lilyyellow's picture
End of training
bd21def verified
|
raw
history blame
9.39 kB
metadata
base_model: NlpHUST/ner-vietnamese-electra-base
tags:
  - generated_from_trainer
model-index:
  - name: my_awesome_ner-token_classification_v1.0.7-5
    results: []

my_awesome_ner-token_classification_v1.0.7-5

This model is a fine-tuned version of NlpHUST/ner-vietnamese-electra-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3789
  • Age: {'precision': 0.8503401360544217, 'recall': 0.946969696969697, 'f1': 0.8960573476702508, 'number': 132}
  • Datetime: {'precision': 0.6935483870967742, 'recall': 0.7428861788617886, 'f1': 0.7173699705593719, 'number': 984}
  • Disease: {'precision': 0.6895306859205776, 'recall': 0.6749116607773852, 'f1': 0.6821428571428573, 'number': 283}
  • Event: {'precision': 0.3210702341137124, 'recall': 0.36363636363636365, 'f1': 0.3410301953818828, 'number': 264}
  • Gender: {'precision': 0.7704918032786885, 'recall': 0.8245614035087719, 'f1': 0.7966101694915254, 'number': 114}
  • Law: {'precision': 0.5617283950617284, 'recall': 0.7193675889328063, 'f1': 0.6308492201039861, 'number': 253}
  • Location: {'precision': 0.6985105290190036, 'recall': 0.7435757244395844, 'f1': 0.7203389830508473, 'number': 1829}
  • Organization: {'precision': 0.640555906506633, 'recall': 0.7211948790896159, 'f1': 0.6784877885580463, 'number': 1406}
  • Person: {'precision': 0.7024147727272727, 'recall': 0.7408239700374532, 'f1': 0.7211082756106453, 'number': 1335}
  • Phone: {'precision': 0.8705882352941177, 'recall': 0.9487179487179487, 'f1': 0.9079754601226994, 'number': 78}
  • Product: {'precision': 0.3686274509803922, 'recall': 0.3671875, 'f1': 0.36790606653620356, 'number': 256}
  • Quantity: {'precision': 0.5566502463054187, 'recall': 0.6231617647058824, 'f1': 0.588031222896791, 'number': 544}
  • Role: {'precision': 0.4342560553633218, 'recall': 0.4836223506743738, 'f1': 0.45761166818596166, 'number': 519}
  • Transportation: {'precision': 0.49122807017543857, 'recall': 0.6086956521739131, 'f1': 0.5436893203883495, 'number': 138}
  • Overall Precision: 0.6348
  • Overall Recall: 0.6913
  • Overall F1: 0.6619
  • Overall Accuracy: 0.8912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Age Datetime Disease Event Gender Law Location Organization Person Phone Product Quantity Role Transportation Overall Precision Overall Recall Overall F1 Overall Accuracy
0.29 1.9991 2313 0.3353 {'precision': 0.8561643835616438, 'recall': 0.946969696969697, 'f1': 0.8992805755395684, 'number': 132} {'precision': 0.707647628267183, 'recall': 0.7428861788617886, 'f1': 0.7248388696083291, 'number': 984} {'precision': 0.6946564885496184, 'recall': 0.6431095406360424, 'f1': 0.6678899082568808, 'number': 283} {'precision': 0.34191176470588236, 'recall': 0.3522727272727273, 'f1': 0.34701492537313433, 'number': 264} {'precision': 0.7560975609756098, 'recall': 0.8157894736842105, 'f1': 0.7848101265822786, 'number': 114} {'precision': 0.5384615384615384, 'recall': 0.6363636363636364, 'f1': 0.5833333333333334, 'number': 253} {'precision': 0.7157279489904357, 'recall': 0.7364680153089119, 'f1': 0.7259498787388844, 'number': 1829} {'precision': 0.6326268464996788, 'recall': 0.7005689900426743, 'f1': 0.6648666891663854, 'number': 1406} {'precision': 0.7298136645962733, 'recall': 0.704119850187266, 'f1': 0.7167365611894777, 'number': 1335} {'precision': 0.8072289156626506, 'recall': 0.8589743589743589, 'f1': 0.8322981366459627, 'number': 78} {'precision': 0.425, 'recall': 0.265625, 'f1': 0.32692307692307687, 'number': 256} {'precision': 0.5797101449275363, 'recall': 0.5882352941176471, 'f1': 0.583941605839416, 'number': 544} {'precision': 0.4549019607843137, 'recall': 0.44701348747591524, 'f1': 0.4509232264334305, 'number': 519} {'precision': 0.5194805194805194, 'recall': 0.5797101449275363, 'f1': 0.5479452054794519, 'number': 138} 0.6518 0.6667 0.6592 0.8937
0.1806 3.9983 4626 0.3789 {'precision': 0.8503401360544217, 'recall': 0.946969696969697, 'f1': 0.8960573476702508, 'number': 132} {'precision': 0.6935483870967742, 'recall': 0.7428861788617886, 'f1': 0.7173699705593719, 'number': 984} {'precision': 0.6895306859205776, 'recall': 0.6749116607773852, 'f1': 0.6821428571428573, 'number': 283} {'precision': 0.3210702341137124, 'recall': 0.36363636363636365, 'f1': 0.3410301953818828, 'number': 264} {'precision': 0.7704918032786885, 'recall': 0.8245614035087719, 'f1': 0.7966101694915254, 'number': 114} {'precision': 0.5617283950617284, 'recall': 0.7193675889328063, 'f1': 0.6308492201039861, 'number': 253} {'precision': 0.6985105290190036, 'recall': 0.7435757244395844, 'f1': 0.7203389830508473, 'number': 1829} {'precision': 0.640555906506633, 'recall': 0.7211948790896159, 'f1': 0.6784877885580463, 'number': 1406} {'precision': 0.7024147727272727, 'recall': 0.7408239700374532, 'f1': 0.7211082756106453, 'number': 1335} {'precision': 0.8705882352941177, 'recall': 0.9487179487179487, 'f1': 0.9079754601226994, 'number': 78} {'precision': 0.3686274509803922, 'recall': 0.3671875, 'f1': 0.36790606653620356, 'number': 256} {'precision': 0.5566502463054187, 'recall': 0.6231617647058824, 'f1': 0.588031222896791, 'number': 544} {'precision': 0.4342560553633218, 'recall': 0.4836223506743738, 'f1': 0.45761166818596166, 'number': 519} {'precision': 0.49122807017543857, 'recall': 0.6086956521739131, 'f1': 0.5436893203883495, 'number': 138} 0.6348 0.6913 0.6619 0.8912

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1