|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
LLAMA32_CONFIG_1B = { |
|
"vocab_size": 128_256, |
|
"context_length": 8192, |
|
"orig_context_length": 131_072, |
|
"emb_dim": 2048, |
|
"n_heads": 32, |
|
"n_layers": 16, |
|
"hidden_dim": 8192, |
|
"n_kv_groups": 8, |
|
"rope_base": 500_000.0, |
|
"dtype": torch.bfloat16, |
|
"rope_freq": { |
|
"factor": 32.0, |
|
"low_freq_factor": 1.0, |
|
"high_freq_factor": 4.0, |
|
"original_context_length": 8192, |
|
} |
|
} |
|
|
|
LLAMA32_CONFIG_3B = { |
|
"vocab_size": 128_256, |
|
"context_length": 8192, |
|
"orig_context_length": 131_072, |
|
"emb_dim": 3072, |
|
"n_heads": 24, |
|
"n_layers": 28, |
|
"hidden_dim": 8192, |
|
"n_kv_groups": 8, |
|
"rope_base": 500_000.0, |
|
"dtype": torch.bfloat16, |
|
"rope_freq": { |
|
"factor": 32.0, |
|
"low_freq_factor": 1.0, |
|
"high_freq_factor": 4.0, |
|
"original_context_length": 8192, |
|
} |
|
} |
|
|
|
|
|
class Llama3Model(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
|
|
|
|
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"]) |
|
|
|
self.trf_blocks = nn.ModuleList( |
|
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])] |
|
) |
|
|
|
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) |
|
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"]) |
|
|
|
|
|
self.register_buffer( |
|
"mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(), |
|
persistent=False |
|
) |
|
|
|
if cfg["orig_context_length"] != cfg["context_length"]: |
|
cfg["rope_base"] = rescale_theta( |
|
cfg["rope_base"], |
|
cfg["orig_context_length"], |
|
cfg["context_length"] |
|
) |
|
cos, sin = compute_rope_params( |
|
head_dim=cfg["emb_dim"] // cfg["n_heads"], |
|
theta_base=cfg["rope_base"], |
|
context_length=cfg["context_length"], |
|
freq_config=cfg["rope_freq"] |
|
) |
|
self.register_buffer("cos", cos, persistent=False) |
|
self.register_buffer("sin", sin, persistent=False) |
|
self.cfg = cfg |
|
|
|
def forward(self, in_idx): |
|
|
|
tok_embeds = self.tok_emb(in_idx) |
|
x = tok_embeds |
|
|
|
for block in self.trf_blocks: |
|
x = block(x, self.mask, self.cos, self.sin) |
|
x = self.final_norm(x) |
|
logits = self.out_head(x.to(self.cfg["dtype"])) |
|
return logits |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.att = GroupedQueryAttention( |
|
d_in=cfg["emb_dim"], |
|
d_out=cfg["emb_dim"], |
|
num_heads=cfg["n_heads"], |
|
num_kv_groups=cfg["n_kv_groups"], |
|
dtype=cfg["dtype"] |
|
) |
|
self.ff = FeedForward(cfg) |
|
self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) |
|
self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"]) |
|
|
|
def forward(self, x, mask, cos, sin): |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = self.att(x, mask, cos, sin) |
|
x = x + shortcut |
|
|
|
|
|
shortcut = x |
|
x = self.norm2(x) |
|
x = self.ff(x) |
|
x = x + shortcut |
|
|
|
return x |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) |
|
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False) |
|
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False) |
|
|
|
def forward(self, x): |
|
x_fc1 = self.fc1(x) |
|
x_fc2 = self.fc2(x) |
|
x = nn.functional.silu(x_fc1) * x_fc2 |
|
return self.fc3(x) |
|
|
|
|
|
class GroupedQueryAttention(nn.Module): |
|
def __init__( |
|
self, d_in, d_out, num_heads, |
|
num_kv_groups, |
|
dtype=None |
|
): |
|
super().__init__() |
|
assert d_out % num_heads == 0, "d_out must be divisible by num_heads" |
|
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups" |
|
|
|
self.d_out = d_out |
|
self.num_heads = num_heads |
|
self.head_dim = d_out // num_heads |
|
|
|
self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype) |
|
self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype) |
|
self.num_kv_groups = num_kv_groups |
|
self.group_size = num_heads // num_kv_groups |
|
|
|
self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype) |
|
self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype) |
|
|
|
def forward(self, x, mask, cos, sin): |
|
b, num_tokens, d_in = x.shape |
|
|
|
