File size: 7,081 Bytes
53bf50a a0ade0a 2a3a970 a0ade0a 460a080 a0ade0a e8a0f17 53bf50a 9b2d559 2a3a970 bf036e1 a0ade0a e8a0f17 bf6da96 6b0ab1a bf6da96 e9d9124 a0ade0a 8cb52d1 32a87d5 2bf0a50 8907f87 2bf0a50 2a3a970 2bf0a50 2a3a970 8cb52d1 a0ade0a 8cb52d1 2a3a970 a0ade0a 2a3a970 6b0ab1a 2a3a970 a0ade0a 2a3a970 6b0ab1a 2a3a970 a0ade0a a8497b9 a0ade0a a8497b9 6b0ab1a a0ade0a 6b0ab1a 5efe001 a0ade0a 6b0ab1a a0ade0a 6b0ab1a a8497b9 a0ade0a 5efe001 e78e7c2 a0ade0a a8497b9 683284b a8497b9 a0ade0a a8497b9 a0ade0a b7c9c79 d79b3e8 5efe001 d79b3e8 9352ec1 a0ade0a 9352ec1 a0ade0a a8497b9 9352ec1 a0ade0a 9352ec1 5a5168a 6b0ab1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
from __future__ import annotations
from typing import Iterable, List, Dict, Tuple
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.soft import Soft
from gradio.themes.monochrome import Monochrome
from gradio.themes.default import Default
from gradio.themes.utils import colors, fonts, sizes
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline
import os
import colorsys
import matplotlib.pyplot as plt
def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
hex_color = hex_color.lstrip('#')
return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
def rgb_to_hex(rgb_color: tuple[int, int, int]) -> str:
return "#{:02x}{:02x}{:02x}".format(*rgb_color)
def adjust_brightness(rgb_color: tuple[int, int, int], factor: float) -> tuple[int, int, int]:
hsv_color = colorsys.rgb_to_hsv(*[v / 255.0 for v in rgb_color])
new_v = max(0, min(hsv_color[2] * factor, 1))
new_rgb = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], new_v)
return tuple(int(v * 255) for v in new_rgb)
monochrome = Monochrome()
auth_token = os.environ['HF_TOKEN']
tokenizer_bin = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
model_bin = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
tokenizer_bin.model_max_length = 512
pipe_bin = pipeline("ner", model=model_bin, tokenizer=tokenizer_bin)
tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
tokenizer_ext.model_max_length = 512
pipe_ext = pipeline("ner", model=model_ext, tokenizer=tokenizer_ext)
model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, token=auth_token)
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", token=auth_token)
model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, token=auth_token)
def process_ner(text: str, pipeline) -> dict:
output = pipeline(text)
entities = []
current_entity = None
for token in output:
entity_type = token['entity'][2:]
entity_prefix = token['entity'][:1]
if current_entity is None or entity_type != current_entity['entity'] or (entity_prefix == 'B' and entity_type == current_entity['entity']):
if current_entity is not None:
entities.append(current_entity)
current_entity = {
"entity": entity_type,
"start": token['start'],
"end": token['end'],
"score": token['score']
}
else:
current_entity['end'] = token['end']
current_entity['score'] = max(current_entity['score'], token['score'])
if current_entity is not None:
entities.append(current_entity)
return {"text": text, "entities": entities}
def process_classification(text: str, model1, model2, tokenizer1) -> Tuple[str, str, str]:
inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True)
with torch.no_grad():
outputs1 = model1(**inputs1)
outputs2 = model2(**inputs1)
prediction1 = outputs1[0].item()
prediction2 = outputs2[0].item()
score = prediction1 / (prediction2 + prediction1)
return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}"
def generate_charts(ner_output_bin: dict, ner_output_ext: dict) -> Tuple[plt.Figure, plt.Figure]:
entities_bin = [entity['entity'] for entity in ner_output_bin['entities']]
entities_ext = [entity['entity'] for entity in ner_output_ext['entities']]
all_entities = entities_bin + entities_ext
entity_counts = {entity: all_entities.count(entity) for entity in set(all_entities)}
pie_labels = list(entity_counts.keys())
pie_sizes = list(entity_counts.values())
fig1, ax1 = plt.subplots()
ax1.pie(pie_sizes, labels=pie_labels, autopct='%1.1f%%', startangle=90)
ax1.axis('equal')
fig2, ax2 = plt.subplots()
ax2.bar(entity_counts.keys(), entity_counts.values())
ax2.set_ylabel('Count')
ax2.set_xlabel('Entity Type')
ax2.set_title('Entity Counts')
return fig1, fig2
@spaces.GPU
def all(text: str):
ner_output_bin = process_ner(text, pipe_bin)
ner_output_ext = process_ner(text, pipe_ext)
classification_output = process_classification(text, model1, model2, tokenizer1)
pie_chart, bar_chart = generate_charts(ner_output_bin, ner_output_ext)
return (ner_output_bin, ner_output_ext,
classification_output[0], classification_output[1], classification_output[2],
pie_chart, bar_chart)
examples = [
['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'],
]
iface = gr.Interface(
fn=all,
inputs=gr.Textbox(lines=5, label="Input Text", placeholder="Write about how your breakfast went or anything else that happened or might happen to you ..."),
outputs=[
gr.HighlightedText(label="Binary Sequence Classification",
color_map={
"External": "#6ad5bcff",
"Internal": "#ee8bacff"}
),
gr.HighlightedText(label="Extended Sequence Classification",
color_map={
"INTemothou": "#FF7F50", # Coral
"INTpercept": "#FF4500", # OrangeRed
"INTtime": "#FF6347", # Tomato
"INTplace": "#FFD700", # Gold
"INTevent": "#FFA500", # Orange
"EXTsemantic": "#4682B4", # SteelBlue
"EXTrepetition": "#5F9EA0", # CadetBlue
"EXTother": "#00CED1", # DarkTurquoise
}
),
gr.Label(label="Internal Detail Count"),
gr.Label(label="External Detail Count"),
gr.Label(label="Approximated Internal Detail Ratio"),
gr.Plot(label="Entity Distribution Pie Chart"),
gr.Plot(label="Entity Count Bar Chart")
],
title="Scoring Demo",
description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
examples=examples,
theme=monochrome
)
iface.launch()
|