|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-large-patch4-window12-384 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold1 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.47160493827160493 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Boya2_SGD_1e3_20Epoch_Swin-large-224_fold1 |
|
|
|
This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384](https://huggingface.co/microsoft/swin-large-patch4-window12-384) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.6332 |
|
- Accuracy: 0.4716 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 2.4897 | 1.0 | 914 | 2.4409 | 0.2804 | |
|
| 2.1506 | 2.0 | 1828 | 2.2233 | 0.2968 | |
|
| 2.0176 | 3.0 | 2742 | 2.1001 | 0.3311 | |
|
| 1.9799 | 4.0 | 3656 | 2.0112 | 0.3564 | |
|
| 1.9403 | 5.0 | 4570 | 1.9459 | 0.3786 | |
|
| 1.9907 | 6.0 | 5484 | 1.8909 | 0.4003 | |
|
| 1.7985 | 7.0 | 6398 | 1.8449 | 0.4159 | |
|
| 1.8712 | 8.0 | 7312 | 1.8057 | 0.4239 | |
|
| 1.7195 | 9.0 | 8226 | 1.7733 | 0.4348 | |
|
| 1.8526 | 10.0 | 9140 | 1.7458 | 0.4436 | |
|
| 1.67 | 11.0 | 10054 | 1.7203 | 0.4488 | |
|
| 1.6061 | 12.0 | 10968 | 1.7023 | 0.4549 | |
|
| 1.6256 | 13.0 | 11882 | 1.6832 | 0.4582 | |
|
| 1.8212 | 14.0 | 12796 | 1.6685 | 0.4634 | |
|
| 1.7157 | 15.0 | 13710 | 1.6584 | 0.4639 | |
|
| 1.6148 | 16.0 | 14624 | 1.6491 | 0.4661 | |
|
| 1.7158 | 17.0 | 15538 | 1.6424 | 0.4675 | |
|
| 1.7391 | 18.0 | 16452 | 1.6370 | 0.4689 | |
|
| 1.8077 | 19.0 | 17366 | 1.6337 | 0.4716 | |
|
| 1.7769 | 20.0 | 18280 | 1.6332 | 0.4716 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.13.2 |
|
|