File size: 1,499 Bytes
98c0f54
18332e8
f4067be
18332e8
 
0172e31
2bb61b8
c4d5545
 
 
 
 
 
 
2bb61b8
12b0ed7
95d05cb
8cb1867
98c0f54
18332e8
 
98c0f54
18332e8
 
1aa90a2
95d05cb
98c0f54
95d05cb
367a8a1
95d05cb
 
 
 
 
 
12b0ed7
 
 
 
fcf7672
2fc9168
f4067be
bcb2ab6
12b0ed7
 
 
0172e31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
from transformers import pipeline

# Create a text classification pipeline
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification", tokenizer="Ahmed235/roberta_classification")

def extract_text_from_pptx(file_path):
    presentation = Presentation(file_path)
    text = []
    for slide_number, slide in enumerate(presentation.slides, start=1):
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text.append(shape.text)
    return "\n".join(text)

def predict_pptx_content(file_path):
    try:
        extracted_text = extract_text_from_pptx(file_path)

        # Perform inference using the pipeline
        result = classifier(extracted_text)

        predicted_label = result[0]['label']
        predicted_probability = result[0]['score']

        prediction = {
            "Predicted Label": predicted_label,
        }

        return prediction

    except Exception as e:
        # Log the error details
        print(f"Error in predict_pptx_content: {e}")
        return {"error": str(e)}

# Define the Gradio interface
iface = gr.Interface(
    fn=predict_pptx_content,
    inputs=gr.File(type="filepath", label="Upload PowerPoint (.pptx) file"),
    outputs=["text"],  # Predicted Label, Evaluation
    live=False,  # Change to True for one-time analysis
    title="<h1 style='color: lightgreen; text-align: center;'>HackTalk Analyzer</h1>",
)

# Deploy the Gradio interface
iface.launch(share=True)