metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:34
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: Quais são as iniciativas do Seringal Lab?
sentences:
- >-
O objetivo do Seringal Lab é atuar como um catalisador da transformação
interna do Ministério Público do Acre, promovendo melhorias contínuas
que otimizam o funcionamento da instituição e geram um impacto positivo
direto para a sociedade.
- >-
O NAT é vinculado à Procuradoria-Geral de Justiça e presta apoio técnico
especializado ao MPAC.
- >-
Algumas das iniciativas do Seringal Lab incluem a Anton.IA, o
TranscreveAI e o Simplifica.
- source_sentence: Em que ano o NAT foi instituído?
sentences:
- >-
O SIMBA é o Sistema de Investigação de Movimentação Bancária, gerenciado
pelo NAT, para monitoramento de atividades financeiras suspeitas no
Acre.
- >-
O NAT foi criado em 2012 pelo Ato n.º 25, visando oferecer apoio
técnico-científico e de segurança institucional ao MPAC.
- >-
O NAT foi instituído no ano de 2012 como uma unidade de suporte técnico
e segurança ao MPAC.
- source_sentence: Qual o impacto do NAT no combate ao crime organizado?
sentences:
- >-
NAT é o Núcleo de Apoio Técnico do Ministério Público do Estado do Acre,
criado para fornecer suporte especializado em inteligência, segurança
institucional e operações técnico-científicas.
- >-
O NAT fortalece o combate ao crime organizado ao fornecer suporte
técnico e científico ao GAECO e outros órgãos do MPAC.
- >-
O NAT foi criado para oferecer suporte especializado ao MPAC, garantindo
apoio em áreas técnico-científicas e de segurança para facilitar as
operações de investigação e combate ao crime.
- source_sentence: Quem regulamenta o NAT?
sentences:
- >-
O escopo do NAT envolve oferecer apoio de inteligência, segurança
institucional, e suporte técnico-científico ao MPAC, especialmente nas
operações do GAECO.
- >-
NAT significa Núcleo de Apoio Técnico, uma unidade de suporte técnico e
de segurança ao Ministério Público do Acre.
- >-
O NAT é regulamentado pelo Ministério Público do Estado do Acre e foi
formalizado pela Lei Complementar n.º 291 de 2014.
- source_sentence: Qual a importância do NAT para o MPAC?
sentences:
- >-
O TranscreveAI transforma áudios em textos de maneira automática e
precisa, além de registrar o tempo exato do início e do fim de cada fala
(timestamp).
- >-
O NAT é essencial para o MPAC, fornecendo apoio técnico especializado e
segurança, fortalecendo as operações de investigação e combate ao crime.
- >-
A Lei Complementar n.º 291 de 2014 regulamentou o NAT como um órgão
auxiliar do MPAC, fortalecendo seu papel de apoio técnico e científico.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: MPAC BGE Large
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7777777777777778
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8888888888888888
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8888888888888888
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7777777777777778
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2962962962962963
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17777777777777778
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08888888888888889
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7777777777777778
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8888888888888888
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8888888888888888
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8333333333333334
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8148148148148149
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8249158249158248
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7777777777777778
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8888888888888888
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7777777777777778
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2962962962962963
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17777777777777778
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7777777777777778
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8888888888888888
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8813288610261599
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.845679012345679
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.845679012345679
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7777777777777778
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8888888888888888
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7777777777777778
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2962962962962963
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17777777777777778
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7777777777777778
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8888888888888888
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.884918120767199
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8492063492063493
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8492063492063492
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7777777777777778
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8888888888888888
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7777777777777778
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2962962962962963
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17777777777777778
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7777777777777778
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8888888888888888
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8813288610261599
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.845679012345679
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.845679012345679
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7777777777777778
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8888888888888888
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7777777777777778
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2962962962962963
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17777777777777778
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.1
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7777777777777778
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8888888888888888
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.884918120767199
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8492063492063493
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8492063492063492
name: Cosine Map@100
MPAC BGE Large
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mp-ac/mpac-bge-large-v1.2")
# Run inference
sentences = [
'Qual a importância do NAT para o MPAC?',
'O NAT é essencial para o MPAC, fornecendo apoio técnico especializado e segurança, fortalecendo as operações de investigação e combate ao crime.',
'A Lei Complementar n.º 291 de 2014 regulamentou o NAT como um órgão auxiliar do MPAC, fortalecendo seu papel de apoio técnico e científico.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7778 | 0.7778 | 0.7778 | 0.7778 | 0.7778 |
cosine_accuracy@3 | 0.8889 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
cosine_accuracy@5 | 0.8889 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
cosine_accuracy@10 | 0.8889 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_precision@1 | 0.7778 | 0.7778 | 0.7778 | 0.7778 | 0.7778 |
cosine_precision@3 | 0.2963 | 0.2963 | 0.2963 | 0.2963 | 0.2963 |
cosine_precision@5 | 0.1778 | 0.1778 | 0.1778 | 0.1778 | 0.1778 |
cosine_precision@10 | 0.0889 | 0.1 | 0.1 | 0.1 | 0.1 |
cosine_recall@1 | 0.7778 | 0.7778 | 0.7778 | 0.7778 | 0.7778 |
cosine_recall@3 | 0.8889 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
cosine_recall@5 | 0.8889 | 0.8889 | 0.8889 | 0.8889 | 0.8889 |
cosine_recall@10 | 0.8889 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_ndcg@10 | 0.8333 | 0.8813 | 0.8849 | 0.8813 | 0.8849 |
cosine_mrr@10 | 0.8148 | 0.8457 | 0.8492 | 0.8457 | 0.8492 |
cosine_map@100 | 0.8249 | 0.8457 | 0.8492 | 0.8457 | 0.8492 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 34 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 34 samples:
anchor positive type string string details - min: 8 tokens
- mean: 13.85 tokens
- max: 20 tokens
- min: 27 tokens
- mean: 53.62 tokens
- max: 76 tokens
- Samples:
anchor positive Qual é o objetivo do Simplifica?
O objetivo do Simplifica é implementar e disseminar a Linguagem Simples no Ministério Público do Estado do Acre, tornando a comunicação institucional mais acessível, clara e objetiva para todos os cidadãos.
Qual é a função do NAT no LAB-LD?
O NAT gerencia o LAB-LD, oferecendo suporte especializado em investigações financeiras para combater a lavagem de dinheiro.
O que é o NAT?
O NAT, Núcleo de Apoio Técnico, é uma unidade do Ministério Público do Estado do Acre criada em 2012 para oferecer apoio técnico, científico e de segurança aos órgãos de execução do MPAC.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|
1.0 | 1 | 0.7368 | 0.7368 | 0.7222 | 0.6686 | 0.7222 |
2.0 | 2 | 0.8128 | 0.7738 | 0.7292 | 0.7738 | 0.7702 |
3.0 | 3 | 0.8256 | 0.8258 | 0.8542 | 0.8800 | 0.8591 |
4.0 | 4 | 0.8333 | 0.8258 | 0.8704 | 0.8813 | 0.8829 |
5.0 | 5 | 0.8333 | 0.8813 | 0.8849 | 0.8813 | 0.8849 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}