metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-question-ner
results: []
bert-question-ner
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2044
- Precision: 0.7342
- Recall: 0.7964
- F1: 0.7640
- Accuracy: 0.9338
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.3311 | 100 | 1.1156 | 0.0 | 0.0 | 0.0 | 0.6528 |
No log | 0.6623 | 200 | 0.6775 | 0.3169 | 0.4012 | 0.3541 | 0.7815 |
No log | 0.9934 | 300 | 0.4010 | 0.5 | 0.6310 | 0.5579 | 0.8771 |
No log | 1.3245 | 400 | 0.2844 | 0.6344 | 0.6996 | 0.6654 | 0.9046 |
0.7464 | 1.6556 | 500 | 0.2394 | 0.6404 | 0.7036 | 0.6705 | 0.9163 |
0.7464 | 1.9868 | 600 | 0.2204 | 0.6774 | 0.7661 | 0.7190 | 0.9241 |
0.7464 | 2.3179 | 700 | 0.2080 | 0.7143 | 0.7460 | 0.7298 | 0.9288 |
0.7464 | 2.6490 | 800 | 0.2044 | 0.7342 | 0.7964 | 0.7640 | 0.9338 |
0.7464 | 2.9801 | 900 | 0.2055 | 0.7227 | 0.7883 | 0.7541 | 0.9346 |
0.2123 | 3.3113 | 1000 | 0.2030 | 0.7361 | 0.7762 | 0.7556 | 0.9353 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0