FreeAI / app.py
Alibrown's picture
Rename _app.py to app.py
401addd verified
import gradio as gr
from transformers import pipeline
import os
from huggingface_hub import login
# Hugging Face login function
def hf_login(token):
if token:
try:
login(token)
return "Successfully logged in to Hugging Face Hub"
except Exception as e:
return f"Login error: {str(e)}"
return "No token provided"
# Define all pipelines with lazy loading
def get_pipeline(model_name):
"""Lazy load pipeline only when needed"""
try:
if model_name == "GPT-2 Original":
return pipeline("text-generation", model="gpt2")
elif model_name == "GPT-2 Medium":
return pipeline("text-generation", model="gpt2-medium")
elif model_name == "DistilGPT-2":
return pipeline("text-generation", model="distilgpt2")
elif model_name == "German GPT-2":
return pipeline("text-generation", model="german-nlp-group/german-gpt2")
elif model_name == "German Wechsel GPT-2":
return pipeline("text-generation", model="benjamin/gpt2-wechsel-german")
elif model_name == "T5 Base":
return pipeline("text2text-generation", model="t5-base")
elif model_name == "T5 Large":
return pipeline("text2text-generation", model="t5-large")
elif model_name == "Text Classification":
return pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
elif model_name == "Sentiment Analysis":
return pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment")
else:
raise ValueError(f"Unknown model: {model_name}")
except Exception as e:
raise Exception(f"Error loading model {model_name}: {str(e)}")
def respond(
message,
history: list[tuple[str, str]],
system_message,
model_name,
max_tokens,
temperature,
top_p,
):
try:
# Get the appropriate pipeline
pipe = get_pipeline(model_name)
# For text generation models
if model_name in ["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2",
"German GPT-2", "German Wechsel GPT-2"]:
# Prepare full prompt
full_history = ' '.join([f"User: {msg[0]}\nAssistant: {msg[1] or ''}" for msg in history]) if history else ''
full_prompt = f"{system_message}\n{full_history}\nUser: {message}\nAssistant:"
response = pipe(
full_prompt,
max_length=len(full_prompt.split()) + max_tokens,
temperature=temperature,
top_p=top_p,
num_return_sequences=1
)[0]['generated_text']
# Extract just the new assistant response
assistant_response = response[len(full_prompt):].strip()
return assistant_response
# For T5 models
elif model_name in ["T5 Base", "T5 Large"]:
# T5 doesn't handle chat history the same way, so simplify
input_text = f"{message}"
response = pipe(
input_text,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
num_return_sequences=1
)[0]['generated_text']
return response
# For classification and sentiment models
elif model_name == "Text Classification":
result = pipe(message)[0]
return f"Classification: {result['label']} (Confidence: {result['score']:.2f})"
elif model_name == "Sentiment Analysis":
result = pipe(message)[0]
return f"Sentiment: {result['label']} (Confidence: {result['score']:.2f})"
except Exception as e:
return f"Error: {str(e)}"
def create_interface():
with gr.Blocks(title="Hugging Face Models Demo") as demo:
gr.Markdown("# Hugging Face Models Chat Interface")
with gr.Accordion("Hugging Face Login", open=False):
with gr.Row():
hf_token = gr.Textbox(label="Enter Hugging Face Token", type="password")
login_btn = gr.Button("Login")
login_output = gr.Textbox(label="Login Status")
login_btn.click(hf_login, inputs=[hf_token], outputs=[login_output])
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Dropdown(
["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2",
"German GPT-2", "German Wechsel GPT-2",
"T5 Base", "T5 Large",
"Text Classification", "Sentiment Analysis"],
value="GPT-2 Original",
label="Select Model"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
]
)
return demo
if __name__ == "__main__":
interface = create_interface()
interface.launch(share=True)