Spaces:
Running
Running
File size: 12,244 Bytes
b10cf5d 47f9e3c d582602 8573520 47f9e3c d582602 47f9e3c 15dbab2 b10cf5d 47f9e3c 8573520 b10cf5d 8573520 b10cf5d d582602 8573520 b10cf5d 15dbab2 bbd5b58 df98826 bbd5b58 47f9e3c 8573520 bbd5b58 b10cf5d bbd5b58 b10cf5d bbd5b58 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d 8573520 b10cf5d d582602 8573520 b10cf5d d582602 8573520 b10cf5d d582602 8573520 4fd5ac6 d582602 8573520 b10cf5d 8573520 bbd5b58 8573520 d981fc3 4b3b013 8573520 b10cf5d cac8321 b10cf5d ca163b3 b10cf5d f67015b ca163b3 f67015b b10cf5d 4b3b013 d0ae34f 4b3b013 b10cf5d 4b3b013 8573520 b10cf5d 15dbab2 8573520 b10cf5d 47f9e3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
from google.colab import drive
drive.mount('/content/drive')
"""Install Dependencies"""
pip install transformers librosa torch soundfile numba numpy TTS datasets gradio protobuf==3.20.3
"""Emotion Detection (Using Text Dataset)
"""
!pip install --upgrade numpy tensorflow transformers TTS
!pip freeze > requirements.txt
from transformers import pipeline
# Load pre-trained model for emotion detection
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
def detect_emotion(text):
result = emotion_classifier(text)
emotion = result[0]['label']
confidence = result[0]['score']
return emotion, confidence
# Example usage
text = "I am feeling excited today!"
emotion, confidence = detect_emotion(text)
print(f"Detected Emotion: {emotion}, Confidence: {confidence}")
"""Emotion-Aware TTS (Using Tacotron 2 or Similar)"""
import torch
import librosa
import numpy as np
from TTS.api import TTS # Using Coqui TTS for simplicity
# Load TTS model and vocoder automatically during initialization
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
def generate_emotional_speech(text, emotion):
# Map emotion to voice modulation parameters (pitch, speed)
emotion_settings = {
"neutral": {"pitch": 1.0, "speed": 1.0}, # Baseline conversational tone
"joy": {"pitch": 1.3, "speed": 1.2}, # Upbeat and energetic
"sadness": {"pitch": 0.8, "speed": 0.9}, # Subdued, slow tone
"anger": {"pitch": 1.6, "speed": 1.4}, # Intense and sharp
"fear": {"pitch": 1.2, "speed": 0.95}, # Tense and slightly slow
"surprise": {"pitch": 1.5, "speed": 1.3}, # Excitement with high pitch and fast speech
"disgust": {"pitch": 0.9, "speed": 0.95}, # Low and deliberate
"shame": {"pitch": 0.8, "speed": 0.85}, # Quiet, subdued tone
}
# Retrieve pitch and speed based on detected emotion
settings = emotion_settings.get(emotion, {"pitch": 1.0, "speed": 1.0})
# Generate speech with the TTS model
# Instead of directly passing speed and pitch to tts_to_file,
# We adjust the text to simulate the effect. This is a temporary solution.
# You might need to fine-tune these adjustments or consider a different TTS library
# with better control over speech parameters.
adjusted_text = text
if settings['speed'] > 1.0:
adjusted_text = adjusted_text.replace(" ", ".") # Simulate faster speech
elif settings['speed'] < 1.0:
adjusted_text = adjusted_text.replace(" ", "...") # Simulate slower speech
# Explicitly specify the output path
audio_path = "output.wav" # Or any desired filename
tts_model.tts_to_file(text=adjusted_text, file_path=audio_path) # Pass file_path argument
return audio_path
# Example usage
emotion = "happy"
output_audio = generate_emotional_speech("Welcome to the smart library!", emotion)
print(f"Generated Speech Saved At: {output_audio}")
"""Integrating the Workflow"""
from IPython.display import Audio, display
def emotion_aware_tts_pipeline(text):
emotion, confidence = detect_emotion(text)
print(f"Emotion Detected: {emotion} with Confidence: {confidence:.2f}")
audio_path = generate_emotional_speech(text, emotion)
print(f"Audio Generated: {audio_path}")
# Display and play the audio
display(Audio(audio_path, autoplay=True))
# Example usage
emotion_aware_tts_pipeline("I can’t stooop smiiiling, everything feels perrrfect!")
