File size: 4,794 Bytes
944593e
 
 
e020ff3
1c7a5e7
7a84307
eef276d
dff1e7c
eef276d
dff1e7c
 
944593e
d47491b
944593e
 
 
 
e020ff3
944593e
f2ed4e7
944593e
 
e020ff3
944593e
 
e020ff3
 
 
 
69c78ba
944593e
fa8f268
69c78ba
944593e
 
f080dd9
944593e
 
 
 
f080dd9
249a008
f080dd9
 
 
 
08f6ce3
1c7a5e7
f2ed4e7
1c7a5e7
573b41b
08f6ce3
e020ff3
08f6ce3
 
d47491b
 
 
f2ed4e7
eef276d
 
f080dd9
e020ff3
f080dd9
 
cfb9d35
f080dd9
e020ff3
573b41b
 
 
 
e020ff3
 
 
 
 
 
 
f080dd9
e020ff3
f080dd9
e020ff3
 
cfb9d35
f080dd9
 
 
d47491b
 
f080dd9
cfb9d35
 
573b41b
e020ff3
f080dd9
e020ff3
f080dd9
cfb9d35
f080dd9
cfb9d35
 
 
 
 
e020ff3
cfb9d35
e020ff3
cfb9d35
f080dd9
e020ff3
f080dd9
e020ff3
eef276d
f080dd9
e020ff3
11dd106
e020ff3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
import pandas as pd
import os
import traceback
from dotenv import load_dotenv
from llama_index.readers.file.paged_csv.base import PagedCSVReader
from llama_index.core import Settings, VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.core.ingestion import IngestionPipeline
from langchain_community.vectorstores import FAISS as LangChainFAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_core.documents import Document  
import faiss
import tempfile

# Load environment variables

os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")

# Check OpenAI API Key
if not os.getenv("OPENAI_API_KEY"):
    st.error("⚠️ OpenAI API Key is missing! Please check your .env file or environment variables.")

# Global settings for LlamaIndex
EMBED_DIMENSION = 512
Settings.llm = OpenAI(model="gpt-4o")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION)

# Streamlit app
st.title("Chat with CSV Files - LangChain vs LlamaIndex")

# File uploader
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
if uploaded_file:
    try:
        # Read and preview CSV data using pandas
        data = pd.read_csv(uploaded_file)
        st.write("Preview of uploaded data:")
        st.dataframe(data)

        # Save the uploaded file to a temporary location
        with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w", encoding="utf-8") as temp_file:
            temp_file_path = temp_file.name
            data.to_csv(temp_file.name, index=False, encoding="utf-8")
            temp_file.flush()

        # Debugging: Verify the temporary file (Display partial content)
        st.write("Temporary file path:", temp_file_path)
        with open(temp_file_path, "r") as f:
            content = f.read()
        st.write("Partial file content (first 500 characters):")
        st.text(content[:500])

        # Tabs for LangChain and LlamaIndex
        tab1, tab2 = st.tabs(["LangChain", "LlamaIndex"])

        # βœ… LangChain Processing
        with tab1:
            st.subheader("LangChain Query")

            try:
                # βœ… Convert CSV rows into LangChain Document objects
                st.write("Processing CSV with a custom loader...")
                documents = []
                for _, row in data.iterrows():
                    content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
                    doc = Document(page_content=content) 
                    documents.append(doc)

                # Print a sample document
                if documents:
                    st.write("Sample processed document (LangChain):")
                    st.text(documents[0].page_content)

                # βœ… Create FAISS VectorStore
                langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
                docstore = InMemoryDocstore()
                index_to_docstore_id = {}

                langchain_vector_store = LangChainFAISS(
                    embedding_function=OpenAIEmbeddings(),
                    index=langchain_index,
                    docstore=docstore,
                    index_to_docstore_id=index_to_docstore_id,
                )

                # βœ… Add properly formatted documents to FAISS
                langchain_vector_store.add_documents(documents)
                st.write("Documents successfully added to FAISS VectorStore.")

                # βœ… Query Processing
                query = st.text_input("Ask a question about your data (LangChain):")

                if query:
                    try:
                        st.write("Processing your question...")
                        answer = langchain_rag_chain.invoke({"input": query})
                        st.write(f"**Answer:** {answer['answer']}")
                    except Exception as e:
                        error_message = traceback.format_exc()
                        st.error(f"Error processing query: {e}")
                        st.text(error_message) 

            except Exception as e:
                error_message = traceback.format_exc()
                st.error(f"Error processing with LangChain: {e}")
                st.text(error_message) 

    except Exception as e:
        error_message = traceback.format_exc()
        st.error(f"Error reading uploaded file: {e}")
        st.text(error_message)