Spaces:
Running
Running
File size: 36,465 Bytes
23a1500 53625d1 23a1500 5f64e85 23a1500 64eee83 23a1500 64eee83 23a1500 64eee83 23a1500 64eee83 23a1500 64eee83 23a1500 ad7d92d 23a1500 64eee83 23a1500 64eee83 23a1500 ad7d92d 5a6fe9a ad7d92d 5a6fe9a ad7d92d 5a6fe9a ad7d92d 5a6fe9a ad7d92d 5a6fe9a ad7d92d aec20f4 23a1500 aec20f4 23a1500 ad7d92d bb4389c 23a1500 bb4389c 23a1500 34ec1cb bb4389c 23a1500 ad7d92d 23a1500 34ec1cb ad7d92d 34ec1cb fa7207c 34ec1cb 6a71e8b 34ec1cb 23a1500 ad7d92d 23a1500 ad7d92d 23a1500 5f64e85 23a1500 5f64e85 23a1500 d6ccf84 5f64e85 d6ccf84 5f64e85 23a1500 53625d1 23a1500 aec20f4 23a1500 53625d1 23a1500 4429f9e 23a1500 4429f9e 23a1500 ad7d92d 23a1500 ad7d92d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
import streamlit as st
import json
import ee
import os
import pandas as pd
import numpy as np
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
from shapely.geometry import base
from xml.etree import ElementTree as XET
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import matplotlib.pyplot as plt
import plotly.express as px
# Set up the page layout
st.set_page_config(layout="wide")
# Custom button styling
m = st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #006400;
color:#ffffff;
}
</style>""",
unsafe_allow_html=True,
)
# Logo and Title
st.write(
f"""
<div style="display: flex; justify-content: space-between; align-items: center;">
<img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
<img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
</div>
""",
unsafe_allow_html=True,
)
st.markdown(
f"""
<div style="display: flex; flex-direction: column; align-items: center;">
<img src="https://huggingface.co/spaces/YashMK89/SATRANG/resolve/main/SATRANG.png" style="width: 30%;">
<h3 style="text-align: center; margin: 0;">( Spatial and Temporal Aggregation for Remote-sensing Analysis of GEE Data )</h3>
</div>
<hr>
""",
unsafe_allow_html=True,
)
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')
# Helper function to get reducer
def get_reducer(reducer_name):
reducers = {
'mean': ee.Reducer.mean(),
'sum': ee.Reducer.sum(),
'median': ee.Reducer.median(),
'min': ee.Reducer.min(),
'max': ee.Reducer.max(),
'count': ee.Reducer.count(),
}
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
# Function to convert geometry to Earth Engine format
def convert_to_ee_geometry(geometry):
if isinstance(geometry, base.BaseGeometry):
if geometry.is_valid:
geojson = geometry.__geo_interface__
return ee.Geometry(geojson)
else:
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
elif isinstance(geometry, dict) or isinstance(geometry, str):
try:
if isinstance(geometry, str):
geometry = json.loads(geometry)
if 'type' in geometry and 'coordinates' in geometry:
return ee.Geometry(geometry)
else:
raise ValueError("GeoJSON format is invalid.")
except Exception as e:
raise ValueError(f"Error parsing GeoJSON: {e}")
elif isinstance(geometry, str) and geometry.lower().endswith(".kml"):
try:
tree = XET.parse(geometry)
kml_root = tree.getroot()
kml_namespace = {'kml': 'http://www.opengis.net/kml/2.2'}
coordinates = kml_root.findall(".//kml:coordinates", kml_namespace)
if coordinates:
coords_text = coordinates[0].text.strip()
coords = coords_text.split()
coords = [tuple(map(float, coord.split(','))) for coord in coords]
geojson = {"type": "Polygon", "coordinates": [coords]}
return ee.Geometry(geojson)
else:
raise ValueError("KML does not contain valid coordinates.")
except Exception as e:
raise ValueError(f"Error parsing KML: {e}")
else:
raise ValueError("Unsupported geometry input type. Supported types are Shapely, GeoJSON, and KML.")
