ptah23's picture
update model card README.md
99853f8
metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: whisper-small-bn-in
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: bn_in
          split: train+validation
          args: bn_in
        metrics:
          - name: Wer
            type: wer
            value: 0.45676500508647

whisper-small-bn-in

This model is a fine-tuned version of openai/whisper-small on the google/fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1842
  • Wer: 0.4568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 5
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Wer
0.4443 0.53 100 0.3399 0.7272
0.249 1.07 200 0.2222 0.6244
0.1662 1.6 300 0.1778 0.5807
0.1221 2.14 400 0.1602 0.5397
0.0965 2.67 500 0.1484 0.5168
0.0646 3.21 600 0.1475 0.4966
0.0566 3.74 700 0.1420 0.4812
0.028 4.28 800 0.1511 0.4910
0.0325 4.81 900 0.1476 0.4766
0.0177 5.35 1000 0.1593 0.4876
0.0176 5.88 1100 0.1589 0.4715
0.0127 6.42 1200 0.1622 0.4634
0.0126 6.95 1300 0.1706 0.4673
0.0089 7.49 1400 0.1777 0.4712
0.0087 8.02 1500 0.1776 0.4666
0.0076 8.56 1600 0.1788 0.4505
0.007 9.09 1700 0.1906 0.4685
0.0057 9.63 1800 0.1840 0.4573
0.0064 10.16 1900 0.1841 0.4569
0.0057 10.7 2000 0.1842 0.4568

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1