queries = self.W_query(x) |
|
keys = self.W_key(x) |
|
values = self.W_value(x) |
|
|
|
|
|
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) |
|
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim) |
|
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim) |
|
|
|
|
|
keys = keys.transpose(1, 2) |
|
values = values.transpose(1, 2) |
|
queries = queries.transpose(1, 2) |
|
|
|
|
|
keys = apply_rope(keys, cos, sin) |
|
queries = apply_rope(queries, cos, sin) |
|
|
|
|
|
|
|
keys = keys.repeat_interleave(self.group_size, dim=1) |
|
values = values.repeat_interleave(self.group_size, dim=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_scores = queries @ keys.transpose(2, 3) |
|
|
|
|
|
attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf) |
|
|
|
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) |
|
assert keys.shape[-1] == self.head_dim |
|
|
|
|
|
context_vec = (attn_weights @ values).transpose(1, 2) |
|
|
|
|
|
context_vec = context_vec.reshape(b, num_tokens, self.d_out) |
|
context_vec = self.out_proj(context_vec) |
|
|
|
return context_vec |
|
|
|
|
|
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32): |
|
assert head_dim % 2 == 0, "Embedding dimension must be even" |
|
|
|
|
|
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim)) |
|
|
|
|
|
if freq_config is not None: |
|
low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"] |
|
high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"] |
|
|
|
wavelen = 2 * torch.pi / inv_freq |
|
|
|
inv_freq_llama = torch.where( |
|
wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq |
|
) |
|
|
|
smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / ( |
|
freq_config["high_freq_factor"] - freq_config["low_freq_factor"] |
|
) |
|
|
|
smoothed_inv_freq = ( |
|
(1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq |
|
) |
|
|
|
is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen) |
|
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama) |
|
inv_freq = inv_freq_llama |
|
|
|
|
|
positions = torch.arange(context_length, dtype=dtype) |
|
|
|
|
|
angles = positions[:, None] * inv_freq[None, :] |
|
|
|
|
|
angles = torch.cat([angles, angles], dim=1) |
|
|
|
|
|
cos = torch.cos(angles) |
|
sin = torch.sin(angles) |
|
|
|
return cos, sin |
|
|
|
|
|
def apply_rope(x, cos, sin): |
|
|
|
batch_size, num_heads, seq_len, head_dim = x.shape |
|
assert head_dim % 2 == 0, "Head dimension must be even" |
|
|
|
|
|
x1 = x[..., : head_dim // 2] |
|
x2 = x[..., head_dim // 2:] |
|
|
|
|
|
cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) |
|
sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
rotated = torch.cat((-x2, x1), dim=-1) |
|
x_rotated = (x * cos) + (rotated * sin) |
|
|
|
|
|
return x_rotated.to(dtype=x.dtype) |
|
|
|
|
|
def rescale_theta(theta_old, context_length_old, context_length_new): |
|
scaling_factor = context_length_new / context_length_old |
|
theta_new = theta_old * scaling_factor |
|
return theta_new |
|
|
|
|
|
def text_to_token_ids(text, tokenizer): |
|
encoded = tokenizer.encode(text) |
|
encoded_tensor = torch.tensor(encoded).unsqueeze(0) |
|
return encoded_tensor |
|
|
|
|
|
def token_ids_to_text(token_ids, tokenizer): |
|
flat = token_ids.squeeze(0) |
|
return tokenizer.decode(flat.tolist()) |
|
|
|
|
|
def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None): |
|
|
|
|
|
for _ in range(max_new_tokens): |
|
idx_cond = idx[:, -context_size:] |
|
with torch.no_grad(): |
|
logits = model(idx_cond) |
|
logits = logits[:, -1, :] |
|
|
|
|
|
if top_k is not None: |
|
|
|
top_logits, _ = torch.topk(logits, top_k) |
|
min_val = top_logits[:, -1] |
|
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits) |
|
|
|
|
|
if temperature > 0.0: |
|
logits = logits / temperature |
|
|
|
|
|
probs = torch.softmax(logits, dim=-1) |
|
|
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
|
|
else: |
|
idx_next = torch.argmax(logits, dim=-1, keepdim=True) |
|
|
|
if idx_next == eos_id: |
|
break |
|
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
return idx |
|
|