NHS-binary-class / README.md
intermezzo672's picture
End of training
28ce2a5
|
raw
history blame
1.87 kB
metadata
license: mit
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: test
    results: []

test

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4018
  • Accuracy: 0.8207
  • Precision: 0.8202
  • Recall: 0.8207
  • F1: 0.8202

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4749 1.0 417 0.4018 0.8207 0.8202 0.8207 0.8202
0.0976 2.0 834 0.4443 0.8189 0.8234 0.8189 0.8197
0.0061 3.0 1251 0.7378 0.8213 0.8233 0.8213 0.8219
0.3159 4.0 1668 0.9154 0.8094 0.8092 0.8094 0.8092

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0