|
---
|
|
library_name: transformers
|
|
language:
|
|
- en
|
|
license: apache-2.0
|
|
base_model: openai/whisper-small
|
|
tags:
|
|
- generated_from_trainer
|
|
metrics:
|
|
- wer
|
|
model-index:
|
|
- name: Whisper-squeezeformer-V9-mutliconv
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Whisper-squeezeformer-V9-mutliconv
|
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the LibriSpeech dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.1799
|
|
- Wer: 11.3645
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 1e-05
|
|
- train_batch_size: 20
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 2500
|
|
- training_steps: 45000
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
|
| 4.7863 | 1.0 | 2500 | 3.8844 | 119.2635 |
|
|
| 3.9844 | 2.0 | 5000 | 3.7326 | 132.0431 |
|
|
| 3.459 | 3.0 | 7500 | 1.2427 | 72.6510 |
|
|
| 0.4598 | 4.0 | 10000 | 0.4232 | 23.4841 |
|
|
| 0.1931 | 5.0 | 12500 | 0.3479 | 20.3629 |
|
|
| 0.1096 | 6.0 | 15000 | 0.3255 | 17.5574 |
|
|
| 0.0631 | 7.0 | 17500 | 0.3251 | 16.8252 |
|
|
| 0.2473 | 8.0 | 20000 | 0.2452 | 14.4781 |
|
|
| 0.1433 | 9.0 | 22500 | 0.2323 | 13.0782 |
|
|
| 0.3067 | 10.0 | 25000 | 0.2224 | 14.5675 |
|
|
| 0.2769 | 11.0 | 27500 | 0.2015 | 13.2323 |
|
|
| 0.1853 | 12.0 | 30000 | 0.2004 | 14.1015 |
|
|
| 0.1308 | 13.0 | 32500 | 0.2011 | 13.2494 |
|
|
| 0.2435 | 14.0 | 35000 | 0.1830 | 11.9066 |
|
|
| 0.1786 | 15.0 | 37500 | 0.1804 | 12.7948 |
|
|
| 0.4194 | 16.0 | 40000 | 0.1833 | 10.3469 |
|
|
| 0.3283 | 17.0 | 42500 | 0.1818 | 10.2785 |
|
|
| 0.2936 | 18.0 | 45000 | 0.1799 | 11.3645 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.45.2
|
|
- Pytorch 2.4.0
|
|
- Datasets 3.2.0
|
|
- Tokenizers 0.20.3
|
|
|