metadata
license: apache-2.0
base_model: dslim/distilbert-NER
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-NER-conll2003
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8708677685950413
- name: Recall
type: recall
value: 0.8955382436260623
- name: F1
type: f1
value: 0.8830307262569833
- name: Accuracy
type: accuracy
value: 0.9751480564229568
distilbert-NER-conll2003
This model is a fine-tuned version of dslim/distilbert-NER on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1916
- Precision: 0.8709
- Recall: 0.8955
- F1: 0.8830
- Accuracy: 0.9751
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1003 | 1.0 | 3922 | 0.1851 | 0.8638 | 0.8835 | 0.8735 | 0.9736 |
0.0696 | 2.0 | 7844 | 0.1916 | 0.8709 | 0.8955 | 0.8830 | 0.9751 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.2.2
- Datasets 2.20.0
- Tokenizers 0.13.3