t12 / README.md
seregadgl's picture
Add new SentenceTransformer model
f969918 verified
metadata
base_model: jinaai/jina-clip-v2
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:63802
  - loss:CoSENTLoss
widget:
  - source_sentence: машинка детская самоходная бибикар желтый
    sentences:
      - 'машинка детская красная бибикар '
      - моторное масло alpine dx1 5w 30 5л 0101662
      - 'спинбайк schwinn ic7 '
  - source_sentence: 'велосипед stels saber 20 фиолетовый '
    sentences:
      - 'детские спортивные комплексы '
      - 'велосипед bmx stels saber 20 v010 2020 '
      - 50218 кабель ugreen hd132 hdmi zinc alloy optical fiber cable черный 40m
  - source_sentence: гидравличесские прессы
    sentences:
      - пресс гидравлический ручной механизмом
      - ракетка для настольного тенниса fora 7
      - 'объектив panasonic 20mm f1 7 asph ii h h020ae k '
  - source_sentence: >-
      бокс пластиковый монтажной платой щмп п 300х200х130 мм ip65 proxima ящики
      щитки шкафы 
    sentences:
      - >-
        батарейный отсек для 4xаа открытый проволочные выводы разъем dcx2 1
        battery holder 4xaa 6v dc
      - 'bugera bc15 '
      - >-
        бокс пластиковый монтажной платой щмп п 500х350х190 мм ip65 proxima
        ящики щитки шкафы 
  - source_sentence: 'honor watch gs pro black '
    sentences:
      - 'honor watch gs pro white '
      - трансформер pituso carlo hb gy 06 lemon
      - 'электровелосипед колхозник volten greenline 500w '
model-index:
  - name: SentenceTransformer based on jinaai/jina-clip-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: example dev
          type: example-dev
        metrics:
          - type: pearson_cosine
            value: 0.46018545926876964
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.4873837299726027
            name: Spearman Cosine

SentenceTransformer based on jinaai/jina-clip-v2

This is a sentence-transformers model finetuned from jinaai/jina-clip-v2. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: jinaai/jina-clip-v2
  • Maximum Sequence Length: None tokens
  • Output Dimensionality: None dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (transformer): Transformer(
    (model): JinaCLIPModel(
      (text_model): HFTextEncoder(
        (transformer): XLMRobertaLoRA(
          (roberta): XLMRobertaModel(
            (embeddings): XLMRobertaEmbeddings(
              (word_embeddings): ParametrizedEmbedding(
                250002, 1024, padding_idx=1
                (parametrizations): ModuleDict(
                  (weight): ParametrizationList(
                    (0): LoRAParametrization()
                  )
                )
              )
              (token_type_embeddings): ParametrizedEmbedding(
                1, 1024
                (parametrizations): ModuleDict(
                  (weight): ParametrizationList(
                    (0): LoRAParametrization()
                  )
                )
              )
            )
            (emb_drop): Dropout(p=0.1, inplace=False)
            (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (encoder): XLMRobertaEncoder(
              (layers): ModuleList(
                (0-23): 24 x Block(
                  (mixer): MHA(
                    (rotary_emb): RotaryEmbedding()
                    (Wqkv): ParametrizedLinearResidual(
                      in_features=1024, out_features=3072, bias=True
                      (parametrizations): ModuleDict(
                        (weight): ParametrizationList(
                          (0): LoRAParametrization()
                        )
                      )
                    )
                    (inner_attn): SelfAttention(
                      (drop): Dropout(p=0.1, inplace=False)
                    )
                    (inner_cross_attn): CrossAttention(
                      (drop): Dropout(p=0.1, inplace=False)
                    )
                    (out_proj): ParametrizedLinear(
                      in_features=1024, out_features=1024, bias=True
                      (parametrizations): ModuleDict(
                        (weight): ParametrizationList(
                          (0): LoRAParametrization()
                        )
                      )
                    )
                  )
                  (dropout1): Dropout(p=0.1, inplace=False)
                  (drop_path1): StochasticDepth(p=0.0, mode=row)
                  (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                  (mlp): Mlp(
                    (fc1): ParametrizedLinear(
                      in_features=1024, out_features=4096, bias=True
                      (parametrizations): ModuleDict(
                        (weight): ParametrizationList(
                          (0): LoRAParametrization()
                        )
                      )
                    )
                    (fc2): ParametrizedLinear(
                      in_features=4096, out_features=1024, bias=True
                      (parametrizations): ModuleDict(
                        (weight): ParametrizationList(
                          (0): LoRAParametrization()
                        )
                      )
                    )
                  )
                  (dropout2): Dropout(p=0.1, inplace=False)
                  (drop_path2): StochasticDepth(p=0.0, mode=row)
                  (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                )
              )
            )
          )
        )
        (pooler): MeanPooler()
        (proj): Identity()
      )
      (vision_model): EVAVisionTransformer(
        (patch_embed): PatchEmbed(
          (proj): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14))
        )
        (pos_drop): Dropout(p=0.0, inplace=False)
        (rope): VisionRotaryEmbeddingFast()
        (blocks): ModuleList(
          (0-23): 24 x Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (q_proj): Linear(in_features=1024, out_features=1024, bias=False)
              (k_proj): Linear(in_features=1024, out_features=1024, bias=False)
              (v_proj): Linear(in_features=1024, out_features=1024, bias=False)
              (attn_drop): Dropout(p=0.0, inplace=False)
              (inner_attn_ln): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Dropout(p=0.0, inplace=False)
              (rope): VisionRotaryEmbeddingFast()
            )
            (drop_path): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): SwiGLU(
              (w1): Linear(in_features=1024, out_features=2730, bias=True)
              (w2): Linear(in_features=1024, out_features=2730, bias=True)
              (act): SiLU()
              (ffn_ln): LayerNorm((2730,), eps=1e-06, elementwise_affine=True)
              (w3): Linear(in_features=2730, out_features=1024, bias=True)
              (drop): Dropout(p=0.0, inplace=False)
            )
          )
        )
        (norm): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
        (head): Identity()
        (patch_dropout): PatchDropout()
      )
      (visual_projection): Identity()
      (text_projection): Identity()
    )
  )
  (normalizer): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("seregadgl/t12")
# Run inference
sentences = [
    'honor watch gs pro black ',
    'honor watch gs pro white ',
    'трансформер pituso carlo hb gy 06 lemon',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4602
spearman_cosine 0.4874

