|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- metrics: |
|
- type: mean_reward |
|
value: 256.40 +/- 21.37 |
|
name: mean_reward |
|
task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
--- |
|
|
|
# **PPO** Agent playing **LunarLander-v2** |
|
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
```python |
|
import gym |
|
from stable_baselines3 import PPO |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
from stable_baselines3.common.env_util import make_vec_env |
|
|
|
# Create a vectorized environment of 16 parallel environments |
|
env = make_vec_env("LunarLander-v2", n_envs=16) |
|
|
|
# Optimizaed Hyperparameters |
|
model = PPO( |
|
"MlpPolicy", |
|
env=env, |
|
n_steps=655, |
|
batch_size=32, |
|
n_epochs=8, |
|
gamma=0.998, |
|
gae_lambda=0.98, |
|
ent_coef=0.01, |
|
verbose=1, |
|
) |
|
|
|
# Train it for 500,000 timesteps |
|
model.learn(total_timesteps=int(5e6)) |
|
|
|
# Create a new environment for evaluation |
|
eval_env = gym.make("LunarLander-v2") |
|
|
|
# Evaluate the model with 10 evaluation episodes and deterministic=True |
|
mean_reward, std_reward = evaluate_policy( |
|
model, eval_env, n_eval_episodes=10, deterministic=True |
|
) |
|
|
|
# Print the results |
|
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") |
|
|
|
#>>> mean_reward=254.56 +/- 18.45056958672337 |
|
|
|
|
|
``` |
|
|