"""Fine-tuning the Emotion Detection Model"""
import os
os.environ["WANDB_DISABLED"] = "true"
from google.colab import drive
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
# Load dataset
dataset = load_dataset('/content/drive/MyDrive/Emotion_Model') #path_to_your_dataset
# Preprocess data
tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
# Define a function to map emotion labels to integers
def map_emotion_to_int(example):
# Assuming your dataset has an 'emotion' column with string labels
# Replace this with your actual emotion labels and their corresponding integers
# *Change 'emotion' to the actual column name in your dataset*
emotion_mapping = {
"neutral": 0,
"joy": 1,
"sad": 2,
"anger": 3,
"fear": 4,
"surprise": 5,
"disgust": 6,
"shame": 7,
}
# Assuming your emotion column is named 'label'
# example['label'] = emotion_mapping[example['emotion']] # Create a new 'label' column with integer values
example['label'] = emotion_mapping.get(example['label'], -1) # If the label is not in the emotion mapping then we set it to -1. We can later filter these examples out
return example
def preprocess_data(example):
return tokenizer(example['text'], truncation=True, padding=True, max_length=512) # Added max_length for consistency
# Apply emotion mapping before tokenization
dataset = dataset.map(map_emotion_to_int, batched=False)
# *Keep the 'label' column for training. Only remove 'text'*
# Filter out examples with labels not in emotion_mapping (-1)
dataset = dataset.filter(lambda example: example['label'] != -1) # Filter out examples with label -1
tokenized_dataset = dataset.map(preprocess_data, batched=True, remove_columns=['text'])
# Load model
# model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion", num_labels=8)
# Load model with ignore_mismatched_sizes=True
model = AutoModelForSequenceClassification.from_pretrained(
"bhadresh-savani/distilbert-base-uncased-emotion",
num_labels=8,
ignore_mismatched_sizes=True
)
# Training arguments
training_args = TrainingArguments(
output_dir="./results", # Directory for model checkpoints and logs
evaluation_strategy="epoch", # Evaluate after every epoch
learning_rate=5e-5, # Start with 5e-5 (slightly higher than default 2e-5)
per_device_train_batch_size=16, # Use 16 for balance between memory usage and training speed
gradient_accumulation_steps=4, # Accumulate gradients to simulate larger batch size
num_train_epochs=5, # Train for 4-5 epochs (typically enough for fine-tuning)
weight_decay=0.01, # Regularization to avoid overfitting
save_strategy="epoch", # Save checkpoints after each epoch
logging_dir="./logs", # Directory for logging
logging_steps=100, # Log every 100 steps
warmup_steps=500, # Gradual learning rate increase for the first 500 steps
save_total_limit=3, # Keep only the last 3 checkpoints
fp16=True, # Enable mixed precision for faster training if GPU supports it
load_best_model_at_end=True, # Load the best model at the end of training
metric_for_best_model="eval_loss", # Use evaluation loss to select the best model
greater_is_better=False, # Lower loss is better
)
# Train model
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset['train'],
eval_dataset=tokenized_dataset['validation'],
tokenizer=tokenizer,
)
trainer.train()
# Save the model and tokenizer to Google Drive
model_save_path = "/content/drive/My Drive/emotion_detection_model1"
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model1"
# Save the fine-tuned model
model.save_pretrained(model_save_path)
tokenizer.save_pretrained(tokenizer_save_path)
print("Model and tokenizer saved to Google Drive.")