Training Details

Training Dataset

Unnamed Dataset

  • Size: 63,802 training samples
  • Columns: doc, candidate, and label
  • Approximate statistics based on the first 1000 samples:
    doc candidate label
    type string string int
    details
    • min: 5 characters
    • mean: 40.56 characters
    • max: 115 characters
    • min: 4 characters
    • mean: 40.11 characters
    • max: 115 characters
    • 0: ~85.20%
    • 1: ~14.80%
  • Samples:
    doc candidate label
    массажер xiaomi massage gun eu bhr5608eu перкуссионный массажер xiaomi massage gun mini bhr6083gl 0
    безударная дрель ingco ed50028 ударная дрель ingco id211002 0
    жидкость old smuggler 30мл 20мг жидкость old smuggler salt 30ml marlboro 20mg 0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 7,090 evaluation samples
  • Columns: doc, candidate, and label
  • Approximate statistics based on the first 1000 samples:
    doc candidate label
    type string string int
    details
    • min: 4 characters
    • mean: 40.68 characters
    • max: 198 characters
    • min: 5 characters
    • mean: 39.92 characters
    • max: 178 characters
    • 0: ~84.20%
    • 1: ~15.80%
  • Samples:
    doc candidate label
    круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик пироженко круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик клубника 0
    аккумулятор батарея для ноутбука asus g751 аккумулятор батарея для ноутбука asus g75 series 0
    миксер bosch mfq3520 mfq 3520 миксер bosch mfq 4020 0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss example-dev_spearman_cosine
0 0 - - 0.0849
0.1254 500 3.7498 3.0315 0.3797
0.2508 1000 2.7653 2.7538 0.4508
0.3761 1500 2.5938 2.7853 0.4689
0.5015 2000 2.6425 2.6761 0.4800
0.6269 2500 2.6859 2.6341 0.4840
0.7523 3000 2.5805 2.6350 0.4855
0.8776 3500 2.7247 2.6087 0.4874

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.4.0
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}