lombardata's picture
🍻 cheers
c2dc5e3 verified
|
raw
history blame
6.45 kB
metadata
language:
  - eng
license: apache-2.0
base_model: microsoft/resnet-50
tags:
  - multilabel-image-classification
  - multilabel
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: resnet-50-linearhead-2024_03_12-with_data_aug_batch-size32_epochs93_freeze
    results: []

resnet-50-linearhead-2024_03_12-with_data_aug_batch-size32_epochs93_freeze

This model is a fine-tuned version of microsoft/resnet-50 on the multilabel_complete_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1518
  • F1 Micro: 0.7545
  • F1 Macro: 0.6309
  • Roc Auc: 0.8276
  • Accuracy: 0.4069
  • Learning Rate: 1e-05

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 93

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Roc Auc Accuracy Rate
No log 1.0 274 0.2237 0.5839 0.2834 0.7176 0.1952 0.001
0.2683 2.0 548 0.1895 0.6773 0.4549 0.7743 0.3055 0.001
0.2683 3.0 822 0.1786 0.7021 0.5202 0.7911 0.3539 0.001
0.2058 4.0 1096 0.1715 0.7198 0.5666 0.8058 0.3667 0.001
0.2058 5.0 1370 0.1662 0.7220 0.5718 0.8050 0.3768 0.001
0.1916 6.0 1644 0.1648 0.7155 0.5721 0.7980 0.3796 0.001
0.1916 7.0 1918 0.1618 0.7281 0.5973 0.8082 0.3810 0.001
0.1858 8.0 2192 0.1598 0.7375 0.6061 0.8166 0.3855 0.001
0.1858 9.0 2466 0.1599 0.7440 0.6209 0.8223 0.3911 0.001
0.1839 10.0 2740 0.1584 0.7382 0.6047 0.8173 0.3949 0.001
0.1815 11.0 3014 0.1569 0.7414 0.6068 0.8186 0.3960 0.001
0.1815 12.0 3288 0.1585 0.7257 0.5953 0.8043 0.3963 0.001
0.1807 13.0 3562 0.1581 0.7514 0.6286 0.8311 0.3967 0.001
0.1807 14.0 3836 0.1565 0.7453 0.6230 0.8224 0.4022 0.001
0.1795 15.0 4110 0.1549 0.7504 0.6253 0.8262 0.3991 0.001
0.1795 16.0 4384 0.1573 0.7446 0.6290 0.8214 0.3939 0.001
0.178 17.0 4658 0.1551 0.7519 0.6287 0.8281 0.4026 0.001
0.178 18.0 4932 0.1570 0.7430 0.6155 0.8203 0.3914 0.001
0.1764 19.0 5206 0.1558 0.7480 0.6287 0.8236 0.3991 0.001
0.1764 20.0 5480 0.1574 0.7403 0.6085 0.8164 0.4001 0.001
0.1775 21.0 5754 0.1561 0.7532 0.6246 0.8302 0.4029 0.001
0.177 22.0 6028 0.1545 0.7596 0.6431 0.8378 0.3974 0.0001
0.177 23.0 6302 0.1556 0.7472 0.6292 0.8233 0.4026 0.0001
0.1762 24.0 6576 0.1548 0.7528 0.6343 0.8283 0.3994 0.0001
0.1762 25.0 6850 0.1554 0.7468 0.6225 0.8222 0.3994 0.0001
0.1759 26.0 7124 0.1548 0.7529 0.6326 0.8297 0.3977 0.0001
0.1759 27.0 7398 0.1552 0.7516 0.6352 0.8282 0.3970 0.0001
0.1752 28.0 7672 0.1543 0.7523 0.6328 0.8277 0.4092 0.0001
0.1752 29.0 7946 0.1545 0.7506 0.6312 0.8265 0.4019 0.0001
0.1757 30.0 8220 0.1550 0.7554 0.6394 0.8340 0.4040 0.0001
0.1757 31.0 8494 0.1554 0.7512 0.6345 0.8279 0.4022 0.0001
0.1758 32.0 8768 0.1545 0.7513 0.6302 0.8275 0.4033 0.0001
0.1755 33.0 9042 0.1555 0.7456 0.6261 0.8223 0.3977 0.0001
0.1755 34.0 9316 0.1533 0.7515 0.6307 0.8260 0.4109 0.0001
0.1752 35.0 9590 0.1551 0.7506 0.6325 0.8261 0.4054 0.0001
0.1752 36.0 9864 0.1530 0.7539 0.6299 0.8287 0.4026 0.0001
0.1752 37.0 10138 0.1546 0.7464 0.6270 0.8223 0.4036 0.0001
0.1752 38.0 10412 0.1549 0.7539 0.6364 0.8314 0.3987 0.0001
0.1763 39.0 10686 0.1547 0.7579 0.6421 0.8361 0.3977 0.0001
0.1763 40.0 10960 0.1544 0.7539 0.6345 0.8302 0.4005 0.0001
0.176 41.0 11234 0.1557 0.7536 0.6347 0.8298 0.4015 0.0001
0.1758 42.0 11508 0.1540 0.7474 0.6277 0.8226 0.3960 0.0001
0.1758 43.0 11782 0.1548 0.7578 0.6384 0.8374 0.3970 1e-05
0.1764 44.0 12056 0.1543 0.7582 0.6398 0.8352 0.4012 1e-05
0.1764 45.0 12330 0.1544 0.7448 0.6206 0.8196 0.3991 1e-05
0.1746 46.0 12604 0.1546 0.7452 0.6223 0.8208 0.4050 1e-05

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.15.0