Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/paligemma
/configuration_paligemma.py
# coding=utf-8 | |
# Copyright 2024 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PaliGemmamodel configuration""" | |
import warnings | |
from ...configuration_utils import PretrainedConfig | |
from ...utils import logging | |
from ..auto import CONFIG_MAPPING | |
logger = logging.get_logger(__name__) | |
class PaliGemmaConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`PaliGemmaForConditionalGeneration`]. It is used to instantiate an | |
PaliGemmamodel according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of the PaliGemma-2B. | |
e.g. [paligemma-hf/paligemma-2b](https://huggingface.co/paligemma-hf/paligemma-2b) | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vision_config (`PaliGemmaVisionConfig`, *optional*): | |
Custom vision config or dict | |
text_config (`Union[AutoConfig, dict]`, *optional*): | |
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. | |
ignore_index (`int`, *optional*, defaults to -100): | |
The ignore index for the loss function. | |
image_token_index (`int`, *optional*, defaults to 256000): | |
The image token index to encode the image prompt. | |
vocab_size (`int`, *optional*, defaults to 257152): | |
Vocabulary size of the PaliGemmamodel. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`~PaliGemmaForConditionalGeneration`] | |
projection_dim (`int`, *optional*, defaults to 2048): | |
Dimension of the multimodal projection space. | |
hidden_size (`int`, *optional*, defaults to 2048): | |
Dimension of the hidden layer of the Language model. | |
Example: | |
```python | |
>>> from transformers import PaliGemmaForConditionalGeneration, PaliGemmaConfig, SiglipVisionConfig, GemmaConfig | |
>>> # Initializing a Siglip-like vision config | |
>>> vision_config = SiglipVisionConfig() | |
>>> # Initializing a PaliGemma config | |
>>> text_config = GemmaConfig() | |
>>> # Initializing a PaliGemma paligemma-3b-224 style configuration | |
>>> configuration = PaliGemmaConfig(vision_config, text_config) | |
>>> # Initializing a model from the paligemma-3b-224 style configuration | |
>>> model = PaliGemmaForConditionalGeneration(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "paligemma" | |
is_composition = False | |
def __init__( | |
self, | |
vision_config=None, | |
text_config=None, | |
ignore_index=-100, | |
image_token_index=256000, | |
vocab_size=257152, | |
projection_dim=2048, | |
hidden_size=2048, | |
**kwargs, | |
): | |
self.ignore_index = ignore_index | |
self.image_token_index = image_token_index | |
self._vocab_size = vocab_size | |
self.projection_dim = projection_dim | |
self.hidden_size = hidden_size | |
self.vision_config = vision_config | |
self.is_encoder_decoder = False | |
if isinstance(self.vision_config, dict): | |
vision_config["model_type"] = ( | |
vision_config["model_type"] if "model_type" in vision_config else "siglip_vision_model" | |
) | |
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) | |
elif vision_config is None: | |
self.vision_config = CONFIG_MAPPING["siglip_vision_model"]( | |
intermediate_size=4096, | |
hidden_size=1152, | |
patch_size=14, | |
image_size=224, | |
num_hidden_layers=27, | |
num_attention_heads=16, | |
vocab_size=257152, | |
vision_use_head=False, | |
) | |
self.vocab_size = self.vocab_size | |
self.text_config = text_config | |
if isinstance(self.text_config, dict): | |
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma" | |
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) | |
self.vocab_size = self.text_config.vocab_size | |
elif text_config is None: | |
self.text_config = CONFIG_MAPPING["gemma"]( | |
hidden_size=2048, | |
num_hidden_layers=18, | |
intermediate_size=16384, | |
num_attention_heads=8, | |
num_key_value_heads=1, | |
is_encoder_decoder=False, | |
vocab_size=vocab_size, | |
) | |
self.text_config.num_image_tokens = (self.vision_config.image_size // self.vision_config.patch_size) ** 2 | |
self.vision_config.projection_dim = projection_dim | |
super().__init__(**kwargs) | |
def vocab_size(self): | |
warnings.warn( | |
"The `vocab_size` attribute is deprecated and will be removed in v4.44, Please use `text_config.vocab_size` instead.", | |
FutureWarning, | |
) | |
return self._vocab_size | |
def vocab_size(self, value): | |
self._vocab_size = value | |
def to_dict(self): | |
output = super().to_dict() | |
output.pop("_vocab_size", None) | |
return output | |