|
--- |
|
library_name: transformers |
|
language: |
|
- hu |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_17_0 |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_17_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xlsr-53-hungarian |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: MOZILLA-FOUNDATION/COMMON_VOICE_17_0 - HU |
|
type: common_voice_17_0 |
|
config: hu |
|
split: test |
|
args: 'Config: hu, Training split: train+validation, Eval split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.1727824914378453 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xlsr-53-hungarian |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_17_0 - HU dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1748 |
|
- Wer: 0.2997 |
|
|
|
The training and measured wer values differ due to ignored characters. |
|
|
|
## Model Comparison with the previous best wav2vec model (eval on CV17) |
|
| Model name | WER | CER | |
|
|:-----------------------------------------------:|:------------------:|:----------------:| |
|
| jonatasgrosman/wav2vec2-large-xlsr-53-hungarian | 46.199835320230555 | 9.85170677112479 | |
|
| sarpba/wav2vec2-large-xlsr-53-hungarian | 17.27824914378453 | 3.151354554132789 | |
|
|
|
Igonore characters on eval: |
|
``` |
|
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", |
|
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", |
|
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", |
|
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", |
|
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] |
|
``` |
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Train & Evaluation |
|
|
|
Trained with transformers example pytorch script |
|
|
|
Eval: |
|
|
|
``` |
|
import torch |
|
import librosa |
|
import re |
|
import warnings |
|
from datasets import load_dataset |
|
import evaluate |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
LANG_ID = "hu" |
|
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian" |
|
DEVICE = "cuda" |
|
|
|
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", |
|
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", |
|
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", |
|
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", |
|
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"] |
|
|
|
test_dataset = load_dataset("mozilla-foundation/common_voice_17_0", LANG_ID, split="test") |
|
|
|
wer = evaluate.load("wer") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py |
|
cer = evaluate.load("cer") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py |
|
|
|
|
|
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" |
|
|
|
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) |
|
model.to(DEVICE) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
with warnings.catch_warnings(): |
|
warnings.simplefilter("ignore") |
|
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) |
|
batch["speech"] = speech_array |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
predictions = [x.upper() for x in result["pred_strings"]] |
|
references = [x.upper() for x in result["sentence"]] |
|
|
|
print(f"WER: {wer.compute(predictions=predictions, references=references) * 100}") |
|
print(f"CER: {cer.compute(predictions=predictions, references=references) * 100}") |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 15.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 3.7968 | 1.0 | 758 | 0.2848 | 0.5295 | |
|
| 0.2547 | 2.0 | 1516 | 0.1908 | 0.4222 | |
|
| 0.1929 | 3.0 | 2274 | 0.1753 | 0.4000 | |
|
| 0.1532 | 4.0 | 3032 | 0.1558 | 0.3710 | |
|
| 0.1297 | 5.0 | 3790 | 0.1512 | 0.3536 | |
|
| 0.1167 | 6.0 | 4548 | 0.1574 | 0.3514 | |
|
| 0.101 | 7.0 | 5306 | 0.1483 | 0.3374 | |
|
| 0.0859 | 8.0 | 6064 | 0.1490 | 0.3299 | |
|
| 0.0791 | 9.0 | 6822 | 0.1523 | 0.3250 | |
|
| 0.0702 | 10.0 | 7580 | 0.1608 | 0.3192 | |
|
| 0.0629 | 11.0 | 8338 | 0.1664 | 0.3146 | |
|
| 0.0559 | 12.0 | 9096 | 0.1641 | 0.3103 | |
|
| 0.0527 | 13.0 | 9854 | 0.1665 | 0.3063 | |
|
| 0.0468 | 14.0 | 10612 | 0.1691 | 0.3011 | |
|
| 0.0443 | 15.0 | 11370 | 0.1748 | 0.2998 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.50.0.dev0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.3.2 |
|
- Tokenizers 0.21.0 |
|
|