rasbt's picture
Upload folder using huggingface_hub
44656d5 verified
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/07_gpt_to_llama/standalone-llama32.ipynb
import torch
import torch.nn as nn
LLAMA32_CONFIG_1B = {
"vocab_size": 128_256, # Vocabulary size
"context_length": 8192, # Maximum context length to use (reduced to save memory)
"orig_context_length": 131_072, # Context length that was used to train the model
"emb_dim": 2048, # Embedding dimension
"n_heads": 32, # Number of attention heads
"n_layers": 16, # Number of layers
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
"rope_base": 500_000.0, # The base in RoPE's "theta"
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
"rope_freq": { # RoPE frequency scaling
"factor": 32.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
}
}
LLAMA32_CONFIG_3B = {
"vocab_size": 128_256, # Vocabulary size
"context_length": 8192, # Maximum context length to use (reduced to save memory)
"orig_context_length": 131_072, # Context length that was used to train the model
"emb_dim": 3072, # Embedding dimension
"n_heads": 24, # Number of attention heads
"n_layers": 28, # Number of layers
"hidden_dim": 8192, # Size of the intermediate dimension in FeedForward
"n_kv_groups": 8, # Key-Value groups for grouped-query attention
"rope_base": 500_000.0, # The base in RoPE's "theta"
"dtype": torch.bfloat16, # Lower-precision dtype to reduce memory usage
"rope_freq": { # RoPE frequency scaling
"factor": 32.0,
"low_freq_factor": 1.0,
"high_freq_factor": 4.0,
"original_context_length": 8192,
}
}
class Llama3Model(nn.Module):
def __init__(self, cfg):
super().__init__()
# Main model parameters
self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"], dtype=cfg["dtype"])
self.trf_blocks = nn.ModuleList( # ModuleList since Sequential can only accept one input, and we need `x, mask, cos, sin`
[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]
)
self.final_norm = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False, dtype=cfg["dtype"])
# Reusuable utilities
self.register_buffer(
"mask", torch.triu(torch.ones(cfg["context_length"], cfg["context_length"]), diagonal=1).bool(),
persistent=False
)
if cfg["orig_context_length"] != cfg["context_length"]:
cfg["rope_base"] = rescale_theta(
cfg["rope_base"],
cfg["orig_context_length"],
cfg["context_length"]
)
cos, sin = compute_rope_params(
head_dim=cfg["emb_dim"] // cfg["n_heads"],
theta_base=cfg["rope_base"],
context_length=cfg["context_length"],
freq_config=cfg["rope_freq"]
)
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
self.cfg = cfg
def forward(self, in_idx):
# Forward pass
tok_embeds = self.tok_emb(in_idx)
x = tok_embeds
for block in self.trf_blocks:
x = block(x, self.mask, self.cos, self.sin)
x = self.final_norm(x)
logits = self.out_head(x.to(self.cfg["dtype"]))
return logits
class TransformerBlock(nn.Module):
def __init__(self, cfg):
super().__init__()
self.att = GroupedQueryAttention(
d_in=cfg["emb_dim"],
d_out=cfg["emb_dim"],
num_heads=cfg["n_heads"],
num_kv_groups=cfg["n_kv_groups"],
dtype=cfg["dtype"]
)
self.ff = FeedForward(cfg)
self.norm1 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
self.norm2 = nn.RMSNorm(cfg["emb_dim"], eps=1e-5, dtype=cfg["dtype"])
def forward(self, x, mask, cos, sin):
# Shortcut connection for attention block
shortcut = x
x = self.norm1(x)
x = self.att(x, mask, cos, sin) # Shape [batch_size, num_tokens, emb_size]
x = x + shortcut # Add the original input back
# Shortcut connection for feed-forward block
shortcut = x
x = self.norm2(x)
x = self.ff(x)
x = x + shortcut # Add the original input back
return x
class FeedForward(nn.Module):
def __init__(self, cfg):
super().__init__()
self.fc1 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc2 = nn.Linear(cfg["emb_dim"], cfg["hidden_dim"], dtype=cfg["dtype"], bias=False)
self.fc3 = nn.Linear(cfg["hidden_dim"], cfg["emb_dim"], dtype=cfg["dtype"], bias=False)
def forward(self, x):
x_fc1 = self.fc1(x)
x_fc2 = self.fc2(x)
x = nn.functional.silu(x_fc1) * x_fc2
return self.fc3(x)
class GroupedQueryAttention(nn.Module):
def __init__(
self, d_in, d_out, num_heads,
num_kv_groups,
dtype=None
):
super().__init__()
assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
assert num_heads % num_kv_groups == 0, "num_heads must be divisible by num_kv_groups"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads
self.W_key = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
self.W_value = nn.Linear(d_in, num_kv_groups * self.head_dim, bias=False, dtype=dtype)
self.num_kv_groups = num_kv_groups
self.group_size = num_heads // num_kv_groups
self.W_query = nn.Linear(d_in, d_out, bias=False, dtype=dtype)
self.out_proj = nn.Linear(d_out, d_out, bias=False, dtype=dtype)
def forward(self, x, mask, cos, sin):
b, num_tokens, d_in = x.shape
queries = self.W_query(x) # Shape: (b, num_tokens, d_out)
keys = self.W_key(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
values = self.W_value(x) # Shape: (b, num_tokens, num_kv_groups * head_dim)
# Reshape queries, keys, and values
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
keys = keys.view(b, num_tokens, self.num_kv_groups, self.head_dim)
values = values.view(b, num_tokens, self.num_kv_groups, self.head_dim)
