metadata
language:
- de
license: apache-2.0
tags:
- sbb-asr
- generated_from_trainer
datasets:
- marccgrau/sbbdata_allSNR
metrics:
- wer
model-index:
- name: Whisper Large-v2 German SBB ASR
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: SBB Dataset 05.01.2023
type: marccgrau/sbbdata_allSNR
args: 'config: German, split: train, test, val'
metrics:
- name: Wer
type: wer
value: 0.020291693088142042
Whisper Large-v2 German SBB ASR
This model is a fine-tuned version of openai/whisper-small on the SBB Dataset 05.01.2023 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0272
- Wer: 0.0203
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 600
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.3449 | 0.36 | 100 | 0.2160 | 0.0387 |
0.0651 | 0.71 | 200 | 0.0278 | 0.0184 |
0.0312 | 1.07 | 300 | 0.0316 | 0.0228 |
0.019 | 1.42 | 400 | 0.0259 | 0.0209 |
0.0135 | 1.78 | 500 | 0.0301 | 0.0203 |
0.0091 | 2.14 | 600 | 0.0272 | 0.0203 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1
- Datasets 2.8.0
- Tokenizers 0.12.1