# Function to calculate custom formula with dynamic scale handling
def calculate_custom_formula(image, geometry, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=None):
try:
# Fetch the nominal scales of the selected bands
band_scales = []
for band in selected_bands:
band_scale = image.select(band).projection().nominalScale().getInfo()
band_scales.append(band_scale)
default_scale = min(band_scales) if band_scales else 30 # Default to 30m if no bands are found
scale = user_scale if user_scale is not None else default_scale
# Rescale all bands to the chosen scale
rescaled_bands = {}
for band in selected_bands:
band_image = image.select(band)
band_scale = band_image.projection().nominalScale().getInfo()
if band_scale != scale:
rescaled_band = band_image.resample('bilinear').reproject(
crs=band_image.projection().crs(),
scale=scale
)
rescaled_bands[band] = rescaled_band
else:
rescaled_bands[band] = band_image
# Validate and extract band values
reduced_values = {}
reducer = get_reducer(reducer_choice)
for band in selected_bands:
value = rescaled_bands[band].reduceRegion(
reducer=reducer,
geometry=geometry,
scale=scale
).get(band).getInfo()
reduced_values[band] = float(value if value is not None else 0)
# Evaluate the custom formula
formula = custom_formula
for band in selected_bands:
formula = formula.replace(band, str(reduced_values[band]))
result = eval(formula, {"__builtins__": {}}, reduced_values)
# Validate the result
if not isinstance(result, (int, float)):
raise ValueError("Formula did not result in a numeric value.")
return ee.Image.constant(result).rename('custom_result')
except ZeroDivisionError:
st.error("Error: Division by zero in the formula.")
return ee.Image(0).rename('custom_result').set('error', 'Division by zero')
except SyntaxError:
st.error(f"Error: Invalid syntax in formula '{custom_formula}'.")
return ee.Image(0).rename('custom_result').set('error', 'Invalid syntax')
except ValueError as e:
st.error(f"Error: {str(e)}")
return ee.Image(0).rename('custom_result').set('error', str(e))
except Exception as e:
st.error(f"Unexpected error: {e}")
return ee.Image(0).rename('custom_result').set('error', str(e))
# Cloud percentage calculation
def calculate_cloud_percentage(image, cloud_band='QA60'):
qa60 = image.select(cloud_band)
opaque_clouds = qa60.bitwiseAnd(1 << 10)
cirrus_clouds = qa60.bitwiseAnd(1 << 11)
cloud_mask = opaque_clouds.Or(cirrus_clouds)
total_pixels = qa60.reduceRegion(
reducer=ee.Reducer.count(),
geometry=image.geometry(),
scale=60,
maxPixels=1e13
).get(cloud_band)
cloudy_pixels = cloud_mask.reduceRegion(
reducer=ee.Reducer.sum(),
geometry=image.geometry(),
scale=60,
maxPixels=1e13
).get(cloud_band)
if total_pixels == 0:
return 0
return ee.Number(cloudy_pixels).divide(ee.Number(total_pixels)).multiply(100)
# Preprocessing function
def preprocess_collection(collection, pixel_cloud_threshold):
def mask_cloudy_pixels(image):
qa60 = image.select('QA60')
opaque_clouds = qa60.bitwiseAnd(1 << 10)
cirrus_clouds = qa60.bitwiseAnd(1 << 11)
cloud_mask = opaque_clouds.Or(cirrus_clouds)
clear_pixels = cloud_mask.Not()
return image.updateMask(clear_pixels)
if pixel_cloud_threshold > 0:
return collection.map(mask_cloudy_pixels)
return collection
# Process single geometry
def process_single_geometry(row, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, custom_formula, original_lat_col, original_lon_col, kernel_size=None, include_boundary=None, user_scale=None, pixel_cloud_threshold=0):
if shape_type.lower() == "point":
latitude = row.get('latitude')
longitude = row.get('longitude')
if pd.isna(latitude) or pd.isna(longitude):
return None
location_name = row.get('name', f"Location_{row.name}")
if kernel_size == "3x3 Kernel":
buffer_size = 45
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
elif kernel_size == "5x5 Kernel":
