|
--- |
|
license: mit |
|
base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test |
|
|
|
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4018 |
|
- Accuracy: 0.8207 |
|
- Precision: 0.8202 |
|
- Recall: 0.8207 |
|
- F1: 0.8202 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.4749 | 1.0 | 417 | 0.4018 | 0.8207 | 0.8202 | 0.8207 | 0.8202 | |
|
| 0.0976 | 2.0 | 834 | 0.4443 | 0.8189 | 0.8234 | 0.8189 | 0.8197 | |
|
| 0.0061 | 3.0 | 1251 | 0.7378 | 0.8213 | 0.8233 | 0.8213 | 0.8219 | |
|
| 0.3159 | 4.0 | 1668 | 0.9154 | 0.8094 | 0.8092 | 0.8094 | 0.8092 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|