File size: 4,517 Bytes
0bfb000
acef6ac
6eb284a
2678bfa
6eb284a
2678bfa
996e768
2678bfa
 
 
6eb284a
2678bfa
acef6ac
 
 
 
 
 
2678bfa
 
3cc46c6
 
 
 
 
2678bfa
6eb284a
 
 
 
 
 
 
 
 
 
 
2678bfa
6eb284a
 
 
 
2678bfa
 
 
 
acef6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb284a
 
 
 
75be552
 
2678bfa
90c1cae
acef6ac
2678bfa
 
 
 
 
 
 
75be552
acef6ac
90c1cae
cb96b2a
2678bfa
6eb284a
 
2678bfa
acef6ac
 
 
75be552
 
acef6ac
90c1cae
acef6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2678bfa
6eb284a
 
acef6ac
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import gradio as gr
#import torch
import yolov7
import subprocess
import tempfile
import time
from pathlib import Path
import uuid
import cv2
import gradio as gr



# # Images
# #torch.hub.download_url_t
# o_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')

    
def image_fn(
    image: gr.Image = None,
    model_path: gr.Dropdown = None,
    image_size: gr.Slider = 640,
    conf_threshold: gr.Slider = 0.25,
    iou_threshold: gr.Slider = 0.45,
):
    """
    YOLOv7 inference function
    Args:
        image: Input image
        model_path: Path to the model
        image_size: Image size
        conf_threshold: Confidence threshold
        iou_threshold: IOU threshold
    Returns:
        Rendered image
    """

    model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
    model.conf = conf_threshold
    model.iou = iou_threshold
    results = model([image], size=image_size)
    return results.render()[0]
  
  
        
def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
    model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
    start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
    end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))

    suffix = Path(video_file).suffix

    clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
    subprocess.call(
        f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
    )

    # Reader of clip file
    cap = cv2.VideoCapture(clip_temp_file.name)

    # This is an intermediary temp file where we'll write the video to
    # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
    # with ffmpeg at the end of the function here.
    with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
        out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))

        num_frames = 0
        max_frames = duration * 30
        while cap.isOpened():
            try:
                ret, frame = cap.read()
                if not ret:
                    break
            except Exception as e:
                print(e)
                continue
            print("FRAME DTYPE", type(frame))
            out.write(model([frame], conf_thres, iou_thres))
            num_frames += 1
            print("Processed {} frames".format(num_frames))
            if num_frames == max_frames:
                break

        out.release()

        # Aforementioned hackiness
        out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
        subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())

    return out_file.name

image_interface = gr.Interface(
    fn=image_fn,
    inputs=[
    gr.Image(type="pil", label="Input Image"),
    gr.Dropdown(
        choices=[
            "Aalaa/Yolov7_Visual_Pollution_Detection",
            #"kadirnar/yolov7-v0.1",
        ],
        label="Model",
    )
    #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
    #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
    #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
],
    outputs=gr.Image(type="filepath", label="Output Image"),
    title="Smart Environmental Eye (SEE)",
    examples=[['image1.jpg', 'Aalaa/Yolov7_Visual_Pollution_Detection', 640, 0.25, 0.45]],
    cache_examples=True,
    theme='huggingface',
)


video_interface = gr.Interface(
    fn=video_fn,
    inputs=[
        gr.Video(source = "upload", type = "mp4", label = "Input Video"),
        gr.Dropdown(
        choices=[
            "Aalaa/Yolov7_Visual_Pollution_Detection",
            #"kadirnar/yolov7-v0.1",
        ],
        label="Model",
    ),
    ],
    outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
    # examples=[
    #     ["video.mp4", 0.25, 0.45, 0, 2],
       
    # ],
    title="Smart Environmental Eye (SEE)",
    cache_examples=True,
    theme='huggingface',
   
)

if __name__ == "__main__":
    gr.TabbedInterface(
        [image_interface, video_interface],
        ["Run on Images", "Run on Videos"],
    ).launch()