Sentence Embeddings Models trained on Paraphrases
This model is from the sentence-transformers-repository. It was trained on millions of paraphrase sentences. Further details on SBERT can be found in the paper: Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
This model is the multilingual version of distilroberta-base-paraphrase-v1, trained on parallel data for 50+ languages.
Usage (HuggingFace Models Repository)
You can use the model directly from the model repository to compute sentence embeddings:
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
#Sentences we want sentence embeddings for
sentences = ['This framework generates embeddings for each input sentence',
'Sentences are passed as a list of string.',
'The quick brown fox jumps over the lazy dog.']
#Load AutoModel from huggingface model repository
tokenizer = AutoTokenizer.from_pretrained("model_name")
model = AutoModel.from_pretrained("model_name")
#Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
#Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
#Perform pooling. In this case, mean pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
Usage (Sentence-Transformers)
Using this model becomes more convenient when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('model_name')
sentences = ['This framework generates embeddings for each input sentence',
'Sentences are passed as a list of string.',
'The quick brown fox jumps over the lazy dog.']
sentence_embeddings = model.encode(sentences)
print("Sentence embeddings:")
print(sentence_embeddings)
Citing & Authors
If you find this model helpful, feel free to cite our publication Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation:
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}