mbuali's picture
Upload folder using huggingface_hub
d1ceb73 verified
# coding=utf-8
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF IdeficsVision model: a copy of CLIPVisionModel using a simpler config object"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling
from ...modeling_tf_utils import TFPreTrainedModel, shape_list
from ...tf_utils import flatten
from ...utils import ModelOutput, logging
from .configuration_idefics import IdeficsVisionConfig
logger = logging.get_logger(__name__)
@dataclass
class TFIdeficsVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[tf.Tensor] = None
last_hidden_state: tf.Tensor = None
hidden_states: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[tf.Tensor]] = None
class TFIdeficsVisionEmbeddings(tf.keras.layers.Layer):
def __init__(self, config: IdeficsVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = tf.keras.layers.Conv2D(
filters=self.embed_dim,
kernel_size=self.patch_size,
strides=self.patch_size,
use_bias=False,
padding="valid",
data_format="channels_last",
name="patch_embedding",
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = tf.keras.layers.Embedding(
self.num_positions, self.embed_dim, name="position_embedding"
)
# self.position_ids = tf.range(self.num_positions)[tf.newaxis, :]
def interpolate_pos_encoding(self, embeddings: tf.Tensor, height: int, width: int) -> tf.Tensor:
num_patches = shape_list(embeddings)[1] - 1
pos_embed = self.position_embedding(self.position_ids)
num_positions = shape_list(pos_embed)[1] - 1
if num_patches == num_positions and height == width:
return pos_embed
class_pos_embed = pos_embed[:, 0]
patch_pos_embed = pos_embed[:, 1:]
embed_dim = shape_list(embeddings)[-1]
num_h_patches = height // self.config.patch_size
num_w_patches = width // self.config.patch_size
num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1
sqrt_num_positions = math.sqrt(float(num_positions))
patch_pos_embed = tf.reshape(patch_pos_embed, (1, int(sqrt_num_positions), int(sqrt_num_positions), embed_dim))
scale_height = num_h_patches / sqrt_num_positions
scale_width = num_w_patches / sqrt_num_positions
original_height = tf.cast(tf.shape(patch_pos_embed)[1], tf.float32)
original_width = tf.cast(tf.shape(patch_pos_embed)[2], tf.float32)
# Apply scaling
new_height = tf.cast(original_height * scale_height, tf.int32)
new_width = tf.cast(original_width * scale_width, tf.int32)
patch_pos_embed = tf.image.resize(
patch_pos_embed, size=[new_height, new_width], method=tf.image.ResizeMethod.BICUBIC
)
if (
int(num_h_patches) != shape_list(patch_pos_embed)[-3]
or int(num_w_patches) != shape_list(patch_pos_embed)[-2]
):
raise ValueError(
f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the "
f"shape of position embedding ({shape_list(patch_pos_embed)[-2], shape_list(patch_pos_embed)[-1]})"
)
patch_pos_embed = tf.reshape(patch_pos_embed, (1, -1, embed_dim))
return tf.concat((class_pos_embed[tf.newaxis, :], patch_pos_embed), axis=1)
def call(self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False) -> tf.Tensor:
# Input `pixel_values` is NCHW format which doesn't run on CPU so first thing we do is
# transpose it to change it to NHWC. We don't care to transpose it back because
# the Conv2D layer is only hit once for each query
if isinstance(pixel_values, dict):
pixel_values = pixel_values["pixel_values"]
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
batch_size, height, width, num_channels = shape_list(pixel_values)
if not interpolate_pos_encoding:
if height != self.image_size or width != self.image_size:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size}*{self.image_size}). You should try to set `interpolate_pos_encoding=True`"
)
