|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: distilbert/distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-question-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-question-ner |
|
|
|
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2044 |
|
- Precision: 0.7342 |
|
- Recall: 0.7964 |
|
- F1: 0.7640 |
|
- Accuracy: 0.9338 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 9e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.3311 | 100 | 1.1156 | 0.0 | 0.0 | 0.0 | 0.6528 | |
|
| No log | 0.6623 | 200 | 0.6775 | 0.3169 | 0.4012 | 0.3541 | 0.7815 | |
|
| No log | 0.9934 | 300 | 0.4010 | 0.5 | 0.6310 | 0.5579 | 0.8771 | |
|
| No log | 1.3245 | 400 | 0.2844 | 0.6344 | 0.6996 | 0.6654 | 0.9046 | |
|
| 0.7464 | 1.6556 | 500 | 0.2394 | 0.6404 | 0.7036 | 0.6705 | 0.9163 | |
|
| 0.7464 | 1.9868 | 600 | 0.2204 | 0.6774 | 0.7661 | 0.7190 | 0.9241 | |
|
| 0.7464 | 2.3179 | 700 | 0.2080 | 0.7143 | 0.7460 | 0.7298 | 0.9288 | |
|
| 0.7464 | 2.6490 | 800 | 0.2044 | 0.7342 | 0.7964 | 0.7640 | 0.9338 | |
|
| 0.7464 | 2.9801 | 900 | 0.2055 | 0.7227 | 0.7883 | 0.7541 | 0.9346 | |
|
| 0.2123 | 3.3113 | 1000 | 0.2030 | 0.7361 | 0.7762 | 0.7556 | 0.9353 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|