# Transpose keys, values, and queries
keys = keys.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
values = values.transpose(1, 2) # Shape: (b, num_heads, num_tokens, head_dim)
queries = queries.transpose(1, 2) # Shape: (b, num_query_groups, num_tokens, head_dim)
# Apply RoPE
keys = apply_rope(keys, cos, sin)
queries = apply_rope(queries, cos, sin)
# Expand keys and values to match the number of heads
# Shape: (b, num_heads, num_tokens, head_dim)
keys = keys.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
values = values.repeat_interleave(self.group_size, dim=1) # Shape: (b, num_heads, num_tokens, head_dim)
# For example, before repeat_interleave along dim=1 (query groups):
# [K1, K2]
# After repeat_interleave (each query group is repeated group_size times):
# [K1, K1, K2, K2]
# If we used regular repeat instead of repeat_interleave, we'd get:
# [K1, K2, K1, K2]
# Compute scaled dot-product attention (aka self-attention) with a causal mask
# Shape: (b, num_heads, num_tokens, num_tokens)
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
# Use the mask to fill attention scores
attn_scores = attn_scores.masked_fill(mask[:num_tokens, :num_tokens], -torch.inf)
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
assert keys.shape[-1] == self.head_dim
# Shape: (b, num_tokens, num_heads, head_dim)
context_vec = (attn_weights @ values).transpose(1, 2)
# Combine heads, where self.d_out = self.num_heads * self.head_dim
context_vec = context_vec.reshape(b, num_tokens, self.d_out)
context_vec = self.out_proj(context_vec) # optional projection
return context_vec
def compute_rope_params(head_dim, theta_base=10_000, context_length=4096, freq_config=None, dtype=torch.float32):
assert head_dim % 2 == 0, "Embedding dimension must be even"
# Compute the inverse frequencies
inv_freq = 1.0 / (theta_base ** (torch.arange(0, head_dim, 2, dtype=dtype)[: (head_dim // 2)].float() / head_dim))
# Frequency adjustments
if freq_config is not None:
low_freq_wavelen = freq_config["original_context_length"] / freq_config["low_freq_factor"]
high_freq_wavelen = freq_config["original_context_length"] / freq_config["high_freq_factor"]
wavelen = 2 * torch.pi / inv_freq
inv_freq_llama = torch.where(
wavelen > low_freq_wavelen, inv_freq / freq_config["factor"], inv_freq
)
smooth_factor = (freq_config["original_context_length"] / wavelen - freq_config["low_freq_factor"]) / (
freq_config["high_freq_factor"] - freq_config["low_freq_factor"]
)
smoothed_inv_freq = (
(1 - smooth_factor) * (inv_freq / freq_config["factor"]) + smooth_factor * inv_freq
)
is_medium_freq = (wavelen <= low_freq_wavelen) & (wavelen >= high_freq_wavelen)
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
inv_freq = inv_freq_llama
# Generate position indices
positions = torch.arange(context_length, dtype=dtype)
# Compute the angles
angles = positions[:, None] * inv_freq[None, :] # Shape: (context_length, head_dim // 2)
# Expand angles to match the head_dim
angles = torch.cat([angles, angles], dim=1) # Shape: (context_length, head_dim)
# Precompute sine and cosine
cos = torch.cos(angles)
sin = torch.sin(angles)
return cos, sin
def apply_rope(x, cos, sin):
# x: (batch_size, num_heads, seq_len, head_dim)
batch_size, num_heads, seq_len, head_dim = x.shape
assert head_dim % 2 == 0, "Head dimension must be even"
# Split x into first half and second half
x1 = x[..., : head_dim // 2] # First half
x2 = x[..., head_dim // 2:] # Second half
# Adjust sin and cos shapes
cos = cos[:seq_len, :].unsqueeze(0).unsqueeze(0) # Shape: (1, 1, seq_len, head_dim)
sin = sin[:seq_len, :].unsqueeze(0).unsqueeze(0)
# Apply the rotary transformation
rotated = torch.cat((-x2, x1), dim=-1)
x_rotated = (x * cos) + (rotated * sin)
# It's ok to use lower-precision after applying cos and sin rotation
return x_rotated.to(dtype=x.dtype)
def rescale_theta(theta_old, context_length_old, context_length_new):
scaling_factor = context_length_new / context_length_old
theta_new = theta_old * scaling_factor
return theta_new
def text_to_token_ids(text, tokenizer):
encoded = tokenizer.encode(text)
encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
return encoded_tensor
def token_ids_to_text(token_ids, tokenizer):
flat = token_ids.squeeze(0) # remove batch dimension
return tokenizer.decode(flat.tolist())
def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
# For-loop is the same as before: Get logits, and only focus on last time step
for _ in range(max_new_tokens):
idx_cond = idx[:, -context_size:]
with torch.no_grad():
logits = model(idx_cond)
logits = logits[:, -1, :]
# Filter logits with top_k sampling
if top_k is not None:
# Keep only top_k values
top_logits, _ = torch.topk(logits, top_k)
min_val = top_logits[:, -1]
logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
# Apply temperature scaling
if temperature > 0.0:
logits = logits / temperature
# Apply softmax to get probabilities
probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
# Sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
# Otherwise same as before: get idx of the vocab entry with the highest logits value
else:
idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified
break
# Same as before: append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
return idx