buffer_size = 75
roi = ee.Geometry.Point([longitude, latitude]).buffer(buffer_size).bounds()
else:
roi = ee.Geometry.Point([longitude, latitude])
elif shape_type.lower() == "polygon":
polygon_geometry = row.get('geometry')
location_name = row.get('name', f"Polygon_{row.name}")
try:
roi = convert_to_ee_geometry(polygon_geometry)
if not include_boundary:
roi = roi.buffer(-30).bounds()
except ValueError:
return None
# Filter collection by date and area first
collection = ee.ImageCollection(dataset_id) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
st.write(f"After initial filtering: {collection.size().getInfo()} images")
# Apply pixel cloud masking if threshold > 0
if pixel_cloud_threshold > 0:
collection = preprocess_collection(collection, pixel_cloud_threshold)
st.write(f"After cloud masking: {collection.size().getInfo()} images")
if aggregation_period.lower() == 'custom (start date to end date)':
collection = aggregate_data_custom(collection)
elif aggregation_period.lower() == 'daily':
collection = aggregate_data_daily(collection)
elif aggregation_period.lower() == 'weekly':
collection = aggregate_data_weekly(collection, start_date_str, end_date_str)
elif aggregation_period.lower() == 'monthly':
collection = aggregate_data_monthly(collection, start_date_str, end_date_str)
elif aggregation_period.lower() == 'yearly':
collection = aggregate_data_yearly(collection)
image_list = collection.toList(collection.size())
processed_weeks = set()
aggregated_results = []
for i in range(image_list.size().getInfo()):
image = ee.Image(image_list.get(i))
if aggregation_period.lower() == 'custom (start date to end date)':
timestamp = image.get('day')
period_label = 'Date'
date = ee.Date(timestamp).format('YYYY-MM-dd').getInfo()
elif aggregation_period.lower() == 'daily':
timestamp = image.get('day_start')
period_label = 'Date'
date = ee.String(timestamp).getInfo()
elif aggregation_period.lower() == 'weekly':
timestamp = image.get('week_start')
period_label = 'Week'
date = ee.String(timestamp).getInfo()
if (pd.to_datetime(date) < pd.to_datetime(start_date_str) or
pd.to_datetime(date) > pd.to_datetime(end_date_str) or
date in processed_weeks):
continue
processed_weeks.add(date)
elif aggregation_period.lower() == 'monthly':
timestamp = image.get('month')
period_label = 'Month'
date = ee.Date(timestamp).format('YYYY-MM').getInfo()
elif aggregation_period.lower() == 'yearly':
timestamp = image.get('year')
period_label = 'Year'
date = ee.Date(timestamp).format('YYYY').getInfo()
index_image = calculate_custom_formula(image, roi, selected_bands, custom_formula, reducer_choice, dataset_id, user_scale=user_scale)
try:
index_value = index_image.reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=roi,
scale=user_scale
).get('custom_result')
calculated_value = index_value.getInfo()
if isinstance(calculated_value, (int, float)):
result = {
'Location Name': location_name,
period_label: date,
'Start Date': start_date_str,
'End Date': end_date_str,
'Calculated Value': calculated_value
}
if shape_type.lower() == 'point':
result[original_lat_col] = latitude
result[original_lon_col] = longitude
aggregated_results.append(result)
except Exception as e:
st.error(f"Error retrieving value for {location_name}: {e}")
return aggregated_results
# Process aggregation
def process_aggregation(locations_df, start_date_str, end_date_str, dataset_id, selected_bands, reducer_choice, shape_type, aggregation_period, original_lat_col, original_lon_col, custom_formula="", kernel_size=None, include_boundary=None, tile_cloud_threshold=0, pixel_cloud_threshold=0, user_scale=None):
aggregated_results = []
total_steps = len(locations_df)
progress_bar = st.progress(0)
progress_text = st.empty()
start_time = time.time()
raw_collection = ee.ImageCollection(dataset_id) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str))
