|
---
|
|
license: cc-by-nc-sa-4.0
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- cord-layoutlmv3
|
|
metrics:
|
|
- precision
|
|
- recall
|
|
- f1
|
|
- accuracy
|
|
model-index:
|
|
- name: layoutlmv3-finetuned-cord_100
|
|
results:
|
|
- task:
|
|
name: Token Classification
|
|
type: token-classification
|
|
dataset:
|
|
name: cord-layoutlmv3
|
|
type: cord-layoutlmv3
|
|
config: cord
|
|
split: test
|
|
args: cord
|
|
metrics:
|
|
- name: Precision
|
|
type: precision
|
|
value: 0.4115296803652968
|
|
- name: Recall
|
|
type: recall
|
|
value: 0.5396706586826348
|
|
- name: F1
|
|
type: f1
|
|
value: 0.46696891191709844
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.4350594227504245
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# layoutlmv3-finetuned-cord_100
|
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 2.5624
|
|
- Precision: 0.4115
|
|
- Recall: 0.5397
|
|
- F1: 0.4670
|
|
- Accuracy: 0.4351
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 1e-05
|
|
- train_batch_size: 5
|
|
- eval_batch_size: 5
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- training_steps: 100
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
|
| No log | 0.06 | 10 | 3.8065 | 0.1637 | 0.2582 | 0.2003 | 0.2585 |
|
|
| No log | 0.12 | 20 | 3.4787 | 0.4661 | 0.3862 | 0.4224 | 0.3353 |
|
|
| No log | 0.19 | 30 | 3.2587 | 0.4332 | 0.4731 | 0.4522 | 0.3667 |
|
|
| No log | 0.25 | 40 | 3.0615 | 0.4144 | 0.4873 | 0.4479 | 0.3846 |
|
|
| No log | 0.31 | 50 | 2.9052 | 0.3993 | 0.5090 | 0.4475 | 0.4024 |
|
|
| No log | 0.38 | 60 | 2.7819 | 0.3876 | 0.5165 | 0.4429 | 0.4143 |
|
|
| No log | 0.44 | 70 | 2.6853 | 0.3891 | 0.5202 | 0.4452 | 0.4164 |
|
|
| No log | 0.5 | 80 | 2.6245 | 0.3942 | 0.5269 | 0.4510 | 0.4236 |
|
|
| No log | 0.56 | 90 | 2.5777 | 0.4056 | 0.5352 | 0.4614 | 0.4312 |
|
|
| No log | 0.62 | 100 | 2.5624 | 0.4115 | 0.5397 | 0.4670 | 0.4351 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.28.0
|
|
- Pytorch 2.0.1+cpu
|
|
- Datasets 2.12.0
|
|
- Tokenizers 0.13.3
|
|
|