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
# Change the 2D spatial dimensions to a single temporal dimension.
# shape = (batch_size, num_patches, out_channels=embed_dim)
patch_embeds = flatten(patch_embeds, 1, 2)
class_embeds = tf.broadcast_to(
self.class_embedding[tf.newaxis, tf.newaxis, :], [batch_size, 1, self.embed_dim]
)
embeddings = tf.concat([class_embeds, patch_embeds], axis=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
self.position_ids = tf.range(self.num_positions, name="self.position_ids")[tf.newaxis, :]
self.class_embedding = self.add_weight(shape=(self.embed_dim,), name="class_embedding")
if getattr(self, "patch_embedding", None) is not None:
with tf.name_scope(self.patch_embedding.name):
self.patch_embedding.build([None, None, None, self.config.num_channels])
if getattr(self, "position_embedding", None) is not None:
with tf.name_scope(self.position_embedding.name):
self.position_embedding.build(None)
class TFIdeficsVisionAttention(tf.keras.layers.Layer):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = tf.keras.layers.Dense(self.embed_dim, name="k_proj")
self.v_proj = tf.keras.layers.Dense(self.embed_dim, name="v_proj")
self.q_proj = tf.keras.layers.Dense(self.embed_dim, name="q_proj")
self.out_proj = tf.keras.layers.Dense(self.embed_dim, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: Optional[tf.Tensor] = None,
causal_attention_mask: Optional[tf.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[tf.Tensor, Optional[tf.Tensor], Optional[Tuple[tf.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.linalg.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
tf.shape(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=f"Attention weights should be of size {[bsz * self.num_heads, tgt_len, src_len]}, but is {tf.shape(attn_weights)}",
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if shape_list(causal_attention_mask) != [bsz, 1, tgt_len, src_len]:
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(causal_attention_mask)}"
)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + causal_attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
if attention_mask is not None:
if shape_list(attention_mask) != [bsz, 1, tgt_len, src_len]:
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}"
)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = tf.nn.softmax(attn_weights, axis=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
attn_weights = tf.reshape(attn_weights_reshaped, (bsz * self.num_heads, tgt_len, src_len))
else:
attn_weights_reshaped = None
attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout)
attn_output = tf.linalg.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
tf.shape(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=f"Attention weights should be of size {[bsz * self.num_heads, tgt_len, self.head_dim]}, but is {tf.shape(attn_output)}",
)
attn_output = tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim))
attn_output = tf.transpose(attn_output, perm=[0, 2, 1, 3])
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build((self.embed_dim, self.embed_dim))
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build((self.embed_dim, self.embed_dim))
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build((self.embed_dim, self.embed_dim))
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build((self.embed_dim, self.embed_dim))
class TFIdeficsVisionMLP(tf.keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.activation_fn = get_tf_activation(config.hidden_act)
self.fc1 = tf.keras.layers.Dense(config.intermediate_size, name="fc1")
self.fc2 = tf.keras.layers.Dense(config.hidden_size, name="fc2")
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build(self.config.hidden_size)
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build(self.config.intermediate_size)
class TFIdeficsVisionEncoderLayer(tf.keras.layers.Layer):
def __init__(self, config: IdeficsVisionConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.self_attn = TFIdeficsVisionAttention(config, name="self_attn")
self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
self.mlp = TFIdeficsVisionMLP(config, name="mlp")
self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
causal_attention_mask: tf.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[tf.Tensor]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer_norm1", None) is not None:
with tf.name_scope(self.layer_norm1.name):
self.layer_norm1.build([None, None, self.embed_dim])
if getattr(self, "layer_norm2", None) is not None:
with tf.name_scope(self.layer_norm2.name):
self.layer_norm2.build([None, None, self.embed_dim])
class TFIdeficsVisionEncoder(tf.keras.layers.Layer):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`TFIdeficsVisionEncoderLayer`].
Args:
config: IdeficsVisionConfig
"""
def __init__(self, config: IdeficsVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layers = [
TFIdeficsVisionEncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)
]
self.gradient_checkpointing = False
def call(
self,
inputs_embeds,
attention_mask: Optional[tf.Tensor] = None,
causal_attention_mask: Optional[tf.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = None,
) -> Union[Tuple, TFBaseModelOutput]:
r"""
Args:
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = tf.recompute_grad(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
causal_attention_mask,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFIdeficsVisionTransformer(TFPreTrainedModel):
def __init__(self, config: IdeficsVisionConfig, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.embed_dim = config.hidden_size
self.embeddings = TFIdeficsVisionEmbeddings(config, name="embeddings")
self.pre_layrnorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm")
self.encoder = TFIdeficsVisionEncoder(config, name="encoder")
self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm")
# Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward
def call(
self,
pixel_values: Optional[tf.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "pre_layrnorm", None) is not None:
with tf.name_scope(self.pre_layrnorm.name):
self.pre_layrnorm.build([None, None, self.embed_dim])
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "post_layernorm", None) is not None:
with tf.name_scope(self.post_layernorm.name):
self.post_layernorm.build([None, self.embed_dim])