# Log the original collection size
st.write(f"Original Collection Size: {raw_collection.size().getInfo()}")
# # Apply spatial filtering
# if roi is not None:
# raw_collection = raw_collection.filterBounds(roi)
# st.write(f"Filtered Collection Size (After Spatial Filtering): {raw_collection.size().getInfo()}")
# Apply cloud masking if threshold > 0
if pixel_cloud_threshold > 0:
raw_collection = preprocess_collection(raw_collection, pixel_cloud_threshold)
st.write(f"Filtered Collection Size (After Cloud Masking): {raw_collection.size().getInfo()}")
with ThreadPoolExecutor(max_workers=10) as executor:
futures = []
for idx, row in locations_df.iterrows():
future = executor.submit(
process_single_geometry,
row,
start_date_str,
end_date_str,
dataset_id,
selected_bands,
reducer_choice,
shape_type,
aggregation_period,
custom_formula,
original_lat_col,
original_lon_col,
kernel_size,
include_boundary,
user_scale=user_scale
)
futures.append(future)
completed = 0
for future in as_completed(futures):
result = future.result()
if result:
aggregated_results.extend(result)
completed += 1
progress_percentage = completed / total_steps
progress_bar.progress(progress_percentage)
progress_text.markdown(f"Processing: {int(progress_percentage * 100)}%")
end_time = time.time()
processing_time = end_time - start_time
if aggregated_results:
result_df = pd.DataFrame(aggregated_results)
if aggregation_period.lower() == 'custom (start date to end date)':
agg_dict = {
'Start Date': 'first',
'End Date': 'first',
'Calculated Value': 'mean'
}
if shape_type.lower() == 'point':
agg_dict[original_lat_col] = 'first'
agg_dict[original_lon_col] = 'first'
aggregated_output = result_df.groupby('Location Name').agg(agg_dict).reset_index()
aggregated_output['Date Range'] = aggregated_output['Start Date'] + " to " + aggregated_output['End Date']
return aggregated_output.to_dict(orient='records'), processing_time
else:
return result_df.to_dict(orient='records'), processing_time
return [], processing_time
# Streamlit App Logic
st.markdown("<h5>Image Collection</h5>", unsafe_allow_html=True)
imagery_base = st.selectbox("Select Imagery Base", ["Sentinel", "Landsat", "MODIS", "VIIRS", "Custom Input"], index=0)
data = {}
if imagery_base == "Sentinel":
dataset_file = "sentinel_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "Landsat":
dataset_file = "landsat_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "MODIS":
dataset_file = "modis_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "VIIRS":
dataset_file = "viirs_datasets.json"
try:
with open(dataset_file) as f:
data = json.load(f)
except FileNotFoundError:
st.error(f"Dataset file '{dataset_file}' not found.")
data = {}
elif imagery_base == "Custom Input":
custom_dataset_id = st.text_input("Enter Custom Earth Engine Dataset ID (e.g., AHN/AHN4)", value="")
if custom_dataset_id:
try:
if custom_dataset_id.startswith("ee.ImageCollection("):
custom_dataset_id = custom_dataset_id.replace("ee.ImageCollection('", "").replace("')", "")
collection = ee.ImageCollection(custom_dataset_id)
first_image = collection.first()
default_scale = first_image.projection().nominalScale().getInfo()
band_names = first_image.bandNames().getInfo()
data = {
f"Custom Dataset: {custom_dataset_id}": {
"sub_options": {custom_dataset_id: f"Custom Dataset ({custom_dataset_id})"},
"bands": {custom_dataset_id: band_names}
}
}
st.write(f"Fetched bands for {custom_dataset_id}: {', '.join(band_names)}")
st.write(f"Default Scale for Dataset: {default_scale} meters")
except Exception as e:
st.error(f"Error fetching dataset: {str(e)}. Please check the dataset ID and ensure it's valid in Google Earth Engine.")
data = {}
else:
st.warning("Please enter a custom dataset ID to proceed.")
data = {}
if not data:
st.error("No valid dataset available. Please check your inputs.")
