onizukal's picture
End of training
eec2e54 verified
|
raw
history blame
3.16 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6201466196035841

Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7539
  • Accuracy: 0.6201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3484 1.0 924 1.3605 0.5327
1.1536 2.0 1848 1.2783 0.5515
1.1327 3.0 2772 1.1624 0.6071
0.7516 4.0 3696 1.2618 0.5952
0.5923 5.0 4620 1.4123 0.6022
0.5275 6.0 5544 1.5876 0.5927
0.3529 7.0 6468 1.7994 0.5887
0.2628 8.0 7392 1.9375 0.5984
0.2774 9.0 8316 2.3876 0.5889
0.1651 10.0 9240 2.6650 0.5873
0.1728 11.0 10164 2.8556 0.5867
0.028 12.0 11088 3.0398 0.6003
0.0023 13.0 12012 3.3114 0.6044
0.0042 14.0 12936 3.3149 0.6082
0.0192 15.0 13860 3.4661 0.6028
0.0004 16.0 14784 3.5853 0.6058
0.0363 17.0 15708 3.5853 0.6144
0.0 18.0 16632 3.7544 0.6123
0.002 19.0 17556 3.7503 0.6155
0.0 20.0 18480 3.7539 0.6201

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1