File size: 7,081 Bytes
53bf50a
a0ade0a
 
2a3a970
a0ade0a
 
460a080
a0ade0a
 
 
e8a0f17
53bf50a
9b2d559
2a3a970
bf036e1
a0ade0a
e8a0f17
bf6da96
 
 
6b0ab1a
 
 
 
 
 
 
 
bf6da96
 
e9d9124
a0ade0a
8cb52d1
 
32a87d5
2bf0a50
8907f87
2bf0a50
2a3a970
2bf0a50
 
 
 
2a3a970
8cb52d1
 
a0ade0a
8cb52d1
2a3a970
a0ade0a
2a3a970
 
 
 
6b0ab1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a3a970
 
a0ade0a
2a3a970
 
 
6b0ab1a
 
 
 
2a3a970
 
 
a0ade0a
a8497b9
 
 
a0ade0a
a8497b9
6b0ab1a
 
a0ade0a
6b0ab1a
 
5efe001
a0ade0a
6b0ab1a
a0ade0a
 
 
6b0ab1a
a8497b9
 
 
a0ade0a
 
5efe001
e78e7c2
a0ade0a
 
 
a8497b9
683284b
a8497b9
a0ade0a
 
a8497b9
a0ade0a
b7c9c79
d79b3e8
5efe001
 
d79b3e8
9352ec1
 
a0ade0a
9352ec1
a0ade0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8497b9
 
9352ec1
a0ade0a
 
 
 
9352ec1
5a5168a
6b0ab1a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from __future__ import annotations
from typing import Iterable, List, Dict, Tuple

import gradio as gr
from gradio.themes.base import Base
from gradio.themes.soft import Soft
from gradio.themes.monochrome import Monochrome
from gradio.themes.default import Default
from gradio.themes.utils import colors, fonts, sizes

import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline
import os
import colorsys
import matplotlib.pyplot as plt

def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
    hex_color = hex_color.lstrip('#')
    return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))

def rgb_to_hex(rgb_color: tuple[int, int, int]) -> str:
    return "#{:02x}{:02x}{:02x}".format(*rgb_color)

def adjust_brightness(rgb_color: tuple[int, int, int], factor: float) -> tuple[int, int, int]:
    hsv_color = colorsys.rgb_to_hsv(*[v / 255.0 for v in rgb_color])
    new_v = max(0, min(hsv_color[2] * factor, 1))
    new_rgb = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], new_v)
    return tuple(int(v * 255) for v in new_rgb)

monochrome = Monochrome()

auth_token = os.environ['HF_TOKEN']

tokenizer_bin = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
model_bin = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
tokenizer_bin.model_max_length = 512
pipe_bin = pipeline("ner", model=model_bin, tokenizer=tokenizer_bin)

tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
tokenizer_ext.model_max_length = 512
pipe_ext = pipeline("ner", model=model_ext, tokenizer=tokenizer_ext)

model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, token=auth_token)
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", token=auth_token)

model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, token=auth_token)

def process_ner(text: str, pipeline) -> dict:
    output = pipeline(text)
    entities = []
    current_entity = None

    for token in output:
        entity_type = token['entity'][2:]
        entity_prefix = token['entity'][:1]

        if current_entity is None or entity_type != current_entity['entity'] or (entity_prefix == 'B' and entity_type == current_entity['entity']):
            if current_entity is not None:
                entities.append(current_entity)
            current_entity = {
                "entity": entity_type,
                "start": token['start'],
                "end": token['end'],
                "score": token['score']
            }
        else:
            current_entity['end'] = token['end']
            current_entity['score'] = max(current_entity['score'], token['score'])

    if current_entity is not None:
        entities.append(current_entity)

    return {"text": text, "entities": entities}

def process_classification(text: str, model1, model2, tokenizer1) -> Tuple[str, str, str]:
    inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True)
    
    with torch.no_grad():
        outputs1 = model1(**inputs1)
        outputs2 = model2(**inputs1)
    
    prediction1 = outputs1[0].item()
    prediction2 = outputs2[0].item()
    score = prediction1 / (prediction2 + prediction1)

    return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}"
    
def generate_charts(ner_output_bin: dict, ner_output_ext: dict) -> Tuple[plt.Figure, plt.Figure]:
    entities_bin = [entity['entity'] for entity in ner_output_bin['entities']]
    entities_ext = [entity['entity'] for entity in ner_output_ext['entities']]
    
    all_entities = entities_bin + entities_ext
    entity_counts = {entity: all_entities.count(entity) for entity in set(all_entities)}
    
    pie_labels = list(entity_counts.keys())
    pie_sizes = list(entity_counts.values())

    fig1, ax1 = plt.subplots()
    ax1.pie(pie_sizes, labels=pie_labels, autopct='%1.1f%%', startangle=90)
    ax1.axis('equal')
    
    fig2, ax2 = plt.subplots()
    ax2.bar(entity_counts.keys(), entity_counts.values())
    ax2.set_ylabel('Count')
    ax2.set_xlabel('Entity Type')
    ax2.set_title('Entity Counts')
    
    return fig1, fig2

@spaces.GPU
def all(text: str):
    ner_output_bin = process_ner(text, pipe_bin)
    ner_output_ext = process_ner(text, pipe_ext)
    classification_output = process_classification(text, model1, model2, tokenizer1)
    
    pie_chart, bar_chart = generate_charts(ner_output_bin, ner_output_ext)
    
    return (ner_output_bin, ner_output_ext, 
            classification_output[0], classification_output[1], classification_output[2],
            pie_chart, bar_chart)

examples = [
    ['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'],
]

iface = gr.Interface(
    fn=all,
    inputs=gr.Textbox(lines=5, label="Input Text", placeholder="Write about how your breakfast went or anything else that happened or might happen to you ..."),
    outputs=[
        gr.HighlightedText(label="Binary Sequence Classification",
                           color_map={
                               "External": "#6ad5bcff",
                               "Internal": "#ee8bacff"}
                          ),
        gr.HighlightedText(label="Extended Sequence Classification",
                           color_map={
                               "INTemothou": "#FF7F50",  # Coral
                               "INTpercept": "#FF4500",  # OrangeRed
                               "INTtime": "#FF6347",     # Tomato
                               "INTplace": "#FFD700",    # Gold
                               "INTevent": "#FFA500",    # Orange
                        
                               "EXTsemantic": "#4682B4", # SteelBlue
                               "EXTrepetition": "#5F9EA0", # CadetBlue
                               "EXTother": "#00CED1",    # DarkTurquoise
                           }
                          ),
        gr.Label(label="Internal Detail Count"),
        gr.Label(label="External Detail Count"),
        gr.Label(label="Approximated Internal Detail Ratio"),
        gr.Plot(label="Entity Distribution Pie Chart"),
        gr.Plot(label="Entity Count Bar Chart")
    ],
    title="Scoring Demo",
    description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
    examples=examples,
    theme=monochrome
)

iface.launch()