bert-question-ner / README.md
lekhnathrijal's picture
ai-research-lab/bert-question-ner
f9b30b6 verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-question-ner
    results: []

bert-question-ner

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2044
  • Precision: 0.7342
  • Recall: 0.7964
  • F1: 0.7640
  • Accuracy: 0.9338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.3311 100 1.1156 0.0 0.0 0.0 0.6528
No log 0.6623 200 0.6775 0.3169 0.4012 0.3541 0.7815
No log 0.9934 300 0.4010 0.5 0.6310 0.5579 0.8771
No log 1.3245 400 0.2844 0.6344 0.6996 0.6654 0.9046
0.7464 1.6556 500 0.2394 0.6404 0.7036 0.6705 0.9163
0.7464 1.9868 600 0.2204 0.6774 0.7661 0.7190 0.9241
0.7464 2.3179 700 0.2080 0.7143 0.7460 0.7298 0.9288
0.7464 2.6490 800 0.2044 0.7342 0.7964 0.7640 0.9338
0.7464 2.9801 900 0.2055 0.7227 0.7883 0.7541 0.9346
0.2123 3.3113 1000 0.2030 0.7361 0.7762 0.7556 0.9353

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0