st.stop()
st.markdown("<hr><h5><b>{}</b></h5>".format(imagery_base), unsafe_allow_html=True)
main_selection = st.selectbox(f"Select {imagery_base} Dataset Category", list(data.keys()))
sub_selection = None
dataset_id = None
if main_selection:
sub_options = data[main_selection]["sub_options"]
sub_selection = st.selectbox(f"Select Specific {imagery_base} Dataset ID", list(sub_options.keys()))
if sub_selection:
st.write(f"You selected: {main_selection} -> {sub_options[sub_selection]}")
st.write(f"Dataset ID: {sub_selection}")
dataset_id = sub_selection
# Fetch the default scale for the selected dataset
try:
collection = ee.ImageCollection(dataset_id)
first_image = collection.first()
default_scale = first_image.select(0).projection().nominalScale().getInfo()
st.write(f"Default Scale for Selected Dataset: {default_scale} meters")
except Exception as e:
st.error(f"Error fetching default scale: {str(e)}")
st.markdown("<hr><h5><b>Earth Engine Index Calculator</b></h5>", unsafe_allow_html=True)
if main_selection and sub_selection:
dataset_bands = data[main_selection]["bands"].get(sub_selection, [])
st.write(f"Available Bands for {sub_options[sub_selection]}: {', '.join(dataset_bands)}")
# Fetch nominal scales for all bands in the selected dataset
if dataset_id:
try:
# Fetch the first image from the collection to extract band information
collection = ee.ImageCollection(dataset_id)
first_image = collection.first()
band_names = first_image.bandNames().getInfo()
# Extract scales for all bands
band_scales = []
for band in band_names:
band_scale = first_image.select(band).projection().nominalScale().getInfo()
band_scales.append(band_scale)
# Identify unique scales using np.unique
unique_scales = np.unique(band_scales)
# Display the unique scales to the user
st.write(f"Nominal Scales for Bands: {band_scales}")
st.write(f"Unique Scales in Dataset: {unique_scales}")
# If there are multiple unique scales, allow the user to choose one
if len(unique_scales) > 1:
selected_scale = st.selectbox(
"Select a Scale for Calculation (meters)",
options=unique_scales,
index=0,
help="Choose a scale from the unique scales available in the dataset."
)
default_scale = selected_scale
else:
default_scale = unique_scales[0]
st.write(f"Default Scale for Dataset: {default_scale} meters")
except Exception as e:
st.error(f"Error fetching band scales: {str(e)}")
default_scale = 30 # Fallback to 30 meters if an error occurs
selected_bands = st.multiselect(
"Select 1 or 2 Bands for Calculation",
options=dataset_bands,
default=[dataset_bands[0]] if dataset_bands else [],
help=f"Select 1 or 2 bands from: {', '.join(dataset_bands)}"
)
if len(selected_bands) < 1:
st.warning("Please select at least one band.")
st.stop()
if selected_bands:
if len(selected_bands) == 1:
default_formula = f"{selected_bands[0]}"
example = f"'{selected_bands[0]} * 2' or '{selected_bands[0]} + 1'"
else:
default_formula = f"({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})"
example = f"'{selected_bands[0]} * {selected_bands[1]} / 2' or '({selected_bands[0]} - {selected_bands[1]}) / ({selected_bands[0]} + {selected_bands[1]})'"
custom_formula = st.text_input(
"Enter Custom Formula (e.g (B8 - B4) / (B8 + B4) , B4*B3/2)",
value=default_formula,
help=f"Use only these bands: {', '.join(selected_bands)}. Examples: {example}"
)
def validate_formula(formula, selected_bands):
allowed_chars = set(" +-*/()0123456789.")
terms = re.findall(r'[a-zA-Z][a-zA-Z0-9_]*', formula)
invalid_terms = [term for term in terms if term not in selected_bands]
if invalid_terms:
return False, f"Invalid terms in formula: {', '.join(invalid_terms)}. Use only {', '.join(selected_bands)}."
if not all(char in allowed_chars or char in ''.join(selected_bands) for char in formula):
return False, "Formula contains invalid characters. Use only bands, numbers, and operators (+, -, *, /, ())"
return True, ""
is_valid, error_message = validate_formula(custom_formula, selected_bands)
if not is_valid:
st.error(error_message)
st.stop()
elif not custom_formula:
st.warning("Please enter a custom formula to proceed.")
st.stop()
st.write(f"Custom Formula: {custom_formula}")
reducer_choice = st.selectbox(
"Select Reducer (e.g, mean , sum , median , min , max , count)",
['mean', 'sum', 'median', 'min', 'max', 'count'],
index=0
)
start_date = st.date_input("Start Date", value=pd.to_datetime('2024-11-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2024-12-01'))
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
if imagery_base == "Sentinel" and "Sentinel-2" in sub_options[sub_selection]:
st.markdown("<h5>Cloud Filtering</h5>", unsafe_allow_html=True)
pixel_cloud_threshold = st.slider(
"Select Maximum Pixel-Based Cloud Coverage Threshold (%)",
min_value=0,
max_value=100,
value=5,
step=5,
help="Individual pixels with cloud coverage exceeding this threshold will be masked."
