metadata
library_name: transformers
base_model: Fsoft-AIC/videberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: videberta-base-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
results: []
videberta-base-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
This model is a fine-tuned version of Fsoft-AIC/videberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0921
- Accuracy: 0.9816
- F1: 0.0426
- Precision: 0.25
- Recall: 0.0233
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 250 | 0.0910 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.1567 | 2.0 | 500 | 0.0949 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.1567 | 3.0 | 750 | 0.0959 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0772 | 4.0 | 1000 | 0.0962 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0772 | 5.0 | 1250 | 0.0975 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0767 | 6.0 | 1500 | 0.0969 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0767 | 7.0 | 1750 | 0.0984 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0758 | 8.0 | 2000 | 0.0966 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0758 | 9.0 | 2250 | 0.0960 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0739 | 10.0 | 2500 | 0.0955 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0739 | 11.0 | 2750 | 0.0958 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0711 | 12.0 | 3000 | 0.0940 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0711 | 13.0 | 3250 | 0.0942 | 0.9820 | 0.0 | 0.0 | 0.0 |
0.0672 | 14.0 | 3500 | 0.0958 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0672 | 15.0 | 3750 | 0.0943 | 0.9825 | 0.0851 | 0.5 | 0.0465 |
0.0639 | 16.0 | 4000 | 0.0926 | 0.9829 | 0.0455 | 1.0 | 0.0233 |
0.0639 | 17.0 | 4250 | 0.0964 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
0.0611 | 18.0 | 4500 | 0.0970 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
0.0611 | 19.0 | 4750 | 0.0969 | 0.9825 | 0.0444 | 0.5 | 0.0233 |
0.058 | 20.0 | 5000 | 0.0952 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
0.058 | 21.0 | 5250 | 0.0950 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
0.0547 | 22.0 | 5500 | 0.0954 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
0.0547 | 23.0 | 5750 | 0.0963 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
0.0525 | 24.0 | 6000 | 0.0946 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
0.0525 | 25.0 | 6250 | 0.0942 | 0.9820 | 0.0435 | 0.3333 | 0.0233 |
0.0502 | 26.0 | 6500 | 0.0909 | 0.9825 | 0.0444 | 0.5 | 0.0233 |
0.0502 | 27.0 | 6750 | 0.0958 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
0.048 | 28.0 | 7000 | 0.0934 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
0.048 | 29.0 | 7250 | 0.0946 | 0.9804 | 0.04 | 0.1429 | 0.0233 |
0.0458 | 30.0 | 7500 | 0.0938 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
0.0458 | 31.0 | 7750 | 0.0913 | 0.9829 | 0.0870 | 0.6667 | 0.0465 |
0.044 | 32.0 | 8000 | 0.0913 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
0.044 | 33.0 | 8250 | 0.0915 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
0.0427 | 34.0 | 8500 | 0.0924 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
0.0427 | 35.0 | 8750 | 0.0912 | 0.9812 | 0.0417 | 0.2 | 0.0233 |
0.041 | 36.0 | 9000 | 0.0922 | 0.9808 | 0.0408 | 0.1667 | 0.0233 |
0.041 | 37.0 | 9250 | 0.0933 | 0.9812 | 0.0417 | 0.2 | 0.0233 |
0.0404 | 38.0 | 9500 | 0.0929 | 0.9812 | 0.0417 | 0.2 | 0.0233 |
0.0404 | 39.0 | 9750 | 0.0922 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
0.0401 | 40.0 | 10000 | 0.0921 | 0.9816 | 0.0426 | 0.25 | 0.0233 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1