metadata
base_model: jinaai/jina-clip-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:63802
- loss:CoSENTLoss
widget:
- source_sentence: машинка детская самоходная бибикар желтый
sentences:
- 'машинка детская красная бибикар '
- моторное масло alpine dx1 5w 30 5л 0101662
- 'спинбайк schwinn ic7 '
- source_sentence: 'велосипед stels saber 20 фиолетовый '
sentences:
- 'детские спортивные комплексы '
- 'велосипед bmx stels saber 20 v010 2020 '
- 50218 кабель ugreen hd132 hdmi zinc alloy optical fiber cable черный 40m
- source_sentence: гидравличесские прессы
sentences:
- пресс гидравлический ручной механизмом
- ракетка для настольного тенниса fora 7
- 'объектив panasonic 20mm f1 7 asph ii h h020ae k '
- source_sentence: >-
бокс пластиковый монтажной платой щмп п 300х200х130 мм ip65 proxima ящики
щитки шкафы
sentences:
- >-
батарейный отсек для 4xаа открытый проволочные выводы разъем dcx2 1
battery holder 4xaa 6v dc
- 'bugera bc15 '
- >-
бокс пластиковый монтажной платой щмп п 500х350х190 мм ip65 proxima
ящики щитки шкафы
- source_sentence: 'honor watch gs pro black '
sentences:
- 'honor watch gs pro white '
- трансформер pituso carlo hb gy 06 lemon
- 'электровелосипед колхозник volten greenline 500w '
model-index:
- name: SentenceTransformer based on jinaai/jina-clip-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: example dev
type: example-dev
metrics:
- type: pearson_cosine
value: 0.46018545926876964
name: Pearson Cosine
- type: spearman_cosine
value: 0.4873837299726027
name: Spearman Cosine
SentenceTransformer based on jinaai/jina-clip-v2
This is a sentence-transformers model finetuned from jinaai/jina-clip-v2. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: jinaai/jina-clip-v2
- Maximum Sequence Length: None tokens
- Output Dimensionality: None dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(transformer): Transformer(
(model): JinaCLIPModel(
(text_model): HFTextEncoder(
(transformer): XLMRobertaLoRA(
(roberta): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): ParametrizedEmbedding(
250002, 1024, padding_idx=1
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(token_type_embeddings): ParametrizedEmbedding(
1, 1024
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(emb_drop): Dropout(p=0.1, inplace=False)
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(encoder): XLMRobertaEncoder(
(layers): ModuleList(
(0-23): 24 x Block(
(mixer): MHA(
(rotary_emb): RotaryEmbedding()
(Wqkv): ParametrizedLinearResidual(
in_features=1024, out_features=3072, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(inner_attn): SelfAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(inner_cross_attn): CrossAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(out_proj): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout1): Dropout(p=0.1, inplace=False)
(drop_path1): StochasticDepth(p=0.0, mode=row)
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): ParametrizedLinear(
in_features=1024, out_features=4096, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(fc2): ParametrizedLinear(
in_features=4096, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout2): Dropout(p=0.1, inplace=False)
(drop_path2): StochasticDepth(p=0.0, mode=row)
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
)
)
(pooler): MeanPooler()
(proj): Identity()
)
(vision_model): EVAVisionTransformer(
(patch_embed): PatchEmbed(
(proj): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14))
)
(pos_drop): Dropout(p=0.0, inplace=False)
(rope): VisionRotaryEmbeddingFast()
(blocks): ModuleList(
(0-23): 24 x Block(
(norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(q_proj): Linear(in_features=1024, out_features=1024, bias=False)
(k_proj): Linear(in_features=1024, out_features=1024, bias=False)
(v_proj): Linear(in_features=1024, out_features=1024, bias=False)
(attn_drop): Dropout(p=0.0, inplace=False)
(inner_attn_ln): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(proj): Linear(in_features=1024, out_features=1024, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
(rope): VisionRotaryEmbeddingFast()
)
(drop_path): Identity()
(norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(mlp): SwiGLU(
(w1): Linear(in_features=1024, out_features=2730, bias=True)
(w2): Linear(in_features=1024, out_features=2730, bias=True)
(act): SiLU()
(ffn_ln): LayerNorm((2730,), eps=1e-06, elementwise_affine=True)
(w3): Linear(in_features=2730, out_features=1024, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
)
)
(norm): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
(head): Identity()
(patch_dropout): PatchDropout()
)
(visual_projection): Identity()
(text_projection): Identity()
)
)
(normalizer): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seregadgl/t12")
# Run inference
sentences = [
'honor watch gs pro black ',
'honor watch gs pro white ',
'трансформер pituso carlo hb gy 06 lemon',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
example-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.4602 |
spearman_cosine | 0.4874 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 63,802 training samples
- Columns:
doc
,candidate
, andlabel
- Approximate statistics based on the first 1000 samples:
doc candidate label type string string int details - min: 5 characters
- mean: 40.56 characters
- max: 115 characters
- min: 4 characters
- mean: 40.11 characters
- max: 115 characters
- 0: ~85.20%
- 1: ~14.80%
- Samples:
doc candidate label массажер xiaomi massage gun eu bhr5608eu
перкуссионный массажер xiaomi massage gun mini bhr6083gl
0
безударная дрель ingco ed50028
ударная дрель ingco id211002
0
жидкость old smuggler 30мл 20мг
жидкость old smuggler salt 30ml marlboro 20mg
0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 7,090 evaluation samples
- Columns:
doc
,candidate
, andlabel
- Approximate statistics based on the first 1000 samples:
doc candidate label type string string int details - min: 4 characters
- mean: 40.68 characters
- max: 198 characters
- min: 5 characters
- mean: 39.92 characters
- max: 178 characters
- 0: ~84.20%
- 1: ~15.80%
- Samples:
doc candidate label круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик пироженко
круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик клубника
0
аккумулятор батарея для ноутбука asus g751
аккумулятор батарея для ноутбука asus g75 series
0
миксер bosch mfq3520 mfq 3520
миксер bosch mfq 4020
0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1lr_scheduler_type
: cosinewarmup_ratio
: 0.1load_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | example-dev_spearman_cosine |
---|---|---|---|---|
0 | 0 | - | - | 0.0849 |
0.1254 | 500 | 3.7498 | 3.0315 | 0.3797 |
0.2508 | 1000 | 2.7653 | 2.7538 | 0.4508 |
0.3761 | 1500 | 2.5938 | 2.7853 | 0.4689 |
0.5015 | 2000 | 2.6425 | 2.6761 | 0.4800 |
0.6269 | 2500 | 2.6859 | 2.6341 | 0.4840 |
0.7523 | 3000 | 2.5805 | 2.6350 | 0.4855 |
0.8776 | 3500 | 2.7247 | 2.6087 | 0.4874 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}