Leo1212's picture
End of training
c72ce2c verified
|
raw
history blame
2.14 kB
metadata
library_name: transformers
language:
  - gsw
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
  - generated_from_trainer
datasets:
  - notebotIE/zh_split_preprocessed
metrics:
  - wer
model-index:
  - name: Whisper Large V2 - Swiss German
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: SwissDialDataset_ETH
          type: notebotIE/zh_split_preprocessed
        metrics:
          - name: Wer
            type: wer
            value: 0.23455664463186687

Whisper Large V2 - Swiss German

This model is a fine-tuned version of openai/whisper-large-v2 on the SwissDialDataset_ETH dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2463
  • Wer Ortho: 0.3206
  • Wer: 0.2346
  • Cer: 0.0795

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer
0.1296 1.2300 250 0.2512 0.3233 0.3987 0.2304
0.0737 2.4600 500 0.2463 0.3206 0.2346 0.0795

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3