|
--- |
|
license: mit |
|
language: |
|
- multilingual |
|
base_model: |
|
- FacebookAI/xlm-roberta-large |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
# Multilingual Identification of English Code-Switching |
|
|
|
AnE-NER (Any-English Code-Switching Named Entity Recognition) is a token-level model for detecting named entities in code-switching texts. It classifies words into two classes: `I` (inside a named entity) and `O` (outside a named entity). The model shows strong performance on both languages seen and unseen in the training data. |
|
|
|
# Usage |
|
|
|
You can use AnE-NER with Huggingface’s `pipeline` or `AutoModelForTokenClassification`. |
|
|
|
Let's try the following example (taken from [this](https://aclanthology.org/W18-3213/) paper) |
|
|
|
```python |
|
input = "My Facebook, Ig & Twitter is hellaa dead yall Jk soy yo que has no life!" |
|
``` |
|
|
|
## Pipeline |
|
|
|
```python |
|
from transformers import pipeline |
|
classifier = pipeline("token-classification", model="igorsterner/AnE-NER", aggregation_strategy="simple") |
|
result = classifier(input) |
|
``` |
|
|
|
which returns |
|
|
|
``` |
|
[{'entity_group': 'I', |
|
'score': 0.95482016, |
|
'word': 'Facebook', |
|
'start': 3, |
|
'end': 11}, |
|
{'entity_group': 'I', |
|
'score': 0.9638739, |
|
'word': 'Ig', |
|
'start': 13, |
|
'end': 15}, |
|
{'entity_group': 'I', |
|
'score': 0.98207414, |
|
'word': 'Twitter', |
|
'start': 18, |
|
'end': 25}] |
|
``` |
|
|
|
## Advanced |
|
|
|
If your input is already word-tokenized, and you want the corresponding word NER labels, you can try the following strategy |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
|
|
lid_model_name = "igorsterner/AnE-NER" |
|
lid_tokenizer = AutoTokenizer.from_pretrained(lid_model_name) |
|
lid_model = AutoModelForTokenClassification.from_pretrained(lid_model_name) |
|
|
|
word_tokens = ['My', 'Facebook', ',', 'Ig', '&', 'Twitter', 'is', 'hellaa', 'dead', 'yall', 'Jk', 'soy', 'yo', 'que', 'has', 'no', 'life', '!'] |
|
|
|
subword_inputs = lid_tokenizer( |
|
word_tokens, truncation=True, is_split_into_words=True, return_tensors="pt" |
|
) |
|
|
|
subword2word = subword_inputs.word_ids(batch_index=0) |
|
logits = lid_model(**subword_inputs).logits |
|
predictions = torch.argmax(logits, dim=2) |
|
|
|
predicted_subword_labels = [lid_model.config.id2label[t.item()] for t in predictions[0]] |
|
predicted_word_labels = [[] for _ in range(len(word_tokens))] |
|
|
|
for idx, predicted_subword in enumerate(predicted_subword_labels): |
|
if subword2word[idx] is not None: |
|
predicted_word_labels[subword2word[idx]].append(predicted_subword) |
|
|
|
def most_frequent(lst): |
|
return max(set(lst), key=lst.count) if lst else "Other" |
|
|
|
predicted_word_labels = [most_frequent(sublist) for sublist in predicted_word_labels] |
|
|
|
for token, label in zip(word_tokens, predicted_word_labels): |
|
print(f"{token}: {label}") |
|
``` |
|
|
|
which returns |
|
|
|
``` |
|
My: O |
|
Facebook: I |
|
,: O |
|
Ig: I |
|
&: O |
|
Twitter: I |
|
is: O |
|
hellaa: O |
|
dead: O |
|
yall: O |
|
Jk: O |
|
soy: O |
|
yo: O |
|
que: O |
|
has: O |
|
no: O |
|
life!: O |
|
``` |
|
|
|
# Word-level language labels |
|
|
|
If you also want the language of each word, you can additionaly run [AnE-LID](https://huggingface.co/igorsterner/ane-lid). Checkout my evaluation scripts for examples of using both at the same time, as we did in the paper: [https://github.com/igorsterner/AnE/tree/main/eval](https://github.com/igorsterner/AnE/tree/main/eval). |
|
|
|
For the above example, you can get: |
|
|
|
``` |
|
My: English |
|
Facebook: NE.English |
|
,: Other |
|
Ig: NE.English |
|
&: Other |
|
Twitter: NE.English |
|
is: English |
|
hellaa: English |
|
dead: English |
|
yall: English |
|
Jk: English |
|
soy: notEnglish |
|
yo: notEnglish |
|
que: notEnglish |
|
has: English |
|
no: English |
|
life: English |
|
!: Other |
|
``` |
|
|
|
# Citation |
|
|
|
Please consider citing my work if it helped you |
|
|
|
``` |
|
@inproceedings{sterner-2024-multilingual, |
|
title = "Multilingual Identification of {E}nglish Code-Switching", |
|
author = "Sterner, Igor", |
|
editor = {Scherrer, Yves and |
|
Jauhiainen, Tommi and |
|
Ljube{\v{s}}i{\'c}, Nikola and |
|
Zampieri, Marcos and |
|
Nakov, Preslav and |
|
Tiedemann, J{\"o}rg}, |
|
booktitle = "Proceedings of the Eleventh Workshop on NLP for Similar Languages, Varieties, and Dialects (VarDial 2024)", |
|
month = jun, |
|
year = "2024", |
|
address = "Mexico City, Mexico", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2024.vardial-1.14", |
|
doi = "10.18653/v1/2024.vardial-1.14", |
|
pages = "163--173", |
|
abstract = "Code-switching research depends on fine-grained language identification. In this work, we study existing corpora used to train token-level language identification systems. We aggregate these corpora with a consistent labelling scheme and train a system to identify English code-switching in multilingual text. We show that the system identifies code-switching in unseen language pairs with absolute measure 2.3-4.6{\%} better than language-pair-specific SoTA. We also analyse the correlation between typological similarity of the languages and difficulty in recognizing code-switching.", |
|
} |
|
``` |