)
aggregation_period = st.selectbox(
"Select Aggregation Period (e.g, Custom(Start Date to End Date) , Daily , Weekly , Monthly , Yearly)",
["Custom (Start Date to End Date)", "Daily", "Weekly", "Monthly", "Yearly"],
index=0
)
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
kernel_size = None
include_boundary = None
if shape_type.lower() == "point":
kernel_size = st.selectbox(
"Select Calculation Area(e.g, Point , 3x3 Kernel , 5x5 Kernel)",
["Point", "3x3 Kernel", "5x5 Kernel"],
index=0,
help="Choose 'Point' for exact point calculation, or a kernel size for area averaging."
)
elif shape_type.lower() == "polygon":
include_boundary = st.checkbox(
"Include Boundary Pixels",
value=True,
help="Check to include pixels on the polygon boundary; uncheck to exclude them."
)
# st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
# default_scale = ee.ImageCollection(dataset_id).first().select(0).projection().nominalScale().getInfo()
# user_scale = st.number_input(
# "Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
# min_value=1.0,
# value=float(default_scale),
# help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
# )
st.markdown("<h5>Calculation Scale</h5>", unsafe_allow_html=True)
user_scale = st.number_input(
"Enter Calculation Scale (meters) [Leave blank to use dataset's default scale]",
min_value=1.0,
value=float(default_scale),
help=f"Default scale for this dataset is {default_scale} meters. Adjust if needed."
)
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
locations_df = pd.DataFrame()
original_lat_col = None
original_lon_col = None
if file_upload is not None:
if shape_type.lower() == "point":
if file_upload.name.endswith('.csv'):
locations_df = pd.read_csv(file_upload)
st.write("Preview of your uploaded data (first 5 rows):")
st.dataframe(locations_df.head())
all_columns = locations_df.columns.tolist()
col1, col2 = st.columns(2)
with col1:
original_lat_col = st.selectbox(
"Select Latitude Column",
options=all_columns,
index=all_columns.index('latitude') if 'latitude' in all_columns else 0,
help="Select the column containing latitude values"
)
with col2:
original_lon_col = st.selectbox(
"Select Longitude Column",
options=all_columns,
index=all_columns.index('longitude') if 'longitude' in all_columns else 0,
help="Select the column containing longitude values"
)
if not pd.api.types.is_numeric_dtype(locations_df[original_lat_col]) or not pd.api.types.is_numeric_dtype(locations_df[original_lon_col]):
st.error("Error: Selected Latitude and Longitude columns must contain numeric values")
st.stop()
locations_df = locations_df.rename(columns={
original_lat_col: 'latitude',
original_lon_col: 'longitude'
})
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
if 'geometry' in locations_df.columns:
locations_df['latitude'] = locations_df['geometry'].y
locations_df['longitude'] = locations_df['geometry'].x
original_lat_col = 'latitude'
original_lon_col = 'longitude'
else:
st.error("GeoJSON file doesn't contain geometry column")
st.stop()
elif file_upload.name.endswith('.kml'):
kml_string = file_upload.read().decode('utf-8')
try:
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
points = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Point_{len(points)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Point/kml:coordinates', ns)
if coords_elem is not None:
coords_text = coords_elem.text.strip()
coords = [c.strip() for c in coords_text.split(',')]
if len(coords) >= 2:
lon, lat = float(coords[0]), float(coords[1])
points.append({'name': name, 'geometry': f"POINT ({lon} {lat})"})
if not points:
st.error("No valid Point data found in the KML file.")
else:
locations_df = gpd.GeoDataFrame(points, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in points]), crs="EPSG:4326")
locations_df['latitude'] = locations_df['geometry'].y
locations_df['longitude'] = locations_df['geometry'].x
original_lat_col = 'latitude'
original_lon_col = 'longitude'
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
if not locations_df.empty and 'latitude' in locations_df.columns and 'longitude' in locations_df.columns:
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
for _, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
if pd.isna(latitude) or pd.isna(longitude):
continue
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
st.write("Map of Uploaded Points:")
m.to_streamlit()
elif shape_type.lower() == "polygon":
if file_upload.name.endswith('.csv'):
st.error("CSV upload not supported for polygons. Please upload a GeoJSON or KML file.")
