|
--- |
|
license: apache-2.0 |
|
language: |
|
- ja |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
model_type: mistral |
|
--- |
|
# Swallow-MS-7b-v0.1-ChatVector |
|
|
|
Japanese "instruction tuned" model made by the technique of [Chat Vector](https://arxiv.org/abs/2310.04799) |
|
|
|
The weights of this model are obtained not by any instruction tuning but by the following arithmetic: |
|
> [Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1) + [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) - [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
|
|
----------------------- |
|
[Chat Vector](https://arxiv.org/abs/2310.04799)の手法を使って、学習済み重みの足し引きのみで[Swallow-MS-7b-v0.1](https://huggingface.co/tokyotech-llm/Swallow-MS-7b-v0.1)モデルにチャット形式の対話能力を与えたモデルです。 |
|
|
|
詳細は[こちらの日本語記事](https://qiita.com/jovyan/items/ee6affa5ee5bdaada6b4)で解説しています。 |
|
|
|
## Instruction format |
|
|
|
The promot format should be the same as [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2). |
|
|
|
E.g. |
|
``` |
|
text = "<s>[INST] What is your favourite condiment? [/INST]" |
|
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> " |
|
"[INST] Do you have mayonnaise recipes? [/INST]" |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_name = "jovyan/Swallow-MS-7b-v0.1-ChatVector" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
|
|
prompt = "<s>[INST] 東京工業大学のキャンパスの特色を元気よく説明してください。 [/INST]" |
|
input_ids = tokenizer.encode( |
|
prompt, |
|
add_special_tokens=False, |
|
return_tensors="pt" |
|
) |
|
tokens = model.generate( |
|
input_ids.to(device=model.device), |
|
max_new_tokens=128, |
|
temperature=0.99, |
|
top_p=0.95, |
|
do_sample=True, |
|
) |
|
|
|
out = tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
print(out) |
|
``` |