|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- google/fleurs |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-small-bn-in |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: google/fleurs |
|
type: google/fleurs |
|
config: bn_in |
|
split: train+validation |
|
args: bn_in |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.45676500508647 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-small-bn-in |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1842 |
|
- Wer: 0.4568 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant_with_warmup |
|
- lr_scheduler_warmup_steps: 5 |
|
- training_steps: 2000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.4443 | 0.53 | 100 | 0.3399 | 0.7272 | |
|
| 0.249 | 1.07 | 200 | 0.2222 | 0.6244 | |
|
| 0.1662 | 1.6 | 300 | 0.1778 | 0.5807 | |
|
| 0.1221 | 2.14 | 400 | 0.1602 | 0.5397 | |
|
| 0.0965 | 2.67 | 500 | 0.1484 | 0.5168 | |
|
| 0.0646 | 3.21 | 600 | 0.1475 | 0.4966 | |
|
| 0.0566 | 3.74 | 700 | 0.1420 | 0.4812 | |
|
| 0.028 | 4.28 | 800 | 0.1511 | 0.4910 | |
|
| 0.0325 | 4.81 | 900 | 0.1476 | 0.4766 | |
|
| 0.0177 | 5.35 | 1000 | 0.1593 | 0.4876 | |
|
| 0.0176 | 5.88 | 1100 | 0.1589 | 0.4715 | |
|
| 0.0127 | 6.42 | 1200 | 0.1622 | 0.4634 | |
|
| 0.0126 | 6.95 | 1300 | 0.1706 | 0.4673 | |
|
| 0.0089 | 7.49 | 1400 | 0.1777 | 0.4712 | |
|
| 0.0087 | 8.02 | 1500 | 0.1776 | 0.4666 | |
|
| 0.0076 | 8.56 | 1600 | 0.1788 | 0.4505 | |
|
| 0.007 | 9.09 | 1700 | 0.1906 | 0.4685 | |
|
| 0.0057 | 9.63 | 1800 | 0.1840 | 0.4573 | |
|
| 0.0064 | 10.16 | 1900 | 0.1841 | 0.4569 | |
|
| 0.0057 | 10.7 | 2000 | 0.1842 | 0.4568 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0.dev0 |
|
- Pytorch 1.12.1+cu116 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|