|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: resnet-50-finetuned-resnet50_0831 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.976407675369613 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# resnet-50-finetuned-resnet50_0831 |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0862 |
|
- Accuracy: 0.9764 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.9066 | 1.0 | 223 | 0.8770 | 0.6659 | |
|
| 0.5407 | 2.0 | 446 | 0.4251 | 0.7867 | |
|
| 0.3614 | 3.0 | 669 | 0.2009 | 0.9390 | |
|
| 0.3016 | 4.0 | 892 | 0.1362 | 0.9582 | |
|
| 0.2358 | 5.0 | 1115 | 0.1139 | 0.9676 | |
|
| 0.247 | 6.0 | 1338 | 0.1081 | 0.9698 | |
|
| 0.2135 | 7.0 | 1561 | 0.1027 | 0.9720 | |
|
| 0.2043 | 8.0 | 1784 | 0.1026 | 0.9695 | |
|
| 0.2165 | 9.0 | 2007 | 0.0957 | 0.9733 | |
|
| 0.1983 | 10.0 | 2230 | 0.0936 | 0.9736 | |
|
| 0.2116 | 11.0 | 2453 | 0.0949 | 0.9736 | |
|
| 0.2341 | 12.0 | 2676 | 0.0905 | 0.9755 | |
|
| 0.2004 | 13.0 | 2899 | 0.0901 | 0.9739 | |
|
| 0.1956 | 14.0 | 3122 | 0.0877 | 0.9755 | |
|
| 0.1668 | 15.0 | 3345 | 0.0847 | 0.9764 | |
|
| 0.1855 | 16.0 | 3568 | 0.0850 | 0.9755 | |
|
| 0.18 | 17.0 | 3791 | 0.0897 | 0.9745 | |
|
| 0.1772 | 18.0 | 4014 | 0.0852 | 0.9755 | |
|
| 0.1881 | 19.0 | 4237 | 0.0845 | 0.9764 | |
|
| 0.2145 | 20.0 | 4460 | 0.0862 | 0.9764 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|