Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import os | |
from huggingface_hub import login | |
# Hugging Face login function | |
def hf_login(token): | |
if token: | |
try: | |
login(token) | |
return "Successfully logged in to Hugging Face Hub" | |
except Exception as e: | |
return f"Login error: {str(e)}" | |
return "No token provided" | |
# Define all pipelines with lazy loading | |
def get_pipeline(model_name): | |
"""Lazy load pipeline only when needed""" | |
try: | |
if model_name == "GPT-2 Original": | |
return pipeline("text-generation", model="gpt2") | |
elif model_name == "GPT-2 Medium": | |
return pipeline("text-generation", model="gpt2-medium") | |
elif model_name == "DistilGPT-2": | |
return pipeline("text-generation", model="distilgpt2") | |
elif model_name == "German GPT-2": | |
return pipeline("text-generation", model="german-nlp-group/german-gpt2") | |
elif model_name == "German Wechsel GPT-2": | |
return pipeline("text-generation", model="benjamin/gpt2-wechsel-german") | |
elif model_name == "T5 Base": | |
return pipeline("text2text-generation", model="t5-base") | |
elif model_name == "T5 Large": | |
return pipeline("text2text-generation", model="t5-large") | |
elif model_name == "Text Classification": | |
return pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english") | |
elif model_name == "Sentiment Analysis": | |
return pipeline("sentiment-analysis", model="nlptown/bert-base-multilingual-uncased-sentiment") | |
else: | |
raise ValueError(f"Unknown model: {model_name}") | |
except Exception as e: | |
raise Exception(f"Error loading model {model_name}: {str(e)}") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
model_name, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
try: | |
# Get the appropriate pipeline | |
pipe = get_pipeline(model_name) | |
# For text generation models | |
if model_name in ["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2", | |
"German GPT-2", "German Wechsel GPT-2"]: | |
# Prepare full prompt | |
full_history = ' '.join([f"User: {msg[0]}\nAssistant: {msg[1] or ''}" for msg in history]) if history else '' | |
full_prompt = f"{system_message}\n{full_history}\nUser: {message}\nAssistant:" | |
response = pipe( | |
full_prompt, | |
max_length=len(full_prompt.split()) + max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
num_return_sequences=1 | |
)[0]['generated_text'] | |
# Extract just the new assistant response | |
assistant_response = response[len(full_prompt):].strip() | |
return assistant_response | |
# For T5 models | |
elif model_name in ["T5 Base", "T5 Large"]: | |
# T5 doesn't handle chat history the same way, so simplify | |
input_text = f"{message}" | |
response = pipe( | |
input_text, | |
max_length=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
num_return_sequences=1 | |
)[0]['generated_text'] | |
return response | |
# For classification and sentiment models | |
elif model_name == "Text Classification": | |
result = pipe(message)[0] | |
return f"Classification: {result['label']} (Confidence: {result['score']:.2f})" | |
elif model_name == "Sentiment Analysis": | |
result = pipe(message)[0] | |
return f"Sentiment: {result['label']} (Confidence: {result['score']:.2f})" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def create_interface(): | |
with gr.Blocks(title="Hugging Face Models Demo") as demo: | |
gr.Markdown("# Hugging Face Models Chat Interface") | |
with gr.Accordion("Hugging Face Login", open=False): | |
with gr.Row(): | |
hf_token = gr.Textbox(label="Enter Hugging Face Token", type="password") | |
login_btn = gr.Button("Login") | |
login_output = gr.Textbox(label="Login Status") | |
login_btn.click(hf_login, inputs=[hf_token], outputs=[login_output]) | |
chat_interface = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Dropdown( | |
["GPT-2 Original", "GPT-2 Medium", "DistilGPT-2", | |
"German GPT-2", "German Wechsel GPT-2", | |
"T5 Base", "T5 Large", | |
"Text Classification", "Sentiment Analysis"], | |
value="GPT-2 Original", | |
label="Select Model" | |
), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
] | |
) | |
return demo | |
if __name__ == "__main__": | |
interface = create_interface() | |
interface.launch(share=True) |