|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold1
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: test
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.6201466196035841
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold1
|
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 3.7539
|
|
- Accuracy: 0.6201
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 1e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
|
| 1.3484 | 1.0 | 924 | 1.3605 | 0.5327 |
|
|
| 1.1536 | 2.0 | 1848 | 1.2783 | 0.5515 |
|
|
| 1.1327 | 3.0 | 2772 | 1.1624 | 0.6071 |
|
|
| 0.7516 | 4.0 | 3696 | 1.2618 | 0.5952 |
|
|
| 0.5923 | 5.0 | 4620 | 1.4123 | 0.6022 |
|
|
| 0.5275 | 6.0 | 5544 | 1.5876 | 0.5927 |
|
|
| 0.3529 | 7.0 | 6468 | 1.7994 | 0.5887 |
|
|
| 0.2628 | 8.0 | 7392 | 1.9375 | 0.5984 |
|
|
| 0.2774 | 9.0 | 8316 | 2.3876 | 0.5889 |
|
|
| 0.1651 | 10.0 | 9240 | 2.6650 | 0.5873 |
|
|
| 0.1728 | 11.0 | 10164 | 2.8556 | 0.5867 |
|
|
| 0.028 | 12.0 | 11088 | 3.0398 | 0.6003 |
|
|
| 0.0023 | 13.0 | 12012 | 3.3114 | 0.6044 |
|
|
| 0.0042 | 14.0 | 12936 | 3.3149 | 0.6082 |
|
|
| 0.0192 | 15.0 | 13860 | 3.4661 | 0.6028 |
|
|
| 0.0004 | 16.0 | 14784 | 3.5853 | 0.6058 |
|
|
| 0.0363 | 17.0 | 15708 | 3.5853 | 0.6144 |
|
|
| 0.0 | 18.0 | 16632 | 3.7544 | 0.6123 |
|
|
| 0.002 | 19.0 | 17556 | 3.7503 | 0.6155 |
|
|
| 0.0 | 20.0 | 18480 | 3.7539 | 0.6201 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.35.0
|
|
- Pytorch 2.1.0
|
|
- Datasets 2.14.6
|
|
- Tokenizers 0.14.1
|
|
|