metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- dataset_whisper
metrics:
- wer
model-index:
- name: Transcriber-small
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: dataset_whisper
type: dataset_whisper
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 97.23577235772358
Transcriber-small
This model is a fine-tuned version of openai/whisper-small on the dataset_whisper dataset. It achieves the following results on the evaluation set:
- Loss: 3.0153
- Wer: 97.2358
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.6006 | 4.02 | 100 | 2.6681 | 99.9350 |
1.6004 | 8.04 | 200 | 2.1138 | 107.2846 |
1.0072 | 12.06 | 300 | 1.9609 | 129.9187 |
0.5229 | 16.08 | 400 | 2.0901 | 119.0894 |
0.2155 | 20.1 | 500 | 2.2948 | 105.9187 |
0.0743 | 24.12 | 600 | 2.3731 | 100.6829 |
0.0292 | 28.14 | 700 | 2.5375 | 118.0813 |
0.0169 | 32.16 | 800 | 2.5601 | 108.0650 |
0.0121 | 36.18 | 900 | 2.6491 | 102.7642 |
0.008 | 40.2 | 1000 | 2.6436 | 94.3415 |
0.0046 | 44.22 | 1100 | 2.7131 | 89.8211 |
0.0021 | 48.24 | 1200 | 2.7516 | 96.9106 |
0.0012 | 52.26 | 1300 | 2.7878 | 95.3496 |
0.0009 | 56.28 | 1400 | 2.8137 | 97.6260 |
0.0008 | 60.3 | 1500 | 2.8333 | 94.2439 |
0.0007 | 64.32 | 1600 | 2.8514 | 90.1463 |
0.0006 | 68.34 | 1700 | 2.8667 | 95.3821 |
0.0006 | 72.36 | 1800 | 2.8813 | 98.0488 |
0.0005 | 76.38 | 1900 | 2.8932 | 98.8618 |
0.0005 | 80.4 | 2000 | 2.9056 | 98.9268 |
0.0004 | 84.42 | 2100 | 2.9156 | 96.7805 |
0.0004 | 88.44 | 2200 | 2.9251 | 96.7805 |
0.0004 | 92.46 | 2300 | 2.9343 | 97.8211 |
0.0003 | 96.48 | 2400 | 2.9439 | 97.8537 |
0.0003 | 100.5 | 2500 | 2.9516 | 97.1057 |
0.0003 | 104.52 | 2600 | 2.9597 | 98.1138 |
0.0003 | 108.54 | 2700 | 2.9671 | 96.4228 |
0.0003 | 112.56 | 2800 | 2.9733 | 99.1870 |
0.0003 | 116.58 | 2900 | 2.9791 | 102.2764 |
0.0003 | 120.6 | 3000 | 2.9860 | 101.2033 |
0.0002 | 124.62 | 3100 | 2.9903 | 98.9919 |
0.0002 | 128.64 | 3200 | 2.9953 | 98.3415 |
0.0002 | 132.66 | 3300 | 2.9996 | 99.8699 |
0.0002 | 136.68 | 3400 | 3.0034 | 100.1301 |
0.0002 | 140.7 | 3500 | 3.0070 | 98.7317 |
0.0002 | 144.72 | 3600 | 3.0093 | 97.1382 |
0.0002 | 148.74 | 3700 | 3.0118 | 98.3740 |
0.0002 | 152.76 | 3800 | 3.0136 | 96.8130 |
0.0002 | 156.78 | 3900 | 3.0153 | 96.8780 |
0.0002 | 160.8 | 4000 | 3.0153 | 97.2358 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.14.1
- Tokenizers 0.13.3