elif file_upload.name.endswith('.geojson'):
locations_df = gpd.read_file(file_upload)
if 'geometry' not in locations_df.columns:
st.error("GeoJSON file doesn't contain geometry column")
st.stop()
elif file_upload.name.endswith('.kml'):
kml_string = file_upload.read().decode('utf-8')
try:
root = XET.fromstring(kml_string)
ns = {'kml': 'http://www.opengis.net/kml/2.2'}
polygons = []
for placemark in root.findall('.//kml:Placemark', ns):
name = placemark.findtext('kml:name', default=f"Polygon_{len(polygons)}", namespaces=ns)
coords_elem = placemark.find('.//kml:Polygon//kml:coordinates', ns)
if coords_elem is not None:
coords_text = ' '.join(coords_elem.text.split())
coord_pairs = [pair.split(',')[:2] for pair in coords_text.split() if pair]
if len(coord_pairs) >= 4:
coords_str = " ".join([f"{float(lon)} {float(lat)}" for lon, lat in coord_pairs])
polygons.append({'name': name, 'geometry': f"POLYGON (({coords_str}))"})
if not polygons:
st.error("No valid Polygon data found in the KML file.")
else:
locations_df = gpd.GeoDataFrame(polygons, geometry=gpd.GeoSeries.from_wkt([p['geometry'] for p in polygons]), crs="EPSG:4326")
except Exception as e:
st.error(f"Error parsing KML file: {str(e)}")
if not locations_df.empty and 'geometry' in locations_df.columns:
centroid_lat = locations_df.geometry.centroid.y.mean()
centroid_lon = locations_df.geometry.centroid.x.mean()
m = leafmap.Map(center=[centroid_lat, centroid_lon], zoom=10)
for _, row in locations_df.iterrows():
polygon = row['geometry']
if polygon.is_valid:
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=locations_df.crs)
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
st.write("Map of Uploaded Polygons:")
m.to_streamlit()
if st.button(f"Calculate {custom_formula}"):
if not locations_df.empty:
with st.spinner("Processing Data..."):
try:
results, processing_time = process_aggregation(
locations_df,
start_date_str,
end_date_str,
dataset_id,
selected_bands,
reducer_choice,
shape_type,
aggregation_period,
original_lat_col,
original_lon_col,
custom_formula=custom_formula,
kernel_size=kernel_size,
include_boundary=include_boundary,
pixel_cloud_threshold=pixel_cloud_threshold if "pixel_cloud_threshold" in locals() else 0,
user_scale=user_scale
)
if results:
result_df = pd.DataFrame(results)
st.write(f"Processed Results Table ({aggregation_period}) for Formula: {custom_formula}")
st.dataframe(result_df)
filename = f"{main_selection}_{dataset_id}_{start_date.strftime('%Y%m%d')}_{end_date.strftime('%Y%m%d')}_{aggregation_period.lower()}.csv"
st.download_button(
label="Download results as CSV",
data=result_df.to_csv(index=False).encode('utf-8'),
file_name=filename,
mime='text/csv'
)
st.success(f"Processing complete! Total processing time: {processing_time:.2f} seconds.")
st.markdown("<h5>Graph Visualization</h5>", unsafe_allow_html=True)
if aggregation_period.lower() == 'custom (start date to end date)':
x_column = 'Date Range'
elif 'Date' in result_df.columns:
x_column = 'Date'
elif 'Week' in result_df.columns:
x_column = 'Week'
elif 'Month' in result_df.columns:
x_column = 'Month'
elif 'Year' in result_df.columns:
x_column = 'Year'
else:
st.warning("No valid time column found for plotting.")
st.stop()
y_column = 'Calculated Value'
fig = px.line(
result_df,
x=x_column,
y=y_column,
color='Location Name',
title=f"{custom_formula} Over Time"
)
st.plotly_chart(fig)
else:
st.warning("No results were generated. Check your inputs or formula.")
st.info(f"Total processing time: {processing_time:.2f} seconds.")
except Exception as e:
st.error(f"An error occurred during processing: {str(e)}")
else:
st.warning("Please upload a valid file to proceed.") |