1.1495 | 0.6471 | 0.7306 | 0.6863 | 0.8129 |
0.0584 | 12.0 | 3684 | 1.1720 | 0.6313 | 0.7254 | 0.6751 | 0.8122 |
0.0584 | 13.0 | 3991 | 1.2905 | 0.6484 | 0.7246 | 0.6844 | 0.8080 |
0.0476 | 14.0 | 4298 | 1.3109 | 0.6515 | 0.7258 | 0.6867 | 0.8143 |
0.0321 | 15.0 | 4605 | 1.3268 | 0.6500 | 0.7256 | 0.6857 | 0.8123 |
0.0321 | 16.0 | 4912 | 1.4593 | 0.6482 | 0.7218 | 0.6830 | 0.8089 |
0.027 | 17.0 | 5219 | 1.4810 | 0.6559 | 0.7268 | 0.6895 | 0.8117 |
0.0242 | 18.0 | 5526 | 1.4636 | 0.6321 | 0.7193 | 0.6729 | 0.8098 |
0.0242 | 19.0 | 5833 | 1.5093 | 0.6640 | 0.7301 | 0.6955 | 0.8187 |
0.0188 | 20.0 | 6140 | 1.4944 | 0.6690 | 0.7240 | 0.6954 | 0.8178 |
0.0188 | 21.0 | 6447 | 1.5568 | 0.6550 | 0.7232 | 0.6874 | 0.8155 |
0.0164 | 22.0 | 6754 | 1.6352 | 0.6786 | 0.7215 | 0.6994 | 0.8176 |
0.0118 | 23.0 | 7061 | 1.6460 | 0.6674 | 0.7327 | 0.6985 | 0.8188 |
0.0118 | 24.0 | 7368 | 1.6089 | 0.6781 | 0.7300 | 0.7031 | 0.8223 |
0.0112 | 25.0 | 7675 | 1.7131 | 0.6635 | 0.7340 | 0.6970 | 0.8162 |
0.0112 | 26.0 | 7982 | 1.7572 | 0.6759 | 0.7313 | 0.7025 | 0.8185 |
0.0083 | 27.0 | 8289 | 1.7329 | 0.6726 | 0.7228 | 0.6968 | 0.8197 |
0.006 | 28.0 | 8596 | 1.8310 | 0.6684 | 0.7337 | 0.6995 | 0.8172 |
0.006 | 29.0 | 8903 | 1.8690 | 0.6692 | 0.7368 | 0.7014 | 0.8162 |
0.0059 | 30.0 | 9210 | 1.9132 | 0.6785 | 0.7283 | 0.7025 | 0.8173 |
0.0049 | 31.0 | 9517 | 1.8567 | 0.6856 | 0.7294 | 0.7068 | 0.8223 |
0.0049 | 32.0 | 9824 | 1.9176 | 0.6773 | 0.7320 | 0.7036 | 0.8217 |
0.0044 | 33.0 | 10131 | 1.9170 | 0.6843 | 0.7340 | 0.7083 | 0.8214 |
0.0044 | 34.0 | 10438 | 1.9416 | 0.6810 | 0.7371 | 0.7080 | 0.8196 |
0.004 | 35.0 | 10745 | 1.8975 | 0.6654 | 0.7332 | 0.6977 | 0.8215 |
0.0038 | 36.0 | 11052 | 1.9453 | 0.6877 | 0.7373 | 0.7116 | 0.8177 |
0.0038 | 37.0 | 11359 | 1.9305 | 0.6787 | 0.7342 | 0.7054 | 0.8179 |
0.002 | 38.0 | 11666 | 1.9255 | 0.6745 | 0.7313 | 0.7017 | 0.8202 |
0.002 | 39.0 | 11973 | 1.9737 | 0.6816 | 0.7329 | 0.7063 | 0.8196 |
0.0016 | 40.0 | 12280 | 1.9903 | 0.6838 | 0.7339 | 0.7080 | 0.8190 |
0.0018 | 41.0 | 12587 | 1.9903 | 0.6882 | 0.7365 | 0.7115 | 0.8224 |
0.0018 | 42.0 | 12894 | 1.9753 | 0.6802 | 0.7364 | 0.7072 | 0.8228 |
0.001 | 43.0 | 13201 | 2.0004 | 0.6904 | 0.7345 | 0.7118 | 0.8222 |
0.0007 | 44.0 | 13508 | 2.0058 | 0.6825 | 0.7357 | 0.7081 | 0.8225 |
0.0007 | 45.0 | 13815 | 2.0355 | 0.6874 | 0.7357 | 0.7107 | 0.8228 |
0.0006 | 46.0 | 14122 | 2.0481 | 0.6912 | 0.7346 | 0.7122 | 0.8226 |
0.0006 | 47.0 | 14429 | 2.0460 | 0.6900 | 0.7338 | 0.7112 | 0.8220 |
0.0004 | 48.0 | 14736 | 2.0553 | 0.6911 | 0.7364 | 0.7130 | 0.8224 |
0.0003 | 49.0 | 15043 | 2.0499 | 0.6918 | 0.7346 | 0.7125 | 0.8224 |
0.0003 | 50.0 | 15350 | 2.0480 | 0.6916 | 0.7347 | 0.7125 | 0.8223 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0