metadata
library_name: transformers
language:
- gsw
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
datasets:
- notebotIE/zh_split_preprocessed
metrics:
- wer
model-index:
- name: Whisper Large V2 - Swiss German
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: SwissDialDataset_ETH
type: notebotIE/zh_split_preprocessed
metrics:
- name: Wer
type: wer
value: 0.23455664463186687
Whisper Large V2 - Swiss German
This model is a fine-tuned version of openai/whisper-large-v2 on the SwissDialDataset_ETH dataset. It achieves the following results on the evaluation set:
- Loss: 0.2463
- Wer Ortho: 0.3206
- Wer: 0.2346
- Cer: 0.0795
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer |
---|---|---|---|---|---|---|
0.1296 | 1.2300 | 250 | 0.2512 | 0.3233 | 0.3987 | 0.2304 |
0.0737 | 2.4600 | 500 | 0.2463 | 0.3206 | 0.2346 | 0.0795 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3