File size: 1,499 Bytes
98c0f54 18332e8 f4067be 18332e8 0172e31 2bb61b8 c4d5545 2bb61b8 12b0ed7 95d05cb 8cb1867 98c0f54 18332e8 98c0f54 18332e8 1aa90a2 95d05cb 98c0f54 95d05cb 367a8a1 95d05cb 12b0ed7 fcf7672 2fc9168 f4067be bcb2ab6 12b0ed7 0172e31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from transformers import pipeline
# Create a text classification pipeline
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification", tokenizer="Ahmed235/roberta_classification")
def extract_text_from_pptx(file_path):
presentation = Presentation(file_path)
text = []
for slide_number, slide in enumerate(presentation.slides, start=1):
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return "\n".join(text)
def predict_pptx_content(file_path):
try:
extracted_text = extract_text_from_pptx(file_path)
# Perform inference using the pipeline
result = classifier(extracted_text)
predicted_label = result[0]['label']
predicted_probability = result[0]['score']
prediction = {
"Predicted Label": predicted_label,
}
return prediction
except Exception as e:
# Log the error details
print(f"Error in predict_pptx_content: {e}")
return {"error": str(e)}
# Define the Gradio interface
iface = gr.Interface(
fn=predict_pptx_content,
inputs=gr.File(type="filepath", label="Upload PowerPoint (.pptx) file"),
outputs=["text"], # Predicted Label, Evaluation
live=False, # Change to True for one-time analysis
title="<h1 style='color: lightgreen; text-align: center;'>HackTalk Analyzer</h1>",
)
# Deploy the Gradio interface
iface.launch(share=True)
|