"""Reload the Fine-Tuned Model"""
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Mount Google Drive
from google.colab import drive
drive.mount('/content/drive')
# Path to the saved model and tokenizer
model_save_path = "/content/drive/My Drive/emotion_detection_model"
tokenizer_save_path = "/content/drive/My Drive/emotion_detection_model"
# Load the fine-tuned model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained(model_save_path)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)
print("Fine-tuned model and tokenizer loaded successfully.")
"""Test the Reloaded Model"""
from transformers import pipeline
# Create a text classification pipeline with the loaded model
emotion_classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
# Test with a sample text
text = "I feel so upset today!"
result = emotion_classifier(text)
print(result)
"""Fine-tuning the TTS System"""
from TTS.api import TTS
from TTS.utils.audio import AudioProcessor
from TTS.tts.models.tacotron2 import Tacotron2
import torch
# Load pre-trained model
#model = Tacotron2.load_model("tts_models/en/ljspeech/tacotron2-DDC")
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC") # Use TTS for model loading
# Access the Tacotron2 model from the TTS object
model = tts.synthesizer.tts_model
# Fine-tuning parameters
model.config.dataset_path = "/content/drive/MyDrive/RAVDESS"
model.config.num_epochs = 10
# Train
model.train()
# Define the save path on Google Drive
save_path = "/content/drive/My Drive/fine_tuned_tacotron2.pth"
# Save the model's state dictionary using torch.save
torch.save(model.state_dict(), save_path)
"""Set up the Gradio interface"""
import gradio as gr
from transformers import pipeline
from TTS.api import TTS
# Load pre-trained emotion detection model
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
# Load TTS model
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
# Emotion-specific settings for pitch and speed
emotion_settings = {
"neutral": {"pitch": 1.0, "speed": 1.0},
"joy": {"pitch": 1.3, "speed": 1.2},
"sadness": {"pitch": 0.8, "speed": 0.9},
"anger": {"pitch": 1.6, "speed": 1.4},
"fear": {"pitch": 1.2, "speed": 0.95},
"surprise": {"pitch": 1.5, "speed": 1.3},
"disgust": {"pitch": 0.9, "speed": 0.95},
"shame": {"pitch": 0.8, "speed": 0.85},
}
import librosa
import soundfile as sf
def adjust_audio_speed(audio_path, speed_factor):
y, sr = librosa.load(audio_path)
y_speeded = librosa.effects.time_stretch(y, speed_factor)
sf.write(audio_path, y_speeded, sr)
def adjust_audio_pitch(audio_path, pitch_factor):
y, sr = librosa.load(audio_path)
y_shifted = librosa.effects.pitch_shift(y, sr, n_steps=pitch_factor)
sf.write(audio_path, y_shifted, sr)
def emotion_aware_tts_pipeline(input_text=None, file_input=None):
try:
# Get text from input or file
if file_input:
with open(file_input.name, 'r') as file:
input_text = file.read()
if input_text:
# Detect emotion
emotion_data = emotion_classifier(input_text)[0]
emotion = emotion_data['label']
confidence = emotion_data['score']
# Adjust pitch and speed
settings = emotion_settings.get(emotion.lower(), {"pitch": 1.0, "speed": 1.0})
pitch = settings["pitch"]
speed = settings["speed"]
# Generate audio
audio_path = "output.wav"
tts_model.tts_to_file(text=input_text, file_path=audio_path)
# Adjust pitch and speed using librosa
if pitch != 1.0:
adjust_audio_pitch(audio_path, pitch)
if speed != 1.0:
adjust_audio_speed(audio_path, speed)
return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path
else:
return "Please provide input text or file", None
except Exception as e:
return f"Error: {str(e)}", None
# Define Gradio interface
iface = gr.Interface(
fn=emotion_aware_tts_pipeline,
inputs=[
gr.Textbox(label="Input Text", placeholder="Enter text here"),
gr.File(label="Upload a Text File")
],
outputs=[
gr.Textbox(label="Detected Emotion"),
gr.Audio(label="Generated Audio")
],
title="Emotion-Aware Text-to-Speech",
description="Input text or upload a text file to detect the emotion and generate audio with emotion-aware modulation."
)
# Launch Gradio interface
iface.launch()
|